APPENDIX

A 1 Sample description, sample locations and main foliation

Localities in italic letters are taken from Carta Nazionale della Svizzera, sheet 294, Gressoney (1:50000). All other localities are taken from Carte d'Italia di Instituto Geografico Militare (1:25000), Foglio 42 (Valchiusella, Valprato Soana, Traversella, Pont Canavese, Vistrorio).

Sample	Lithology	Main foliation	Locality	Misc.
MK 1	Metakinzigite	245/65	R 630125	
	(Sill-grt-bt-schist)		H 68435	
MK 2	Grt-bearing ep/zo-fsp-wm-	206/20	R 632750	Thin section
	schist		H 78120	
MK 3	Ep/zo-fsp-white mica-schist	180/51	R633125	Thin section
	1 1		H 78095	
MK 4	Mica-rich chl-ep/zo-fsp-	160/61	R 626750	
	schist		H 62550	
MK 5	Grt-bearing bt-chl-ep/zo-fsp-	210/05	R 628955	Thin section
	wm-schist		H 61790	
MK 6	Mica-rich chl-ep/zo-fsp-		R 627950	
	schist		H 62480	
MK 7	Ep/zo-rich chl-bt-wm-schist	160/60	R 625750	Thin section
	-		H 62650	
MK 8	cc-bearing ep/zo-rich chl-bt-	180/60	R 625750	Thin section
	wm-schist		H 62650	
MK 9	Chl-fsp-bearing calc-schist	125/65	R 624480	
			H 62755	
MK 10	Chl-fsp-bearing calc-schist	112/70	R 624480	
	1 0		H 62755	
MK 11	Fine-grained mafic	95/40	R 624480	Thin section
	greenschist		H 62755	
MK 12	Mica-rich chl-ep/zo-fsp-	125/40	R 394658	Thin section
	schist		H 5041340	
MK 15	Chl-ep/zo-fsp-schist	60/25	R 629245	Thin section
	1 1		H 66450	
MK 16	Bt-chl-bearing ep/zo-white	135/35	R 628800	Thin section
	mica-schist		H 66450	
MK 17	Chl-ep/zo-fsp-schist	340/68	R 628750	Thin section
			H 67150	
MK 18	Chl-ep/zo-fsp-schist	275/75	R 629000	Thin section
			H 67000	
MK 19	Chl-ep/zo-fsp-schist	125/58	R 629000	
			H 67000	
MK 20	Qtz-rich chl-white mica-	150/80	R 628650	
	schist		H 66120	
MK 21	Qtz-fsp-rich chl-ep/zo-gneiss		R 628800	Thin section
			H 67750	
MK 22	Chl-ep/zo-fsp-schist		R 629000	Thin section
			H 67450	
MK 23	Amph-bearing chl-ep/zo-fsp-	180/89	R 635850	Thin section
	schist		H 66450	
MK 24	Grt-ep/zo-white mica-schist	185/89	R 635850	Thin section
			H 66450	
MK 25	Amph-bearing grt-ep/zo-	260/45	R 401810	Thin section

	white mica-schist		H 5051073	Amph-thermometry
MK 26	Ep/zo-white mica-schist	315/38	R 637350	Thin section
	-		H 65780	
MK 27	Ep/zo-white mica-schist	315/38	R 637350 H 65780	Thin section
MK 28	Bt-chl-bearing grt-ep/zo- white mica-schist	290/27	H 635750 R 66310	Thin section
MK 29	Chl-bearing ep/zo-white mica-schist	325/89	H 635750 R 66310	
MK 30	Bt-bearing ep/zo-grt-sodic amph-white mica-schist	190/68	R 398665 H 5042887	Thin section
MK 31	Chl-bearing ep/zo-white mica-schist	015/35	R 397073 H 5043352	
MK 32	Qtz-rich grt-bearing white mica-schist	355/89	R 396303 H 5045112	
MK 33	Qtz-rich white mica-schist	345/70	R 396230 H 5045150	
MK 34	Amph-bt-bearing grt-ep/zo- white mica-schist	330/85	R 396674 H 5043201	
MK 35	Amph-bt-bearing grt-ep/zo- white mica-schist	345/65	R 396342 H 5043403	Thin section Forward modelling
MK 36	Qtz-rich grt-bearing white mica-schist	025/25	R 399182 H 5043507	Amph-thermometry Thin section
MK 37	Ep/zo-fsp-white mica-schist	078/30	R 391312 H 5046015	
MK 38	Fine-grained fsp-rich white- mica-schist	078/30	R 391312 H 5046015	Thin section
MK 39	Fine-grained chl-bt-white- mica-schist	142/35	R 383250 H 5044250	Thin section
MK 40	Qtz-rich chl-white-mica calc- schist	145/40	R 388050 H 5037050	Thin section
MK 41	Qtz-rich chl-white-mica calc- schist	075/42	R 388050 H 5037050	Thin section
MK 42	Qtz-rich grt-bearing omph- white mica-schist	325/74	R 399126 H 5042190	Thin section
MK 50	Bt-bearing ep/zo-grt-sodic amph-white mica-schist	355/69	R 397225 H 5042986	
MK 51	Bt-bearing ep/zo-grt-sodic amph-white mica-schist		R 396392 H 5043395	Thin section
MK 52	Amph-bearing grt-sodic amph-white mica gneiss	345/80	R 396392 H 5043395	Thin section Amph-thermometry
MK 53	Amph-bt-bearing grt-ep/zo- white mica-schist	330/60 FAP2	R 396392 H 5043395	Thin section
MK 54	Chl-bearing ep/zo-white mica-schist	345/70	R 394839 H 5044772	Thin section
MK 55	Omph-bearing ep/zo-grt- sodic amph-white mica-schist	200/30	R 399314 H 5042265	Thin section Forward modelling
MK 56	Bt-bearing ep/zo-grt-sodic amph-white mica-schist	072/30	R 402507 H 5040895	
MK 57	Grt-omph-bearing mafic blueschist	330/60 FAP2	R 396392 H 5043395	Thin section
MK 58	Grt-omph-bearing mafic blueschist	325/87	R 403289 H 5048842	Thin section
MK 59	Bt-bearing ep/zo-grt-sodic amph-white mica-schist	327/80	R 403289 H 5048842	Thin section
MK 60	Amph-bt-bearing grt-ep/zo- white mica-schist	015/57	R 401182 H 5048639	Thin section
MK 61	Grt-ep/zo-sodic amph-white mica-schist	250/70	R 406788 H 5052836	

MK 62	Omph-bearing ep/zo-grt-	220/60	R 406866	Thin section
	sodic amph-white mica-schist		Н 5052557	
MK 63	Qtz-rich ep/zo-chl-white mica schist	140/70	R 398555 H 5056427	Thin section
MK 64	Chl-ep/zo-white mica-schist	165/68	R 397451	Thin section
WIX 04	Chi-cp/20-white hiled-senist	105/08	H 5050193	
MK 65	Qtz-rich ep/zo-chl-white		R 396907	
WIK 05	mica schist		H 5049512	
MIZ 70		290/15	R 409599	
MK 70	Grt-omph-bearing mafic blueschist	280/15	H 5058632	
MK 71	Grt-ep/zo-sodic amph-white	010/35 FAP3	R 409727	Thin section
	mica-schist	010/00 1110	H 5058599	
MK 72	Grt-ep/zo-white mica-schist	355/25	R 406878	Thin section
		0.50/40	H 5048820	
MK 73	Grt-bearing ep/zo-white	358/40	R 406740	Thin section
	mica-schist		H 5049093	
MK 74	Chl-ep/zo-fsp-schist	152/80	R 402628	Thin section
			H 5051604	
MK 75	Amph-bearing qtz-rich chl-	340/65	R 402489	
	white mica-schist		H 5051967	
MK 76	Qtz-rich ep/zo-chl-white	310/60	R 402489	
	mica schist		H 5051967	
MK 77	Fine grained ep/zo-rich mafic	152/70	R 402289	Thin section
	greenschist		H 5053430	
MK 78	Ep/zo-fsp-white mica-schist	130/75	R 402159	
	- r r		H 5053477	
MK 79	Qtz-rich ep/zo-chl-white	130/70	R 402159	Thin section
10HX /)	mica schist	150/70	H 5053477	
MK 80	Amph-bearing qtz-rich chl-	140/80	R 401815	Thin section
WIIX 00	white mica-schist	140/00	H 5053700	Amph-thermometry
MK 81	Qtz-rich ep/zo-white mica-	155/85	R 399436	Thin section
10111 01	fsp-schist	100/00	Н 5052652	
MK 82	Qtz-rich ep/zo-chl-white	148/80	R 399236	
10111 02	mica schist	110/00	H 5052628	
MK 83	Chl-fsp-bearing calc-schist	135/82	R 394658	
10111 05	ein isp bearing eare seinse	155/02	H 5050240	
MK 84	Qtz-rich cc-bearing chl-	342/80	R 395398	
WILC 04	ep/zo-fsp-schist	542/00	H 5050187	
MK 85	Ep/zo-fsp-white mica-schist	132/55	R 403752	Thin section
MIX 05	Ep/20-isp-winte inica-senist	132/33	H 5062154	Thin Section
MV 96	Chl fan haaring oole gehigt	130/50	R 402908	
MK 86	Chl-fsp-bearing calc-schist	130/30		
NIZ 07		115/60	H 5062269	
MK 87	Chl-fsp-bearing calc-schist	115/60	R 405216	
		1000	H 506529	
MK 88	Qtz-rich ep/zo-chl-white	126/50	R 398569	
	mica schist	10410	H 5055347	
MK 89	Amph-bt-bearing grt-ep/zo-	126/47	R 398569	
	white mica-schist		H 5055347	
MK 90	Bt-bearing ep/zo-white mica-	140/78	R 399661	
	schist		H 5054338	
1 117 0 1	Ep/zo-fsp-white mica-schist	122/65	R 399703	
MK 91			H 5054314	
MK 91 MK 92	Ep/zo-fsp-white mica-schist	132/55	R 399703	Thin section
		132/55	R 399703 H 5054314	Thin section Amph-thermometry
	Ep/zo-fsp-white mica-schist Ep/zo-fsp-white mica-schist	132/55		
MK 92			Н 5054314	
MK 92	Ep/zo-fsp-white mica-schist	132/55 142/89	H 5054314 R 399703	
MK 92 MK 93	Ep/zo-fsp-white mica-schist Bt-bearing ep/zo-white mica-		H 5054314 R 399703 H 5054314 R 401097	Amph-thermometry
MK 92 MK 93	Ep/zo-fsp-white mica-schist		H 5054314 R 399703 H 5054314	Amph-thermometry

MK 96	Chl-bearing Bt-ep/zo-white mica-schist	135/89	R 401097 H 5052262	
MK 97	Amph-bearing grt-ep/zo- white mica-schist	325/50	R 406111 H 5055426	Thin section
MK 98	Grt-ep/zo-white mica-schist		R 405762 H 5056057	Thin section
MK 99	Grt-sodic amph-ep/zo-white mica-schist	342/87	R 405762	Thin section
MK 100	Chl-bearing ep/zo-fsp-white mica-schist	292/80	H 5056057 R 402732	Thin section
MK 101	Qtz-rich ep/zo-chl-white mica schist	250/27	H 5054652 R 403446 H 5054550	
MK 102	Qtz-rich ep/zo-chl-white mica schist	322/75	R 403446 H 5054550	
MK 104	Ep/zo-fsp-white mica-schist	114/86	R 402840 H 5054650	Thin section
MK 105	Grt-bearing chl-bt-ep/zo- white mica-schist	350/50	R 402648 H 5054719	Thin section
MK 106	Grt-bearing chl-bt-ep/zo- white mica-schist	300/60	R 402648 H 5054719	
MK 107	Grt-bearing chl-bt-ep/zo- white mica-schist	300/75	R 402648 H 5054719	
MK 109	Chl-ep/zo-white mica-schist	184/35	R 402706 H 5054705	
MK 110	Bt-amph-ep/zo-white mica- schist	140/60	R 401459 H 5054557	Thin section Amph-thermometry
MK 111	Chl-ep/zo-white mica-schist	130/50	R 401530	Ampn-inermometry
MK 112	Amph-bearing qtz-rich chl-	140/40	H 5054531 R 401847	
MK 113	white mica-schist Ep/zo-fsp-white mica-schist	130/60	H 5054743 R 401889	
MK 114	Ep/zo-fsp-white mica-schist		H 5054717 R 401889 H 5054717	
MK 115	Ep/zo-fsp-white mica-schist	172/47	R 401889	
MK 116	Chl-ep/zo-white mica-schist	160/45	H 5054717 R 401858	Thin section
MK 117	Chl-bearing grt-sodic amph- white mica-schist	180/55	H 5054774 R 406169 H 5055159	Thin section Forward modelling
MK 118	Cc-bearing grt-chl-ep/zo- sodic amph-white mica-schist	322/60	R 406150 H 5055641	Thin section
MK 119	Qtz-rich ep/zo-chl-white mica schist	190/55	R 409797 H 5058347	
MK 120	Sodic amph-bearing grt- ep/zo-amph-mica-schist	154/60	R 407772 H 5057769	Thin section
MK 121	Sodic amph-bearing grt- ep/zo-amph-mica-schist	152/60	R 407772 H 5057769	Thin section
MK 122	Mica-rich chl-ep/zo-fsp- mica-schist	088/46	R 407419 H 5065619	Thin section
MK 123	Chl-ep/zo-fsp-schist	252/65	R 402489 H 5051967	
MK 124	Chl-ep/zo-fsp-schist	320/82	R 402489 H 5051967	
MK 125	Chl-bearing ep/zo-fsp-white mica-schist	177/28	R 403237 H 5058553	Thin section
MK 126	Bt-bearing ep/zo-grt-sodic amph-white mica-schist	340/20	R 411913 H 5051073	Thin section
MK 127	Bt-bearing ep/zo-grt-sodic amph-white mica-schist	337/80	R 412427	

MK 128	Mica-rich chl-ep/zo-fsp-	088/72	R 406123	
	mica-schist		Н 5055725	
MK 129	Mica-rich chl-ep/zo-fsp-	327/80	R 406117	Thin section
	mica-schist		H 5055752	
MK 130	Grt-sodic amph-ep/zo-white	166/44	R 406189	Thin section
	mica-schist		H 5055878	
MK 131	Bt-bearing grt-ep/zo-white	184/17	R 406594	Thin section
	mica-schist		H 5055763	
MK 132	Mica-rich chl-ep/zo-fsp-		R 406368	
	mica-schist	0.10/65	H 5054904	
MK 133	Qtz-white mica-bearing	348/65	R 406230	Thin section
N/IZ 104	retrogressed eclogite	005/60	H 5054699	
MK 134	Grt-sodic amph-ep/zo-white	005/69	R 415664	
MK 136	mica-schist	100/20	H 5048995 R 407533	
MK 130	Bt-bearing grt-ep/zo-white mica-schist	100/20	H 5063687	
MK 137	Bt-bearing grt-ep/zo-white	100/22	R 407533	Thin section
IVIN 157	mica-schist	100/22	H 5063687	Thin section
MK 138	Fsp-rich chl-bt-white mica-	122/71	R 388465	
MIX 150	schist	122//1	H 5038802	
MK 139	Sodic amph-bearing grt-	128/67	R 388527	
WIX 159	ep/zo-white mica-schist	120/07	H 5038874	
MK 140	Sodic amph-bearing grt-	124/50	R 388594	
WIIX 140	ep/zo-white mica-schist	12-1/50	H 5038913	
MK 142	Bt-bearing ep/zo-grt-sodic	085/26	R 401303	
10111 1 12	amph-white mica-schist	005720	H 5040780	
MK 143	Bt-bearing ep/zo-grt-sodic	085/26	R 401303	
10111 1 10	amph-white mica-schist	000/20	H 5040780	
MK 150	Grt-bearing chl-ep/zo-gneiss	137/89	R 394928	Thin section
			H 5044605	
MK 151	Ep/zo-grt-white mica-schist	295/76	R 394928	Thin section
			H 5044605	
MK 152	Qtz-white mica-bearing grt-		R 395676	Thin section
	ep/zo-blueschist		H 5043722	
MK 153	Bt-bearing ep/zo-grt-sodic	008/50	R 398905	Thin section
	amph-white mica-schist		H 5042466	
MK 154	Ep/zo-white mica-schist	332/20	R 395476	Thin section
			H 5043652	
MK 154b	Grt-bearing ep/zo-white		R 398905	
	mica-schist		H 5042466	
MK 155	Ep/zo-white mica-schist	332/20	R 395476	Thin section
			H 5043652	
MK 156	White.mica-bearing marble		R 395221	
			H 5043361	
MK 157	Qtz-rich ep/zo-chl-white	020/40	R 394165	Thin section
	mica schist		H 5045574	
MK 158	Qtz-rich ep/zo-chl-white	024/30	R 394185	Thin section
	mica schist		H 5045577	
MK 159	Bt-bearing ep/zo-grt-sodic	078/18	R 401415	
	amph-white mica-schist	0.0011	H 5040977	
MK 160	Grt-bearing ep/zo-white	070/15	R 401347	Thin section
1 007 4 44	mica-schist	<u> </u>	H 5040989	
MK 161	Grt-bearing ep/zo-white		R 401347	
107.170	mica-schist	0.45/15	H 5040989	
MK 162	Bt-bearing ep/zo-grt-sodic	045/15	R 400878	Thin section
NUZ 172	amph-white mica-schist	020/20	H 5041245	Amph-thermometry
MK 163	Ep/zo-grt-omph-sodic amph-	020/30	R 400878	Thin section
NUZ 177	white mica-schist	000/55	H 5041245	Forward modelling
MK 166	Grt-bearing bt-sodic amph-	080/55	R 398754	
	white mica-schist		H 5032954	

MIZ 167	Cut haaring ht gadie anach	000/57	D 200256	
MK 167	Grt-bearing bt-sodic amph- white mica-schist	088/57	R 399256 H 5033125	
MK 168	Grt-bearing bt-sodic amph-	072/42	R 401005	Thin section
MIK 108	white mica-schist	072/42	H 5033410	Thin section
MK 169	Grt-bearing bt-sodic amph-	152/47	R 401750	Thin section
WIK 109	white mica-schist	132/47	H 5033620	Thin section
MK 170	Bt-bearing ep/zo-grt-white	350/36	R 396328	Thin section
MK 170	mica-schist	550/50	H 5043413	Thin section
MIZ 171	White-mica bearing qtz-fsp-	002/85		Thin section
MK 171		002/85	R 399056	I nin section
MK 172	gneiss Ep/zo-grt-omph-sodic amph-	358/72	H 5044673 R 399136	Thin section
MK 172	white mica-schist	338/72	Н 5044692	I nin section
MK 173		010/37 FAP3	Bio	
IVIK 1/5	Ep/zo-grt-omph-sodic amph- white mica-schist	010/37 FAP3		
ME 174		340/65	(see map) R 394667	This section
MK 174	Chl-bearing grt-ep/zo-white	340/03		Thin section
MK 175	mica gneiss	302/57	H 5044854	
MK 1/5	Amph-bearing grt-sodic	302/37	R 394999	
MIZ 17(amph-white mica gneiss	202/50	H 5044463	This section
MK 176	Grt-ep/zo-white mica-schist	302/50	R 394999	Thin section
MIZ 177		202/17	H 5044463	
MK 177	Amph-bearing grt-sodic	302/17	R 394999	
MIZ 170	amph-white mica gneiss	1(0/70	H 5044463	
MK 178	Amph-bearing grt-sodic	162/79	R 396342	
MIZ 170	amph-white mica gneiss	250/05	H 5043403	TT1 · · · ·
MK 179	Grt-ep/zo-white mica-schist	350/85	R 406060	Thin section
1.00		210/00	H 5053957	
MK 180	Ep/zo-grt-white mica-schist	310/60	R 406089	Thin section
1.01		255/05	H 5053842	
MK 181	Qtz-rich ep/zo-chl-white	355/87	R 401452	
	mica schist	105/50	H 5051641	
MK 182	Chl-fsp-bearing calc-schist	125/70	R 390061	
		0.000/110	H 5046909	
MK 183	Grt-chl-ep/zo-sodic amph-	038/43	R 402914	Thin section
	white mica-schist		H 5045013	
MK 184	Strongly retrogressed sodic		R 402715	
107.107	amph-bearing eclogite		H 5044889	
MK 185	Qtz-rich grt-sodic amph-		R 402715	
	white mica-schist	1.10/= 1	H 5044889	
MK 186	Chl-ep-white mica-schist	140/74	R 406735	
		1.10/= 1	H 5048986	
MK 187	Chl-ep-white mica-schist	140/74	R 406735	
			H 5048986	
MK 188	Amph-omph-bearing grt-		R 396392	
	sodic amph-white mica		Н 5043395	
	gneiss		D A A A A A	
MK 190	Amph-omph-bearing grt-		R 396392	Thin section
	sodic amph-white mica		Н 5043395	
1 117 1 1 1	gneiss		D. 00/2020	
MK 191	Amph-omph-bearing grt-		R 396392	
	sodic amph-white mica		Н 5043395	
100	gneiss	0.64/24	D 202724	
MK 192	Chl-cc-white mica-schist	064/34	R 392734	Thin section
			H 5045848	
MK 193	Chl-fsp-bearing calc-schist	320/76	R 401807	
			H 5059154	
MK 194	Chl-ep-white mica-schist	135/43	R 402090	
			H 5058823	
MK 195	Ep/zo-grt-sodic amph-white	308/89	R 404975	Thin section
	mica-schist		H 5046578	
MK 196	Chl-ep-white mica-schist	082/14	R 405001	Thin section

			H 5046690	
MK 197	Grt-omph-white mica schist	035/26	R 404997	
	1		H 5046737	
MK 198	Grt-omph-white mica schist	330/57	R 405000	Thin section
	-		H 5046760	
MK 199	Chl-bearing amph-ep/zo-	318/81	R 405000	Thin section
	white mica-schist		H 5046760	
MK 200	Monomineralic white mica	358/65	R 404978	Thin section
	sample		H 5046752	
MK 201	Grt-omph-bearing mafic	280/89	R 404959	Thin section
	blueschist		H 5046734	
MK 202	Grt-omph-bearing mafic	280/89	R 404959	Thin section
	blueschist		H 5046734	
MK 203	Grt-bearing ep/zo-white	280/89	R 404959	Thin section
	mica-gneiss		H 5046734	
MK 204	White-mica bearing qtz-fsp-	280/89	R 404959	Thin section
	gneiss		H 5046734	
MK 205	Grt-omph-sodic amph-white	352/32 FAP1	R 397300	Thin section
	mica-schist		H 5045085	
MK 206	Grt-bearing chl-amph-bt-	041/34	R 397300	Thin section
	ep/zo-white mica-schist		H 5045085	Amph-thermometry
MK 207	Grt-bearing chl-amph-bt-	045/50	R 397300	Thin section
	ep/zo-white mica-schist		H 5045085	Amph-thermometry
MK 208	Grt-bearing omph-chl-sodic		R 397233	Thin section
	amph-ep/zo-amph-white		H 5054232	Forward modelling
1 112 200	mica-schist	210/60	D 20 4000	Amph-thermometry
MK 209	Qtz-rich grt-sodic amph-	310/60	R 394999	
MIZ 010	white mica-schist	212/55	H 5044463	
MK 210	Qtz-rich grt-sodic amph-	312/55	R 394999	
MK 211	bearing white mica-schist	312/55	H 5044463 R 394999	Thin section
MK 211	Grt-ep/zo-white mica-schist	512/55		I nin section
MK 212	En/za haaring white miss	170/80 FAP2	H 5044463 R 394978	Thin section
WIK 212	Ep/zo-bearing white mica- schist	1/0/80 FAP2	H 5044519	Thin section
MK 213	Ep/zo-white mica-fsp-schist	167/24	R 405150	Thin section
WIK 213	Ep/20-winte inica-isp-senist	10//24	H 5055841	
			11 5055641	
MK 214	Amph-bearing ep/zo-white	037/37	Montestrutto	Thin section
WIIX 217	mica-fsp-schist	051151	Wontestratio	Thin section
MK 215	Ep/zo-white mica-fsp-schist	164/85	R 394492	Thin section
	P.20 white mild isp sellist	101/00	H 5045269	
MK 216	Amph-bearing ep/zo-white	135/48	R 394492	
	mica-fsp-schist		H 5045269	
MK 217	Ep/zo-white mica-fsp-schist	088/60	R 394172	
		200,00	H 5045232	
MK 541	Bt-bearing ep/zo-grt-sodic	165/45	R 399317	
• • • •	amph-white mica-schist		Н 5042237	

A 2 Analytical procedure

Microprobe analyses were carried out at the Museum of Natural History of the Humboldt University, Berlin with a JEOL 8800 Superprobe, 15 kV acceleration voltage and a beam current of 15 nA. For calibration we used natural standard materials (see below). For post-analytical correction we used the ZAF algorithm. Site occupancies in amphiboles were calculated according to the suggestion of Leake et al., 1997, white mica and chlorite composition was calculated after Vidal and Parra (2000).

Microprobe Measurement Conditions

Crystals used in the wavelength dispersive spectrometers:

Si	Al	Fe	Mg	Ca	Mn
TAP	TAP	LiF	TAP	PET	LiF
Na	K	Ti	Ba	Cr	
TAP	PET	LiF	LiF	LiF	

Garnet:

Beam diameter: 1µm

Counting time: 20/10 s peak/background for all elements

Measured elements: Si, Al, Fe, Mg, Ca, Mn

Standard materials:

Si	Al	Fe	Mg	Ca	Mn
Pyrope	Pyrope	Almandine	Almandine	Cr-Augite	Ilmenite

Amphibole:

Beam diameter: 5µm

Counting time: 20/10 s peak/background for main elements

40/20 s peak/background for Cr

Measured elements: Si, Al, Fe, Mg, Ca, Mn, Na, K, Ti, (Cr)

Standard materials:

Si	Al	Fe	Mg	Ca	Mn
Hypersthen	Albite	Cr-Augite	Cr-Augite	Cr-Augite	Ilmenite

Na	K	Ti	Cr
Albite	Microcline	Ilmenite	Cromite

Mica:

Beam diameter: 5µm

Counting time: 20/10 s peak/background for all elements

Measured elements: Si, Al, Fe, Mg, Ca, Mn, Na, K, Ti

Standard materials:

Si	Al	Fe	Mg	Ca	Mn
Albite	Albite	Cr-Augite	Cr-Augite	Plagioclase	Ilmenite

Na	K	Ti
Albite	Microcline	Ilmenite

Feldspar:

Beam diameter: 5µm

Counting time: 20/10 s peak/background for main elements

40/20 s peak/background for Ba

Measured elements: Si, Al, Fe, Mg, Ca, Mn, Na, K, Ti, (Ba)

Standard materials:

Si	Al	Fe	Mg	Ca	Mn
Albite	Albite	Cr-Augite	Cr-Augite	Plagioclase	Ilmenite

Na	K	Ti	Ba
Albite	Microcline	Ilmenite	Benitoite

Epidote:

Beam diameter: 1µm

Counting time: 20/10 s peak/background for all elements

Measured elements: Si, Al, Fe, Mg, Ca, Mn, Na, K, Ti

Standard materials:

Si	Al	Fe	Mg	Ca	Mn
Pyrope	Pyrope	Cr-Augite	Cr-Augite	Cr-Augite	Ilmenite

Na	K	Ti
Albite	Microcline	Ilmenite

Whole rock chemistry

Whole rock chemistry was determined by XRF analysis using an X-ray fluorescence spectrometer at the Museum of Natural History of the Humboldt University, Berlin. The laboratory at the Humboldt University Berlin is equipped with a SIEMENS SRS 3000 wavelength dispersive XRF spectrometer. All analyses are made on fused glass discs prepared from dried and ignited powdered samples. Elements determined as weight % oxide are SiO2, TiO2, Al2O3, Fe2O3(total), MnO, MgO, CaO, Na2O, K2O, and P2O5. Fluid content of the sample is determined by loss on ignition (LOI). Trace elements determined on reconnaissance basis at the> 50 ppm level are V, Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Mo, Sn, Ba, La, and Ce.

A 3 Appendix for Chapter 3

Solid solution models used in Chapter 3:

See Appendix A 5.3

A 4 Appendix for Chapter 4

A 4.1 Historical terminology

In all previous work, a classical subdivision of the Sesia Zone was adopted in which lithologies were defined by a combination of metamorphic criteria (greenschist-, amphibolite-, blueschist-, and eclogite-facies mineral assemblages) and primary lithological features (composition and grain size). This lead to mistaking large retrograde shear zones for primary lithotectonic units, and generally resulted in a confusing nomenclature. A case in point are the frequently used terms "micaschisti eclogitici" and "gneiss minuti". Originally, these were field mapping terms (e.g. Dal Piaz et al., 1972; Compagnoni et al., 1977, and references therein), but later they were used to define areas in which the rocks preserve distinct Alpine metamorphic conditions. For example, in many papers the term "Gneiss Minuti" is used to refer to all rocks that underwent pervasive retrograde greenschist-facies metamorphism (e.g. Dal Piaz et al., 1972). This is misleading from a geodynamic and structural standpoint, because at least three phases of deformation occurred under retrograde greenschist-facies conditions, as shown in Babist et al., Chapter 4. We note that although some previous workers published evidence for a similar sequence of events as proposed above, none of this previous work covered the entire Sesia Zone.

Several structural and petrological studies present evidence for tectonic contacts between (Williams and Compagnoni 1983) and within rocks units termed "gneiss minuti" and "micaschisti eclogitici" (Pognante 1989a, Passchier et al. 1981). Here, we use the Mesozoic metasediments and metabasic rocks of the Bonze Unit to define the nappe contact between the Bard and Mombarone Units. Our structural investigations have shown that the juxtaposition of the two nappes occurred early, probably during D₁ deformation, as described in Chapter 4. Our deformational phases D₂ and D₃ can be correlated with D₂ and D₃ of Gosso (1977) and the 'early' and 'late postnappe folding' of Gosso et al. (1979), respectively. Our D₃ phase corresponds to D₅ of Zucali et al. (2002). Our latest ductile deformation phase, D_5 is related to late-orogenic backfolding and backthusting along the Periadriatic Fault System (PFS) in front of the southern Alpine indenter (Schmid et al. 1987, Schmid et al. 1989, Handy et al. 2005).

A 4.2 Appendix geochronology

Sample description:

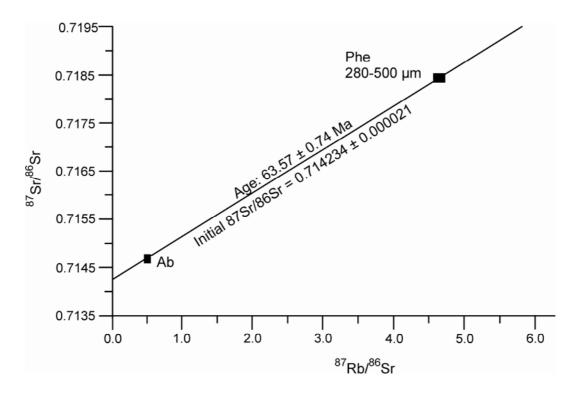
Sample MK52 is a white-mica bearing sodic-amphibole garnet gneiss from a steeply NNW-dipping S2 shear zone in Val Chiusella (sample coordinates H: 5043395; R: 396392 in a Gauss-Boaga net). Sodic amphibole, phengite and garnet ($Prp_{5.6}$, Alm_{64} , Grs_{30}) document blueschist facies conditions. Sodic amphibole is zoned, with barroisitic amphibole at the rim. The barrosite content is estimated to be less than 1 %. Both coarse and fine-grained white mica, as well as Naamphibole are oriented parallel to S_2 . Fe and Mg contents increase at the rims of the amphiboles and fine-grained white mica. These features indicate that the amphiboles and fine-grained white mica grew during D_2 . The Rb and Sr concentrations and isotopic compositions are given in Table A 4.1.

Sample RH 1 is from the fine-grained andesitic dyke pictured in Figure 4.8. Ca-amphibole and plagioclase in this sample show magmatic features and contain no traces of deformation. In thin section, magmatic epidote and secondary calcite are present in a statically recrystallised matrix that is interpreted to have been a quenched melt. Epidote and plagioclase with oscillatory zoning both form 1 - 5 mm long phenocrysts. Epidote has corroded grain boundaries. Smaller plagioclase laths with polysynthetic twins occur interstitially. Magmatic Ca-amphibole is also found in the matrix. Accessory minerals are titanomagnetite and, very rarely, pyrite. The secondary calcite is interpreted to be an alteration product, so we focussed on determining the degree of alteration from an isotopic standpoint. To do this, the whole rock was leached with chloro-acetic acid to dissolve the calcite. The concentration of Rb and Sr, as well as the isotopic composition of the insoluble residual (WR – cc) were also determined. All other minerals were treated with the same procedure described above. The results are given in Table A 4.1.

Sample preparation:

Both samples (MK 52 and RH 1) were crushed and sieved, minerals from the sieved fractions were separated by conventional techniques (magnetic 192 separation, heavy liquids, and hand picking). The minerals were dissolved in a mixture (4:1) of hydrofluoric and nitric acid over five days. After drying, the samples were diluted in hydrochloric acid (2.5 M) and divided into two aliquots, one for measuring the isotopic composition and the other for determining the concentration of Sr and Rb by adding spike solutions of both elements. After separating Sr from Rb with ion chromatographic columns, the isotopic composition and the concentration were determined in a mass spectrometer (Finnigan MAT 261). During the analysis, the ⁸⁷Sr/⁸⁶Sr of a standard (NBS 987) was measured at 0.71026 ± 4 (2σ ; n = 12). The standard error of the concentration was estimated to be smaller than 0.4%. Errors of the ratios are given in Table A 4.1.

Sample	description	Rb	Sr	⁸⁷ Rb/ ⁸⁶ Sr	$\pm 2\sigma$	⁸⁷ Sr/ ⁸⁶ Sr	$\pm \sigma_{\rm m}$
		ppm	ppm				
MK 52	feldspar	2.464	14.53	0.4908	4	0.714677	18
	white mica	117.2	73.10	4.635	42	0.718452	15
RH 1	andesitic dyke (WR)	72.12	882.2	0.2365	21	0.708022	52
	WR - cc*	32.41	557.6	0.1682	15	0.707907	13
	calcite*	1.9527	442.7	0.01276	12	0.708523	17
	plagioclase	200.5	849.0	0.6832	61	0.708092	17
	amphibole	1.578	603.5	0.007565	68	0.707668	16
	epidote	2885	1.988	0.001993	18	0.707748	18


 Table A 4.1: Rb and Sr concentration and Sr isotope composition of the sample MK52 and RH1 and their minerals

* C₂H₃O₂Cl-leachate

Results and Interpretation

Sample MK 52

Coexisting plagioclase and white mica from sample MK 52 yield an age of 63.6 ± 0.8 Ma (Fig. A 4.1). We interpret this to be a formational age for the coarse-grained mica aligned parallel to S₂. This is a maximum age of D₂ deformation because, despite our efforts to separate the grain size fractions carefully, we cannot preclude the possibility that some fine-grained mica remained in the coarse-grained mica fraction.

Figure A-1: Rb-Sr isochron diagram of a white-mica bearing sodic-amphibole garnet gneiss from a steeply NNW-dipping S2 shear zone in Val Chiusella (sample MK 52). Ab = albite, Phe = phengite. The slope of the line between albite and phengite defines an age of 63.57 \pm 0.74 Ma with an initial Sr ratio of 0.714234 \pm 0.000021.

Sample RH 1 (see Chapter 4, Fig. 4.8)

All minerals and the whole rock of sample RH 1 have ⁸⁷Sr/⁸⁶Sr ratios between 0.7077 and 0.7080. However, calcite has a very high ⁸⁷Sr/⁸⁶Sr ratio (0.7085) despite its very low Rb content (1.95 ppm), indicating that this radionuclide did not contribute to the high ⁸⁷Sr/⁸⁶Sr ratio. Such a high ratio could not be generated by alteration of the whole rock. Therefore, the Sr source must be external to the rock. Seawater is not a likely source, because the ⁸⁷Sr/⁸⁶Sr ratio of seawater in Eocene time was determined to be 0.7077. Only in Miocene time did the Sr ratio increase to 0.7085. The most likely source of Sr with a high ratio seems to be continental crust, which liberated a fluid during HP metamorphism due to subduction.

WR – cc has a lower 87 Sr/ 86 Sr ratio than the whole-rock sample, in agreement with the leached out calcite. An age of 44.2 ± 2.4 Ma was calculated from the slope of the line connecting plagioclase and amphibole. The 87 Sr/ 86 Sr ratio of the magmatic epidote falls above this line. We cannot exclude the

possibility that calcite, epidote and amphibole contributed Sr. Therefore, we interpret the calculated age to be a minimum age for the emplacement of the dyke.

A 5 Appendix for Chapter 5

A 5.1 Rheological models of the upper plate lithosphere (Fig. 5.15)

Viscous shear stress (dashed curves in Fig. 5.15) was estimated by extrapolating experimentally derived constitutive relations for creep (below) to a uniform natural shear strain rate:

$$\dot{\gamma} = \sqrt{3}^{(n+1)} \mathbf{A} \cdot e^{(\frac{-\mathbf{H}}{\mathbf{R} \cdot \mathbf{T}})} \cdot \boldsymbol{\tau}^{n} \cdot d^{-m}$$

where $\dot{\gamma}$ is the shear strain rate (assumed here to be 10⁻¹⁴ s⁻¹), T is the temperature, τ is the shear stress, and d is the average syntectonic grain diameter (only relevant for Fig. 5.15c, 50 µm). A, H, n and m are material constants for the minerals (olivine, feldspar, quartz) assumed to govern the rheologies, respectively, of the upper mantle, lower crust and intermediate to upper crust of the upper Apulian plate (references for parameters in the figure caption). The rheology was approximated by the following combinations of creep mechanisms and hydrous conditions: dislocation creep of nominally anhydrous or "dry" lithosphere (Fig. 5.15a), dislocation creep of naturally hydrous or "wet" lithosphere (Fig. 5.15b), and viscous granular flow (diffusion-accommodated grain-boundary sliding) of dry lithosphere (Fig. 5.15c). The effect of water in the "wet" examples is restricted to hydrolytic weakening of stoichiometrically anhydrous silicate minerals ("hydrolytic weakening", e.g., Hirth et al. 2001). In all cases, shear stress is limited by frictional sliding on existing fault surfaces at hydrostatic pore-fluid pressure (thick solid curves in Fig. 5.15, regime 3 of Byerlee 1978).

The temperature of deforming rocks surrounding the exhuming Sesia rock body was calculated for a slab-parallel geothermal gradient derived from the P-T path (Fig. 5.13) in this study (shear stress curves labelled "this study" in Fig. 5.15). For comparison, shear stress curves were also calculated for slab-parallel geothermal gradients from a rapidly subducting slab (5cm/a, Nankai slab) and a slowly subducting slab (1cm/a, Cascadia slab, (Hacker et al., 2003). The curve labelled "R & E (2002)" was calculated for a geotherm taken from the numerically modelled exhumation of an exhumed wedge-like sliver of continental crust (Roselle and Engi, 2002).

A 5.2 References for creep parameters

Dry dislocation creep:

Quartzite:	Jaoul et al., 1984
Anorthite:	Shelton and Tullis, 1981
Olivine:	Chopra and Paterson, 1984

Wet dislocation creep:

Quartzite:	Jaoul et al., 1984
Wet Diorite:	Hansen and Carter, 1982
Olivine:	Chopra and Paterson, 1981

Viscous granular flow:

Quartzite:	Rutter and Brodie, 2004
Anorthite:	Rybacki and Dresen, 2000
Olivine:	Handy, 1989

A 5.3 Solid solution endmembers and Margules Parameters

Garnet

Endmembers: Pyrope, Grossular, Almandine, Spessartine

Ideal 1-site-mixing and Margules-type excess function:

Solid solution models:

(1) Ganguly et al. (1996)

Clinopyroxene

Endmembers: Diopside, Hedenbergite, Jadeite

Ideal 1-site-mixing and Margules-type excess function.

Solid solution model: Meyre et al. (1997)

Sodic amphibole

Endmembers: Glaucophane, Fe-Glaucophane

Ideal 1-site-mixing and Margules-type excess function:

Glaucophane- Fe-Glaucophane	W^{H}	W ^S	W^V
112	10000	0.00	0.00

Phengite

Endmembers: Muscovite, Celadonite, Fe-Celadonite; Pyrophyllite

Ideal 1-site-mixing and Margules-type excess function:

modified from Vidal & Parra (2000)

Muscovite- Celadonite	W ^H	W ^S	W ^V		
112	-10500.0	55.0	0.79		
Muscovite - F	e-celadonite				
112	-10500.0	15.0	0.78		
Muscovite - Pyrophyllite					
112	30000.0	20.0	-0.17		
122	30000.0	20.0	-0.17		

Chlorite

Two different solution models were tested; we preferred the modified Vidal & Parra (2000) model.

Endmembers: Amesite, Clinochlore, Daphnite, Mn-Chlorite.

Ideal 3-site-mixing and Margules-type excess function:

(1) Modified f	from Vidal & Par	ra (2000)			
Amesite - Clinochlore	W ^H	W ^S	WV		
112	-9400	-30	-0.2		
Amesite - Dap	ohnite				
112	-12000	35	-0.5		
Mn-chlorite - Daphnite					
112	-10000	0	0		

(2) Modified from Holland & Powell (1998)					
Amesite - Clinochlore	W ^H	W ^S	WV		
112	18000	0	0		
Amesite - Dap	Amesite - Daphnite				
112	13500	0	0		
Clinochlore - Daphnite					
112	2500	0	0		

Calcic Amphibole

Endmembers: Pargasite, Fe-Pargasite, Tremolite, Tschermakite, Fe-Tschermakite, Ferro-actinolite

Ideal 3-site-mixing and Margules-type excess function:

modified from Mader et al. (1994)					
Pargasite -	W^{H}	W ^S	W ^V		
Tremolite					
112	9743.68	0	0		
Tremolite – Fe	erro-actinolite				
112	2108.23	0	0		
Tschermakite	Tschermakite - Tremolite				
112	21431.32	0	0		
Fe-Tschermak	Fe-Tschermakite – Ferro-actinolite				
112	-15492.29	0	0		
Tschermakite - Fe-Tschermakite					
112	2108.23	0	0		
Pargasite - Fe-Pargasite					
112	2108.23	0	0		

Biotite

Endmembers: Phlogopite, Eastonite, Annite, ordered Biotite

Ideal 3-site-mixing and Margules-type excess function:

Phlogopite -	W ^H	W ^S	W^{V}		
Annite					
112	9000.0	0	0		
Phlogopite - E	astonite				
112	10000	0	0		
Phlogopite - c	-Biotite				
112	3000	0	0		
Annite - Easto	Annite - Eastonite				
112	-1000	0	0		
Annite - o-Bi	Annite – o-Biotite				
112	6000	0	0		
Eastonite – o-Biotite					
112	10000	0	0		

Feldspar

Endmembers: Albite, Anorthite, K-Feldspar

Ideal 1-site-mixing and Margules-type excess function.

Solid solution model: Furman & Lindsley (1988).

A 6 Appendix for Chapter 6

A 6.1 Calculation routine

The algorithm of THERIAK calculates the stable mineral assemblage by minimising the Gibbs free energy (G) in a multicomponent system with fixed bulk rock composition. This is done by several steps including linear and non-linear programming problems. In the first step THERIAK searches each solution phase for the composition with the lowest Gibbs energy of formation ($\Delta_f G$) in the system. The solid solution phases are defined by endmembers, i.e. each solution is considered to be made of any number of species, where each of these species is a valid endmember. $\Delta_f G$ of the solid solutions is defined by the Gibbs-Duhem equation:

$$\Delta_{\mathbf{f}} \mathbf{G} = \sum_{j=1}^{ne} x_j \cdot \boldsymbol{\mu}_j,$$

with:

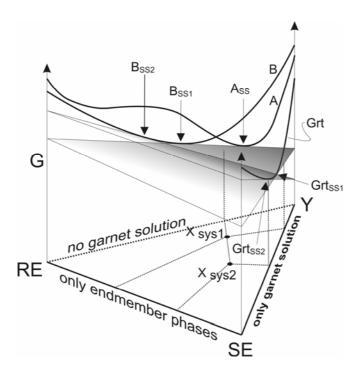
ne = number of endmembers in the solution phase μ_j = chemical potential of endmember *j* in the solution phase x_j = concentration of endmember *j* in the solution phase and $\mu_j = \mu_j^0 + \alpha \cdot R \cdot T \cdot \ln(a_j)$ where μ_{i}^{0} = chemical potential of pure endmember j

- α = site occupancy integer
- R = Gas constant

T = temperature and

 a_j = activity of component *j* in the solution phase.

The solid solution models and Margules parameters used to determine $\Delta_f G$ are given in the Appendix 2. The compositions with the smallest $\Delta_f G$ are added to the database as phases with fixed composition.


In the second step THERIAK determines the mineral assemblage with the lowest Gibbs free energy. This problem can be formulated as:

minimise
$$G = \sum_{k=1}^{N} n_k \cdot g_k$$
,

where n_k is the number of moles, g_k is the molar Gibbs free energy of phase k and N is the number of coexisting phases in the system. Details of the algorithm are described in de Capitani and Brown (1987).

A 6.2 Calculation procedure for diffusion controlled garnet growth

Modelling diffusion-controlled garnet growth with the method described above requires that at least one element of the garnet solid solution is independent from the global equilibrium. To model this condition we replaced an endmember of the garnet solid solution, with one that has the same thermodynamic properties as the replaced endmember, but is defined by a substitute element (SE), that is not incorporated into other phases in the system. The thermodynamic implications of that model are displayed by the G-X diagrams in Fig. A 6.1. Three G-X binaries are influenced by our constraints. In the binary between SE and the replaced element (RE), all phases are endmembers, garnet and the SE-oxide being the only phases with a SE-endmember. In the binaries between SE and any other element (Y), garnet forms a solid solution and all other minerals are endmembers. In the binaries between RE and all other elements (Y), garnet is an endmember phase of Y, whereas other phases (A and B) may form solid solutions. The tangent points of the shaded planes to the G-X curves in Fig. A 6.1, that display possible hyperplanes, calculated by the THERIAK-DOMINO algorithm, represent the stable mineral assemblages.

Fig. A 6.1: G-X relations in the binaries *replaced elements-substitute elements-all other elements* (RE-SE-Y). The curved lines display the G-X curves of different minerals (A, B and Grt). The shaded planes display possible hyperplanes that define the mineral assemblage with the lowest Gibbs free energy. Note that changing amounts of SE in the system changes the tangent point of the hyperplane to the G-X curve of garnet and therefore influences the phase relations along other binaries, as displayed by the second, more steeply dipping plane.

In case of the bulk rock composition X_{sys1} the stable assemblage is $B_{ss1}+A_{ss}+Grt_{ss1}$. Changing amounts of SE in the system, e.g. due to fractional garnet crystallisation or insufficient nutrient supply, may have consequences for phases not containing SE because the tangent point of the hyperplane to the garnet solid solution changes and the new hyperplane might not touch the G-X curves of phase A or B, as demonstrated by the second, more steeply dipping plane, that represents the stable phases for bulk rock composition X_{sys2} . In this case, the stable assemblage is $B_{ss2}+Grt_{ss2}$. In a multicomponent system $\Delta_f G$ and the components define a hyperplane that is tangent to the $\Delta_f G$ curves of the (stable) phases.

A 6.3 Solid solution endmembers and Margules Parameters

Garnet

In the models we used the solid solution formulation of Ganguly et al. 1996. A comparison of the results with those calculated with the Berman 1990 formulation showed no significant differences in the garnet zonation patterns. Endmembers: Pyrope, Grossular, Almandine, Spessartine

Ideal 1-site-mixing and Margules-type excess function:

Solid solution models:

- (1) Ganguly et al. (1996)
- (2) Berman (1990)

Clinopyroxene

Endmembers: Diopside, Hedenbergite, Jadeite

Ideal 1-site-mixing and Margules-type excess function.

Solid solution model: Meyre et al. (1997)

Sodic amphibole

Endmembers: Glaucophane, Fe-Glaucophane

Ideal 1-site-mixing and Margules-type excess function:

Glaucophane- Fe-Glaucophane	W^{H}	W ^S	W^{V}
112	10000	0.00	0.00

Phengite

Endmembers: Muscovite, Celadonite, Fe-Celadonite; Pyrophyllite

Ideal 1-site-mixing and Margules-type excess function:

modified from Vidal & Parra (2000)					
Muscovite-	W ^H	W ^S	W^V		
Celadonite					
112	-10500.0	55.0	0.79		
Muscovite - F	Muscovite - Fe-celadonite				
112	-10500.0	15.0	0.78		
Muscovite - Pyrophyllite					
112	30000.0	20.0	-0.17		
122	30000.0	20.0	-0.17		

Chlorite

Two different solution models were tested; we preferred the modified

Vidal & Parra (2000) model.

Endmembers: Amesite, Clinochlore, Daphnite, Mn-Chlorite.

Ideal 3-site-mixing and Margules-type excess function:

(1) Modified from Vidal & Parra (2000)				
Amesite -	W^{H}	W ^S	WV	
Clinochlor	e			
112	-9400	-30	-0.2	
Amesite - Daphnite				
112	-12000	35	-0.5	
Mn-chlorite - Daphnite				

112	-10000	0	0

(2) Modified from Holland & Powell (1998)					
Amesite - Clinochlore	W ^H	W ^S	WV		
112	18000	0	0		
Amesite - Dap	Amesite - Daphnite				
112	13500	0	0		
Clinochlore - Daphnite					
112	2500	0	0		

Calcic Amphibole

Endmembers: Pargasite, Fe-Pargasite, Tremolite, Tschermakite, Fe-Tschermakite, Ferro-actinolite

Ideal 3-site-mixing and Margules-type excess function:

modified from Mader et al. (1994)					
Pargasite -	W^{H}	W ^S	W^V		
Tremolite					
112	9743.68	0	0		
Tremolite – Fe	erro-actinolite				
112	2108.23	0	0		
Tschermakite	Tschermakite - Tremolite				
112	21431.32	0	0		
Fe-Tschermak	tite – Ferro-ac	tinolite			
112	-15492.29	0	0		
Tschermakite - Fe-Tschermakite					
112	2108.23	0	0		
Pargasite - Fe-Pargasite					
112	2108.23	0	0		

Biotite

Endmembers: Phlogopite, Eastonite, Annite, ordered Biotite

Ideal 3-site-mixing and Margules-type excess function:

Phlogopite -	W ^H	W ^S	W^V		
Annite					
112	9000.0	0	0		
Phlogopite - E	astonite				
112	10000	0	0		
Phlogopite - c	Phlogopite – o-Biotite				
112	3000	0	0		
Annite - Easto	Annite - Eastonite				
112	-1000	0	0		
Annite – o-Biotite					
112	6000	0	0		
Eastonite – o-Biotite					
112	10000	0	0		

Feldspar

Endmembers: Albite, Anorthite, K-Feldspar

Ideal 1-site-mixing and Margules-type excess function.

Solid solution model: Furman & Lindsley (1988).