
Chapter 3

Methodology

3.1 Overview

Frontal systems have distinctive characteristics in two-dimensional horizontal precipitation

maps. The main feature in the synoptic scale is a longish shape with a large area of sev-

eral thousands square kilometres. The rain rates are mostly moderate and homogeneously

distributed. In contrast, meso-scalic convective regions are systems with a smaller area and

without a distinctive shape. They often exhibits more extreme rain rates with frequent inclu-

sions of non-rain regions.

The large quantity of radar data (four slots per hour) clearly requires the development of

automatic methods. Although the characteristics of the type are easily detectable by a human

observer, it is not possible to distinguish frontal and convective rain by a simple threshold

technique for any of those characterisations. The features a human may use to recognise the

typical patterns associated with the two main types of precipitation have to be "translated"

in mathematical parameters. These values will hereby classified in two subgroups: texture

and shape parameters. The texture can be associated with the "inner" structure of the precip-

itation field, since it explains the spatial distribution of rain intensity within the area. Shape

parameters are based on a binary representation of the rain field in a 2D precipitation map

and can therefore referred to as the "outer" structure.

Generally speaking, the algorithm uses the structural patterns of radar reflectivity factor

Z of precipitation systems in combination with an Artificial Neural Network (ANN) in order

to distinguish frontal and convective precipitation. Pankiewicz (1997) suggested a similar

technique for classifying shallow and deep convective air masses from satellite data as an

estimate of convective precipitation. In that study the textural parameters within clip-outs of

a fixed size were used as input parameters of a neural network algorithm. In contrast to that

approach textural and geometrical parameters of entire contiguous precipitation systems are

used here.
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Figure 3.1: Flow diagram of the methodology do classify precipitation into frontal and
convective partitions.

Firstly, the general algorithm flow are described before the single steps are discussed in

detail. Fig. 3.1 shows a top level diagram of the classification approach. Thus, based on

any individual radar composite image, contiguous precipitation areas are firstly identified.

If these areas are smaller than a predefined size of 4000 km2 they are initially assigned

“convective”. If a individual precipitation event is larger than the threshold several texture

parameters are derived for each of these precipitation areas. These parameters are then used

as input for an ANN that decides on whether each individual case is convective or frontal. In

the next step all precipitation events within 20 kilometres distance from a frontal precipitation

event are assigned as frontal. In a similar manner the temporal neighbourhood of a frontal

system is assigned frontal for all images within 60 minutes around the current image. In

the following, the individual steps are described in detail. The approach introduction will be

accompanied by means of sample images.

Example In order to illustrate the scheme processing more descriptive it will be gone

through the each single step by means of an example case at the end of each section of this
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Figure 3.2: Met Office re-analyse map (14th December 2000 00:00 UTC) by courtesy of
U.K. Met Office

chapter. Fig. 3.2 gives an overview over the synoptical situation in Europe at the 14th De-

cember 2000 00:00 UTC. The Baltic area is influenced by a low pressure system with its

centre west of Norway. An occlusion covers the northern part of the Bay of Bothnia. Left

panel of Fig. 3.3 shows, as the starting point of the algorithm, the map of corrected radar re-

flectivity factor Zcor in decibel (dBZ) for 13th December 22:45 UTC. The radar image shows

a rainband over middle Finland, northern Sweden and the Bay of Bothnia. Isolated precip-

itation events can be identified south of this large precipitation area. A large precipitation

area is located over Denmark.

3.2 Identification of contiguous rain regions

Region identification mehods assign unique labels to image regions. In this study all pixels

of a contiguous rain field get one unique number as a label. Contiguous rainfall regions are

determined using an algorithm with an eight-connected neighbourhood definition, i.e. the
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(a) (b)

Figure 3.3: Example case: a.) Radar reflectivity factor Zcor (13th December 2000
22:45 UTC). b.) Different colours indicate different contiguous rain fields with area ex-
ceeding 40.000 square kilomtres (13th December 2000 22:45 UTC).

algorithm searches for neighbouring pixels with rain rate or radar reflectivity factor (or more

generally the grey values of an image) greater than a certain threshold not only in horizontal,

but also in diagonal directions (see Fig. 3.4). The examination algorithm is based on a region

growing technique similar to that described in Schowengerdt (1997). Each connected rainfall

area is labelled with an unique region index. Thereby, included non-precipitation pixels do

not count as a part of the labelled area.

In order to delineate different areas, a threshold value for the radar refelectivity factor of

Zthr= 2dBZ has been set. This value corresponds to about 0.05 mm/h from May to September

and about 0.07 mm/h in cold season. Application of the threshold leads to a binary image

with label "zero" for non-rain areas and label "one" for rain areas.

The threshold of 2 dBZ has been found empirically by trying to obtain as stable results

as possible with respect to the number of identified precipitation events per image. This is

shown in Fig. 3.5, where the average number of precipitation events found in one image as

a function of the threshold value is plotted for several hundred randomly chosen images.

It can be seen that the number of large precipitation areas is almost constant in a range

between -5 dBZ and 8 dBZ. One can conclude that the classification results are insensitive
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Figure 3.4: Pixel neighbourhood definitions. Left panel shows the 8-pixel neighbourhood,
where all pixels are assigned "connected" (gray shaded) to the central one. For the 4-pixel
neighbourhood definition only the horizontally adjacent pixels are connected to the central
pixel.

to the particular choice of the threshold as long as it is not extremely high (larger than about

8 dBZ). Besides small modifications in size and shape, the choice of the threshold in the

above-mentioned range leads mostly to almost identical precipitation areas.

The size of the contiguous areas is then used to preliminarily assign a class to each of

the precipitation events as shown in Fig. 3.1. That means that small areas with a size in area

of less than 4000 km2 are preliminarily assigned convective, whereas large areas are further

processed as described below.

Example Right panel of Fig. 3.3 shows each contiguous precipitation area labelled with

a unique colour. Dark blue areas are smaller than 4000 km2 and are initially assigned as

convective. Six areas was found with a larger area size. It will be focused in the following

on the large blue area over the northern Baltic sea and adjacent land regions and on the green

area over Denmark. Fig. 3.6 shows cutouts of Fig. 3.3 of these two chosen areas. Note, that

the aspect ratio is unchanged, but the size is different.

3.3 Parameters to describe a precipitation system

For precipitating areas larger than the aforementioned size, it is initially unclear whether

they are associated with a frontal system or not. The human observer can visually classify

those events, but also with a non-negligible false alarm rate as discussed below. The human

observer relies on texture and shape features to identify precipitation and our classification

resembles this particular capability. A large horizontal extent as well as the elongated shape

and smooth variations of rain rate or radar reflectivity can be identified with frontal rain

bands. In contrast, intermittent and spatially highly variable rain events are identified as

convective precipitation. I prescribe eight values for each precipitation area that has been
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Figure 3.5: Number of contiguous precipitation areas as a function of threshold for rain
pixels.

identified within the image to capture these features. They form an input vector that is

subsequently used to characterise precipitation events by type.

A set of different structure measures for each precipitation area is employed to classify

its type. The parameters are subdivided into two classes:

1. Shape descriptors. This group includes the total size of a feature as well as its ec-

centricity as characterised by the minor and major axis of the circumscribing ellipse.

These characteristics resemble the human observers capability to distinguish between

long and narrow features such as rainbands and more circularly shaped rain events.

2. Grey value difference (GVD) statistics. The GVD method uses histograms of the

differences between the grey values of adjacent pixels to specify texture characteristics.

Example Fig. 3.6 illustrates that all connected pixels with all neighboured non-rain pixel

within a 20 kilomtres vicinity will be taken in account by calculating the parameters.

3.3.1 Shape descriptors

Describibing the shape of an object in a mathematical way can prove to be very difficult.

People may use terms such as rounded, elongated or jagged, however these terms are not

easy to transform in quantitative values. The shape parameters aplied here are based on a

binary version of the precipitation fields, i.e. after thresholding the rain rate images each
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Figure 3.6: Example case: Radar reflectivity factor Z of two precipitation regions. Only
pixels are shown, those are considered in textural and shape analysis.

pixel will be set to 1 (’wet‘) or 0 (’dry’). A shape can be described by using boundary

information ( i.g. chain code representation) as well as by the description of the shape itself.

The latter will be used for this study. The descriptors were chosen to quantify what one

can easily formulate by eye about the difference between the shape of frontal and convective

precipitation systems. The most apparent features of a meteorological front are the elongated

shape and an extent of at least several hundred kilometres. Thus, the chosen parameters focus

on the elongatedness and the size of the area. All shape descriptors are simple scalar values

for this method.

1. Size. The area size of a precipitation field, A, is simply the number of pixels nrainwith

rain of which the contiguous region consists.

2. Length of the major axis. The length of the first principal component axis refers to

the largest dimension of the shape.

3. Eccentricity. The eccentricity is here defined as the ratio of the longest chord per-

pendicular to the first principal axis to the first principal axis itself. The eccentricity

factor may take values from almost zero (high eccentricity, long narrow features) to

one (both major axes have the same length, e.g. circular shape). High eccentricity is

typically associated with frontal rain areas.

4. Compactness. The region of interest used for this parameter includes each wet pixel

identified as a part of the connected rain field and each pixel which is less than 20 kilo-

metres to the perimeter of this particular rain field. For this study compactness is

defined as the ratio of the number of rain pixels to the number of all pixels within the

area circumscribing the precipitation field. Note, that there are differing definitions for

compactness in the literature.
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3.3.2 Texture information

In this study, grey value differences between adjacent pixels are evaluated for each precipi-

tation field. Grey value differences (GVD) are a common method to describe the texture of

spatial features (Uddstrom and Gray, 1995). However, the actual definition of GVD param-

eters in the literature varies. Therefore I briefly describe the parameters used.

The corrected radar reflectivity data were transformed linearly to grey values running

from 0 to 255, representing a range of reflectivities from -30 dBZ to 70 dBZ.

Co-occurrence matrix A good overview over the methods introduced there is given in

Haralick et al. (1973) or in Baraldi and Parmiggiani (1995). The first step is to produce a gray

value matrix that includes the frequency of occurrence of gray level pairs. The corresponding

pairs of pixel have to be located in a pre-defined fixed geometrical constellation, such as the

two adjacent neighbour in the horizontal direction in an image. In case of n = 256 possible

gray values, the grey value matrix has a dimension of 256 x 256. A gray value combination

value (gv1,gv2) increases the counter of the position (gv1,gv2) in the gray value matrix.

For the purpose of this study a GVD function for a grey value image φ = f (x,y) has the

form P(m), where the m-th entry is the frequency of occurrence of the grey level difference

m = (|φ(x′,y′)− φ(x′′,y′′)|+ |φ(x′,y′)− φ(x′′′,y′′′)|)/2 for each pixel φ(x′,y′) and its two

adjacent pixels in the eastern direction φ(x′′,y′′) and southern direction φ(x′′′,y′′′). At least

one of these three pixels must be situated within the connected rain area. The normalized

probability density function P̃(m) is defined as

P̃(m) =
P(m)

N
(3.1)

where N is the total number of pixels for this region.

For each large contiguous precipitation field the following parameters have been calcu-

lated:

1. Mean grey value difference
µ = ∑

m
mP̃(m) (3.2)

which, if small, indicates that the GVD are concentrated near the origin. If the rain

event is completely homogeneous the mean gray value difference would be zero. A

large value corresponds to inhomogeneous precipitation fields.

2. Homogeneity

H = ∑
m

P̃(m)
1+m2 (3.3)
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Figure 3.7: Example case: Radar reflectivity difference map: mean difference to the two
direct adjacent pixels in southern and eastern direction.

will be small for large GVD due to the dominance of the squared m in the denominator.

Highest results will be expected if P̃(m) is high for low values of m. Thus, if the rain

field is homogeneous H, will be maximal.

3. Entropy
E = −∑

m
P̃(m)log

(
P̃(m)

)
(3.4)

indicates whether the texture is organised. This is largest when a big number of grey

value differences m occurs and the P̃(m) are uniformly distributed, but is small when

they are highly variable.

4. Contrast
C = ∑

m
m2P̃(m) (3.5)

describes the variability of the grey values in the feature. A small value of C means

that small differences between adjacent pixels prevail in the image and the texture is

only variable over larger distances.

These features measure various properties of the GVD probability density function, however,

they are not independent from each other.

Example In Fig. 3.7 the maps of the average difference to the two adjacent pixels in south-

ern and eastern direction is shown. The normalised histogram of the values in this difference

map represents P̃(m), as shown in Fig. 3.8. The frontal region (i.e. the left image in Fig. 3.7)

has only few values with large dBZ differences and most of the values concentrate near the

origin. The convective case is much more variable with difference values also higher than
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Figure 3.8: Example case: Gray value difference density function GVD P̃(m) for two pre-
cipitation regions labelled as frontal and convective.

10 dBZ. It seems, that the pixel-to-pixel variability is a distinct difference feature and can be

described by modi of the gray value difference function.

3.4 Development of the classification tool

A supervised multilayer perceptron ANN is used as a classification tool. Multilayer percep-

tron ANN are able to “learn” the functional relation between a set of i input vectors xi and

output vectors yi. A training dataset [xi, yi] has to be provided to the ANN to learn the rela-

tion between xi and yi before it can be used to independently classify new sets of xi. A first

test on the performance of the ANN is usually obtained by creating a second independent

set of [xi, yi] called a test dataset. It allows one to quantify how well the ANN is able to

generalise the learned relation.

3.4.1 Selection of the training dataset

The first step in training a neural net is to find a dataset [xi, yi] that can be used for training.

This dataset has to be sufficiently large to span the full range of expected variability of

the input vector xi. For this particular case, an approach is used to randomly select weather

radar images from 2001 to 2002 and within each scene several precipitation events are picked

again randomly that were then classified visually. The re-analyse maps of U.K. Metoffice

(example in Fig. 3.2) gave additional indications of the actual synoptical situation. Each
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of these events was then stored as a vector [xi, yi] where xi are the aforementioned eight

structural parameters and yi is either zero if the event was visually classified as convective or

one if it was classified as frontal. Hereafter the value yi is also referred to as the front index of

a precipitation region. After several thousand of these visual classifications the dataset was

homogenised so that frontal and convective cases occur with roughly the same likelihood.

Finally, it was split into two datasets, one for training and one for testing.

3.4.2 Statistical properties of the training dataset

Before it is proceeded with the neural network training, it is worthwhile to study the statisti-

cal properties of the training dataset. This will allow to draw some first conclusion on how

well the various texture and geometrical parameters are correlated with the visual classifica-

tion of the training dataset. It is also possible to find high cross-correlations among some of

the input features to potentially reduce the dimensionality of the input dataset to prevent the

neural network from being trained with redundant input variables.

Table 3.1 shows the cross-correlation analysis for the set of training data [xi, yi]. The last

row gives the correlation between the various input parameters and the visual classification.

A positive classification here indicates that if the respective parameter has a high value, the

event is more likely to be frontal.

Table 3.1: Cross-correlation matrix of input and output parameters of the neural network.
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1 mean 1
2 homogeneity -0.68 1
3 entropy 0.86 -0.76 1
4 contrast 0.81 -0.50 0.47 1
5 size -0.36 0.24 -0.23 -0.39 1
6 major axis -0.37 0.20 -0.20 -0.43 0.89 1
7 eccentricity 0.07 0.08 0.00 0.09 -0.06 -0.25 1
8 compactness -0.63 0.41 -0.44 -0.67 0.72 0.76 -0.02 1

9 front index -0.39 0.25 0.78 -0.45 0.69 0.80 -0.16 0.78 1

The mean grey value difference is weakly negatively correlated with the visual classifi-

cation which indicates that if the mean differences between the adjacent pixels in the feature
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Figure 3.9: Frequency of occurrence of precipitation areas of specific type as a function of
the size. The left image shows the result of the entire range of size (Filled: frontal, streaked:
convective). Solid lines indicate the cumulative probability histogram for frontal (f) and
convective (c) events. The right image displays the clipping of the size range smaller than
60,000 km2.

are getting smaller, it is more likely to be frontal. The highest positive correlation is found

for the size of the major axis and the relative amount of raining pixels in the box around the

feature as defined by the minor and major axis. Both show a correlation of about 0.8, which

indicates that larger precipitation events are more likely to be associated with fronts and that

events which are more regularly filled with precipitation are more likely to be frontal.

Looking at the cross-correlations between the different input parameters one finds maxi-

mum absolute correlations slightly smaller than 0.9 between entropy and mean difference as

well as between the overall size of the area and its major axis. These parameters are obvi-

ously correlated since an increase in the mean difference corresponds to an increase in the

average disorder, and hence entropy, of the system. Interestingly, even though both features

are correlated to some extent their correlation with the classification is very different.

I used a multi-layer perceptron neural network (Marquard, 1963; Rumelhart and McClel-

land, 1986) with an input layer of eight neurons for the eight texture and shape parameters, a

hidden layer of 25 neurons and one output neuron that varies between zero (convective) and

one (frontal). The transfer function at each node is sigmoidal.

Fig. 3.9 shows the number of classified precipitation events as a function of their horizon-

tal extent in km2. Small precipitation events (less than 15,000 km2) are almost exclusively

classified as convective. Between 15,000 km2 and 50,000 km2 the classification is not unique
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Figure 3.10: Case study of 04:00 UTC 14 December 2000. The left image displays rain
rate. The right image shows the frontal/non-frontal classification.

and the precipitation event might be either convective or frontal depending on its shape and

texture. Very large features (larger than 60,000 km2) are entirely classified as frontal. For

sizes around 30,000 km2 about 50 percent of the precipitation events are classified frontal

and about 50 percent convective. Note that even though most of the individual precipitation

events are small, the contribution of a precipitation event to the total rainfall is to first order

proportional to its horizontal extent, so that the medium-sized precipitation events contribute

significantly to the total rain rate.

3.4.3 Temporal and spatial adjustments

After the neural network classification has been completed, two more steps are performed

before the final classification is produced. In the first step, isolated precipitation events close

to a frontal precipitation event are classified as a part of the latter frontal area. The search

radius used for this adjustment is 20 km and hence very small given the typical extent of a

frontal system. In the case study displayed in Fig. 3.4.3, some small isolated features can

be identified at the north eastern part of the frontal system (64◦ N/ 30◦ E) that just by their

size would have been identified as convection. It is clear, however, that they belong to the

front. Similarly, at the south western part (64◦ N/ 15◦ E) a somewhat larger patch has been

identified as frontal. Further south, two more patches can be identified which are not within

the search radius and therefore remain convective. It is unclear whether these precipitation

events belong to the front and this question could also not be answered by using auxiliary
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data such as the weather map or Meteosat infrared image.

Obviously, fronts that enter the observation area might initially be misclassified as con-

vective just because only a small fraction of the entire frontal area can be seen by the radars.

It is therefore a second temporal criterion added to minimise this particular error source. For

every event that has been classified as convective, it is searched earlier and later images if a

frontal event has been detected in the same geographical region. If so, the event is classified

as frontal, too. The search window for the temporal adjustment is one hour.

Subsequently the example case highlights some of the uncertainties associated with the

classification method. From looking at this example, it is clear that a 100 percent accuracy

can not be achieved and the definition of frontal and convective is fuzzy to some extent. A

quantitative error analysis and evaluation of the classification is then provided in Chapter 4.
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Figure 3.11: Example case: Results of the classification before and after the adjustment
scheme. Red areas indicate frontal zones and green areas convective zones.

Example case The classification results shown in Fig. 3.11 correctly identifies the large

scale precipitation event as frontal and the small scale events as convective. Some of the

small scale features close to the front are also assigned frontal due to the aforementioned

spatial and temporal tests. However, several features close to the front appear to be not

necessarily correctly identified. The small rainband over southern Finland is classified as
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convective, but an observer would intuitively associate it with the frontal rain band and clas-

sify it as frontal. In the very northern part of the frontal area, several smaller convective

events are assigned frontal. However, the northernmost precipitation events are identified as

convective. Even if the observer used weather maps as auxiliary information, it would not

be possible to doubtlessly assign these areas as belonging to the frontal precipitation event.
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