Radar-based precipitation classification in the Baltic Sea area

Dissertation

zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften am Fachbereich Geowissenschaften der Freien Universität Berlin

vorgelegt von

Andi Walther

geboren am 1.11.1968 in Berlin-Kaulsdorf

Berlin, Februar 2007

Gutachter: Prof. Dr. Jürgen Fischer
Gutachter: Prof. Dr. Ralf Bennartz

Tag der Disputation: 04 Mai 2007

Selbstständigkeitserklärung

Hiermit erkläre ich, Andi Walther, die vorliegende Arbeit ohne fremde Hilfe verfasst und nur die angegebene Literatur und die angegebenen Hilfsmittel verwendet zu haben!

Andi Walther

Lebenslauf

Name Andi Walther Geburtsdatum 01.11.1968

Geburtsort Berlin-Kaulsdorf

Staatsangehörigkeit deutsch

Familienstand verheiratet, 2 Kinder

1975-1985	Polytechnische Oberschule Heinrich Heine, Erfurt		
1985-1988	Ausbildung zum Facharbeiter der Nachrichtentechnik, Deutsche		
	Post, Erfurt		
1988-1993	Berufstätig als Techniker		
1993-1995	Hochschulreife, Abendgymnasium Heidelberg		
1995-2001	Studium der Meteorologie, Freie Universität Berlin, Abschluss mit		
	der Note "Sehr gut"		
2001-2006	Wissenschaftlicher Mitarbeiter am Institut für Weltraumwis-		
	senschaften Freie Universität Berlin		

Zusammenfassung

Die vorliegende Arbeit leistet einen Beitrag zur klimatologischen Betrachtung eines wichtigen Bestandteils des Wasserkreislaufs im Ostseeraum: den Niederschlag. Niederschlag hat einen erheblichen Einfluss auf nahezu alle anderen Komponenten des Klimasystems. Es ist daher unerlässlich, diese Komponente in der ganzen Vielfalt ihres Auftretens zu betrachten. Diese Arbeit beschäftigt sich mit der räumlichen und zeitlichen Variabilität des Niederschlags.

Die ursächliche Bedingung für das Entstehen von Niederschlag ist das Auftreten von Hebungsprozessen von Luft und die damit verbundene Wolkenbildung. Im Rahmen dieser Arbeit wurde ein Verfahren entwickelt, welches den Niederschlag nach der Art der Hebung, also nach der Ursache seiner Entstehung einteilt. Dabei werden die Klassen konvektiver Niederschlag für die freie Hebung und frontaler Niederschlag für die erzwungene, großräumige Hebung verwendet.

Der Mensch ist in der Lage Fronten an Hand von Satellitenbildern oder großräumigen Niederschlagskarten zu erkennen. Für eine große Datenmenge war aber das Erstellen eines automatisierten Verfahrens notwendig. Der entwickelte Algorithmus basiert auf textureller und struktureller Auswertung von horizontalen Niederschlagskarten. Die Genauigkeit des Verfahrens wurde mit synoptischen Routinemessungen und Analysekarten des britischen Wetterdienstes abgeschätzt. Der *Hansen und Kuipers score* ist ein geeignete statistische Größe, um die Güte von Ja/Nein Entscheidungen auch mit ungünstiger Verteilung der Proben mit nur einer Zahl zu bewerten. Für die Validierung mit synoptischen Daten ergibt der *Hansen und Kuipers score* einen Wert von etwa 0,57 und für die Auswertung mit den Analysekarten einen Wert von 0,76. Das entspricht einer Trefferquote von 78% bzw. 90%. Es hat sich gezeigt, dass die Validierungsergebnisse unabhängig vom Ort und von der Jahreszeit des Niederschlags sind.

Das Verfahren wurde danach auf den Niederschlagsradardatensatz BALTRAD für die Jahre 2000 bis 2002 angewendet. Da quantitative Abschätzungen des Niederschlags aus Radarmessungen eine große Unsicherheit aufweisen, wurde ausschließlich die Auftrittshäufigkeit von Regenintensitäten oberhalb eines vordefinierten Schwellenwertes betrachtet. Es konnten eine Vielzahl klimatologisch relevanter Aussagen getroffen werden, sowohl genereller Natur als auch solche die ein besonderes Augenmerk auf Jahres- und Tagesgang legen. Die wichtigsten Erkenntnisse sind:

- Frontaler Niederschlag dominiert den Ostseeraum mit zwei Dritteln des Gesamtniederschlags.
- Die Trennung in konvektiven und frontalen Anteil repräsentiert gleichzeitig nahezu

eine Trennung von Niederschlag mit tageszeitlicher Variabilität und ohne.

- Die tageszeitliche Variabilität des konvektiven Niederschlags über Land unterschiedet sich von dem über dem Meer. Das tageszeitliche Signal ist über Land erheblich größer, insbesondere im Sommer.
- Durch die automatisierte Interpretation von Hovmöller Diagrammen des frontalen Anteils konnte eine mittlere zonale West-Ost-Geschwindigkeit von Frontensystemen von etwa 7 m/s abgeschätzt werden.

Ein oft zitierter Mangel, der viele Klimamodelle betrifft, ist die Tatsache, dass die Tageszeit des maximalen Niederschlages zwei bis drei Stunden zu früh simuliert wird (Trenberth et al., 2003). Es wird vermutet, dass der konvektive Niederschlag unzureichend beschrieben ist. Das hier vorgestellte Verfahren erlaubt die Selektion von konvektiven Niederschlag und ist damit besonders geeignet, genauere Untersuchungen des konvektiven Tagesgangs durchzuführen. Im Kapitel 6 werden die Ergebnisse einer solchen Untersuchung für das Klimamodellsystem BALTIMOS vorgestellt.

Contents

1	Intr	oductio	n	1			
2	Esse	Essentials					
	2.1	Funda	mentals	5			
	2.2	The ra	dar data set BALTRAD	10			
3	Met	Methodology 1:					
	3.1	Overv	iew	15			
	3.2	2 Identification of contiguous rain regions					
	3.3	Param	eters to describe a precipitation system	19			
		3.3.1	Shape descriptors	20			
		3.3.2	Texture information	22			
	3.4	Develo	opment of the classification tool	24			
		3.4.1	Selection of the training dataset	24			
		3.4.2	Statistical properties of the training dataset	25			
		3.4.3	Temporal and spatial adjustments	27			
4	Vali	dation		31			
	4.1	Comp	arisons with visually classified re-analysis fields	33			
	4.2	Compa	arisons with surface synoptic observations	34			
5	App	lication	ı	37			
	5.1	Data p	processing	37			
	5.2	Result	s	43			
		5.2.1	Overall geographical patterns	43			
		5.2.2	Seasonal and diurnal variations	44			
		5.2.3	Geographical patterns of diurnal cycle parameters	46			
		5.2.4	Frontal overpass statistics	49			
	5.3	Summ	arv	55			

6	Eva	luation	of a regional climate model	59		
	6.1	5.1 Motivation				
6.2 Model, observational data and analysis methods			, observational data and analysis methods	6.		
		6.2.1	BALTIMOS simulations	6.		
		6.2.2	Observational data	62		
		6.2.3	Methods of comparison	62		
6.3 Results			s	63		
		6.3.1	General features	6.		
		6.3.2	Frontal fraction	6		
		6.3.3	Diurnal cycle	69		
	6.4	Conclu	usions	7.		
7	Sun	ımary		7		
Bi	bliog	raphy		8		
A	Preci	pitation	n maps	8'		
В	Hovn	ıöller d	iagrams	9		
Li	st of l	Figures		9:		
Li	st of '	Fables		9		
Li	st of A	Acronyi	ms	10		