Simple Reconstruction of Non-Simple Curves
and

Approximating the Median in Streams with
Constant Storage

Dissertation zur Erlangung des Doktorgrades

vorgelegt am
Fachbereich Mathematik und Informatik

der Freien Universitat Berlin

2008

von

Tobias Lenz

Institut fiir Informatik
Freie Universitat Berlin
Takustrafle 9
14195 Berlin
tlenz@mi.fu-berlin.de

Betreuer: Prof. Dr. Giinter Rote
Institut fiir Informatik
Freie Universitat Berlin
Takustrafle 9
14195 Berlin
rote@mi.fu-berlin.de

Gutachter: Prof. Dr. Gunter Rote Prof. Dr. Stefan Funke
Institut fiir Informatik Institut fiir Mathematik und Informatik
Freie Universitat Berlin Universitat Greifswald

Takustrafie 9 Jahnstrafie 15a
14195 Berlin 17487 Greifswald
rote@mi.fu-berlin.de stefan.funke@uni-greifswald.de

Datum der Disputation: 28.10.2008

CONTENTS

Danksagung

Part I Simple Reconstruction of Non-Simple Curves

Abstract / Zusammenfassung

1.

Introduction
1.1 What is Curve Reconstruction?
1.2 Applications
1.3 Sampling Conditions
1.4 Filtering Delaunay Edges
1.5 Known Reconstruction Algorithms
1.6 Our Contribution
1.7 Related Results
Prerequisiteso
The New Approach
3.1 “Seed Edges” and “Probe Inflation”
3.2 The New Algorithm
3.3 Compatibility with e-Samplings: NN-Crust Revisited

3.3.1 The NN-Crust Algorithm

3.3.2 Generalization of the NN-Crust Algorithm . .
Reconstructing Intersections

4.1
4.2

4.3
4.4

The Idea and Main Result
Computing the Exclusion Disk
4.2.1 Overview
4.2.2 Detailed Computation
Correctness for Curve Segments between Intersections
Collections of Intersecting Curves

Analysis of the Running Time and the Space Requirements

5.1

Advanced Data Structures
5.1.1 Dynamic Closest Pair Maintenance
5.1.2 Probe Inflation with Partition Trees

11

13

15
15
15
16
17
17
18
18

4 Contents

5.2 Practical Efficiency with kd-Trees 58
5.3 Runtime 98
5.4 Space Requirements 59
6. Experimental Results 61
6.1 Implementations 61
6.2 Heuristic Results 0. 61
6.3 Extension to Open Curves 62
7. Conclusion e 65

Part I Approximating the Median in Streams with Constant Storage 67

Abstract / Zusammenfassung 69
8. Introduction. 71
8.1 Motivation oo 71
8.2 The Streaming Model, the I/O Model, and the Number of
Sequential Passes oL 72
8.3 Previous Worko o 73
8.3.1 The Secretary Problem 73
8.3.2 Related Algorithms. 73
8.4 The Considered Model 74
8.5 A Comparison-Based Algorithm 76
9. Upper Bounds 77
9.1 A General Upper Bound 7
9.2 Obtaining Bounds by Playing Games with One Marker 77
9.3 Obtaining Bounds by Playing Games with Two Markers . . . 78
9.4 A Variant of the Online Problem 79
10. Lower Bounds and Algorithms 83
10.1 Dealing with Unknown Data Size 83
10.2 Improvements for Known Data Size. 85
10.3 Transferring the Results for Known Data Size to Unknown
Data Size 88
11. EXtensions« o o v e e 91
11.1 Arbitrary Quantiles L. 91
11.2 Multiple Passeso 91
12. Experimental Results 93

13. Conclusion o e 99

Contents 5

Bibliography 100

Index 105

Contents

LIST OF ALGORITHMS

Framework for the reconstruction of curves using probes. . . .
A comparison-only algorithm for median approximation
Achieving a linear approximation of the median with only two
markers mq, me by knowing their rank
Achieving a distance of at least \/2(n + 1) —3 to the boundary
with only two markerso oo
Achieving a boundary distance of (2 (nQ/ 3) with four markers .
Applying an algorithm for known stream size repeatedly on
chunks of increasing size.

DANKSAGUNG

Ich bedanke mich bei allen, die bei der Entstehung dieser Dissertation geholfen
haben. Allen voran bedanke ich mich bei Giinter Rote fiir die Betreuung und
die konstruktiven Gesprache. Ich danke Stefan Funke fiir seine Tatigkeit als
Gutachter.

Mein Dank gilt der Arbeitsgruppe Theoretische Informatik der Freien
Universtitat Berlin fiir ein uniibertreffliches Arbeitsklima. Insbesondere be-
danke ich mich bei den Kollegen Britta Broser und Klaus Kriegel fiir die
Hilfe beim zweiten Teil der Arbeit.

Des Weiteren bedanke ich mich bei meiner Familie und meinen Freun-
den fiir die Unterstiitzung wahrend meiner Zeit als wissenschaftlicher Mi-
tarbeiter.

Part 1

SIMPLE RECONSTRUCTION OF NON-SIMPLE
CURVES

ABSTRACT

This work generalizes the ideas in the Nearest-Neighbor-Crust algorithm by
Dey and Kumar. It allows to reconstruct smooth, closed curves from e-
samples with € < 0.48. This is a big improvement compared to the original
bound. Further generalization leads to a new algorithm which reconstructs
closed curves with self-intersections. The algorithm is very simple and short
and works well in practice. A special e-sampling condition is given which
guarantees correct results. The described method works for curves in any
dimension d in O(n2’1/d) time.

ZUSAMMENFASSUNG

In diesem Kapitel wird die Idee des Nearest-Neighbor-Crust-Algorithmus
von Dey und Kumar verallgemeinert. Das Ergebnis ist ein Algorithmus, der
die Rekonstruktion von glatten, geschlossenen Kurven aus einem e-Sample
mit € < 0,48 erlaubt. Dies ist eine gravierende Verbesserung gegeniiber der
Schranke fiir den unverénderten Algorithmus. Weitere Verallgemeinerung
fithrt zu einem neuen Algorithmus, der geschlossene Kurven mit Selbstschnit-
ten rekonstruieren kann. Der vorgestellte Algorithmus ist sehr einfach und
kurz und in der Praxis einsetzbar. Es wird eine spezielle Bedingung fiir das
e-Sample angegeben, unter der der Algorithmus beweisbar korrekte Ergeb-

nisse liefert. Das Verfahren funktioniert fiir Kurven in beliebiger Dimension
d in O(n?= Y1) Zeit.

14

Abstract

1. INTRODUCTION

1.1 What is Curve Reconstruction?

Answering the question up-front with the words of Tamal Dey, Kurt Mehl-
horn, and Edgar Ramos: Curve reconstruction is “connecting dots with good
reason” [DMRO0]. The “dots” are a finite set of points, the so called sample,
taken from a curve. The task is to connect them retaining the adjacency
of the original curve without knowing this curve. The outcome should be a
polygonal approximation of the original curve which the samples were taken
from. The approximation quality is not measured with some error metric
but only with respect to the correct adjacencies, so either the reconstruction
is correct or it is not. Hence it is in fact “connecting the dots” with the goal
to find the correct order.

This is exactly the task the computer should solve for us. Of course the
results depend on the positions of the given points and the used algorithm
to connect them. So there is a natural demand for a classification of curves
by certain features which make them easy to reconstruct or hard or maybe
even impossible—why is it for example much easier to reconstruct a duck
than a fish? (Figure 1.1)

1.2 Applications

A major application for reconstruction in practice is the creation of surfaces
from point clouds generated by 3d scanners. This is the surface reconstruc-
tion problem. Curve reconstruction provides foundations and new ideas for
surface reconstruction but also has its own applications.

Fig. 1.1: A reconstruction of a duck and a fish. Although they look simple, both
figures have features which are difficult to reconstruct: sharp features
(turns more than 7/2) and a self-intersection

sample

surface reconstruction

implicit curve

sampling condition

16 1. Introduction

Althaus [Alt01] describes several image processing applications. Looking
for a shape, an image is scanned for characteristic points. Due to image
quality, the shape’s complete boundary usually cannot be detected, so some
regions of uncertainty remain. A curve reconstruction algorithm can connect
the pieces. This technique is most important for medical applications like
computer tomography and magnetic resonance imaging. A 3d shape of a
body part is represented as several layers of 2d images. In each of these
slices the boundary of e.g. a bone is reconstructed as a polygonal curve.
Afterward the polygons from each slice are connected to the final 3d shape.

Another application is the digitization of road maps [GSO01]. It requires
topological correctness, otherwise a street on the polygonal map might lead
through a lake or over a cliff. The traditional method to fix the topology was
to place points right inside of each area along the boundary and label them
respectively. Then the Voronoi edges between points with different labels
are considered as reconstruction. The placement of points and labeling
was done manually or semi-automatically. Using curve reconstruction, the
whole process can now run fully automated because many reconstruction
algorithms come with guarantees on the topology.

A mathematical application which does not involve scanned images of
any kind is to approximately plot implicit curves. These are defined as the
zero set of a function f(z,y). Only for very simple functions f, a transfor-
mation into a parametric curve is possible. An implicit curve can contain
several connected components. It need not be smooth and can contain sad-
dle points. Algorithms like marching cubes [LC87] try to do an exhaustive
case distinction on small regions of the domain. A simple alternative is
to approximate several roots of f by Newton’s method and apply a curve
reconstruction algorithm.

1.3 Sampling Conditions

The quality of curve reconstruction depends heavily on the quality and quan-
tity of the input points. This is expressed in a so called sampling condition
under which a certain algorithm guarantees a correct reconstruction.

All sampling conditions limit the distance between two samples which
are consecutive on the curve. How this limitation is achieved varies widely.
Some known sampling conditions are: uniform sampling, e-sampling, a con-
dition with respect to the correct reconstruction instead of the original
curve [Fun01, FRO1], and a condition based on visibility regions [Fre02].
These conditions lead to the following rule of thumb: parts of the curve
which are close to other parts or with high curvature should be sampled
more densely than straight and distant parts. This rule is made very ex-
plicit in the e-sampling condition which is used in this thesis as well as
in many other publications. In general a special sampling condition suits
best for a special algorithm, providing a sufficient condition for a correct

1.4. Filtering Delaunay Edges 17

reconstruction.

It is apparently easier to reconstruct from a sample which is dense ev-
erywhere, than from a sparse one. Therefore it is not only important to find
a proper sampling condition, but also to find reasonable constants for it. In
the case of an e-sample, the sample becomes sparser for larger values of ¢,
so we look for a preferably large e.

1.4 Filtering Delaunay Edges

Reconstructing a curve from n given sample points means picking a sub-
set of the edges of the embedded complete graph with these n vertices. If
an algorithm only handles simple curves (without intersections), the recon-
struction is a planar graph with n edges. This allows to pre-select a linear
number of the ©(n?) possible edges and then throw out edges step by step
until the remaining edges form the final reconstruction. It has been shown
in several papers [ABE98, DK99, DMR00, DW01, FR01, DW02] that the
edges of the Delaunay triangulation are appropriate for this filtering. Fur-
ther advantages are that they can be computed efficiently and the concept
naturally extends to higher dimensions.

The success of the Delaunay edges is coupled to the requirement for
an e-sample fulfilling the condition that for each point on the curve the
distance to the closest sample point is at most € times the local feature size.
The local feature size of a point is the distance to its closest point on the
medial axis and was introduced to curve reconstruction by Amenta, Bern
and Eppstein [ABE9S] to distinguish between smaller features needing a high
sample density and larger features which only need a low sample density to
be captured well.

1.5 Known Reconstruction Algorithms

Some of the milestone results for curve reconstruction are listed here. Due to
the large number of heuristics and small modifications to known algorithms,
this list cannot be complete.

In 1983, Edelsbrunner, Kirkpatrick, and Seidel introduced a-shapes [EKS83].

They create a ball around each sample with weighted radius and consider
the intersection of the Delaunay triangulation of the samples with the union
of these balls as reconstruction. For specific radii depending on a parameter
«, this intersection is shown to be a correct reconstruction. The concept
naturally extends to higher dimensions and is therefore also used for sur-
faces.

In 1998, Amenta, Bern, and Eppstein presented the Crust algorithm [ABE9S].

The main idea is that reconstruction edges should not intersect the medial
azis of the original curve. The medial axis is not known but the authors

e-sample

e-sample

local feature size

medial axis

«-shape

medial axis

traveling salesperson
problem

18 1. Introduction

showed that a subset of the Voronoi edges of the sample points approx-
imates the medial axis if the sample is dense enough. They proof that
their algorithm works for e-samples with ¢ < 0.252. This result was im-
proved to ¢ < 1/3 by Dey and Kumar with the Nearest-Neighbor-Crust
algorithm [DK99]. This algorithm is described in detail in Section 3.3.1.

The first reconstruction of open curves was provided by Dey, Mehlhorn,
and Ramos in 2000 [DMRO0]. For their Conservative Crust algorithm they
introduced a parameter p which controls how easy an edge of the Delaunay
triangulation is filtered out.

Dey and Wenger designed a heuristic called Gathan in 2001 [DWO01]
which was able to reconstruct closed curves with sharp corners. Later they
modified the sampling condition to obtain provable results [DW02].

An algorithm which combines the strengths of the Conservative Crust
and Gathan was introduced by Funke [Fun01], respectively Funke and Ramos
[FRO1]. They question the requirement for the dense e-sample if a close ap-
proximation of the original curve is not needed. They define a new sampling
condition which allows sparse samples even for feature-rich curves. Addi-
tional conditions about the position of the samples relative to each other
guarantee the reconstructability. Correct results are proven for collections
of open curves with sharp corners.

1.6 Our Contribution

An e-sample does not exist for curves with sharp corners or intersections.
As a minor modification to the e-sampling condition, we exclude small
parts of the original curve. We present a simple algorithm with several
parameters and provide a choice of these parameters which reconstructs
smooth, closed curves for ¢ < 0.48. Another set of parameters of the same
algorithm is provided which allows to reconstruct smooth, closed curves
with self-intersections or collections of several curves which intersect each
other for ¢ < 0.138. Some parts of this thesis have already been pub-
lished [Len0O5a, Len05b, Len06b].

1.7 Related Results

The problem of reconstructing closed curves might also be formulated as
an instance of the well known traveling salesperson problem as done by
Giesen [Gie99a, Gie99b]. The sample points are the sites which all must be
visited on the shortest tour possible. The very basic idea is, if the sample is
dense enough such that two points adjacent on the curve are closer to each
other than to any other point, the TSP tour will be the correct reconstruc-
tion. Later Althaus and Melhorn [AMOO0, Alt01] showed that this tour can
be found in polynomial time although the general TSP problem is NP-hard.

1.7. Related Results 19

Other approaches use additional information, e.g. normals for the sam-
ple points like the so called tensor voting [MLT00, LZJT05] which allows
reconstruction from very noisy data.

The surface reconstruction by Cohen-Steiner and Da [CSD02] uses a
greedy technique growing the reconstruction adding the most fitting trian-
gles one at a time which is roughly similar to the idea proposed in this thesis
for curves. They start with a triangle and add more triangles to the surface
by evaluating some topological properties of the resulting surface, e.g. a
triangle that closes a hole is a much better choice than to create intersect-
ing triangles. This evaluation is done for curves in this thesis by a simple
“probe” function which bases on the turning angle.

20

1.

Introduction

2. PREREQUISITES

In curve reconstruction, the task is to find a polygonal approximation of an
original curve based on a preferably small sample of that curve. The curve
and sample are defined as follows.

Definition 2.1. A mapping ¢ : A — B is called locally injective if for all
a € A a non-empty neighborhood N(a) C A of a exists such that o : N(a) —
B is injective.

Definition 2.2. Let o be a continuous and locally injective mapping o :
A — R%. We denoted the image of o by ¥. We call ¥ a (d-dimensional)
closed curve, if A is the one-dimensional sphere. For A = [0,1] and ¢(0) #
o(1) we call ¥ an open curve, and ¢(0) and o(1) are called endpoints.

Sometimes the curve is defined as the image of an injective mapping
but since we want to reconstruct self-intersecting curves, we cannot forbid
identical images for different parameters.

Definition 2.3. A point p on a curve is called self-intersection if a,b € A
exist such that a # b and o(a) = o(b) = p. A curve is called simple if it
contains no self-intersections.

A point o(c),c € A, on a curve is called corner if o(c) is not an endpoint
and o has no (unique) tangent at c. A curve is called smooth if it has no
corners.

Figure 2.1 gives an intuition about some of the features i.e. smooth,
open and closed curves, endpoints, corners, and intersections.

Definition 2.4. A sample S is a finite subset of a curve X. The elements
of the sample are points in R? and are called sample points.

€6
’ @
13
€9 €3

Fig. 2.1: Curve examples with endpoints e;, corners c;, and intersections i;.

locally injective

closed curve

open curve

endpoint

self-intersection

simple curve

corner

smooth curve

sample

sample point

medial azxis

medial ball
local feature size

e-sample

22 2. Prerequisites

Fig. 2.2: A curve ¥ with some medial balls, touching ¥ at least twice. The centers
of the dashed circles lie on the inner part of the medial axis (red). The
outer part of the medial axis stretches to infinity and is therefore only
partly visible (blue).

The sample points should fulfill some conditions to guarantee a recon-
struction with a certain quality. The very common e-sampling condition
states that the sample should be dense if the curvature is high or parts of
the curve are close together while it might be sparse in straight regions of
the curve. Formally it is defined using the medial axis, see Figure 2.2 for an
example.

Definition 2.5. The medial axis of a curve is the closure of the set M
containing the center points of all empty balls which touch the curve in
more than one point. Such a ball is called medial ball. The local feature size
of a point p € ¥ is defined as Ifs(p) = nrmnEIJ\I}I lp —m|.

Definition 2.6. A sample S is an e-sample of the curve Y if Vp € ¥ : ds €
St p — s|| < elfs(p).

All known reconstruction algorithms which use e-samples give guaran-
tees only for some ¢ less than 1/2. Amenta et al. [ABE98| showed that
reconstruction from a l-sample can be ambiguous. They used the hand
drawn example shown in Figure 2.3 as a proof. No results are known for the
long standing gap between 1/2 and 1.

23

AN /

X
-
X

i N

Fig. 2.3: This picture was directly taken from Amenta et al. [ABE98]. It shows
their example of a 1-sample which does not have a unique reconstruction.
On the left and on the right you see two bold curves with their medial
axis. The marked 1-samples are identical.

From the definition of an e-sample, it is easy to make the following
observation.

Observation 2.1. Fvery e-sample is also a &-sample for all € > €.

This simplifies many of the upcoming proofs because they only need to
be done for a fixed, sufficiently large £ and automatically hold for every
smaller €.

The typical way of proving things about e-samples is by contradiction.
If it is possible to bound the distance to the closest sample from below
and the distance to the medial axis from above, this implies a bound for
€ from below. Choosing an € smaller than this bound creates the desired
contradiction. Therefore it is important to find nearby medial axis points,
for example using one of the following lemmas.

Lemma 2.2. Consider the intersection I of the curve ¥ with a closed ball
B. If I has at least two connected components, B contains a medial axis
point. If one of the components is only a single point x on the boundary of
B, then the local feature size of x is at most the radius of B.

Proof. Continuously shrink B around its center until it contains only one
component C' in its interior and touches at least one on the boundary. Now
fix one of the touching points ¢ ¢ C on the boundary and shrink the ball
further around ¢ until C is also on the boundary. This is possible because
C is continuous. The shrunken ball is an empty ball with at least two

turning angle

inner angle

24 2. Prerequisites

components on its boundary as required in Definition 2.5. Hence its center
is a medial axis point and because the shrunken ball stays in the interior of
B all the time, B contains a point of the medial axis.

If one of the components is only a single point on the boundary of B,
we can ignore the initial shrinking step and start with ¢ = x. The distance
from t to the center of B is the radius and it might only become smaller
because B might get shrunken further while still touching . O

Lemma 2.3. Consider the intersection I of the curve X with a closed ball
B. On every diameter d of B which touches or stabs at least two of the
connected components in I, there is a medial axis point.

Proof. Figure 2.4 illustrates the idea of this proof.

We call the first two distinct connected components stabbed by d 37 and
Y5. We move a point x continuously along a subset of d from an arbitrary
intersection point of d and ¥; to an arbitrary intersection point of d and
Y. We keep track of the distances f1, fo between x and its closest point in
> and 39 respectively. The distance between x and the closest point on
any other connected component in B is denoted by f3. If 31 and X5 are the
only components in B, f3 is set to infinity.

Since x starts on X1, we have f; =0, fo > 0, f3 > 0 in the beginning. In
the end we have f; > 0, fo =0, f3 > 0 because x ends on Xo. While moving
x along d, f1, fs, and f3 change continuously. Therefore fi = fo < f3 or
fi = fs < foor fo = f3 < fi follows for some z on d from the intermediate
value theorem. This x is a medial axis point by Definition 2.5. O

Lemma 2.4. FEvery point on the curve is adjacent to its nearest sample
point in an e-sample with € < 2.

Proof. Assume p is the sample point closest to and they are not adjacent
on the curve. Further assume that p and = are the closest pair with this
property. Consider a ball B centered at (p + x)/2 with radius ||p — /2.
The intersection of the curve part around x with B must be z, otherwise B
contains points closer to p with the demanded property. Lemma 2.2 states
that a medial axis point is not farther away from 2 than the radius ||p—x|| /2.

Let g be a closest sample point adjacent to x. By Definition 2.6 we have
|z —q|| <el|lp—x|/2 < ||p— «|. This contradicts the assumption. O

Definition 2.7. The turning angle <(p, q,r) of three points p, ¢, r is defined
as the absolute value of the smallest rotation angle needed to transform the
oriented line pg into the oriented line g7. See Figure 2.5 for an illustration.

The turning angle is always between 0 and 7. Note that this angle differs
from the inner angle Z(p,q,r) in q of the triangle defined by p, ¢, which
is usually associated with three points. In fact <t(p,q,7) = 7 — Z(p,q,7),

25

Fig. 2.4: The connected components Y1, Y, are stabbed by the diameter d. The
point & moves along the bold subset of d and the distances fi, f2, f3 are
monitored. Point m is a medial axis point, because the f; change contin-
uously and for x = m we have f3 > f1 = fo.

Fig. 2.5: Three points p, ¢, and their turning angle <((p, ¢,) indicated in red.

26 2. Prerequisites

| P\

| 4(p7m7aj) m I

Fig. 2.6: An illustration of the proof for Lemma 2.5. The maximum turning angle
is obtained by putting three consecutive samples on a medial ball.

but the turning angle is an important and intuitive quantity throughout this
thesis, so it has its own symbol.

The next lemma is used in many papers about curve reconstruction. It
was first proven by Amenta et al. [ABE98, Lemma 10] using a quite different
terminology based on Voronoi diagrams. We do not repeat their proof in
full length here but we show the last part of it in our own terminology after
the lemma.

Lemma 2.5. The turning angle of three adjacent samples in an e-sample
with € < 1 is at most 4arcsin (¢/2). Applying elementary transformations
to this yields the following result: To achieve a turning angle for any three
adjacent samples from an e-sample of at most T < mw/2, one can choose
e <2sin(7/4).

Proof (part). The proof of Amenta et al. [ABE98, Lemma 10] ends up with
a curve along the boundary of an empty circle B.

Consider three adjacent samples p, ¢, r from an e-sample of B. The center
of B is a medial axis point m because B is empty. The local feature size of
any point on B is ||¢ — m||, the radius of B. This situation is depicted in
Figure 2.6.

Consider the point € % which has the same distance to p and ¢. For
an e-sample ||z —p|| < elfs(z) and ||z —q|| < elfs(z) holds. By the definition
of sine we get

HZ‘ — pH — 2¢in Z(pu m, .%')

<e
lg —ml| 2

27

which can be turned into

Z(p,m,x) < 2arcsin %

Due to symmetry we have Z(p,m,z) = Z(p,m,q)/2 and because we are in
a right triangle, 8 = 7/2 — Z(p, m, q) /2 holds. These equations also hold for
the other side with r instead of p. Therefore <((p,q,r) = m — 2/3. Putting
all this together yields

<I(paQ7T) :7[-_25
:W_Qﬂ—é(;),m,q)

= Z(p,m,q)
=2Z(p,m,x)

. €
< 4 arcsin 5

Note that the result is independent of the radius of B.

28

2. Prerequisites

3. THE NEW APPROACH

3.1 “Seed Edges” and “Probe Inflation”

The idea is to inductively grow the reconstruction, one edge after the other.
This is done in a greedy fashion. A special shape, called probe, is aligned
along an existing edge. Then the probe becomes inflated until it hits a
sample point. This defines a new edge. Figure 3.1 illustrates several steps
of the described process.

Since every vertex in a reconstruction of a smooth closed curve has degree
two, one only has to find a single seed edge and grow the reconstruction from
that. The overall shortest edge is used as seed edge throughout this thesis.
It is a correct edge for e-samples with £ < 1/2, as shown in the following
lemma. Other criteria for seed edges are possible, e.g. manually picked
edges, but the shortest edge seems to be most useful.

Lemma 3.1. In an e-sample with ¢ < 1/2, the closest sample point pair
forms a correct edge.

Proof. The proof for two dimensions is illustrated in Figure 3.2. Let p, g be
the closest sample point pair. This implies that the union U of the balls
around p and ¢ with radius ||p — ¢|| must not contain samples. Consider
the ball B with diameter pg. B lies completely in U. If the edge (p,q) is
not correct, at least one sample between p and ¢ must exist, which cannot
lie in B, so B contains two parts of the curve, one containing p and one
containing ¢ respectively. Thereby a medial axis point m must lie on pg
by Lemma 2.3. Without loss of generality ||p — m|| < |l¢ — m|| holds and
therefore also ||p —m| < |lp — ql|/2.

Choose a point = with ||z — p|| = ||p — ¢||/2. This point has a distance
|z —ml < ||z —pl +|[p—m]| < |p— ¢ to the closest medial axis point m
by triangle inequality. For an e-sample we have ||z — p|| < e||z — m/||, hence
Ilp — ¢l|/2 < ¢|lp — q||- This does not hold for ¢ < 1/2. O

Note that this proof is independent of the dimension. The result holds
for every e < 1/2 but the largest value which is used for ¢ throughout this
thesis is 0.48, so this restriction on ¢ is negligible.

The name probe refers to the shape one obtains from drawing a proper
function 6 in polar coordinates for the full circle with 6 as distance from
the origin. The probe is not defined for negative values because the turning

probe

seed edge

probe

turning angle

30 3. The New Approach

Fig. 3.1: The basic steps of probe inflation are illustrated: Pick a seed edge (top
left), align the probe along the edge (top right), inflate the probe until a
sample point is hit (bottom left), continue the process (bottom right).

N

Fig. 3.2: The closest sample pair forms a correct edge.

3.2. The New Algorithm 31

angle is non-negative. This makes the probe symmetric.

In general more or less every function in one parameter could define a
probe. Continuity, symmetry, or monotonicity are technically not necessary.
Nevertheless the following definition defines a probe on some kind of mono-
tonicity and implicit symmetry. It is a sensible definition with respect to
curve reconstruction.

Definition 3.1. A map 6 : [0,a] — Rxg is called a-probe for 0 < o < 7 if
it is monotone decreasing.

An a-probe 6 has negative extent if « = m and 0(mw) > 0.

Figure 3.3 shows shapes which are probes by Definition 3.1. To allow
the usage of simple, efficient data structures, the probe should be convex
and for easy computations also polygonal.

Inflating a probe is mathematically equivalent to minimizing the follow-
ing distance function.

Definition 3.2. Let 6 be an a-probe by Definition 3.1. Its corresponding
probe distance function for three points p, q,r is defined as

lg —]l

Dyy(r) = 0(<(p,q,7))
00 otherwise.

if <(p,q,r) < a and 0(<(p,q,7)) # 0

This definition is valid for any dimension since only the plane spanned
by p,q,r is considered and Dp,(r) is computed in that plane. Note that
D,q(r) is strictly positive. In general D,q(r) differs from Dgy(r).

3.2 The New Algorithm

We build the reconstruction edge by edge which is a very local concept.
Extending a graph at its “endpoints” with minimum weight edges is a char-
acteristic procedure for greedy algorithms. This idea is in line with famous
algorithms like Dijkstra’s shortest path algorithm or Prim’s algorithm to
construct a minimum spanning tree.

probe

probe distance function

32 3. The New Approach

A A
/
/-
‘a
- > >
\
\
\
a) a-probe, convex, without nega- b) polygonal, convex, symmetric,
g ye Y
tive extent with negative extent
A
0.2
T
T 0.1
_// /
(c) discontinuous 7 /2-probe (d) m/2-probe with 0O(a) =
cos (\/|a\ +7/2— \/7r/2>
0.2
0.1
0.15
(. 0.1
OK T 005
-0.1 0.05 0.2 0.4 0.6 0.8 1
02 Py
(e) m-probe with 0(a) = 47'° and (f) =w/2-probe with 6(«) =
negative extent m/2 —a —cosa

w/2—1

Fig. 3.3: Six probes illustrating the variety of possible shapes. All these probes
can be computed easily. Probe (a) is assembled from two circular arcs,
(b) is a polygon with seven vertices, (c) is a discontinuous combination of
circular arcs, (e) is an exponential function of the angle, (d) and (f) are
other functions.

3.2. The New Algorithm 33

Input: Valid e-sample S from a curve X
Output: Polygonal reconstruction I' of 3

| R
while |[S\T'| > 2 do
find shortest edge/seed edge (p,q) with p,q € S\ T
I'—Tu{(pa}
processEdge (p, q)
processEdge (¢, p)

S A W N

Procedure processEdge (p,q) :
7 find » € S\ {¢} which minimizes Dp,(r)
if such an r exists and (¢,7) ¢ T’ then

8
9 LFHFU{(Q,T)}

10 processEdge (q,7)

Algorithm 1: Framework for the reconstruction using probes.

The algorithm starts with a seed edge—here the shortest edge available—
in line 3. This edge (p, q) becomes part of the reconstructions and the pro-
cedure processEdge is called for this edge. In the recursive procedure the
point 7 minimizing D with respect to a given edge and orientation (p, q) is
found, as defined in Definition 3.2. Only if the edge from the endpoint of the
given edge to r is not already part of the reconstruction, it is added to the re-
construction and the recursion continues. After the recursion processEdge
is called for the reversed seed edge to grow the reconstruction in the opposite
direction. The reconstructed edges are treated as undirected edges.

After a single pass through the while-loop, a single curve is reconstructed.
All proofs in this thesis refer to this version of the algorithm, in which a
single curve is reconstructed. For more than one curve, the process can
be repeated. The while-loop reconstructs curves until less than two unused
points are left and thus no additional seed edge exists. In the loop, in line
3, a new seed edge is selected as the closest pair of unused points and added
to the reconstruction. The recursion is “seeded” from that edge with both
possible orientations. Therefore the algorithm is able to reconstruct several
curves from a single unmarked sample.

The practical issues and possible results of this algorithm are discussed in
Section 6.2, page 61. An animated demonstration and an interactive version
to experiment with the algorithm can be found in [Len05a] and under
http://www.inf.fu-berlin.de/inst/ag-ti/software/curverec.

The presented general framework for algorithms using probes can be
adapted to specific needs. Finding seed edges and finding consecutive edges
can be controlled by the user by selecting criteria appropriate for the current
problem respectively changing line 3 to find seed edges and providing a
proper distance function D. These rules might even change dynamically.

seed edge

seed edge

half-neighbor

half-neighbor

«a-neighbors

34 3. The New Approach

3.3 Compatibility with e-Samplings: NN-Crust Revisited

As a demonstration that the described algorithm provides sensible results,
we will show that the NN-Crust [DK99] algorithm is contained as a special
case. The new algorithm is much more flexible which results in better bounds
for the required sampling density.

3.3.1 The NN-Crust Algorithm

The Nearest-Neighbor-Crust algorithm is an algorithmically simple recon-
struction algorithm for curves presented by Dey and Kumar [DK99]. They
start with a point set and connect each point p to its nearest neighbor v and
its nearest half-neighbor h. Consider the line perpendicular to pu through
p. It splits the plane into two half-planes. The half-neighbor h of p is now
the point closest to p which does not lie in the half-plane containing u. This
procedure results in a set of edges forming the reconstruction.

If the underlying point set is a 1/3-sample of a smooth closed curve, the
NN-Crust algorithm guarantees a correct reconstruction. Dey and Kumar
showed that the edges in the reconstruction are a subset of the edges of a
Delaunay triangulation of the point set. This allows simple implementations
with O(nlogn) running time in 2d and extensions to higher dimensions.

3.3.2 Generalization of the NN-Crust Algorithm

Changing the way of describing the half-neighbor slightly allows a simple
generalization. A similar definition to the one given in Section 3.3.1 is the
following: The half-neighbor of a point p with nearest neighbor v in a point
set S is the point h € S\ {p} which minimizes the distance between p
and h and fulfills <(u,p, h) < w/2. Now the angle appears as a parameter
and instead of /2 one can choose an arbitrary angle. These points are no
longer called half-neighbors but a-neighbors instead, where « specifies the
maximally allowed turning angle going from u to p to h. See Figure 3.4 for
an illustration. This can be considered as using an a-probe 6 with 6(z) =1
for all . For the original NN-Crust algorithm we have o = 7/2.

The remainder of this section is used to show that for a-neighbors with
0 < a < m/2, the resulting edges are still a correct reconstruction. The proof
refines and extends ideas from the original paper and leads to a considerably
better bound for €.

Figure 3.5 shows how to bound ¢ from below using the following argu-
ments.

Lemma 3.2. Given three adjacent sample points p,q,r in an e-sample with
€ < 1, the curve segment between q and r runs completely inside the cone at
q aligned with (p, q) with opening angle 2c = 8 arcsin (£/2).

3.3. Compatibility with e-Samplings: NN-Crust Revisited 35

v

Fig. 3.4: The a-neighbor h of p with nearest neighbor « must lie inside the marked
region.

Proof. Assume otherwise and we have a valid e-sample. Add a sample
point on the curve segment outside the cone keeps the sample valid but
now Lemma 2.5 is violated which is a contradiction. O

Lemma 3.3. Consider an e-sample with ¢ < 1/2. Let p,q,r be a chain of
three adjacent samples and let s be a sample not adjacent to q. If p and r do
not lie inside the ball B with diameter qs there will be a medial axis point
on the segment s with distance at most 3/4||s — q|| from q.

Proof. Figure 3.5 illustrates this and the following lemma. Since p and r
are not inside B and ¢ and s are not directly connected, the ball B contains
or touches at least two connected components of the curve. Hence a medial
axis point must lie on gs due to Lemma 2.3. Let m be the one such point
closest to q.

Let without loss of generality ||s — ¢|| = 1. Assume m is farther away
from ¢ than 3/4. Then the radius of the empty ball around m which touches
the curve is less than 1/4. Call the touching point adjacent to ¢ x and add
it to the sample. This is an allowed operation because we want to prove
something about the medial axis which solely depends on the curve. Such
a point x must exist because m was chosen to be the medial axis point on
s closest to ¢ and otherwise the curve had to leave the cone defined in
Lemma 3.2 which would violate Lemma 3.2.

Now there is a point v on the curve between ¢ and x with |u — z|| =
llg — z||/2 and ||u — q|| > ||g — z||/2. The local feature size of u is at most
llu — z|| + ||z — m|| by the triangle inequality. For an e-sample ||u — z| <
g|lu — m/|| must hold due to Lemma 2.4. Using the above, we get

g — || g — |
o sellu—zal+lz—ml)=e(5 +llz—m|). (1)

Since ||g —m|| > 3/4 and the radius of the medial ball around m is at most
1/4, we have ||¢ — z|| > 1/2. Plugging this into Inequality (3.1) together
with e =1/2 and ||z — m|| < 1/4 yields a contradiction. O

36 3. The New Approach

Fig. 3.5: Computing the worst case distance between a point on the curve and the
medial axis.

3.3. Compatibility with e-Samplings: NN-Crust Revisited 37

Lemma 3.3 is a modification of Lemma 18 by Althaus [Alt01] which now
allows to finish the correctness proof.

Lemma 3.4. Given an e-sample of a smooth closed curve with o > 0 and
£ < (13/4 —3cos2a) 12 < 1/2 and a correct edge (p,q). The edge (q,s) is
correct if and only if s is the closest point to q inside the cone with apex g
aligned to (p,q) with opening angle 2cv.

Proof. Assume point s to be the closest to ¢ inside the cone but the edge
(g, s) is not correct. Then there is a correct edge (¢,r). Due to Lemma 3.2
the curve intersects the dashed circular arc around ¢ with radius [|g — s||/2
in a point ¢ which has at least distance ||g— s||/2 to its nearest sample points
q and 7, see Figure 3.5.

On the other hand we know by Lemma 3.3 that a medial axis point m is
on gs and in the worst case it is as far away from ¢ as possible—in ¢+ 3/4¢5.
So the local feature size of i is at most [= ||i — m/|| while the distance to the
closest sample point is at least ||¢ — s||/2 due to Lemma 2.4 and Lemma 2.5.
In the worst-case i is at position ¢*. For a contradiction we bound e by
llg — sl||/(2l) and apply the law of cosines to get

oo Ma—sll _ llg — sl _ ! .
2[ji* — m| 2||q_5H\/(%)2+(%)2—2%30082(1 %—3005204

For such an ¢ the sample is no longer valid because the point ¢* and
hence every possible ¢ has a larger distance to its closest sample point than
€ times the local feature size.

The other direction follows directly from Lemma 3.2 and the algorithm.

O

Corollary 3.5. Given an e-sample of a smooth closed curve with ¢ < (0.48
and a correct edge (p,q). The edge (q,s) is correct if and only if s is the
closest point to q inside the cone with apex q aligned to (p,q) with opening
angle twice 0.97 (roughly 111°).

Proof. Maximize € under the inequalities from Lemma 2.5 and Lemma 3.4:

1
e < 28111% and e < —————.
\/% — 3cos 2«
For a = 0.97 we get € < 0.48. O

The result from these lemmas is now stated as the following theorem.

Theorem 3.6. Algorithm 1 correctly reconstructs simple, smooth, closed
curves from e-samples using a-probes with o < 7w/2 and € < min{2sin a//4,
(13/4—3 cos 2a)~ Y2}, In particular it reconstructs correctly from 0.4-samples
using m/2-probes, and from 0.48-samples using 0.97-probes.

38 3. The New Approach

Proof. Choose the shortest edge as seed edge. This is a correct edge by
Lemma 3.1. Using Corollary 3.5 repeatedly shows that Algorithm 1 adds
correct edges to the connected component of the seed edge. Since the re-
construction I' of a simple, smooth, closed curve has exactly one connected
component and every vertex has degree two, Algorithm 1 constructs I'. [

Altogether this guarantees correct results for a whole family of algo-
rithms in any dimension, with different angles 0 < o < /2, and for ¢ < 0.48
in the best case. This is a significant improvement over the original NN-
Crust algorithm from 1999 [DK99]. The NN-Crust algorithm is a special
case of this approach for a = /2. From our more careful analysis, a direct
increase of the e-bound follows for the original algorithm from 1/3 to 0.4.

4. RECONSTRUCTING INTERSECTIONS

4.1 The Idea and Main Result

We have seen in the prior chapter that the new approach can handle smooth,
closed curves. In this chapter we show how to use the same algorithm for
curves with self-intersections.

An e-sample does not exist for a self-intersecting curve. The medial
axis goes through the intersection point, hence a infinitely dense sample is
required which contradicts Definition 2.4. Therefore we need to modify the
original curve to be able to apply e-sampling. The key idea is the removal
of small disks around intersections from the original curve. The resulting
set is a collection of several smooth, open curves without intersections. For
such a set a usual e-sample exists. Nevertheless, the reconstruction should
resemble the original curve including the intersections. The whole process
is illustrated in Figure 4.1.

The major problem discussed in the next section is the exact computa-
tion of the radii of an exclusion disk. An exclusion disk has an inner radius
which circumscribes the part that is actually excluded. The outer radius is
needed for the correctness proof to guarantee “niceness” of the curve in the
vicinity of the excluded part. Since there are many degrees of freedom and
even the probe can be a nearly arbitrary function, it is very hard to exploit
general geometric properties. Some of the proofs in this chapter contain nu-
meric bounds resulting from basic calculus. To make these numeric bounds
simple to compute, we fix the probe to the simple 0.277-probe defined by
0(B) =1 —33/2, shown in Figure 4.2. The proofs similarly work for other
probes but the bounds have to be worked out individually for each probe.

The main result from this chapter is the following theorem about the
reconstructability of curves with intersections.

Theorem 4.1. Let ¥ be a smooth, closed curve with a finite number of
self-intersections but no multiple intersections. The mazimum curvature of
3 is denoted by c. Let S be an 0.138-sample of ¥ minus an exclusion disk
for every intersection. The exclusion disk for intersection i, with x being
the smaller angle formed by the tangents on X in i, has an outer radius r,
and an inner radius r;, such that

1. ro < 2sin(x/86)/c,

medial axis

e-sample

40 4. Reconstructing Intersections

|)
exclude reconstruct

o O 0ep o
)
090
5 4

&4_
K a)
? .
.
. -
. .
%, o
o o
.
.
.

. " []
\ o® ®® 20 o °
) ‘0
—sample o o .
- [] L[]
L S
°
° S
Y []
. <
Q. ° .‘

Fig. 4.1: The idea of the exclusion disks: Given a closed curve (top left), exclude
circular regions around intersections (bottom left), sample the resulting
set of non-intersecting curves (bottom right) and reconstruct it including
the intersections from the original (top right).

0.15 | -
0.1 | P

005 %o

005 f‘\\\g.‘%\ 0.4 0.6 0.8 1
01 ¢ T

015 | T

Fig. 4.2: The 0.277-probe for the correctness proof: 0(5) =1 — 35/2.

4.2. Computing the Exclusion Disk 41

2. the ball with radius r, around i contains exactly one intersection and
exactly two components which intersect in i, and

3. 1r; <1,/6.
Then Algorithm 1 reconstructs 3 from S.

Proof. The correctness follows from Lemma 3.1 for the seed edge, from
Lemma 4.7 for crossing edges and from Lemma 4.9 for all other edges. [J

The lemmas 4.7 and 4.9 referred to in the proof are proven in the next
sections.

4.2 Computing the Exclusion Disk

4.2.1 Overview

This section provides a global overview of the exclusion disk computation
while the next section will describe the details.

To compute the actual exclusion disk centered at a self-intersection point
1, we start with a surrounding circle with larger radius also centered at .
The radius r, of this outer circle is chosen first and has two functions. It
must be small enough to isolate the intersection from other intersections
and by choosing 7, small enough we can guarantee a certain “flatness” of
the curve inside the outer circle and hence inside the exclusion disk. The
flatness follows directly from the bounded curvature of ¥, because the curve
is smooth. So 7, controls the maximum turning angle of the curve inside
the outer circle. Making r, arbitrarily small makes the intersecting curve
segments inside the circle approximate straight line segments arbitrarily well.

The inner radius r;, the radius of the exclusion disk, is chosen relative
to 7. It must be so much smaller than r,, such that at least two sample
points are on each of the four curve parts emanating from ¢ within the outer
circle. This is easy to achieve because the medial axis is always nearby in the
vicinity of intersections, so the sample density must be very high. Removing
the exclusion disk then defines four wedges within the circle with radius r,.
They contain at least two samples each. The most complicated part now is
to consider all possible positions of the samples inside these wedges. One
has to show that aligning the probe along two samples in one wedge leads
to a sample in the opposite wedge and not to one in the other two wedges or
outside of the circle with radius r,. Figure 4.3 is a sketch of the described
situation. To guarantee this last property, the intersecting curve segments
must be very “flat”, so one has to chose r, small enough in the initial step.

Keeping these basic ideas in mind should help not getting lost in the
following section containing the actual computation of the mentioned radii.

turning angle

wedge

wedge

42 4. Reconstructing Intersections

Fig. 4.3: Graphic overview of an exclusion disk an the quantities involved.

>1,%2 | The intersecting parts of the curve.

1 The intersection point of 37 and Xs.

X The smaller angle formed by the tangents of 31 and 5 at i.

To The radius of the outer ball centered at ¢ providing flatness.

T The radius of the exclusion disk.

T The maximum (“alignment”) angle between the tangent of ¥; at
7 and the tangent of 3 at any other point within the outer ball.

Tab. 4.1: This table lists the quantities involved in computing the exclusion disk.

4.2.2 Detailed Computation

Throughout this section, several variables are introduced. Table 4.1 and
Figure 4.3 provide a quick overview.

Definition 4.1. A wedge is a region between the exclusion disk with radius
r; and the outer ball with radius r,, both centered at a point 7. It is bounded
by two circular arcs a1, as of curvature ¢ such that a curve with maximum
curvature ¢ going through 7 tangential to a; and as must pass through
the wedge. Figure 4.4 shows a typical wedge as it is used throughout this
chapter.

The Radii

The Outer Radius. We start the computation of the exclusion disk by
determining the outer radius r,. The value should be small enough to guar-

4.2. Computing the Exclusion Disk 43

. a1

Fig. 4.4: The shaded region with red boundary is a wedge.

antee the required flatness of the intersecting curve segments as described
in the previous section. The value depends on the angle y which is formed
by the tangents of the curve parts at the intersection point i. We strive for
a maximum turning angle between any possible sample in one wedge p, the
intersection point ¢, and any possible sample in the respectively opposite
wedge ¢q of <t(p,i,q) < kx for some fixed 0 < k < 1. Since we work with
smooth curves with bounded curvature at most ¢, this can be easily achieved
by choosing r, < 2sin(kx/2)/c using the following lemma.

Lemma 4.2. Given a curve % with mazimum curvature c. The turning
angle <(p,i,q) for any three consecutive points p,i,q € X with ||p — il < r,
and ||q — i|| < ro is bounded by B for r, < 2sin(3/2)/c.

Proof. Consider the osculating circle in ¢. The curvature along the whole
curve is bounded by a constant c¢. The curvature in 7 is the reciprocal
radius of the osculating circle. Hence we can shrink the osculating circle o
to radius 1/c and get the situation as in Figure 4.5. The point p* and ¢* are
the extreme positions for p and g respectively. For any point ¢ between 7 and
q* holds that the two radii of o ending in ¢ and ¢ are perpendicular to the
tangents at these points, hence by simple geometry we get for v = Z(q, z,)

which leads to v < (3. So the angle between the tangent at ¢ and the tangent
at ¢ is /2 < /2. The same holds for p and i by symmetry, hence we have
for the total turning angle <t(p, ,q) < . O

If the circle around ¢ with radius r, contains more than one intersection

wedge

44 4. Reconstructing Intersections

Fig. 4.5: Computation of the outer radius using the osculating circle o with radius
1/c at the intersection point i.

or more than one connected component, one must choose a smaller value for
r, such that this is not the case.

The Inner Radius. The inner radius r; must ensure two things. It has to
be so much smaller than r,, such that at least two samples must be placed in
every wedge. This limits the possible alignments for the probe. Additionally
r; must be small enough, such that it is guaranteed that an aligned probe
hits a sample inside a wedge before any part of the probe leaves the ball
with radius r,.

The space needed at least for two samples to appear in an e-sample de-
pends on the local feature size of the points on the particular curve segments.

Lemma 4.3. Let i be a self-intersection of the curve X with maximum
curvature c. Let x be the smaller angle formed by the tangents of ¥ at .
Consider a ball B, with radius r,, and a ball B; with radius r; < r,, both
centered ati. For every point x € B,N(X\B;) we have lfs(x) < r,. Therefore
every wedge contains at least two samples in an e-sample with € < 1/4 if
ri <7ro(l—4de).

Proof. The point 7 is a medial axis point in ¥ \ B; because a medial ball
around ¢ with radius r; exists by construction. Therefore the local feature
size of any point inside B, is at most 7.

Figure 4.6 shows how to bound the distance needed between r, and ;.
The curve points z,y, z have distance at most elfs(z), lfs(y) and elfs(z) to

4.2. Computing the Exclusion Disk 45

Fig. 4.6: Three points x,y, z on the curve specify the minimal difference between
the outer and the inner radius by their local feature sizes.

their closest sample respectively, so the total distance can be bounded by
ro — r; > 4er,. This is equivalent to r; < r,(1 — 4¢) and since r; should be
smaller than r,, it is only valid for e < 1/4. O

For the guarantee, that an aligned probe does not leave the outer ball
before it hits a point, we need the following considerations about possible
alignments.

Lemma 4.4. Given a smooth, closed curve ¥ with maximum curvature c,
and a point i € X. Denote the tangent of X at i by t. The smaller angle
between t and the secant through any two points p,q € ¥ with ||p—i||, ||g—i| <
2sin(7/2)/c, 7 < w/2 is bounded by T.

Proof. By the mean value theorem it suffices to look at the tangents of X
instead of the secants. Obviously the “steepest tangent” is obtained for >
being a circular arc with curvature ¢. From Lemma 4.2 and Figure 4.5 we
directly get our result. O

Figure 4.7 shows the angle 7 computed in Lemma 4.4 on an exclusion
disk construction. This angle will be called alignment angle in the following
paragraphs.

Lemma 4.5. Let i be a self-intersection of the curve X with mazximum
curvature c. Let x be the smaller angle formed by the tangents on the curve
ati. Consider an exclusion disk around i with outer radius r, < 2sin(7/2)/c
for some fixed T, and inner radius r; < ro. In every wedge the sample closest
to i has distance at most r;(1 + esin((x + 7)/2)) from i for an e-sample.

alignment angle

46 4. Reconstructing Intersections

Fig. 4.7: The tangent angle 7 in p is the maximum possible deviation from the
x-axis with respect to the turning angle.

Fig. 4.8: For an e-sample the distance between the intersection point and its closest
sample is bounded by a nearby medial axis point.

4.2. Computing the Exclusion Disk 47

Proof. Figure 4.8 illustrates the following construction. Let s be the sample
closest to ¢ in one wedge, and let =,y be the curve points on the boundary
of the inner ball in the same wedge and the nearby wedge respectively. The
ball with diameter zy is a medial ball by Definition 2.5 because the curve
touches it in x and y and cannot enter it due to the bounded curvature c.
Therefore the center is a medial axis point, denoted by m.

Consider the triangle spanned by 7, xz,y. We have

Ly le—m]
2 T3
— ain L
Ifs(z) < ||lx — m|| = risin =

2

and because v < x 4+ 7 by Lemma 4.2

|z — m|| < rysin X7

By the triangle inequality we get

IIs —i|| < |Is — z|| + ||z —i]| <elfs(x) + 1 <1y <1 + esin X+

O]

Lemma 4.6. Given a smooth, closed curve ¥ with maximum curvature c,
and a point i € ¥. Consider an exclusion disk around i with outer radius
ro < 2sin(7/2)/c for some fixred T < 0.184, and inner radius r; < 1,/6. In
an e-sample of X, ¢ < 0.138, exist three consecutive samples points p,q,r
inside the ball with radius r, around i, such that the probe distance function
D, for the 0.277-probe 6(3) =1 — 33/2 is smaller for r than for any point
outside of the ball with radius r,.

Proof. We will show two things: the existence of a sample r with finite probe
distance, and that all points outside of the ball with radius r, have larger
probe distance than r.

We denote the tangent at i by ¢. For r; < r,/6 and ¢ < 0.138 we
have r; < r,(1 — 4¢) and therefore at least two samples in each wedge by
Lemma 4.3. Let p,q be in the same wedge and r in the opposite wedge.
By Lemma 4.4 we know that the angle between pg and ¢ is at most 7. The
angle between ir and ¢ is at most 7/2 by Lemma 4.2. Therefore <t(p, q,7) <
T + 7/2. To reach r with the 0.277-probe we need <((p,q,r) < 0.277, which
is guaranteed by 7 < 0.184 < 0.277/1.5. Hence the required point r exists.

The distance between ¢ and r is bounded from above by Lemma 4.5 by
llg — |l <2ri(1+¢), so we have

27“i(1 + 8)

A3ri(1 .
5(0.277) < 3.43r;(1+¢)

Dyq(r) <

turning angle

48 4. Reconstructing Intersections

For any point s with distance larger than r, to ¢ we have

Dpy(s) > 7‘0—;'1(5)1)4-8) =r,—ri(l+¢).

It remains to show that 3.43r;(1+¢) < r, — r;(1 +) which is equivalent to

< To
.
"7 4.43(1 +¢)

which is true because r; < r,/6 and £ < 0.138 by assumption. O

Combining the conditions for both radii results in the following lemma.

Lemma 4.7. Given two intersecting, smooth curve parts with mazximum
curvature c. The angle formed by the tangents at the intersection i is called
X. The radius r, < 2sin(7/2)/c for some fized T < 0.184 of a ball around i
is chosen small enough, such that it does not contain additional curve parts
or intersections other than i. Remove a disk of radius r; < r,/6 and take an

0.138-sample S. Then the intersection becomes reconstructed correctly from
S by Algorithm 1 using the 0.277-probe () = 1 — 33/2.

The extensive proof for this lemma is given in the next paragraphs.

Proof of Lemma 4.7

The Unreachable Wedge. Let 31,35 be the intersecting curve parts.
They both define two wedges each. Next we will show, that it is impossible
to start the probe in one wedge of ¥; and end in the closer wedge of ¥,.
This is due to the necessary turning angle which was already bounded in
Lemma 4.2 with the details as follows.

Let p be the sample in one wedge of 31 which is closest to the intersection
point i, and let w be a sample in the closer wedge of ¥o. Consider the
triangle spanned by p, w, illustrated in Figure 4.9. The distance from p to
i is bounded by the medial axis, so [|p —i|| < 7 (1 4+ esin((x +7)/2)) due
to Lemma 4.5.

The angle in w is m — 8 — v and by the law of sines we have

sin3 sin(r — 3 —7) cosfsinvy +sinBcosy
ri lp — il lp — i

which becomes
T sin ¥ sin vy
- > arctan
[p — il — ricosy

[= arctan
1+ esin X7 — cosy

and because v > x — 7, we get for 7 < x/3

sin vy 1
> arctan - = arctan I
1+ esiny — cos~y €+ s

—cot'y.

4.2. Computing the Exclusion Disk 49

Fig. 4.9: Computing the turning angle necessary to reach a wrong sample w starting
from p.

The angle between the tangent at i and pi is at most 7/2 and the maxi-
mum alignment angle is 7. To show that the wrong wedge cannot be touched,
we will show § —37/2 > 0.277.

The value for [is monotone decreasing in . For 7 < x/7, 7 is at most
8x/7, so v < 8m/14 and therefore § > 0.622. For 7 we have 37/2 < 3y /14 <
3m/28 < 0.337. Together we get 5 — 37/2 > 0.622 — 0.337 = 0.285 which
is larger than 0.277, so the probe could never reach a point in this wrong
wedge because it would have to turn too much.

The Far Wedge. It remains to show that every sample in the reachable

wrong wedge has a larger distance measured with the probe distance function

than the correct sample. Figure 4.10 shows possible worst-case positions.

The samples p, q are the last two in the starting wedge. They control the

probe’s alignment. The point w is any possible sample in the wrong wedge

and r is the worst possible location for a sample in the correct wedge.
Correctness can be expressed formally as

lg=rll _ _llg—wl
o(<(p,q,r)) 0(<(p,q,w))
& 0 < |lg—wlo(<(p,q,7)) — llg —rll0(<(p,q,w)) (4.1)

The two nominators and denominators can be bounded individually from
the proper sides as follows.

The distance between the starting sample ¢ and the correct sample r can
be at most twice the maximal distance of an innermost sample in a wedge
to ¢ by triangle inequality. The maximal distance of a sample to 7 depends
on the local feature size and is bounded in Lemma 4.5, so we get

lg —rll < 2r <1+5sinX;T>.

probe distance function

50 4. Reconstructing Intersections

Fig. 4.10: Possible worst-case positions for the samples p, ¢, r, w. We have to show,
that the correct sample r has a smaller probe distance to ¢ than w for
all possible probe alignments.

The smallest value for (<((p,q,r)) is reached for the largest possible
angle <((p, q,r). This is composed of the largest alignment angle 7 and the
maximum turn to reach r. In total this can be at most 37/2, so we have

0(<t(p,q, 7)) >1—3/2(37/2) =1— 97/4.

The distance between ¢ and w becomes as small as possible, if the angle
Z(q,i,w) is as small as possible. This is similar to the above m — x — 37/2.
The distance is then computed using the law of cosines as

llg —w| > \/27"1-2 — 2r2 cos(m — x — 37/2)

= 7;4/2 + 2cos(x + 37/2)
= 2r;cos(x/2 + 37/4).

Maximizing 6(<t(p, ¢, w)) means minimizing <(p, ¢, w) which can be bounded
from below as shown in Figure 4.11. With i = (0,0),q = (z4,9¢),w =

4.2. Computing the Exclusion Disk 51

Fig. 4.11: A broad lower bound for the turning angle to the wrong sample w. The
angle is at least 8 — 7.

(’:L"LU? y’LU) we get

. T
o2 rsin (x— 7)

Yqg < T (1—1—5 sinX+

T\ . T
sin —
2

Ty — Tg < 21y <1—|—6 sinX;—T>

Yw —Yg - sin(x —%)—(1+e¢ sinXT”)sing

Tw — Tq 2 (1+e sin 237

and with ¢ < 0.138 we can bound this by

T T

sin(x—§) B sin 5 N sin(X—§) T
- 2276 2 T 2276 4

T

This last bound is a concave function because it is dominated by the sine
expression. We claim that for 7 < x/43 and 0 < x < 7/2 it is not smaller
than y/4. Tt suffices to check the extreme values. For x = 0 we get 0 > 0
and for y = 7/2 we get sin(857/172)/2.276 — x /172 > 0.430 > 7/8. In total
it is

Yw — Yq

<I(p7Q7w) >3 — 71 =arctan ¥——+ — 7 > arctanK —T.
Tw — Tg 4

Plugging all this into Inequality (4.1) with 7 < x/43 yields

89x 9 . 44X
0<2r CO8 T <1 - 172)() — 21y <1 + esin 86> o(<(p, g, w))

89x 9 Ay 3(X X)
& 0 <cos 172 <1 172x) <1+ESID 86)(1 5 arctan4))

52 4. Reconstructing Intersections

Fig. 4.12: Computing the necessary £ to guarantee correct reconstructions for a
special non-circular probe.

We call the right-hand side f(x). To prove that f(x) is strictly positive for
x > 0, we will find a lower bound for f which is a concave function, and
then we evaluate the extreme values.

89y 9 Y 5% 3 X X
f(x) = cos 179 (172x> (+ esin %6 > (5 arctan 5

89 9 44y 3
> Ccos —— X _ 2 —1—€S1n—+2<arctan5—l)

172 172X 86 443
89y 9 44x 3 X 3X
>cos X _ 22X 2 X oX
O T70 T 12X egg Tparctany - o =1 9(x)

This bound g(x) is the sum of linear and concave functions, therefore it is
concave. The function values at the boundary are g(0) = 0 and g(7/2) >
0.0008. It follows that g(0) = f(0) is the only root of g and f in the interval
[0, 7/2] because by the definition of concave functions g(Aw/2) > Ag(m/2)
for every 0 < A < 1.

This shows that Inequality (4.1) holds. Therefore every possible sample
in the correct wedge has a smaller probe distance than any sample in the
far wrong wedge. This concludes the proof of Lemma 4.7.

4.3 Correctness for Curve Segments between Intersections

The correctness proof for curve pieces which are not in the vicinity of inter-
sections is comparable to the one from Section 3.3.2 for the NN-Crust algo-
rithm. The important difference is the change in the probe’s shape. It is no
longer a circular arc, so it allows a wrong point s to minimize D), although
the euclidean distance ||g — s|| is by a factor up to 6(<(p, q, s))/0(<(p,q,r))
larger than the distance from ¢ to the correct point r, see Figure 4.12.

The following lemmas are variations of Lemma 3.3 and Lemma 3.4 from
Section 3.3.2, taking the different probe shape into account. The results are

4.3. Correctness for Curve Segments between Intersections 53

weaker than the ones from the former lemmas due to the more complicated
non-circular probe shape.

Lemma 4.8. Consider an e-sample with € < 0.138. Let p,q,r be a chain
of three adjacent samples, and s be a sample not adjacent to q. If Dpy(s) <
Dyq(1), a medial azis point m ezists with distance to q at most 1.823Dp,(s).

Proof. We are going to construct a ball B which contains ¢ and w and
does not contain p and r. Since p and r are not inside B and ¢ and w
are not directly connected on the curve, the ball B contains or touches two
connected components of the curve. Hence B contains a medial axis point
by Lemma 2.2. It remains to show that such a B exists, and to bound its
diameter.

Since Dyq(s) < Dpg(r) a point ' on the line segment gr exists such that
Dyy(r") = Dpg(s). Without loss of generality, r’ is left of the oriented line
Dq, as in Figure 4.12. We call this the “upper half” of the probe during this
proof. Without loss of generality, we assume ¢ has the coordinates (0,0) and
the tip of the probe has coordinates (1,0). This implies Dp,(s) = 1. For
llg — s|| < |lg — r|| we can take the ball with diameter gs, and we are done.
Otherwise, we have ||q — s[| > [|g —7|| > |lg —'|.

Lemma 2.5 restricts the turning angles from pg to points on the upper
half of the probe to the interval [0,0.277] for € < 0.138 and our 0.277-probe.
In this interval, sin and cos are monotone functions.

We will show that the ball B which has its center (z.,y.) on the line
Yo = —3/4 and passes through ¢ and s has the desired property. For (z.,y.)
and the diameter d of B we have 22 +y? = d?/4 because ¢ = (0,0) is on B’s
boundary.

We start with the case that s and ' are both on the upper half of the
probe. The point s has coordinates (6(3) cos 3,6(3)sin 3) for some fixed
B € [0,0.277]. We have to construct B such that it does not contain the
upper part of the probe left of s. Therefore we have to show that every point
of the probe (0(y) cos~, 8(y) siny) has distance at least d/2 from (x,y.) for
all v € [3,0.277]. So we have

(0(7) cosy — zc)* + (0(7) siny — ye)? > d* /4
& 224 y2 +0(v)? (cos2 ~ + sin? v) = 20(7)(zccosy + yesiny) > d? /4

= 0(v) — 2(zecosy + yesiny) >0
0(y) — 2y, si
- (7) = 2yesiny e (42)
2 cosry

For v = (3, this inequality becomes an equality because s lies on the bound-
ary. We have to show

0(7) = 2yesiny _ 0(0) — 2yesin
2cos - 2 cos 3 ’

54 4. Reconstructing Intersections

Plugging in 0(y) = 1 — 3v/2 yields

1 —3vy/2 —2y.siny - 1—33/2 —2y,sin 3
coS Y - cos 3 ’

(4.3)

Consider the following function g and its derivative ¢'.

1 —3v/2 —2y.siny

g()
g =

cos "y
(1 —3v/2)siny —3/2cosy — 2y,
cos?

In the interval [0,0.277] we have (1 —3v/2)sina—3/2cosy—2y. > 0—-3/2—
2y, hence for y. = —3/4 the derivative ¢’ is non-negative and therefore g is
monotone increasing in that interval. Inequality (4.3) follows immediately
because 3 < 7.

Now we can bound z. < 0.518 by Inequality (4.2) with y. = —3/4 and
get d?/4 < 0.5182 + (—3/4)? and hence the diameter of B is less than 1.823.

In the case that s lies on the lower half of the probe, we can simply
take the circle through ¢ and the point (1,0) which contains s and does not
contain any point on the upper half of the probe. This is a special case of
the above inequalities with 8 = 0. All other cases are symmetric to the two
discussed ones. O

Lemma 4.9. Given an e-sample S of a smooth closed curve with € < 0.138
and a correct edge (p,q). The edge (q,s) is correct if and only if for all points
r € S\{q, s} inside the cone with apex q aligned to (p,q) with opening angle
2 % 0.277, Dpg(s) < Dpg(r) s true.

Proof. Assume point s minimizes the function D,, among the points inside
the cone but the edge (g,s) is not correct. Then there is a correct edge
(g, 7). The point r lies outside of the probe but inside the cone, so ||g — 7|
is at least 6(0.277)Dp,(s). A point x on the curve between ¢ and r exists
with |lg — 2| = 0(0.277) Dpy(s) /2 and ||r — x|| > 0(0.277) Dpy(s) /2

On the other hand we know by Lemma 4.8 that a medial axis point is
at most 1.823D,,(s) away from g. So the local feature size of x is at most
lg— || +1.823D),(s) by triangle inequality, while the distance to the closest
sample point is ||¢ — z||. For a valid e-sample, the following must be true.

lg — 2| < e(llg — || + 1.823Dpq(s))
0(0.277)Dyy(s)/2 < £(6(0.277)Dyy(s)/2 + 1.823D,pq(s))
0(0.277) < £(6(0.277) + 3.646)
0(0.277)
0(0.277) + 3.646
0.138 < &

¢ ¢ 9

4.4. Collections of Intersecting Curves 55

Choosing ¢ < 0.138, the point x has a larger distance to its closest sample
than e times its local feature size and hence the sample is not valid. This
contradicts the assumption. O

This completes the correctness proof of Theorem 4.1, page 39.

4.4 Collections of Intersecting Curves

Theorem 4.1 shows that the provided algorithm can reconstruct a single
curve with self-intersections. The extension to multiple curves which may
self-intersect and intersect each other is trivial. Since the exclusion disks cut
a single curve into open pieces, it does not matter, whether these pieces are
from one curve or from several curves. The only difference is that for each
curve a seed edge has to be found. This procedure is already included in
Algorithm 1. Therefore collections of intersecting curves are reconstructed
as easily as single curves without any changes.

seed edge

56

4. Reconstructing Intersections

5. ANALYSIS OF THE RUNNING TIME AND THE SPACE
REQUIREMENTS

5.1 Advanced Data Structures

5.1.1 Dynamic Closest Pair Maintenance

Bespamyatnikh introduced a lazily updated tree structure, a fair-split tree,
for closest pair maintenance in 1995 [Bes95]. Points are not separated by
their median like in a kd-tree for example but they are divided “fairly” such
that at least a fixed fraction of the elements is in the one subtree and the rest
is in the other subtree. This roughly balanced tree allows a certain laziness
performing updates. The tree only has to become rebalanced if the ratio
between two subtrees becomes worse than the allowed fraction. An involved
analysis shows that this data structure efficiently maintains the dynamic
closest pair of points. The initial tree of size O(n) can be built in O(nlogn)
time and each operation (insert point, delete point, query closest pair) takes
only O(logn) time. This approach works for any fixed dimension.

5.1.2 Probe Inflation with Partition Trees

A partition tree is a data structure which partitions a point set in R? into
r disjoint subsets. These subsets are partitioned recursively by the same
technique. The partitioning is done such that the subsets have roughly equal
size and they can be enclosed by triangles such that any query line does not
intersect more than O(rlfl/ d) triangles. Therefore a range query counting
the number of points inside a polygon with a constant number of edges can
be executed in O(nlfl/ d) time by recursion over the intersected triangles.
A basic explanation of partition trees and comparison with related data
structures is given in the survey by Matousek [Mat93a|. The same author
also provides a detailed analysis in [Mat93b].

Partition trees can be used for probe inflation in the following way. For
each of the r triangles on one level of the partition tree, a single point
(arbitrary or random) is tested whether it lies inside the current probe or
not. If it does, the probe will become shrunken such that the point now
lies on the boundary. This guarantees that no triangle is completely inside
the probe, so every triangle must be completely outside or it intersects the
probe. The outer triangles are excluded and the algorithm is performed

fair-split tree

partition tree

probe distance function

seed edge

probe distance function

58 5. Analysis of the Running Time and the Space Requirements

recursively on the intersected triangles. The analysis is the same as for a
normal range query on partition trees.

Although the original analysis uses polygonal query shapes, the described
procedure works for arbitrary shapes which allow easy intersection testing.

5.2 Practical Efficiency with kd-Trees

The kd-tree is a very common space partitioning data structure introduced
by Bentley [Ben75]. Very efficient implementations exist for nearly every
programming language.

In practice both our important queries, nearest unmarked neighbor and
point minimizing the probe distance function, can be executed very fast
using only a single simple kd-tree. At least for two or three dimensions this
performs very well for moderately sized point sets compared to the other
advanced data structures proposed due to very small runtime constants.

Finding a-neighbors has a very high locality in expectation, so well-
known space partitions, e.g. quad-trees or ham-sandwich-trees, will most
likely also work well.

For high dimensions the kd-tree performance for random point sets de-
grades noticeably. Our sample points are obviously not randomly distributed
but well chosen instead. Thus we expect the density to be independent of
the dimension. This might be an interesting point for future optimizations
which is not discussed further in this thesis.

5.3 Runtime

Let n denote the number of points in the e-sample. The algorithm consists
of the following two main routines which are called very often: Find a seed
edge and find a proper consecutive edge for a given edge.

The runtime is composed of these two main steps resulting in a total of
O(P + sS + eF) steps for s seed edges and e edges in total with P prepro-
cessing time and S, E denoting the time to find a seed edge or looking for a
consecutive edge respectively. Note that for all edges, including seed edges,
a consecutive one is searched. Evaluating the probe distance function D,
setting variables and adding edges to the reconstruction are accounted for
as constant time operations.

A trivial implementation would not use any preprocessing. Finding a
seed edge brute-force requires O(nz) time and a single consecutive edge is
found in O(n) time. This results in a total of O(sn? +en) € O(n?).

Using data structures proposed in the prior section, we get the following
theorem.

Theorem 5.1. Algorithm 1 reconstructs smooth, closed curves in R® with
intersections from 0.138-samples with exclusion disks in O(nz_l/d) steps.

5.4. Space Requirements 59

Proof. The correct reconstruction result follows directly from Theorem 4.1.
We use the maintenance of the the closest pair by a fair-split tree. It re-
quires O(logn) time per operation. Every sample which becomes part of
the reconstruction is removed from the fair-split tree. The preprocessing
takes O(nlogn) time, S € O(logn),E € O(n +logn). The total runtime
is reduced to O(en). An even further reduction of the runtime is achieved
by using partition trees for efficient probe inflation. It reduces the query
time for a consecutive edge from O(n) to E € O(nl_l/ d), yielding the final
runtime of O(P + sS + eFE) = O(enl_l/d) for e edges. Since every sample
has degree two in the reconstruction, the number of edges is exactly the
number of samples, e € O(n). O

5.4 Space Requirements

Using the described data structures one has to maintain the partition tree
and the fair-split tree for the nearest neighbors. Both have linear size in the
number of points n. The recognition whether an edge is already in I' or not
can be done by storing the edges in a balanced search tree. This provides a
query time of O(logn) per found consecutive edge but looking for this edge
using the partition tree already takes O(nlfl/ d) which dominates the term.

This allows a reconstruction with storage size ©(n + |I'|) where n is the
number of samples in the input set and I the size of the output. Since the
output has linear size, the total storage used is O(n). This is clearly optimal.

Theorem 5.2. Algorithm 1 correctly reconstructs smooth, closed curves in
R with intersections from 0.138-samples with exclusion disks in O(n2_1/d)
steps using O(n) space.

fair-split tree

partition tree

60 5. Analysis of the Running Time and the Space Requirements

6. EXPERIMENTAL RESULTS

6.1 Implementations

The presented algorithm was implemented in several ways to test its poten-
tial in practice. One implementation was done in Java as a plug-in for the
interactive geometry software Cinderella [KRG]. A screenshot is shown in
Figure 6.1.

Some brute-force implementations were done using C+-+ but they ran
as slow as expected since the runtime is cubic in the number of points in the
worst case. For tens of thousands of points, the runtime was already in the
range of minutes.

A very simple implementation using a single kd-tree for the closest pair
and the consecutive edge searching was done. In tests with randomly sam-
pled curves and with equally spaced samples it showed a good performance
and for small points sets of up to 10000 points the speed-up compared to
the brute-force implementation was already a factor of about 100.

The development of good heuristics which take the typical special struc-
ture of a sample in the local neighborhood of a point into account is a matter
of possible further research.

6.2 Heuristic Results

Another series of experiments were used to show the practicability of the
algorithm as a heuristic approach. It is not always possible to guarantee
the validity of an e-sample and it is impossible to check without the original
curve. In these cases the algorithm should nevertheless give some sensible
output.

The Lissajou figure in Figure 6.2(a), given by the parametric form L(t) —
(sindmt, cos 67t), was sampled such that n values were taken uniformly at
random from [0, 1) and the corresponding points were put into the sample.
This was done for several values of n.

The results depend of course on the random input but they show a
general behavior which can be reproduced for other inputs of the same size.
One possible drawback of the algorithm is that a single failure—a single
wrong edge—can lead to a chain reaction for the following edges because
they are based on a wrong edge. The experiments show that this disastrous
effect is not likely to occur if the sample has at least a certain density.

62 6. Experimental Results

Fig. 6.1: Screenshot from Cinderella with the interactive curve reconstruction plug-
in showing the reconstructed curves in white and the inflated probes in
black.

Figure 6.2(b) shows the reconstruction for 50 points which is quite bad
and definitively undersampled. In Figure 6.2(c) 100 points were taken. Some
bends are too sharp to be captured and there are problems caused by wrong
connections in the vicinity of intersections. The result for 200 points in
Figure 6.2(d) is already very satisfying and one can clearly see that although
a wrong point was taken near the intersection on the left side, the curve
continues as expected and the overall appearance is correct. In the upper
right corner a wrong edge was reconstructed but only a single one which
does not entail other wrong edges. These small glitches might be cleaned
by some post-processing.

Obviously one can always create a point pattern around an intersection
which will result in a wrong reconstruction independent of the density. Nev-
ertheless there are no additional wrong edges besides close to intersections
and no gaps, so the reconstructed topology will be correct if the sample is
dense enough. This suggests that the algorithm can also be used successfully
in a heuristic approach.

6.3 Extension to Open Curves

We also experimented with the reconstruction of open curves. The experi-
mental results can be seen in [Len05a]. The idea for open curves is a sample

6.3. Extension to Open Curves 63

(KR

(a) This figure was sampled and recon- (b) n=50: The sample is overall too
structed. sparse.

(¢) n=100: Some wrong edges appear (d) n=200: Almost perfect result ex-
resulting from sharp bends. cept for minor dents and one wrong

edge.

probe distance function

(e,8)-sample

uniform e-sample

64 6. Experimental Results

which is not to dense. The probe must have a negative extent, see Defini-
tion 3.1. Then for a probe aligned at the edge (p, q), the point p minimizes
the probe distance function D,q. This results in an edge (¢,p) which is al-
ready part of the reconstruction, since the edges in the reconstruction are
not oriented. This makes the algorithm stop.

To avoid the reconstruction of wrong endpoints, the ratio between larges
sample distance and smallest sample distance must be bounded for samples
which are not endpoints. A suitable criterion for this is contained in the
(€,6)-sample or the uniform e-sample [Eri03]. It is a refinement of the e-
sample with the additional condition that for any two samples p, ¢, ||[p—q|| >
0lfs(p). This approach is by far not as well established as the e-sample and
is therefore not investigated here. Nevertheless it works well as a heuristic
and does not require any changes to the very simple algorithm.

7. CONCLUSION

In this thesis a novel technique for curve reconstruction in arbitrary di-
mension is introduced. A simple and short algorithm is provided which
has the guarantees as the Nearest-Neighbor-Crust as a special case but is
much more flexible. The minor increase in runtime compared to other curve
reconstruction algorithms is outweighed by the fact, that this is the first
algorithm which can handle self-intersecting curves and collections of inter-
secting curves. This is achieved by a small modification of the well-known
e-sampling condition, which would otherwise not be applicable to intersect-
ing curves. Although the correctness proof is fairly involved, it all boils
down to one simple radius computation per intersection.

A detailed analysis is provided for several data structures. The practi-
cability of the algorithm as a heuristic without a proper sample is shown in
experiments. An interactive applet is available on the Internet.

The major contribution of this thesis is to show a general possibility to
reconstruct intersecting curve. This is fully analyzed but still allows a wide
variety of specializations and optimizations which might be subject to future
research.

66

7. Conclusion

Part 11

APPROXIMATING THE MEDIAN IN STREAMS
WITH CONSTANT STORAGE

ABSTRACT

In this part the well-known problem of finding the median of an ordered
set is studied under a very restrictive streaming model with sequential read-
only access to the data. Only a constant number of reference objects from
the stream can be stored for comparison with subsequent stream elements.
A first non-trivial bound of € (y/n) distance to the extrema of the set is
presented for a single pass over streams which do not reveal their total size
n. This result is extended to an algorithm which guarantees a distance of
Q (nlfs) to the extrema. Additional results about upper bounds, multi-pass
algorithms, and arbitrary quantiles are presented.

ZUSAMMENFASSUNG

In diesem Abschnitt wird das bekannte Problem der Mediansuche in einer
geordneten Menge untersucht. Dies erfolgt in dem sehr strengen Streaming-
Modell, welches nur Lesezugriff auf die Daten erlaubt. Gleichzeitig darf nur
eine konstante Anzahl von Referenzobjekten aus dem Datenstrom fiir Vergle-
iche gespeichert werden. Die erste nicht-triviale untere Schranke von Q (y/n)
fiir den Abstand zwischen dem gefundenen Wert und den Extremwerten des
Datenstroms wird mit einem Single-Pass-Algorithmus erreicht. Dabei ist
es nicht erforderlich die Lange n des Datenstroms zu kennen. Dieser Algo-
rithmus bildet den Grundbaustein fiir ein Approximationsverfahren, welches
einen Abstand von {2 (nlfs) zu den Extremwerten garantiert. Des Weiteren
werden obere Schranken, Multi-Pass-Algorithmen und Ansétze fiir andere
Elemente als den Median prasentiert.

70

Abstract

8. INTRODUCTION

8.1 Motivation

In any finite subset S of a totally ordered set, every element x € S splits
S into a set S< of elements smaller than = and a set Ss of elements larger
than x. The ratio between |S<| and |Ss| determines how good x splits S.
The best possible splitter is the median which is the element of rank [n/2].
The rank of an element is its position in the sorted order of the set S.

Many applications require a good splitter. The crux of every divide-and-
conquer algorithm is finding an element which partitions a data set of size
n into two parts of roughly equal size. A well-known example is quicksort,
which performs best, splitting in each recursion at the median.

We study the problem of finding a good splitter—approximating the
median—under very rigorous restrictions. We use the streaming model, al-
lowing only a single pass over the data. Furthermore we allow only a constant
number of elements to be stored. The presented algorithms are determin-
istic, providing a guarantee on the quality of the output. This single-pass
setting with constant storage has several applications.

Sensor networks typically have very small and cheap components, so
the amount of available memory on a single sensor is tiny. In a network
with several sensors, e.g. measuring the temperature every few seconds, the
median and other quantiles are significant quantities. No sensor has enough
memory to store the whole data, so the information is broadcast and has to
be processed in real-time in the order of reception. This is modeled exactly
by our approach with constant memory and no assumptions about the order
of the stream elements.

Another class of application are databases. Fast estimation of quantiles
is important for planning and executing queries, i.e. estimating the size of
intermediate results or partitioning the data for parallel query processing.
Obviously the estimation should be performed very fast and must happen
under memory restrictions due to the size of today’s databases compared
to the size of main memory in today’s computers. Modern servers process
thousands of queries per second, so obviously each single process has only
very limited resources available.

Considering the distribution of the data as unknown, a numerical ap-
proximation of the median is not appropriate. The value of such an approx-
imation might be very close to the real median and simultaneously their

splitter
median

rank

streaming model

sensor networks

database

streaming model

I/0 model

72 8. Introduction

positions in the sorted data might be arbitrarily far apart. Depending on
the actual problem, a numerical approximation may not be satisfying be-
cause in general no element exists with this value. For non-numerical data
such an approximation might be very difficult or not useful anyway.

In the classical model of computation, Blum et al. [BFP*73] showed
that finding the median is possible in linear time which is optimal. Their
algorithm and all known modifications require random access to the data
and either modify the original order of the elements or need §2(n) additional
memory. The past research for exact bounds on the number of comparisons
needed and related information was collated by Paterson [Pat96].

8.2 The Streaming Model, the I/O Model, and the Number of
Sequential Passes

Today’s modern communication revived several models of computation orig-
inated from storage on tape, namely the streaming model and the I/O model.
Data which is streamed through a sensor network, the Internet or any other
network comes in a strict sequential order forbidding random access and
modification. Usually even if random access is possible, sequential or at
least locally coherent access would be many times faster due to caching
mechanisms. Models appeared, taking the mentioned restrictions into ac-
count. The idea of counting and minimizing the number of sequential passes
over the data as runtime measurement arose. For most practical purposes,
the number of passes is restricted to one or a very small constant.

Typically the total amount of data will not fit into memory, e.g. on a
sensor node. Furthermore a data stream might not give away its total size
beforehand. The size might even be unknown throughout the whole execu-
tion of the algorithm. The stream might just end without premonition. In
some cases, a continuing stream has no designated end at all. An approxi-
mation algorithm for streams of unknown length must therefore maintain a
good estimate at all times and cannot use the data size n in its decisions.
We discuss streams both with known and unknown sizes in this paper.

A related but more relaxed model is the I/O model which is usually
applied if the data size exceeds the main memory. In these cases, read/write
accesses to blocks of the slow external memory are much more expensive,
with respect to runtime, than most algorithmic steps. This again leads to
algorithms which prefer local computations on elements which are stored in
the same block on the external memory. Allowing random access collides
with our application of sequentially transmitted data and is therefore not
discussed.

We focus on the streaming model with the following restrictions.

e Sequential access to the data

e Data is read-only

8.3. Previous Work 73

e Storage for a constant number of data elements

The known optimal linear time median algorithms [BFP* 73] violate the
above conditions and are therefore not applicable in the streaming model.

8.3 Previous Work

8.3.1 The Secretary Problem

Problems where one has to make a decision without total knowledge about
the input are quite popular, not only among mathematicians. Choice under
uncertainty is a key element in every management seminar as part of the
topic decision theory [GWO04]. Very well-known mathematical problems of
that kind are the so-called secretary problem and its variations. The first
formal appearance of this problem was in 1964 in an article by Chow et
al. [CMRS64]. In their formulation, a permutation of a finite subset of
a totally ordered universe is presented sequentially. Every element only
reveals its relative rank, the rank among the elements seen so far. The task
is to stop at a certain element z, such that the probability of x being the
global maximum is maximized. It is known, that the optimal strategy for
n elements skips the first n/e elements, where e is the Eulerian constant.
Then it takes the first of the remaining elements which exceeds all of the
skipped ones. A useful variant demands that the selected element should be
as close to the global maximum as possible. Bruss [Bru05] recently wrote a
summary about Robbins’ problem, which is closely related.

The main ingredient of these problems and their solutions is randomness.
Known strategies approximate an extreme element from a sequential stream.
In this article, the opposite problem is discussed: how to find an element in
the middle, which splits the input sequence into parts of more or less equal
size, under uncertainty?

8.3.2 Related Algorithms

Good splitters have high probability. A simple strategy for known n would
be to pick a random element with probability 1/n. This will split the data
in a ratio not worse than 1 : 3 with a probability of 50%. Using the me-
dian over a constant sized random sample yields even better results. Vitter
overcomes the problem of not knowing n with a special sampling technique
called reservoir sampling [Vit85].

A lower bound of Q(1/¢) space for an e-approximation algorithm for the
median was shown by Rauch Henziger et al. [RRR98|. Their proof utilizes
communication complexity and reduction to other problems. Both topics are
important for fundamental lower bounds in the streaming model but they
are not discussed further in this thesis.

decision theory

secretary problem

relative rank

Robbins’ problem

reservoir sampling

communication complexity

74 8. Introduction

Storing only five reference values from the stream, Jain and Chlam-
tac [JC85] obtain numerically good results but they approximate the value
of the median by a special formula. This depends on the distribution and
does not yield any guarantees concerning the rank of the returned element.

Granting more than constant memory allows a (1+¢)-approximation for
finding the element with rank k. Manku et al. [MRL9S8] presented a single-
pass algorithm with 0(1 /e log? En) memory if n is known. This was im-
proved to O(1/elogen) memory, not requiring the knowledge of n by Green-
wald and Khanna [GKO1]. In the former paper, the authors also showed a
(14+¢)-approximation technique with probability ¢ using O (% log? (% log 1—3))
memory.

Munro and Paterson [MP80] studied the problem under several memory
restrictions but for constant memory, they only gave a multi-pass algorithm
for the exact median without intermediate approximation results after each
pass. The authors themselves call it “intolerable in practice”. Later Munro
and Raman [MR96] solved the problem of finding the median with minimal
data movements in O(n1+€) steps with constant extra space but allowed
random access to the read-only data.

Very recently Guha and McGregor [GMO6] exploited the fact that the
distribution of the elements in a stream is not completely adversarial in ex-
pectation, although the actual distribution might be unknown. They obtain
an element with rank n/2 + O(nl/ 2+€) using polylogarithmic space. Guha
et al. [GMV06] analyzed the entropy of streams even further and compared
the random order model [MP80] with several oracle models.

These results are only with high probability or require sophisticated
structures and more than constant memory. This thesis tackles the problem
of finding a simple deterministic algorithm with constant memory which
splits a stream with more than a constant number of elements in both parts.
Parts of this thesis have already been published in [Len0O6a).

8.4 The Considered Model

We assume that the stream contains comparable objects with a total order
defined on them. For a weak or partial order, the median is not uniquely
defined, but with a sensible definition or by embedding the data in a strict
total order, the extension of our algorithms should be straightforward. Two
cases are analyzed, one where the total number n of elements in the stream
is known in advance and in the other case it is not known and cannot be
guessed or computed from the stream.

pop We assume the existence of two stream operations: pop provides the top

top element and removes it from the stream and top provides the top element
without removing it. The operations are intentionally named like the corre-
sponding stack counterparts, because our stream behaves like a filled stack

8.4. The Considered Model 75

without the possibility to push objects onto it.

In its local memory, the algorithm cannot store more than a fixed number
of references to objects in the stream, later called markers. The algorithm
can access only the marked elements and the current top element from the
stream, so the following interaction with the stream is possible.

e Compare the markers with each other and with the current top element
e Replace one of the markers by the current top element
e Proceed to the next input

No arithmetic operations with the markers are allowed (like C-style pointer
arithmetic) and the return value of the algorithm must be a marker pointing
to an element.

Munro and Paterson [MP80] observed that there is no hope for more than
a constant distance to the boundary in this setting with a purely comparison-
based approach forbidding other operations. Such an algorithm is presented
in Section 8.5. To overcome this limitation, the number of markers is fixed
and additionally a constant number of “statistics” is allowed, for example
counting the number of elements smaller/larger than a marked element but
also loop counters and other bookkeeping variables. In all presented algo-
rithms the number of these additional variables is clearly in the order of the
number of markers, so they are omitted in general in the analyses.

The measure for the quality of an algorithm is the minimum distance
d(x) to the boundary (left boundary is 1, right boundary is the number of
elements) of the index of the returned element x in the sorted data. Formally
it is defined as follows.

Definition 8.1. An element x in a list L is of rank r if and only if L contains
r — 1 elements less or equal z, and |L| — r elements greater or equal x.

Note that the rank of an element is uniquely defined only if the list L
contains this element exactly once.

Definition 8.2. The boundary distance d(z) of an element z in a list L is
defined as

d(z) = . I{laXIL‘ {min{k — 1, |L| — k} | = is of rank k}.

Since the list will here always be the stream, the parameter L is omitted.
The boundary distance of an algorithm A is defined as

d(A,n) = L}&i‘gnd (A(L)).

marker

rank

boundary distance

76 8. Introduction

If not mentioned otherwise, the number of elements in the stream is
denoted by n.
The median m has optimal distance

am = ([3].[3) = [3]

representing the best value possible for d. On the opposite side of the quality
scale we have the comparison-based Algorithm 2 from the next section with
d(Algorithm 2,n) = |s/2] for a constant s and arbitrary large n.

8.5 A Comparison-Based Algorithm

The following algorithm simply stores the s smallest elements from the
stream. One starts by storing the first s elements in sorted order. When-
ever a new element appears in the stream which is smaller than one of the
stored elements, it must be smaller than the maximum m;. Therefore m; is
replaced by the new stream element. In the end, the s stored elements are
sorted and their median is returned.

For a fixed s, the complete Algorithm 2 can be implemented using only
comparisons and no variables other than m, ..., ms.

1 store the first s stream elements in the variables mq, ..., mg
2 while end of stream not reached do

3 [— argmax; «;«, m;

4 if top < m; then

5 L my «<— top

pop

7 sort my,...,ms in ascending order

8 return mpy o)

=]

Algorithm 2: This algorithm can be implemented using only com-
parisons for a constant s.

Observation 8.1. Algorithm 2 returns the median of the smallest s of n
elements, thus guaranteeing Vn > s : d(Algorithm 2,n) = |s/2].

9. UPPER BOUNDS

9.1 A General Upper Bound

We start with the following theorem, destroying all hope for very good
approximations.

Theorem 9.1. FEvery deterministic algorithm which returns an element
from a stream of known size n with distance to the median at most n/«
has to store at least a/4 stream elements.

Proof. Assume an algorithm wants to achieve a distance to the median of
at most n/a. Stop after the first [n/2] elements were read from the stream.
We call the set containing these elements M. None of the elements in M
can be ruled out being the median—just let the values of the following
|n/2| elements be smaller/larger properly. Covering the sorted order of M
completely with intervals of the desired distance requires storing at least
every 2n/ath element in the sorted order. This results in a total of

nil « an «
HEE

20lon = 4n 4

stored elements. O
This immediately implies the following result for constant storage.

Corollary 9.2. No algorithm which stores only a constant number of el-
ements from a stream can achieve an approximation of the median’s po-
sition in the sorted data which is sub-linear in the total number of ele-
ments n. Formally this shows for all algorithms A with constant storage:
d(A,n) =n/2—Q(n).

9.2 Obtaining Bounds by Playing Games with One Marker

After the general upper bound from the previous section, we will provide
some explicit upper bounds for very small storage, namely one or two mark-
ers. We prove an upper bound on d over all possible algorithms by modeling
the situation as an adversary game: The adversary is the stream which se-
lects the next element. The algorithm has to decide whether this element
becomes ignored or marked, releasing one of the formerly marked elements.

adversary game

adversary game

78 9. Upper Bounds

@ dl +1 | d,
|
here
i | - / add
| \
| di+d,+1

Fig. 9.1: The horizontal line represents the sorted order of the stream elements seen
so far, the vertical line is the marker.

This game continues indefinitely to simulate the asymptotic result on n.
This might be considered as the online version of the median problem.

For every algorithm that uses only a single marker, the adversary can
choose a data stream in such a way that the marker is always the smallest
or largest element. This is true, even if the algorithm is allowed to “know”
all elements seen so far and can consider them in its computation, as long
as it is only allowed to set the marker to new elements. Figure 9.1 shows
the idea behind such an adversarial stream: The adversary only adds new
extrema. The algorithm might decide to keep its marker which remains close
to the boundary (upper right). If the marker is moved to the new element,
it will be stuck at the boundary by having the adversary switch the insertion
position to the other end (lower right). Since the distances d; and d, from
Figure 9.1 are initially 0, the following observation holds.

Observation 9.3. For an adversarial data stream a single marker will al-
ways end at the boundary.

9.3 Obtaining Bounds by Playing Games with Two Markers

For algorithms using two markers we will also show an upper bound by
an adversary game. In this case the knowledge about all elements seen so
far, as used for algorithms with one marker, is too mighty and would lead
to a variant we will discuss in Section 9.4. This strength follows from the
knowledge of the exact position of a new element in the sorted elements seen
so far. This allows to determine exactly how a new element partitions the
elements between two markers.

We model the game for algorithms using two markers in such a way, that
the adversary only specifies the interval between two markers or a marker
and the boundary where the next element will lie in. The algorithm ignores
the new element or selects a marker which is set to that position. Afterwards

9.4. A Variant of the Online Problem 79

the adversary reveals the exact position. A bound for this scheme with two
markers m1, my is depicted in Figure 9.2 and explained in the proof for the
following lemma.

Lemma 9.4. For two markers my, mg, max(d(m;),d(mz)) € O(y/n) holds
in the worst case.

Proof. Assume d(m;) = d(mz) = d (const) in the beginning. The ad-
versary adds an element in the interval containing the median (top left in
Figure 9.2)). Not moving the marker neither increases d(m1) nor d(ms) (top
right), leading to an arbitrarily bad result. Therefore the algorithm has to
move a marker eventually.

After one marker was set, the adversary reveals that it is next to the
other marker (middle left). We have d(m;) = d + 1 or d(mg) = d + 1.
This is the only increase of d(m;) or d(msz) in the scheme. Now adding new
extrema either leaves d(m1) and d(msg) unchanged (middle right) or shifts a
marker to the boundary (bottom left).

Having, without loss of generality, d(m1) = d + 1 and d(mg) = 0 as in
the bottom left case in Figure 9.2 allows the insertion of d+ 1 elements next
to mg, ending in the situation depicted in the bottom right case.

In total, the boundary distance has increased by one, while d+3 elements
were inserted. Now we can apply the same scheme again with d + 1 instead
of d. To consume all n elements in r rounds, starting with d = 0 we have

i
|
-

(r—1) _r2+5r
2 2

~ n.

(d+3)=3r+ "
0

a
Il

It clearly follows that r € ©(y/n) and we have d(my),d(msg) < r and there-
fore d(mq),d(msg) € O(y/n). Note that the case distinction is not complete
because some obviously bad choices are omitted. O

The idea of revealing the true position later already fails for three mark-
ers. For an arbitrary fixed number of markers it is not known whether the
linear bound can be reached or not. The described adversary game seems
to be a bad choice for a proof for bigger storage, because the rules of the
game would have to become much more involved to obtain sensible results.

9.4 A Variant of the Online Problem

For offline problems the complete input is available during the whole algo-
rithm. Online problems, by contrast, reveal only small pieces of the input
one after another and the algorithm has to make decisions based on incom-
plete data. This is a much stronger model than our streaming model with
constant memory because all elements seen once are still available. There-
fore every solution for the streaming problem is also a solution for the online

online problem

secretary problem

80 9. Upper Bounds

add add
dl |d dl |d
I |
l’ add
d d

Fig. 9.2: Beating a two marker scheme.

problem and every upper bound for the online problem is an upper bound
for the streaming problem.

An obvious and simple algorithm is to compute the exact median over the
elements seen so far after each received element until the input stream ends.
A more interesting and challenging problem formulation is the following.

The input is a stream of unknown size n, the streamed objects are pairs
(t;, ;) where t; is an element as before and r; is a rank of ¢; among the
elements t1,to, ..., 1;.

This formulation includes a part of the additional knowledge for the on-
line problem in the streaming model and is very close to the formulation of
the secretary problem [CMRS64], see Section 8.3.1. This additional knowl-
edge is already sufficient to get a linear approximation of the median with
two markers with the following algorithm.

For simplicity we assume that the stream contains at least two elements.

9.4. A Variant of the Online Problem 81

add add
here here

add add
here here

| _

Fig. 9.3: The four interesting cases for the online algorithm with two markers. The
solid vertical lines are the markers, the dotted line indicates the median.
The bottom two cases only occur, if one marker points exactly at the
median. If no case applies, the markers are not moved.

1 my < pop.t

2 Mo < pop.t

3 if mq > mo then swap m; and mo

4 7 — 1

5 19 «— 2 // loop invariants: r; <ry and m; < mgy
6 for 1 =2,3,4,... do

7 if top.t <my then ry «—ro+1; // maintain rank of msy
8 if top.t < mj then

9 ri—r;+1 // maintain rank of m;
10 if r > [%1 then // bottom left case
11 my < top.t

12 ro < top.r

13 else if r < top.r < [%1 then // top left case
14 my < top.t

15 r1 < top.r

16 else if [%W < top.r < ry then // top right case
17 mg < top.t

18 ro < top.r

19 else if 79 < top.r and ra < {%1 then // bottom right case
20 my < top.t
21 r1 < top.r

22 if mq > mo then swap mj and my and swap 1 and 7o
23 if pop is end of stream then

24 L if r1 > i —1ry then return m; else return ms

Algorithm 3: Achieving a linear approximation of the median with
only two markers mi, mo by knowing their rank.

82 9. Upper Bounds

Algorithm 3 handles the four important cases as depicted in Figure 9.3.
The horizontal lines represent the elements from the stream seen so far in
sorted order. The solid vertical bars are the markers and the dotted vertical
bar in the middle shows the position of the median. The big arrow indicates
the rank of the next stream element.

The main idea of the algorithm is to keep the median between the two
markers while minimizing their distance. The distance between the markers
is reduced if possible, as seen in the two top cases of Figure 9.3. If there is
a chance that both markers are on the same side of the median, the marker
further away is moved to the other side, shown in the two bottom cases of
Figure 9.3. In the end, the marker closer to the exact median is returned.

Theorem 9.5. Algorithm 3 returns an element with a rank between n/4
and 3n/4 from a stream with rank information using two markers.

Proof. For simplicity of notation, we assume that all elements and thereby
their ranks, are unique. Otherwise one can fix any possible rank for elements
with non-unique rank. We will prove that for ¢ elements holds:

rank (min(mq,mg)) < % < rank (max(mq, m2)) (9.1)

[rank (mga) — rank (mp) | < (9.2)

IR

The first claim (9.1) is very easy to show because the only way a marker
can switch its side relative to the median, say from left to right, is by adding
elements on the left side. Exactly this is handled in the two bottom cases in
Figure 9.3 by moving the second marker to the opposite side. These cases
only occur if one marker is the exact median.

Due to the invariant we have mj < mg, so for (9.2) it remains to show
that rank (mg) — rank (m;) < i/2. Starting the induction with i = 2 el-
ements, the distance between the markers is exactly 1 and the relation is
true. Obviously the two top cases in Figure 9.3 only decrease the distance
between the markers, while increasing i. Adding an element left of m; or
right of mg does not influence the distance but increases 7. In the two bot-
tom cases one marker is the median and the other marker is set at most to
the boundary, fixing the distance between the markers to exactly i/2 and
therefore fulfilling (9.2).

Since rank information is provided for every element, it is easy to main-
tain the rank of the marked elements and to return the one with larger
boundary distance. If one marker has boundary distance smaller than
n/4, e.g. because its rank is smaller than n/4, |rank (mg) — rank (my)| <
n/2 holds and therefore the other boundary distance must be larger than
n/4. O

10. LOWER BOUNDS AND ALGORITHMS

10.1 Dealing with Unknown Data Size

Every algorithm for streams with unknown total size is obviously also an
algorithm for streams with known size n. The following algorithm achieves
a distance of Q (y/n) to the boundary without using n. It uses two markers
and is therefore asymptotically optimal due to Lemma 9.4. It is the best we
can achieve without using n and this algorithm acts as a building block for
the improved algorithms in the next sections.

The general idea is to have roughly y/n rounds. Each round increases
the distance to the boundary by at least one.

As mentioned in Section 8.4, two markers alone do not suffice for any
interesting result. A constant number of additional variables are required
for counting and general bookkeeping. These are omitted in the analysis.

UNKNOWNSIZE-SQRT:

1 My < pop

2 forr=2,3,4,... do

3 My < top

4 repeat r times

5 pop

6 if end of stream reached then return m;y

7 if (mg < top < mq) or (mg > top > m;) then mgy < top
8 if last r elements were all smaller or all larger than m, then
9 L mi <— Mo

Algorithm 4: Achieving a distance of at least \/2(n+ 1) — 3 to the
boundary with only two markers my, mo.

Theorem 10.1. Algorithm 4 returns an element with distance to the bound-
ary in the sorted data at least \/2(n + 1) — 3 without knowing n beforehand,
using two markers.

Proof. Every cycle of the for loop is considered as a round. We will show
that the boundary distance after round r is at least » — 1. The proof is by
induction.

For r = 1 the list of seen elements contains only the first element mq
which trivially has a boundary distance of 0 in this list.

84 10. Lower Bounds and Algorithms

For rounds r > 1 the marker has boundary distance at least » — 2 in the
beginning and several cases are possible.

1. The considered r elements are all larger than m;. The marker m; is
set to the minimum mo of these r elements. This guarantees that at
least » — 1 elements are still larger than ms, which corresponds to the
new distance to the right boundary. On the other hand, the number
of elements smaller than ms is at least the number of elements smaller
than mq, since mo > mq, plus the additional element mq. Therefore
the new distance to the left boundary is larger than r — 2 by at least
one.

2. The considered r elements were all smaller than mj;. This case is
symmetric to the first case.

3. Otherwise. At least one element smaller than mi and one element
larger than my is added. This increases the boundary distance of my
on both sides by at least one.

In all three cases the boundary distance on both sides is either increased by
at least one or set directly to at least r — 1. Thus the boundary distance is
at least r — 1 after round r.

If the input stream terminates in the middle of a round, the elements
from this round are ignored and the marker m; is not updated. Hence we
have to count the number of completed rounds k for n > 2 elements. Since
the k + 1st round was not completed, the number of elements consumed in
the first k£ rounds is at least n — k. We have

k 2
n—kﬁZrinqu?)kikZ 2n+%—%> 2n+1)—2. O

r=1
This result directly implies the following sharp bound.

Corollary 10.2. The achievable boundary distance with two markers is

O (vn).

Proof. This follows immediately from Theorem 10.1 and Lemma 9.4 and is
realized by algorithm UNKNOWNSIZE-SQRT. O

In practice, a new round should already start when at least one element
smaller than the median and one element larger than the median was read.
In the worst case in every round all but the last element are on the same side
of the median. Therefore this optimization has no impact on the worst-case
running time and is ignored in the algorithm to simplify the analysis.

10.2. Improvements for Known Data Size 85

10.2 Improvements for Known Data Size

If the number of input elements is not known, an algorithm has to maintain
a good approximation all the time. Hence it gives more algorithmic freedom
to know the total number of elements n in advance. We use this freedom to
process specified fractions of the input as a block. Four markers are used.

We split the input into at most n/t blocks of size roughly ¢. Two con-
secutive blocks are processed together in one round. From the first block we
compute an approximation of its median using algorithm UNKNOWNSIZE-SQRT
from Section 10.1. The next block is used to verify the quality of the approx-
imation, which is then refined in the next round. For this purpose a lower
threshold low and an upper threshold high are maintained, such that there
are always enough elements above low and below high. These two thresholds
are usual markers. They are used to filter the input for UNkNOWNS1ZE-SQRT:
Only elements in the range between low and high are given as input to
UNKNOWNSIZE-SQRT.

To make use of our filters, we replace the function pop in UNKNOWNSIZE-SQRT
by the extended version popx.

pop*:
1 loop indefinitely
2 if end of the stream is reached then
3 if [> h then output low else output high
4 L stop
5 if top < lowthen [« [+ 1; pop
6 else if top > high then h «— h+1; pop
7 else return pop

Let K = ©(+/t) be a constant representing the guaranteed boundary dis-
tance from algorithm UnknowNS1zE-SQRT according to Theorem 10.1. This
constant is added to the number of elements smaller than low or larger than
high if the respective filter is changed after a call to UNKNOWNSIZE-SQRT
because the result of UNkNOwNS1ZE-SQRT has a guaranteed distance to the
filter values of K by Theorem 10.1.

86 10. Lower Bounds and Algorithms

KNOWNSI1ZE(n,t):

1 low — —o0 // invariant: [< rank (low) <n —1t/2
2 high « oo // invariant: n — h > rank (high) >t/2
310

4 h—0

5 loop indefinitely

6 my <+ use UNKNOWNSIZE-SQRT on t elements with pop*
7 c—20

8 for the next t elements do

9 Lifpop*Zmlthen c—c+1

10 if ¢c>1t/2 then low—m; | —Il+K+t—c
11 else high+— my; h— h+ K +c¢

Algorithm 5: Achieving a boundary distance of 2 (nz/ 3) for t €
(C] (nQ/ 3) with four markers.

Lemma 10.3. While processing any 3t consecutive elements from the stream,
the number of elements known to be smaller than low plus the number of ele-
ments known to be larger than high, which are counted in | and h respectively,

increases by §2 (\/f)
Proof. Two cases are possible for the 3t elements.

1. If line 10 is not reached, more than ¢ elements are smaller than low
or larger than high and are hence filtered out. Therefore [+ h in-
creased by at least ¢t in the subroutine pop*, either in the for-loop or
in UNKNOWNSIZE-SQRT.

2. Otherwise a set B of at least ¢ elements pass the filter. Algorithm
UNKNOWNSIZE-SQRT returns an element m; with distance Q (V) to
both boundaries of B by Theorem 10.1. Counting over the next ¢
elements allows two symmetric cases, so we consider only the case
that at least ¢/2 elements are not smaller than mj. The algorithm
sets low to mq in line 10, guaranteeing the claimed increase of {2 (ﬁ)
in [.]

Lemma 10.4. Algorithm KNOWNSIZE returns an element with boundary dis-
tance §2 (min {t7 ﬁn/t}) if n is known beforehand. Four markers are used.

Proof. The algorithm will only change low if at least ¢/2 larger elements are
known, so the distance between low and the maximum is always at least
t/2. We only have to care about pushing low as far away from the minimum
as we can to obtain a large distance to both boundaries. The symmetric
statement holds for high.

10.2. Improvements for Known Data Size 87

The n input elements can be seen as n/(3t) blocks with 3¢ elements each.
Lemma 10.3 gives a total distance of

l+h2%9<\/i):Q<\/5%>

to both boundaries in the sorted data. At least half of this distance must
be attained by low or high which is returned respectively.

The marker mq in this algorithm is the same as m; in the subroutine,
so two markers are used by the subroutine plus two for low and high. O

For the optimal result we want to maximize the minimum in the expres-
sion (min {t, Vin/ t}) by setting up the following equation.

n n

t=Vi—=—=t=n=>t=n%3
tVt

Corollary 10.5. Algorithm KNOWNSIZE returns an element with boundary

distance € (nz/g) if n is known beforehand. Four markers are used.

Proof. Apply Lemma 10.4 with ¢ = n?/3. O

Theorem 10.6. A distance to the boundary of 2 (cank#l) can be achieved

with 2a markers for known n. The constant factor ¢, solely depends on a
and not on n.

Proof. Instead of using algorithm UNKNOWNSIZE-SQRT as a subroutine, one
can use algorithm KNownS1zE recursively. This needs two additional markers
for the low and high values in each recursive step. Assume, we have a
subroutine which guarantees a boundary distance of Q(n”). Computing the
optimal value for ¢ by a similar formula as in the proof of Lemma 10.4
resolves to
LN 9 1
t:tzét =n=1t=n2-=.

Using this subroutine and this value of ¢ in the proof of Lemma 10.4 yields
an algorithm with boundary distance 2 (nl/ (2_96)). In particular for a sub-
routine with guarantee €2 (n“/ (“H)) the guarantee is raised to

Starting with = 1/2 from algorithm UnknowNS1ZE-SQRT, a/(a + 1) is
reached after a — 1 recursive levels, each requiring two markers, 2a in total.

The results for the algorithms applied in each recursive level are asymp-
totic ones. Hence they contain “hidden” constants which are accumulated
in the factor c,. O

unbounded search

88 10. Lower Bounds and Algorithms

By By
; : — :
a Ty Cy T Cs : C%n% | T, 3
1 } | o
—_—
n
; ; e :
C31 1 T3 | €3, 1 T3: | C35 1 T34 cs, 113, ,
1 1 1 S
e
N

Fig. 10.1: The division of the input of size n into computation and testing blocks
(C; and T;) by algorithm KNOWNSIZE is illustrated by this example with
guaranteed boundary distance (2 (n3/ 4).

The idea of the nested application of algorithm KnownS1zE which leads to
the results from Theorem 10.6 is illustrated in Figure 10.1. It shows how the
original input is divided into double-blocks B;. In each block, the first part
C; is used to compute a new candidate, while the second part T; tests how
well the candidate splits this block. The new element in the recursive idea
is that each block Cj itself is again split into blocks B;; which are processed
similar to the B;. The size t of these blocks has to be computed properly,
as seen in the proof of Theorem 10.6.

10.3 'Transferring the Results for Known Data Size to Unknown
Data Size

The algorithms from the previous section require that the total number of
elements is known beforehand. To make them applicable for stream with
unknown size, a standard technique, known as unbounded search [BY76],
can be used. Although the original paper by Bentley and Yao [BY76] and
also later proofs [Bei90] achieve a more involved bound, the simple algorithm
below suffices for our needs.

10.3. Transferring the Results for Known Data Size to Unknown Data Size 89

UNKNOWNSIZE-EPS:

k1

repeat
m «— KnNownS1zE(k,k%)
k — 2k

until stream ends

return m

[U VN

Algorithm 6: Applying an algorithm for known stream size repeat-
edly on chunks of increasing size.

In each round, the algorithm for known size is applied to the sequence of
the next k elements from the stream for a fixed k. Starting with a constant,
here one, the value for k is doubled each time the algorithm provides a result.

Theorem 10.7. Given an algorithm A for streams with known size n and
guaranteed boundary distance d(A,n). If the function d(A,n) has a lower
bound f(n) such that f(n)/n is monotone decreasing then it is possible to
create an algorithm B for streams with unknown size with d(B,n) > f(n)/4
and with the same number of markers plus one.

Proof. The proof is by induction. Let n be the unknown number of elements
in the stream. For n = 1 the exact median of the single element is returned
by algorithm UnknownS1zE-EPS and d(A,1) = f(1) = d(B,1) = 0. This is
considered as the initialization, round zero. For round » > 1 the number
of elements to be processed in this round is £ = 2". The total number of
elements consumed from the stream so far is the geometric series

r—1 -
d =21
=0

If 2" — 1+ k = 2"t! — 1 < n holds, the algorithm will continue to the
next round. In case the stream ends in the middle of round r, n < 2"+!
must hold. The returned value m was obtained in round r — 1 and therefore
we have

d(B,n) =d(m)>d (A2 ") =d (A2 /4) > d(A,n/4).
Since f(n) is a lower bound for d(A,n), we have
d(B,n) = d(An/4) = f(n/4) = f(n)/4
because f(n)/n is monotone decreasing and thus giving

F/) fo)
n/4 ~ n

=4f(n/4) > f(n).

90 10. Lower Bounds and Algorithms

A direct implication of Theorem 10.7 is the following.

Corollary 10.8. A distance to the boundary of 2 (canl_#l) can be achieved

with 2a + 1 markers for unknown n. The factor ¢, solely depends on a and
not on n.

Proof. Algorithm KNowNS1ZzE guarantees a boundary distance of €2 (canl_a*il)

for 2a markers by Theorem 10.6. A lower bound for d(KNoOwWNSIZE,n) is
1

therefore f(n) = kcgn'”a+1 for a suitable constant k and n large enough.

The function f(n)/n = kcanfa%l is obviously monotone decreasing. The
corollary follows from Theorem 10.7. 0

11. EXTENSIONS

11.1 Arbitrary Quantiles

A more general problem than finding the median is to find an element with a
fixed rank k. Although it contains the median problem as a special case for
k = [n/2], the input seems to be fairly different. Without knowledge about
n, k = [n/2] is just a number—the algorithm does not know that it is the
median which it has to approximate. A specialized median approximation
algorithm on the other hand is just optimized to maximize the boundary
distance.

Nevertheless, the arbitrary quantile problem cannot be significantly sim-
pler than the median problem, as is easy to observe.

Lemma 11.1. Given an algorithm A(k) which computes an a-approximation
for the element of rank k in a stream of n elements. This means A(k) re-
turns an element x with |[rank(x) — k|| < an. From A, one can derive a
dac-approximation algorithm for the median problem.

Proof. We apply the doubling strategy from Theorem 10.7. In round r the
number of considered elements is 2. A(k) is called with k = 1/2-2" = 21,
The 4a-approximation for the median problem is now obtained by the very
same argument about the total number of elements in the stream as in the
proof of Theorem 10.7. O

Unfortunately the problem formulation for rank k& with & as a numeric
parameter is not useful in our case, because our approximations are asymp-
totic results. Therefore we cannot provide a factor o which bounds the
distance of the rank of the returned element to the one requested.

11.2 Multiple Passes

The algorithms from the prior sections give approximations of the median
in a single pass. It is fairly easy to apply these simple algorithms repeatedly
to shrink the range of candidates for the value in question, i.e. the median
or the element of rank k, in each iteration and finally obtain the exact
value after several passes. In this section the number of required passes
is analyzed. Problems of that kind typically require O(logn) “passes” for
random-access models.

rank

rank

92 11. Extensions

The approximation m obtained after a single pass splits the original set
into two sets, one with values smaller than m and the others larger. Only one
of these two sets can contain the element in question, so dropping the other
one reduces the number of elements. This is repeated until the remaining set
completely fits into the constant storage and the desired element is deduced
directly. Since it is not known whether the requested element is smaller or
larger than the approximation m, every second pass is used to count the
number of smaller/larger elements relative to m which reveals the rank of
m and thereby determines which set to drop. By remembering the number
of discarded elements, the rank of the requested element in the reduced set
can be computed.

The analysis treats the case where n is known beforehand because n is
known after the first pass anyway.

Theorem 11.2. For any fized storage size 2s + 2, the element of rank k in
a set will be found after O(nl/s) passes.

Proof. The idea is to apply algorithm KnowNS1zE repeatedly. Let the func-
tion P(n) describe the number of passes necessary for n elements. Each pass
removes at least clnl_l/ % elements for some fixed ¢; > 0 by Theorem 10.6,
so we have P(n) < P(n — ¢;n'~V%) + 2. We will show P(n) < cyn!/s for a
fixed ¢o > 0 by induction.

o |

1
s

Pn)<P (n— ein'™) +2<cy (n— clnl_%> + 2

1

1 cl ¢ ! 1

=cons | 1 — — + 2 < cons
ns

1 S
s 2 ! ! 2
@(1—611> b <lel- L1 =
ns Cons ns Cons

For ¢g = 2s/c; this follows from Bernoulli’s inequality

1—sr<(l—x)° withz= 011 <l,s>1

SNn's

and since s and ¢; are fixed, c¢o is constant.

The number of markers needed is the number of markers needed for the
algorithm KnownS1zE plus two additional markers to simulate the removal of
the ¢;n'~/* clements. This can easily be done using a lower and an upper
filter as in algorithm KNOwNSIZE. O

Theorem 11.2 bases on the simple scheme described above. Only a single
marker from one pass influences the next pass. Possibly, better results can
be obtained by using more results from previous passes in a cleverer way.

12. EXPERIMENTAL RESULTS

As a proof of concept, the proposed algorithms have been implemented in
Java. The algorithms are implemented as given in this thesis and are not
tweaked any further. In the respective sections one can find hints, how to
optimize the algorithms for practical purposes.

The most interesting quantity for a median approximation algorithm is
how far the returned element is away from the median. This is measured
as the difference between the ranks. For better comparability it is given as
relative value in percent with respect to the total number of elements. This
value is independent of the distribution which only influences the concrete
values but not the ranks of the stream elements.

Table 12.1 shows the most important results at a glance. Each line shows
the average results over 50 independent random streams with the specified
number of elements for three algorithms. The first “algorithm” called “ran-
dom” just picks a random stream element while UNkNOWNSIZE-SQRT and
KnowNSIZE are the respective algorithms from this thesis. The values in this
table show the relative distance to the median in percent. For example the
element of rank 30 among 101 elements has a relative distance to the median
of 20% and splits the elements in a ratio of 29:71.

The results for the randomly picked element are very close to the ex-
pected value of 25%, independent of the number of elements. There are two
important observations to be made from Table 12.1: Both algorithms per-
form very well and the quality seems to be independent of or even increasing
with number of elements. Algorithm UnknowNS1zE-SQrT allows distances to
the median of |n/2] —+/2(n + 1) by Theorem 10.1. This would give worst-
case relative distances of more then 45% for 1000 elements and even 49%

number of elements | random | UNKNOWNSIZE-SQRT | KNOWNSIZE |

1000 23.4 10.6 5.8
2000 26.4 10.3 4.6
10000 25.3 13.6 2.0
100000 26.1 10.3 1.1
1000000 23.8 11.1 1.0

Tab. 12.1: Average relative distances to the median in % over 50 runs with the
specified numbers of elements.

94 12. Experimental Results

for 1000000 elements, increasing with the number of elements. Nevertheless
UNKNOWNSIZE-SQRT provides an element with a relative distance of slightly
more then 10% on average in practice. Algorithm KNOWNSIZE even seems
to become better with an increasing number of elements, down to 1% for
1000000 elements. This is again tremendously better than the worst-case
and a substantial improvement over UNKNOWNSIZE-SQRT.

The following three tables show more detailed results for individual ex-
periments. They show 35 runs with the respective number of stream ele-
ments drawn uniformly at random.

The columns in the table have the following meaning. The first column
shows the number of the experiment. This determines the stream elements
completely, so results from different algorithms become comparable. The
number of elements is self-explanatory. The split ratio in % shows the
percentage of elements smaller than the element returned by the algorithm,
then a colon, and then the percentage of elements larger than the returned
element. This always adds up to 100. The split ratio average in the last row
is slightly different. It shows the ratio between the average of the smaller
value from each row in the “split ratio” column to the average of the larger
values. Otherwise the symmetric errors on both sides would cancel each
other, rendering the average value useless.

The distance to the median is the distance between the rank of the re-
turned element and [n/2] (absolute) and this distance divided by n in per-
cent (relative). The total absolute distance lies between 0 and |n/2] while
the relative distance is between 0 and 50. The number of candidate changes
shows how often the algorithm changes the element it would return if the
stream terminates. This column is not available for the random element
because this is obviously picked exactly once.

The quantities in the tables are compared for a randomly picked element,
the result of UNkNOWNS1ZE-SQRT and the result of KNowNS1zE. As expected,
the randomly picked element can be arbitrarily bad, as in line 2 and line 11
of Table 12.2, but can also be very good, as in line 17 and 30 of Table 12.2.

Algorithm UnknNowNS1ZE-SQRT provides much better results. The worst-
case relative distance to the median of 33.5% in line 4 (Table 12.3) is much
better than the worst-case and still far away from the average of 11.7%.
Since they can be achieved algorithmically with nearly no resources, it is
definitely a valuable improvement over the 25% average relative distance of
a random element.

As a surprise, the KnownS1zE algorithm lead to a substantial improve-
ment over UNKNOWNSIZE-SQRT. With its worst-case relative distances to the
median of 15.9% (Table 12.4) and an average of 2.7% it is far away from the
possible worst-case values. Relative distances of more than 5% only occur
for experiments with few elements. If these results are not sufficient for
applications, there is still room for improvements since the algorithm only
uses one recursive step and four markers, see Section 10.2.

95

no. | number of | split ratio | distance to median
elements in % absolute | relative

1 1000 | 70.3 : 29.7 203 20.3
2 1000 | 0.9 : 99.1 491 49.1
3 1000 | 29.2 : 70.8 208 20.8
4 1000 | 59.3 : 40.7 93 9.3
5 1000 | 62.0 : 38.0 120 12.0
6 1000 | 74.3 : 25.7 243 24.3
7 1000 | 1.4: 98.6 486 48.6
8 1000 | 63.8 : 36.2 138 13.8
9 1000 | 76.2 : 23.8 262 26.2
10 1000 | 23.8 : 76.2 262 26.2
11 10000 | 1.3 : 98.7 4868 48.7
12 10000 | 70.9 : 29.1 2086 20.9
13 10000 | 16.9 : 83.1 3307 33.1
14 10000 | 61.1 : 38.9 1110 11.1
15 10000 | 98.4: 1.6 4840 48.4
16 10000 | 36.3 : 63.7 1373 13.7
17 10000 | 52.1 : 47.9 207 2.1
18 10000 | 70.9 : 29.1 2092 20.9
19 10000 | 2.7:97.3 4730 47.3
20 10000 | 15.9 : 84.1 3409 34.1
21 100000 | 38.5: 61.5 11540 11.5
22 100000 | 86.8 : 13.2 36817 36.8
23 100000 | 60.2 : 39.8 10192 10.2
24 100000 | 85.0 : 15.0 35043 35.0
25 100000 | 29.4 : 70.6 20558 20.6
26 100000 | 29.9 : 70.1 20111 20.1
27 100000 | 32.6 : 67.4 17417 17.4
28 100000 | 73.9 : 26.1 23854 23.9
29 100000 | 77.4 : 22.6 27440 27.4
30 100000 | 51.2 : 48.8 1225 1.2
31 1000000 | 79.7 : 20.3 | 296710 29.7
32 1000000 | 62.4 : 37.6 123758 12.4
33 1000000 | 43.8 : 56.2 61935 6.2
34 1000000 | 12.6 : 87.4 | 373637 374
35 1000000 | 4.1:95.9 | 458963 45.9
average 25.2: 74.8 24.8

Tab. 12.2: Experimental results for picking a random element from the stream.

96

12. Experimental Results

no. | number of | split ratio | distance to median | candidate
elements in % absolute | relative changes

1 1000 | 71.3 : 28.7 213 21.3 2
2 1000 | 40.3 : 59.7 97 9.7 2
3 1000 | 58.8 : 41.2 88 8.8 2
4 1000 | 16.5 : 83.5 335 33.5 3
5 1000 | 62.6 : 37.4 126 12.6 3
6 1000 | 63.5 : 36.5 135 13.5 1
7 1000 | 50.5 : 49.5 5 0.5 1
8 1000 | 39.0 : 61.0 110 11.0 2
9 1000 | 44.6 : 55.4 54 5.4 3
10 1000 | 54.8 : 45.2 48 4.8 2
11 10000 | 63.0 : 37.0 1299 13.0 1
12 10000 | 42.1 : 57.9 791 7.9 2
13 10000 | 61.2 : 38.8 1116 11.2 1
14 10000 | 59.9 : 40.2 985 9.9 2
15 10000 | 66.2 : 33.8 1620 16.2 1
16 10000 | 70.9 : 29.1 2086 20.9 0
17 10000 | 40.9 : 59.1 913 9.1 1
18 10000 | 34.4 : 65.6 1557 15.6 1
19 10000 | 50.6 : 49.4 61 0.6 2
20 10000 | 45.5 : 54.5 448 4.5 1
21 100000 | 61.1 : 38.9 11072 11.1 2
22 100000 | 43.7 : 56.3 6251 6.3 2
23 100000 | 67.1 : 32.9 17140 17.1 2
24 100000 | 60.8 : 39.2 10791 10.8 1
25 100000 | 58.1 : 41.9 8061 8.1 1
26 100000 | 42.9 : 57.1 7142 7.1 2
27 100000 | 61.3 : 38.7 11259 11.3 1
28 100000 | 41.8 : 58.2 8230 8.2 3
29 100000 | 37.9 : 62.1 12070 12.1 1
30 100000 | 75.2 : 24.8 25198 25.2 1
31 1000000 | 41.9 : 58.1 80860 8.1 2
32 1000000 | 40.9 : 59.1 91298 9.1 1
33 1000000 | 38.7 : 61.3 112749 11.3 1
34 1000000 | 24.9 : 75.1 250703 25.1 2
35 1000000 | 42.5 : 57.5 75338 7.5 1
average 38.3 : 61.7 11.7 2

Tab. 12.3: Experimental Results for algorithm UNKNOWNSIZE-SQRT.

97

no. | number of | split ratio | distance to median | candidate
elements in % absolute | relative changes

1 1000 | 52.3 : 47.7 23 2.3 36
2 1000 | 49.4 : 50.6 6 0.6 38
3 1000 | 58.2 : 41.8 82 8.2 9
4 1000 | 34.1 : 65.9 159 15.9 37
5 1000 | 50.2 : 49.8 2 0.2 37
6 1000 | 49.8 : 50.2 2 0.2 37
7 1000 | 50.5 : 49.5 5 0.5 33
8 1000 | 39.0 : 61.0 110 11.0 36
9 1000 | 38.0 : 62.0 120 12.0 36
10 1000 | 54.8 : 45.2 48 4.8 44
11 10000 | 53.7 : 46.3 373 3.7 140
12 10000 | 45.3 : 54.7 472 4.7 3
13 10000 | 49.7 : 50.4 35 0.4 68
14 10000 | 50.8 : 49.3 75 0.8 39
15 10000 | 52.4 : 47.6 240 2.4 123
16 10000 | 51.6 : 48.4 161 1.6 35
17 10000 | 47.3 : 52.7 274 2.7 53
18 10000 | 53.0 : 47.0 301 3.0 111
19 10000 | 53.2 : 46.8 322 3.2 56
20 10000 | 49.2 : 50.8 79 0.8 128
21 100000 | 47.5 : 52.5 2494 2.5 83
22 100000 | 51.2 : 48.8 1159 1.2 46
23 100000 | 47.0 : 53.0 3037 3.0 40
24 100000 | 49.0 : 51.0 952 1.0 174
25 100000 | 50.0 : 50.0 48 0.0 212
26 100000 | 50.6 : 49.4 565 0.6 156
27 100000 | 51.8 : 48.2 1841 1.8 66
28 100000 | 51.6 : 48.4 1603 1.6 12
29 100000 | 49.9 : 50.1 83 0.1 188
30 100000 | 48.9 : 51.1 1133 1.1 46
31 1000000 | 51.2 : 48.8 12494 1.2 105
32 1000000 | 48.6 : 51.4 14424 14 53
33 1000000 | 49.8 : 50.2 2210 0.2 141
34 1000000 | 49.6 : 50.4 3572 0.4 37
35 1000000 | 50.9 : 49.1 8644 0.9 8
average 47.3 1 B2.7 2.7 71

Tab. 12.4: Experimental Results for algorithm KNOWNSIZE.

98

12. Experimental Results

13. CONCLUSION

This is the first deterministic result for non-trivially approximating splitters
in streams storing only a constant number of reference elements. The me-
dian problem itself occurs in many algorithms and hence is quite important
in theory and practice. Especially for tiny devices like sensor nodes in a
network, the model is appropriate. Although several solutions exist using
randomization and polylogarithmic memory, it is nevertheless of interest
whether the same results can be achieved in a (simple) deterministic way
and/or with less memory.

For streams with unknown size, the case for storage size two is solved
asymptotically optimal. For arbitrary storage space an approximation al-
gorithm is presented. A multi-pass solution for finding the exact median or
any element of a specified rank is presented. Several results are not only
asymptotic, but are given explicitly with very reasonable constants.

All the algorithms are fast and simple and have a tiny memory footprint
in practice. They have worst-case guarantees but showed a much better
average behavior as shown for random streams in Chapter 12.

Whether a linear approximation is achievable with constant storage or
not remains an interesting open problem.

100 13. Conclusion

[ABE9S]

[A1t01]

[AMOO]

[Bei90]

[Ben75]

[Bes95]

[BFP*73]

[Bru05]

BY76]

BIBLIOGRAPHY

Nina Amenta, Marshall Bern, and David Eppstein. The crust
and the (-skeleton: Combinatorial curve reconstruction. Graph-
ical Models and Image Processing, 60:125-135, 1998.

Ernst Althaus. Curve Reconstruction and the Traveling
Salesman Problem. PhD thesis, Universitiat des Saarlandes,
Saarbriicken, Germany, 2001.

E. Althaus and K. Mehlhorn. Polynomial time TSP-based curve
reconstruction. In Proc. 11th ACM-SIAM Sympos. Discrete Al-
gorithms, pages 686—695, January 2000.

Richard Beigel. Unbounded searching algorithms. SIAM Journal
on Computing, 19(3):522-537, 1990.

Jon Louis Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509-517, 1975.

Sergei N. Bespamyatnikh. An optimal algorithm for closest pair
maintenance. In Proc. 11th Annu. Sympos. Comput. Geom.,
pages 152-161, 1995.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L.
Rivest, and Robert Endre Tarjan. Time bounds for selection.
Journal of Computer and System Sciences, 7(4):448-461, 1973.

F. Thomas Bruss. What is known about Robbins’ problem?
Journal of Applied Probability, 42:102—120, 2005.

Jon Louis Bentley and Andrew Chi-Chih Yao. An almost opti-
mal algorithm for unbounded searching. Information Processing
Letters, 5:82-87, 1976.

[CMRS64] Y. S. Chow, S. Moriguti, H. Robbins, and S. M. Samuels. Op-

[CSDO02]

timal selection based on relative rank (the secretary problem).
Israel Journal of Mathematics, 2:81-90, 1964.

D. Cohen-Steiner and F. Da. A greedy delaunay based surface
reconstruction algorithm. Rapport de recherche 4564, INRIA,
2002.

102

Bibliography

[DK99)

[DMROO0]

[DWO1]

[DW02]

[EKS83]

[Eri03]

[FRO1]

[Fre02]

[Fun01]

[Gie99a]

[Gie99D)

[GKO1]

T. K. Dey and P. Kumar. A simple provable algorithm for curve
reconstruction. In Proc. 10th ACM-SIAM Sympos. Discrete Al-
gorithms, pages 893-894, January 1999.

T. K. Dey, K. Mehlhorn, and E. A. Ramos. Curve reconstruc-
tion: Connecting dots with good reason. Comput. Geom. Theory
Appl., 15:229-244, 2000.

T. K. Dey and R. Wenger. Reconstructing curves with sharp
corners. Comput. Geom. Theory Appl., 19:89-99, 2001.

T. K. Dey and R. Wenger. Fast reconstruction of curves with
sharp corners. Int. J. Comput. Geometry Appl., 12(5):353-400,
2002.

H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel. On the shape
of a set of points in the plane. IEEE Trans. Inform. Theory, I'T-
29:551-559, 1983.

Jeff Erickson. Nice point sets can have nasty delaunay trian-
gulations. Discrete € Computational Geometry, 30(1):109-132,
2003.

Stefan Funke and Edgar A. Ramos. Reconstructing a collec-
tion of curves with corners and endpoints. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms,
pages 344-353. Society for Industrial and Applied Mathematics,
2001.

Daniel Freedman. Combinatorial curve reconstruction in hilbert
spaces: A new sampling theory and an old result revisited. Com-
put. Geom., 23(2):227-241, 2002.

Stefan Funke. Combinatorial Curve Reconstruction and the Ef-
ficient Ezact Implementation of Geometric Algorithms. PhD
thesis, Universitdt des Saarlandes, Postfach 151150, D-66041
Saarbriicken, Germany, 2001.

J. Giesen. Curve reconstruction, the TSP, and Menger’s theorem
on length. In Proc. 15th Annu. Sympos. Comput. Geom., pages
207-216, 1999.

Joachim Giesen. Curve reconstruction in arbitrary dimension
and the traveling salesman problem. In Proc. 8th Int. Conf.
Discrete Geometry for Computer Imagery, pages 164-176, 1999.

Michael Greenwald and Sanjeev Khanna. Space-efficient on-
line computation of quantile summaries. In Proceedings of the

Bibliography 103

[GMO6]

[GMV06]

[GSO1]

[GWO04]

[JC85]

[KRC]

[LC87]

[Len05a

[LenO5b)

[Len06a]

[Len06b]

2001 ACM SIGMOD international conference on Management
of data, pages 58-66, New York, NY, USA, 2001. ACM Press.

Sudipto Guha and Andrew McGregor. Approximating quantiles
and the order of the stream. In 25th Symposium on Principles
of Database Systems, pages 273279, 2006.

Sudipto Guha, Andrew McGregor, and Suresh Venkatasubra-
manian. Streaming and sublinear approximation of entropy and
information distances. In 17th SIAM-ACM Symposium on Dis-
crete Algorithms, pages 733-742, 2006.

C. Gold and J. Snoeyink. A one-step crust and skeleton extrac-
tion algorithm. Algorithmica, 30:144-163, 2001.

Paul Goodwin and George Wright. Decision Analysis for Man-
agement Judgment. John Wiley & Sons, 2004.

Raj Jain and Imrich Chlamtac. The p2 algorithm for dynamic
calculation of quantiles and histograms without storing observa-
tions. Communications of the ACM, 28(10):1076-1085, 1985.

Ulrich Kortenkamp and Jiirgen Richter-Gebert. Cinderella.
http://www.cinderella.de.

William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. In Mau-
reen C. Stone, editor, Computer Graphics (SIGGRAPH 87 Pro-
ceedings), volume 21, pages 163-169, 1987.

Tobias Lenz. Reconstructing collections of arbitrary curves. In
Proceedings of the 21st Annual Symposium on Computational
Geometry, pages 366—367, Pisa, Italy, June 2005.

Tobias Lenz. Simple reconstruction of non-simple curves. Tech-
nical Report B 05-02, Freie Universitat Berlin, March 2005.

Tobias Lenz. Deterministic splitter finding in a stream with con-
stant storage and guarantees. In 17th International Symposium
on Algorithms and Computation, volume 4317 of Lecture Notes
in Computer Science, pages 26-35, Kolkata, India, December
2006. Springer.

Tobias Lenz. How to sample and reconstruct curves with un-
usual features. In 22th European Workshop on Computational
Geometry, pages 29-32, Delphi, Greece, March 2006.

104

Bibliography

[LZJT05]

[Mat93a]

[Mat93b]

[MLT00]

[MPS80]

[MR96]

[MRLOS]|

[Pat96]

[RRROS]

[Vit85]

DanFeng Lu, HongKai Zhao, Ming Jiang, ShuLin Zhou, and Tie
Zhou. A surface reconstruction method for highly noisy point
clouds. In Workshop on Variational, Geometric & Level Set
Methods (VLSM), volume 3752 of Lecture Notes in Computer
Science, pages 283-294. Springer, 2005.

J. Matousek. Geometric range searching. Tech. Report B-93-
09, Fachbereich Mathematik und Informatik, Freie Universitat
Berlin, 1993.

J. Matousek. Range searching with efficient hierarchical cuttings.
Discrete Comput. Geom., 10(2):157-182, 1993.

Gerard Medioni, Mi-Suen Lee, and Chi-Keung Tang. Compu-
tational Framework for Segmentation and Grouping. FElsevier
Science Inc., 2000.

J. Tan Munro and Mike Paterson. Selection and sorting with
limited storage. Theoretical Computer Science, 12:315-323, 1980.

J. Tan Munro and Venkatesh Raman. Selection from read-only
memory and sorting with minimum data movement. Theoretical
Computer Science, 165(2):311-323, 1996.

Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G.
Lindsay. Approximate medians and other quantiles in one pass
and with limited memory. SIGMOD Rec., 27(2):426-435, 1998.

Mike Paterson. Progress in selection. In Proceedings of the 5th
Scandinavian Workshop on Algorithm Theory, volume 1097 of
Lecture Notes In Computer Science, pages 368-379, 1996.

Monika Rauch Henzinger, Prabhakar Raghavan, and Sridar Ra-
jagopalan. Computing on data streams. Technical Note 1998-
011, digital Systems Research Center, Palo Alto, CA, 1998.

Jeffrey S. Vitter. Random sampling with a reservoir. ACM
Transactions on Mathematical Software, 11(1):37-57, 1985.

INDEX

(¢, 0)-sample, 64 probe distance function, 31, 49, 58,
a-neighbors, 34 64
a-shape, 17
e-sample, 17, 22, 39 rank, 71, 75, 91, 92
relative rank, 73
adversary game, 77, 78 reservoir sampling, 73
alignment angle, 45 Robbins’ problem, 73
boundary distance, 75 sample, 15, 21

sample point, 21
sampling condition, 16
secretary problem, 73, 80
corner, 21 seed edge, 29, 33, 55, 58
database, 71 self-intersection, 21
sensor networks, 71
simple curve, 21

closed curve, 21
communication complexity, 73

decision theory, 73

endpoint, 21 smooth curve, 21
]) splitter, 71
fair-split tree, 57, 59 streaming model, 71, 72

half-neighbor, 34 surface reconstruction, 15

top, 74
traveling salesperson problem, 18
turning angle, 24, 29, 41, 48

I/O model, 72
implicit curve, 16
inner angle, 24

unbounded search, 88

local feat ize, 17, 22 .
oca TEALITe S1e uniform e-sample, 64

locally injective, 21

marker, 75 wedge, 41, 42, 44

medial axis, 17, 22, 39
medial ball, 22
median, 71

online problem, 79
open curve, 21

partition tree, 57, 59
pop, 74
probe, 29, 31

105

