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Zusammenfassung

Die vorliegende Arbeit trägt zum besseren Verständnis von neuronaler Spike-Frequenz
Adaptation und ihrer komplexen Dynamik in vivo bei. Sie liefert eine detaillierte Studie
über die aus der Adaptation entstehende Statistik des nicht-Erneuerungprozesses aus
aufeinanderfolgenden Interspike-Intervallen. Die vorgestellten Ergebnisse zeigen, dass
Spike-Frequenz Adaptation einen entscheidend positiven Effekt auf die Reduktion der
Variabilität und Codierungskapazität in neuronalen Systemen hat. Darüber hinaus un-
tersuche ich die Filterung der Adaptation in Bezug auf die Informationcodierung auf
Netzwerkebene um die Emergenz einer Sparse-Code Repräsentation eines Stimulus zu
beschreiben. Dieser Sparse-Code erklärt die spärliche Aktivität von intrinsischen Neu-
ronen des Pilzkörpers der Insekten bei der Verarbeitung olfaktorischer Informationen.

Summary

This research contributes to the understanding of spike-frequency adaptation and its
complex dynamics in vivo condition. It provides a detailed study of the non-renewal
statistics emergence between subsequent inter-spike intervals due to adaptation. The
results presented in this dissertation show that spike-induced adaptation has a major
positive effect on the variability reduction and coding capacity in neuronal systems.
Furthermore, I explore its filtering consequences on information coding at a network
level to describe a mechanism for emergence of a sparse representation of the stimulus.
The emerged sparse code can explain the activity of Kenyon cells in insect olfactory
information processing.

Keywords: Spike-Frequency Adaptation, Point Process, Neuronal Spiking Statistics,
Spiking Neuron Information Processing
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Chapter 1

Introduction

Spiking neurons in the nervous system are not alike. They differ in their topological
position in the network, geometrical shape and electrical properties. Despite of many
differences, a fairly common feature of excitatory spiking neurons, is that cannot sustain
a steady frequency of action potential production throughout a continuous steady stim-
ulation. A common feature is that they fire rapidly at the onset of the stimulus and then
slow down, even if the stimulus remains strong [Bear 2006]. This phenomenon is called
spike rate or spike-frequency adaptation. Phenomenologically, spike-frequency adapta-
tion refers to an intrinsic property of neurons that gradually decrease their activity in re-
sponse to a sudden jump in their input level [Benda 2003]. It is ubiquitous in excitatory
spiking neurons in many neuronal systems: it has been observed in the vast majority
of excitatory neurons of diverse species alongside of the whole processing pathways of
spiking neurons [Sobel 1994, Wang 1998, Sanchez-Vives 2000b, Fuhrmann 2002]. This
diversity became clear by looking into the common and wide array of the biophysical
mechanisms that produce spike induced adaptation. The predominant examples of
those physiological mechanisms are the voltage-gated potassium currents (M-type cur-
rents) [Brown 1980] and the calcium-gated potassium channels (AHP-type currents)
[Madison 1984, Schwindt 1988, Storm 1990]. Additionally, sodium-gated potassium
channels [Schwindt 1989] and the slow recovery from inactivation of the fast sodium
current [Fleidervish 1996] might also be responsible for spike-frequency adaptation.
AHP-type currents and sodium-gated-potassium currents are mainly activated dur-
ing calcium/sodium influx at each spike [Williams 1997, Bowden 2001, Yamada 2004,
Goldberg 2005]. Similarly, M-type currents are mediated by high-threshold slow
potassium channels, which directly rely on action potential generation mechanisms
[Ermentrout 2001]. Both M-type and AHP-type currents exhibit an activation time-
constant in the order of 100ms. However, the time course of adaptation caused by
sodium-gated potassium time-constant is in the order of several seconds [Benda 2003].

Principally, neurons with spike-frequency adaptation operate within a highly com-
plex network with fluctuating inputs and a large degree of heterogeneity, beyond any
in vitro observations. Under such conditions, the long lasting effects of spike-frequency
adaptation compare to a typical in vivo like firing statistics alter the integration dynam-
ics of adaptive spiking cells. In this dissertation, the appearance of such complex dy-
namics in vivo neuronal activities is denoted as an emergent property of spike-frequency
adaptation.

Emergence of Non-renewal statistics. Renewal processes such as Poisson and
Gamma processes, enjoy widespread use in the literature. They have been ap-
plied to model the firing statistics of neurons receive in vivo like fluctuating in-
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put [Moore 1966, Perkel 1967a, Perkel 1967b, Shadlen 1998, Bastian 2001]. In the
renewal theory, the firing probability is modeled as a function of the time since
the last spike, or age, and successive inter-spike intervals are statistically indepen-
dent [Cox 1970]. However, one significant emergent property of spiking neurons with
adaptation is that they violate the fundamental assumption of inter-spike intervals
independence as formulated in the canonical renewal theory. subsequent intervals
of action potentials, since after each spike the underling adaptation mechanisms af-
fect the probability of the next spike generation [Muller 2007]. Chapter 2 summa-
rizes and collects the results on emergence of negative serial dependencies among
inter-spike intervals due to spike-frequency adaptation in vivo conditions. More-
over, it provides an additional experimental evidence that supports the existence
of negative serial interval correlations in the extrinsic neurons of Honeybee’s mush-
room body, so called α-lobe. The serial dependency in inter-spike intervals is quan-
tified with the linear correlation coefficient between subsequent inter-spike intervals
[Farkhooi 2009b, Benda 2010, Liu 2001, Nawrot 2008, Ávila-Åkerberg 2011]. To study
serial interval correlations between adjacent inter-spike intervals and their emergent
statistical property in chapter 2, a family of autoregressive point processes is intro-
duced, where its marginal inter-spike interval distribution is described by the gen-
eralized gamma model. The generalized gamma process includes as special cases of
the log-normal and gamma distributions. Those distributions have been widely used
to characterize spiking neurons’ statistics in vivo. The introduced serially correlated
point process model is used to investigate that how serial interval correlations affect the
distribution of the number of spikes NT in a given time window T (so called counting
process) in a numerical simulation. This distribution is of a significant importance,
since it provides a description for the number of events that post-synaptic neurons
receive in the time interval of T , and presumably forms the post-synaptic responses.
This analysis shows that the variance of the neuronal spike counting process for the
experimentally confirmed negative serial correlation is significantly reduced. There-
fore, a measure of single neuron variability as quantified by the Fano factor [Fano 1947]
defined as,

FT =
V ar(NT )

E(NT )
(1.1)

is reduced by up to 50%. This result indicates that the estimation of the mean fir-
ing rate becomes more efficient and it favors the transmission of a firing rate code
[Farkhooi 2009b].

Adaptation phenomenology and emergence of non-renewal statistics. The result in
chapter 2 that indicates the reduction of Fano factor for a single neuron is merely due to
the introduction of negative serial correlations within the series of inter-event intervals.
It is shown also in [Benda 2010] almost all known phenomenological and physiological
models of spike-frequency adaptation exhibit the inter-event negative serial dependen-
cies as well. Therefore, it is of interest to study the conditions that may lead to the
introduction of a non-renewal process in adaptive spiking neurons. Chapter 3 provides
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a set of conditions for the emergence of non-renewal statistics for neurons with spike-
frequency adaptation are studied. Therein, a fairly general phenomenological model of
spike-frequency adaptation in [Dayan 2001, Muller 2007] is analyzed, where adaptation
self-negative feedback input x is modeled with a shot-noise dynamics

ẋ = −τx+ q
∑

δ(t− tk) (1.2)

where τ is time constant of relaxation, q is the fix conductance change in the level
of adaptation, δ is Dirac-delta function which has its mass at the time of tk, where
indicates the time of kth spike. In a rigorously analytical treatment, it is formally
shown that an adaptive process exhibits negative serial correlations if and only if (i)
after an event there should be a self-inhibitory feedback, similar to Eq. (1.2), and
simultaneously (ii) the probability of the occurrence of an event is increasing over time.

Adaptation at the population level. The improvement of the transmission of a rate
code can be observed in many cells with spike-frequency adaptation given the emer-
gence of negative serial correlations in their background activity. However, it is of
interest to study the effect of adaptation in a population of neurons to investigate if
the statistical result above (and in chapter 2) is also valid at the population level.
This question is studied in chapter 3. To this end, an elegant approach introduced
in [Muller 2007] for the treatment of neuronal ensembles based on a population den-
sity method is employed. The approach is based on a canonical conductance-based
integrate-and-fire neuron model driven by Poisson spike trains, augmented by mecha-
nisms for spike-frequency adaptation and a relative refractory period. In [Muller 2007],
it is shown that the full five-dimensional field equation for a neuronal ensemble with
the assumption of incoherent activity can be reduced to a Markov point process model
by an adiabatic elimination of fast variables [Gardiner 2004]. This is a formulation that
allows a development of a generalized non-renewal theory to investigate the effect of
a slow adaptation variable on the expressions at the population level for (i) the count
statistics and its Fano factor in an arbitrary time window, and (ii) the inter-event inter-
val statistics, e.g. coefficient of variation Cv. Thereafter, it is proved that the system at
the ensemble level also exhibits non-renewal property due to the emergence of negative
serial correlations induced by adaptation and the superposition operation of individual
processes to create the population activity. Therefore, it suggests that an adaptive
ensemble regularizes its collective activity and increases the signal-to-noise ratio and
thus it benefits post-synaptic signals detection and/or transmission. Additionally, by
applying an information theoretical measures, it is shown that an adaptive process
provides more coding capacity due to a regularization of the counting process. This
theoretical prediction is confirmed in the superimposed ensemble activity of cortical
neurons in vivo.

Emergence of sparse code in adaptive network. The other interesting feature of neu-
ronal population with spike-frequency adaptation is that to provide a high-pass filtering
of the input fluctuation [Benda 2003]. The high-pass filter affects the transfer function
of the neurons and introduces a gain control mechanism. This feature leads to an
intensity invariant mechanism, which contributes to the dynamical feature of the neu-
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ronal processing [Benda 2007]. In the fourth chapter of this dissertation, the high-pass
filtering property of adaptation at the network level is studied. It demonstrates that
the high-pass filtering of adaptive neurons in a feed-forward network of neurons can
construct a temporally spare representation of the stimulus. In specific, it is shown that
adaptation might be responsible for a temporal sparse code which has been reported in
the Kenyon cells (KCs) of the insect mushroom body [Turner 2008, Perez-Orive 2002].
The result here provides an alternative understanding to the conventional theory which
suggests that the sparse code in Kenyon cells emerges by a feed-forward inhibitory mech-
anism [Assisi 2007]. Chapter 4 also shows that this theoretical prediction is supported
by Calcium imaging experiment that measure activities in Honeybee’s mushroom body
calyxes. The experimental data indicates that in the presence of the various inhibition
antagonist the activity time course of Kenyon cells remains unchanged. Therefore, it
suggests that feed-foreword inhibition might not be the sole possible mechanism for the
introduction of sparseness. The observed activities in the data alternatively can be ex-
plained by the neuronal intrinsic spike-frequency adaptation and/or a similar response
impairment mechanisms such as short-term synaptic depression. The result from our
simulation of a simplified pathway of the olfactory circuit indicates that implementa-
tion of adaptation and/or short-term synaptic depression attributes in the network can
account for a sparse representation of the stimulus in Kenyon cell level. Thus, possibly
adaptation provides the dynamics to produce a presumably valuable spare code of sen-
sory input in the network. This result can be generalized to many networks in which
the machinery for the adaptation is available.

Contributions of this dissertation. Generally, in this dissertation I explore some basic
emergent properties of neurons with spike-frequency adaptation on spiking statistics of
a single cell, an ensemble activity and finally its possible functional role in an organized
network to produce sparse representation of the stimulus e.g. olfactory information pro-
cessing. Here, I present my theoretical work in parallel to some experimental findings
that address the following questions: how does non-renewal statistics affect the vari-
ability measures and the coding of the information in spiking neurons in vivo? How
does a single cell property like spike-frequency adaptation translate to a population
level? What are the conditions for the emergence of non-renewal statistics in spiking
neurons? How does adaptation contribute to sparse coding strategies?

The results presented here contribute to the understanding of neuronal firings and
dynamics by showing that spike-frequency adaptation has a considerable effect on the
information processing in the nervous system. Thereby, I strongly suggest that the
importance of spike-frequency adaptation and non-renewal statistics should be taken
into the account for a better understanding of the functions of spiking neurons in the
nervous system.



Chapter 2

Serial Correlation in Neural Spike
Trains: Experimental Evidence,

Stochastic Modelling, and Single
Neuron Variability1

The activity of spiking neurons is frequently described by renewal point process models
that assume the statistical independence and identical distribution of the intervals
between action potentials. However, the assumption of independent intervals must be
questioned for many different types of neurons. We review experimental studies that
reported the feature of a negative serial correlation of neighbouring intervals, commonly
observed in neurons in the sensory periphery as well as in central neurons, notably in
the mammalian cortex. In our experiments we observed the same short lived negative
serial dependence of intervals in the spontaneous activity of mushroom body extrinsic
neurons in the honeybee. To model serial interval correlations of arbitrary lags we
suggest a family of autoregressive point processes. Its marginal interval distribution
is described by the generalized gamma model which includes as special cases the log-
normal and the gamma distribution which have been widely used to characterize regular
spiking neurons. In numeric simulations we investigated how serial correlation affects
the variance of the neural spike count. We show that the experimentally confirmed
negative correlation reduces single neuron variability, as quantified by the Fano factor,
by up to 50% which favours the transmission of a rate code. We argue that the feature
of a negative serial correlation is likely to be common to the class of spike frequency
adapting neurons and that it has been largely overlooked in extracellular single unit
recordings due to spike sorting errors.

2.1 Introduction

Stochastic point process models have a long tradition in cellular neurophysiology as a
means to describe the random nature of action potential generation in spiking neurons
[Gerstein 1964, Stein 1965, Moore 1966, Perkel 1967a, Perkel 1967b, Tuckwell 2005,
Johnson 1996]. The mathematical definition of a point process allows to analytically
calculate the distribution or the expectation value of a given stochastic variable and
to formulate statistical predictions for experimental results. Numeric simulation of

1This chapter is the reprint version of Farkhooi, F., Strube-Bloss, M.F. & Nawrot, M.P. Serial correlation
in neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability. Phys. Rev. E 79,
021905 (2009) available via publisher website at http://link.aps.org/doi/10.1103/PhysRevE.79.021905 . Please
refers to page iii in this dissertation for the detials of authors contributions.

http://link.aps.org/doi/10.1103/PhysRevE.79.021905
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point processes is highly efficient and can be used to numerically construct distribu-
tions of stochastic variables that are analytically intractable. The class of renewal
point processes [Cox 1962] has gained particular popularity in theoretical neuroscience
[Stein 1965, Perkel 1967a, Perkel 1967b, Tuckwell 2005, Johnson 1996]. In a renewal
model the intervals between successive events are independent and identically dis-
tributed. Thus, a renewal process is fully characterized by the distribution of inter
event intervals. Selection of the specific model distribution allows to incorporate some
important physiological characteristics of spiking neurons such as an absolute and rela-
tive refractory period [Tuckwell 2005, Johnson 1996, Berry 1998]. In the intact nervous
system spiking neurons modulate their firing rate with time as a means of dynamic stim-
ulus encoding and information processing. Point process models of neuronal spiking
that follow a dynamic firing rate can be achieved with inhomogeneous variants of the
renewal model where the process intensity follows a deterministic and explicitly time
dependent function [Reich 1998, Berry 1998, Kass 2001, Barbieri 2001, Brown 2001,
Nawrot 2008, Devroye 1986].

In the renewal model the probability for the occurrence of the ith spike at time t
depends solely on the process intensity and the time that elapsed since the last spike
i − 1 at time Ti−1 < t, but there is no serial dependence on the previous history of
spiking. However, several types of neurons in different systems have been shown to
violate the renewal assumption of independent intervals in their spontaneous activity.
The common feature of these neurons is a short-lived negative serial correlation of
their inter spike intervals (ISIs) which is likely to be a general property of neurons that
feature a physiological mechanism of spike frequency adaptation (see Discussion).

In this manuscript we propose a class of autoregressive point process models that in-
corporate serial correlation of inter event intervals for arbitrary serial correlation orders.
Our model describes the marginal inter event interval distribution by the generalized
gamma distribution which includes as special cases the log-normal, the gamma, the
exponential and the Weibull distribution. We derive expressions for the most relevant
empiric measures of the interval statistics and perform maximum likelihood estimates
of the model parameters in our data set. Using physiologically plausible model param-
eters we investigate the effect of a negative serial correlation on the variability of single
neuron discharge.

2.2 Serial interval correlation in different neural systems

The phenomenon of a significant negative serial interval correlation of order 1, i.e. the
anti-correlation of neighbouring intervals, is a common property of spiking neurons in
various systems. In the sensory periphery this has been observed in the electrosensory
P-type receptor of the weakly electric fish [Ratnam 2000, Chacron 2000], sensory gan-
glion receptors of the paddle fish [Neiman 2004], and in the ganglion cells in the retina
of the goldfish [Levine 1980] and of the cat [Kuffler 1957, Rodieck 1967]. In central
parts of the mammalian brain the same serial statistics has been reported for brain
stem neurons in the lateral superior olive [Tsuchitani 1985], and recently in cortical
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Table 2.1: Reports on negative first order serial interval correlation in different preparations and cell
types

Ref. Model System & Neuron Type SC2

[Ratnam 2000] Weak electric fish, isolated -0.52
P -type Receptors afferent

[Chacron 2000] Weak electric fish, isolated -0.35
P -type Receptors afferent

[Neiman 2004] Paddle fish, sensory Ganglion ∼ -0.4
[Floyd 1982] Cat splanchnic and hypogastric -0.3

nerves in vivo
[Levine 1980] Goldfish retina, Ganglion cells in vivo -0.13
[Rodieck 1967] Cat Retina, Ganglion cells in vivo -0.06
[Kuffler 1957] Cat Retina, Ganglion cells in vivo -0.17
[Tsuchitani 1985] Cat Lateral Superior Olive in vivo -0.2
[Nawrot 2007] Rat Somatosensory Cortex (S1) -0.21

in vivo, regular spiking cells
[Nawrot 2007] Rat Somatosensory Cortex (S1) -0.07

in vitro, pyramidal cells
[Engel 2008] Rat medial entorhinal cortex in vitro [-0.1,-0.4]3

Layer II stellate and Layer III
pyramidal neurons

Section 2.3 Honeybee central brain in vivo -0.15
Mushroom body extrinsic neurons

neurons in vivo [Nawrot 2007] and in vitro [Nawrot 2007, Engel 2008]. In the present
manuscript we report the existence of the same type of short-lived serial dependence of
ISIs for a class of central neurons in the mushroom body of the insect brain (cf. 2.3).
In Table 2.1 we summarized all quantitative accounts of a negative serial correlation.

2.3 Experimental Results

We investigated serial dependencies of ISIs in the spontaneous activity of extrinsic
neurons in the mushroom body (MB) of the honeybee. The mushroom body is known
to play a significant role in learning and memory of insects [Menzel 2001]. The extrinsic
neurons constitute the readout of the MB and each cell receives converging input from
thousands of the MB Kenyon cells, and thereby typically integrates different sensory
modalities. Details of the in vivo preparation and the extracellular recording technique
are described elsewhere [Okada 2007, Strube-Bloss 2008]. In brief, we manufactured
extracellular electrodes with three closely spaced polyurethane coated copper wires
(14µm in diameter). The electrodes were inserted into the ventral part of the alpha
lobe close to the peduncle, targeting the mushroom body extrinsic neurons, in particular
the clusters A1, A2, A4 ,A5, and A7. Raw signals were measured differentially from
all three electrode pairs and bandpass filtered at 1 − 9 kHz using a Lynx-8 amplifier
(Neuralynx, Tucson, AZ) before A/D conversion with a sampling frequency of 20 kHz.
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Semi-automatic spike sorting was performed to identify the activity of up to three single
units using Spike2 software (Cambridge Electronic Design, Cambridge, UK). In order
to minimize the inference of potential spike sorting errors with our statistical estimates
(see Discussion), we considered for each animal (N=23) only the unit that expressed
the highest amplitude of the extracellular spike waveform.

Neural activity was measured under spontaneous conditions, i.e. when the animal
was shielded from any sensory stimuli, for up to 20 minutes. Though the experimen-
tal condition was controlled, single neuron activity could undergo short episodes with
spontaneous modulation of its spike frequency, sometimes in parallel to a spontaneous
motor behavior. Such overt changes of the firing rate, however, may severely com-
promise the statistical analysis of the ISIs [Perkel 1967a]. Thus, in a first step of our
analysis we identified in each data set the longest part of stationary activity. To this
end, we measured the spike count in successive time bins of a fix length of either 1 s
or 500ms for lower (< 10 /s) or higher firing rate, respectively, and divided the total
series of counts into equal parts of 30 bins. Each subseries of the counting process was
then tested for stationarity. We adopt the notion of weak stationarity of a time series
[Johnston 1954] which requires three conditions to be fullfilled: The series must have (i)
a constant mean, (ii) a finite variance, and (iii) its autocovariance must be translation
invariant for an arbitrary time lag. Next, we performed the Phillips Perron Unit Root
Test (PP test) which is explained in details elsewhere [Phillips 1988]. Briefly, the fam-
ily of unit root tests estimates the likelihood of a random walk behavior. The random
walk is a linear nonstationary time series. The PP test formulates the nullhypothesis:
The time series has a unit root, i.e. the time series is not stationary. If for a given
count series the deviation from nonstationarity was significant (P < 0.1) we considered
it as stationary. Thereafter, subsequent stationary parts were pooled and the test was
repeatedly performed until the longest stationary part was found. We used the pp.test
function of the tseries package in the R statistical environment to perform this test.
The truncation lag parameter for the linear regression was set to 12( n

100
)0.25, suggested

by [Trapletti 2011]. Figure 2.1 displays the count series for part of one single neuron
recording where black color indicates epochs that were classified as stationary.

From the longest stationary spike train of each neuron we collected all ISIs and
estimated their distribution. An example histogram of event intervals is illustrated in
Figure 2.2 together with model fits of the log-normal (red) and the centralized gamma
distribution (blue, for details on goodness of fit refer to section 2.4). If the spiking
process was renewal, an adequate formal model of the ISI distribution would suffice
to define the renewal model. However, we found that the assumption of independent
intervals was violated in the observed spike train of this neuron. This becomes evident
in the conditional mean of ISI length in Figure 2.2 b which estimates for all intervals
ISIi that fall into a given class of interval lengths (bin wifth 15ms) the average length
of the successive intervals ISIi+1.

In general, successive intervals were not independent; in most neurons we ob-
served a tendency for short intervals to be followed by longer ones and vice versa.
This dependence was expressed in a negative Spearman rank-order correlation coeffi-
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Figure 2.1: Test for weak stationarity of the counting process. Spike count of neuron # 1 observed
in successive intervals of 1 s length as a function of time. Gray parts did not deviate significantly
from the nullhypothesis of a nonstationary time series. Black parts significantly deviated from this
nullhypothesis and were assumed to be weakly stationary. See text for details on the test procedure.
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Figure 2.2: Empirical inter spike interval distribution and conditional mean of one MB extrinsic neu-
ron. (a) Histogram of the length of N=1530 ISIs (gray). Log-normal (red) and a gamma (blue) model
distribution for MLE parameters. (b) Conditional mean (CM) of the i + 1st interval in dependence
on the length of the ith inteval (estimated in bins of 15ms).
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Figure 2.3: Partial autocorrelation function for experimentally observed spike trains. Box plots
describe the distribution of rank-order correlation across N = 21 neurons for different serial lags. In
14 cases, the sequence of ISIs exhibited a significant (P < 0.01) negative correlation of lag 1. For
higher lags (p > 1) the serial correlation did not significantly deviate from 0 (P = 0.01). Here we
tested only neurons with a unimodal shape of the interval distribution.

cient [Kendall 1962] of order p = 1 (calculated for neighboring intervals). This was
found to be significant (P < 0.01, Wilcoxon rank-sum test) in 14 out of 21 neurons
(Figure 2.3). The example neuron in Fig. 2.2 exhibited a significant serial correlation
of −0.05. The average significant correlation coefficient was −0.15.

Next, we tested for significant higher order serial correlation of the intervals Ii and
Ii+p, separated by lag p. We again used Spearman’s rank-order correlation coefficient
and estimated the partial autocorrelation function (PACF, [Brockwell 1991]) where for
the pth order correlation we use only every pth data sample. This avoids spurious
correlation of order p due to correlations of lower orders l < p. We found that none
of the spike trains exhibited a significant (P = 0.01) correlation of higher order p > 1
and average correlation coefficients close to zero (Figure 2.3).

2.4 Correlated Point Process model and Parameter Estimation

A linear history dependent process can be modeled by an autoregressive (AR) process
within the limits of stationarity and ergodicity conditions (details are elaborated in
[Brockwell 1991]). A general form of the autoregressive process with serial dependence
up to a finite lag p reads

Xs = β1Xs−1 + β2Xs−2 + ...+ βpXs−p + εs (2.1)

where εs is assumed to be independent and identically distributed with the specific
mean µ and finite variance σ2. βi is the correlation parameter for the specific lag i.

Under stationary conditions the distribution of Xs is conditional of the distribution
of εs. Hence, it is possible to generate surrogate sequences with a specific marginal
distribution of inter event intervals. As for the renewal model, the choice of the interval
distribution is crucial. It determines to a large extend the count and interval statistics
of the process. In practical terms, the model distribution should closely resemble the
empiric ISI distribution of the particular neuron type that is to be modeled.
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2.4.1 Log-normal marginal distribution

In order to modify (2.1) for generating a series of events consistent with our experimen-
tal findings, we need to specify (i) the serial correlation structure, and (ii) a marginal
interval distribution that describes well our experimental data. With respect to the
empirical correlation structure we may simplify the general model (2.1) to consider
only the first order serial dependence (β = β1) which we assume to be negative. As
a model for the inter event intervals we chose here the log-normal distribution. This
model fits reasonably good to our experimental data (see Fig. 2.2 and Table 2.2) and
leads to a rather simple mathematical description. Thus we have

∆s = exp(Xs) = exp(βXs−p + εs) (2.2)

where εs is assumed to be distributed normally with the mean µ, variance σ2, and
β describes the negative serial dependence of the series Xs. In fact, the series ∆s of
correlated intervals is the exponential transformation of the series of disturbances Xs.
The properties of such transformations of correlated random variables is discussed in
great detail in [Granger 1976].

The mean and variance of Xs is determined by

E[Xs] =
µ

1− β
(2.3)

and
V ar[Xs] =

σ2

1− β2
(2.4)

respectively. Thereafter, the expected value of ∆s is

E[∆s] = e
µ

1−β+ σ2

2(1−β2) (2.5)

and its variance is
V ar[∆s] =

(
e

2µ
1−β+ σ2

1−β2

)
·
(
e

σ2

1−β2 − 1

)
(2.6)

and hence the coefficient of variation of this series is

CV[∆s] =

√
e

σ2

1−β2 − 1. (2.7)

The intensity λ for this process can be derived directly from (2.5) as

λ =
1

E[∆s]
=

1

e
µ

1−β+ σ2

2(1−β2)

. (2.8)

The autocovariance of ∆s is given in [Granger 1976], Eq. 2.9.

As we incorporated only first order serial correlation β, by iteration over lags we
obtain the following
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∆s = exp(Xs) = exp(
∞∑
i=0

βiεs−i). (2.9)

It is evident that the distribution of ∆s is conditional on the distribution of εs, if
the stationary assumption holds (| β |< 1). Since the distribution of the εs is normal,
the distribution of ∆s is asymptotically log-normal and the series is negatively serially
correlated and constitutes a first order Markov process.

Realizations of this autoregressive model are easily obtained by numeric simulation.
We performed two example simulations in Figure 2.4 where we defined the log-normal
interval distribution by the fix mean interval E[∆] = 50ms and a fix coefficient of
variation CV[∆] = 0.5. The first order serial correlation paramter was either β1 =
−0.1 (left) or β1 = −0.5 (right). Note that by changing β1 and keeping E[∆] and
CV fixed, we have to adjust σ and µ according to equations (2.7) and (2.5). The
empiric interval distributions in Figure 2.4 a (gray histograms) resemble well the model
distributions (red). The return maps of the log-transformed ISIs in Figure 2.4 c disclose
the negative correlation of neighbouring intervals and the empiric estimates of the
linear correlation coefficient β̂i of log-transformed intervals closely match the underlying
model parameters. The empirical PACF for serial correlations of lag p ≥ 2 are close to
zero.

2.4.2 Generalization of the model

We now propose the generalized gamma density as a more general model for the
marginal distribution of ∆s. For x > 0 this can be written as

Ω

Γ(α)
(
1

ρ
)ΩαxΩα−1e−(ρx)Ω

. (2.10)

This model incorporates some special cases that are widely used to describe ex-
perimental ISI distributions of regular spiking neurons. The exponential distribution
(Ω = α = 1; e.g. [Gerstein 1964, Perkel 1967a, Tuckwell 2005]) describes the well known
special case of a Poisson process with only a single free parameter that determines
the mean interval and thus the process intensity. The (centralized) gamma (Ω = 1;
e.g. [Kuffler 1957, Stein 1965]), the Weibull distribution, and the log-normal distribu-
tion (e.g. [Burns 1976, Levine 1991]) which describes the limiting case for (α → ∞)
have one additional free shape parameter.

Following the same scheme as in (2.2) we write

∆s = exp(Xs) = exp(βpXs−p + εs) (2.11)

where εs is assumed to be distributed generalized log-gamma with the vector of
parameters

ζ = (ρ,Ω, α) . (2.12)
Since the distribution of εs is log-gamma, the distribution of ∆s will be asymptoti-

cally generalized gamma.
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2.4.3 Parameter Maximum Likelihood estimation

The model (2.2) with marginal log-normal distribution has a set of parameters, namely
µ, σ and β. To obtain a maximum likelyhood estimator for the paramter set we rewrite
the probability density function of the log-normal distribution fl based on the normal
distribution fN ,

fL(∆s;µ, β, σ) =
1

∆s

fN(ln ∆s;µ, β, σ) (2.13)

Thus, we can write the log-likelihood function of the log-normal distribution (lL) as

lL(µ, β, σ | ∆1,∆2, . . .∆n) =

−
∑
k

ln ∆k

+ lN(µ, β, σ | ln ∆1, ln ∆2, . . . ln ∆n) (2.14)

Since
∑

k ln ∆k is constant with regard to µ, σ and β, both logarithmic likelihood
functions, lL and lN , reach their maximum with the same µ, β and σ. Hence, us-
ing the expression for the maximum likelihood estimators (MLE) for the normal dis-
tribution we can deduce the MLE for the parameters of the log-normal distribution
[Johnston 1954]. MLEs for the generalized gamma model are given in [Ortega 2003].
Using the lemma (2.14) we may obtain the MLEs for the generalized log-gamma dis-
tribution. In practical terms, when estimating parameters from a sample {∆̂} of ex-
perimentally obtained intervals we may first perform a logarithmic transformation and
then apply the MLE estimators on the transformed sample {log(∆̂)}.

Maximum likelihood estimation ensures a bias-free parameter estimation with min-
imal variance of the estimator. Applying non-optimal estimators will lead to a biased
estimate. The linear correlation coefficient assumes a normal distribution of the ran-
dom variable and will introduce a bias for log-normal distributed random variables.
We illustrate this in Figure 2.5 where we simulated realizations of the model described
in (2.2) and subsequently obtained two different estimates β̂ of the serial interval corre-
lation parameter β. The red circles in Figure 2.5 indicate the estimated values obtained
by MLE on the ordinate which closely match the true parameter values on the abscissa.
However, the linear serial correlation coefficient (black circles) strongly underestimates
the model-inherent serial correlation β with an increasing estimation error for increasing
absolute values of β.

2.4.4 Empiric estimates of model parameters

In practice, we rarely know for certain that a sample of observed event intervals are
drawn from a specific distribution. Instead, the best we can typically do is to provide
evidence that our observations are consistent with a distribution model. A goodness-
of-fit test can be performed to assess whether the observations were likely to be drawn
from the hypothesized model distribution which is particularly helpful when choosing
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between alternative models. We used the Kolmogorov-Smirnov test to assess the good-
ness of fit of the log-normal and the centralized gamma distribution to the empiric ISI
distribution for 10 different neurons. In order to perform the test correctly, distribution
model parameters were estimated based on the assumed distribution using maximum
likelihood estimators (MLE). The test results for 10 example units are illustrated in
Table 2.2. In summery, the test indicates that the model cannot be rejected in approx.
75% and 50% of all neurons for the log-normal and the centralized gamma distribution,
respectively (P ≤ 0.01). Moreover, all units were tested for unimodality based on a
test suggested in [Hartigan 1985]. Only two neurons showed a significant deviation of
their ISI distribtion from unimodality (neurons #5 and #7 in Table 2.2).

Table 2.2: Estimated parameters from experimental spike trains of 10 neurons for the autoregressive
log-normal and centralized gamma model with 1st order serial correlation β̂. Neurons 5 and 7 showed
a significant (P=0.05) deviation from a unimodal distribution.

Log-normal Centralized Gamma
# µ̂ σ̂ P1 β̂ α̂ ρ̂ P1 β̂ CV
01 -3.245 1.361 0.090 -0.006 0.797 0.103 0.339 -0.006 1.24
02 -2.239 0.545 0.000 -0.268 4.291 0.028 0.000 -0.268 0.66
03 -4.628 0.875 0.011 0.018 1.581 0.009 0.028 0.018 0.88
04 -3.057 0.721 0.000 -0.189 2.409 0.024 0.013 -0.190 0.61
05 -1.521 1.048 0.759 -0.424 1.129 0.321 0.238 -0.442 0.96
06 -4.232 1.002 0.000 -0.103 1.303 0.017 0.000 -0.103 0.86
07 -2.974 0.555 0.013 -0.062 3.762 0.016 0.477 -0.062 0.51
08 -3.088 1.132 0.000 -0.215 1.047 0.075 0.000 -0.216 0.96
09 -2.955 0.568 0.049 0.007 3.695 0.016 0.780 0.007 0.51
10 -4.077 1.045 0.013 -0.068 1.226 0.022 0.222 -0.068 1.06

2.5 Effect of serial interval correlation on count variability

Stochastic point processes are typically described by two inherent stochastic variables.
These are the intervals ∆ between events, and the event count NT , i.e. the number
of events that are expected to fall within a certain time interval of length T . For any
given point process, interval and count statistics are closely related. We investigated
the effect of serial interval statistics on the variability of the event count in numerical
simulations of our model (2.2). To quantify the count variability we used the Fano
factor [Fano 1947, Nawrot 2008] (also ’index of dispersion’) which normalizes the count
variance by the mean count across observations of length T :

FF =
V ar[NT ]

E[NT ]
.

For renewal models the count variability depends solely on the dispersion of the
interval distribution and it holds in the limit of infinite observation that limT→∞ FF =
CV2 ([Cox 1962, Cox 1966, Tuckwell 2005]). This relation will change if the inter event
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intervals are no longer independent but exhibit serial dependencies. Cox & Lewis 1966
([Cox 1966]) derived the following approximate analytic expression for the effect of
serial interval correlation of order p on a point process that is otherwise stationary

lim
T→∞

FF = CV2
th

[
1 + 2

∞∑
p=1

βp

]
. (2.15)

Using our model (2.2) we explored the FF as a function of first order serial interval
correlation β in numeric simulations. We again fixed the parameters of mean interval
µ and the CV. For each parameter value of β we then generated 10000 point process
realisations and computed the FF across all repetitions. Our results in Figure 2.6 a
show that the FF increases with increasing values of positive serial correlation, while it
decreases with increasing strength of negative correlation. In Figure 2.6 b we directly
explored the ratio FF /CV2. It emphasizes the effect of serial correlation on count
variability in comparison to the renewal case for which FF ≈ CV2. The linear expres-
sion (2.15) approximates the numeric result only in a restricted paramter range with
β ≈ 0. We conclude that the process (2.2) with a realistic negative correlation strength
in the experimentally observed range of β ∈ [−0.5,−0.1] (cf. Table 2.1) exhibits a count
variance that is up to 50 % smaller than predicted from the renewal model.

2.6 Discussion

We report here a negative first order serial correlation of ISIs in the spontaneous ac-
tivity of mushroom body extrinsic neurons in the honeybee. The estimated negative
correlation was generally weak but significant in the majority of units. Short-lived
serial interval correlations have been previously observed in the spontaneous activity
of various different types of neurons and with different correlation strengths up to ap-
prox. −0.5 for neighboring intervals, as summarized in Table 2.1. This indicates that
the spiking processes of those neuron types generally exhibit a non-trivial dependence
on the spiking history. In other words, the dynamics underlying a neuron’s spike gen-
eration is not reset after each spike as it is assumed in the prominent renewal model as
well as in many computational single neuron models.

2.6.1 The effect of spike sorting errors

Why are there so few reports on the negative interval correlation in the activity of
single neurons in central brain structures (cf. Table 2.1)? Potential errors during the
procedure of spike sorting in extracellular recordings may lead to the false assignment
of individual spikes to one single unit (false positive spikes), or to missed spikes of one
neuron (false negative spikes). Both types of errors will reduce the strength and signifi-
cance of the empircial correlation measure (simulations not shown). In paractice, spike
sorting errors are inevitable and abundant. E.g. the rate of false positive assignment
has been estimated to reach ≈ 10 % in the neocortex and a similar number of spikes of
a particular neuron are likely to be missed (e.g. [Joshua 2007, Pouzat 2004]). This can
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readily explain why the phenomenon of serial interval correlation has been largely over-
looked in in vivo preparations where single neuron activity is accessible mainly through
extracellular recording techniques, in particular in the awake animal. Conversely, if we
assume that neurons of a certain class do exhibit a particular serial correlation pattern
we might be able to exploit this knowledge in the context of a spike sorting procedure.
In particular we suggest here to use the significance of the observed 1st order negative
serial correlation of a putative single unit as a post-hoc quality measure for the suc-
cess of the spike sorting algorithm. This will require the continuous measurement of
stationary spontaneous activity during parts of the experiment.

2.6.2 The cause of negative serial interval correlation

The feature of negatively correlated intervals is likely to be a neuron intrinsic prop-
erty caused by the same cellular mechanisms that underlie spike frequency adaptation
(SFA). The combinatorial effect of calcium influx associated with action potential gen-
eration, slow decaying intracellular calcium dynamics and a calcium dependent potas-
sium current mediates the so-called slow afterhyperpolarization (e.g. [Pennefather 1985,
McCormick 1989, Sanchez-Vives 2000a, Tzingounis 2007, Wang 1998, Liu 2001]). In
the spontaneous state this adapting mechanism may lead to an alteration of short
and long intervals. Conversely, significant anti-correlation of neighboring intervals in
experimental spike trains is indicative of SFA [Liu 2001] and measures of negative se-
rial correlation may be applied to actually collect evidence for SFA in recordings from
awake animals. However, one cannot exclude the possibility that the statistics of the
synaptic input under spontaneous conditions causes or alters the serial statistics of the
output spike train. For example in the primary afferent neurons of the electrosensors in
the paddle fish serial correlation of alternating sign exist up to very high serial orders
[Neiman 2001, Neiman 2004, Neiman 2005]. This is due to an oscillatory input from
hair cells that couples to a second neuron intrinsic oscillator. In an aged preparation
where the primary afferent is devoid of its input and thus decoupled from the afferent
oscillation, higher order correlations rapidly decay except for the strong negative 1st
order correlation which is caused by neuron intrinsic properties [Neiman 2005].

2.6.3 Computational Models

We briefly discuss existing models at different levels of abstraction that have been
shown to reproduce the experimentally observed negative serial correlation. The choice
of a model at the appropriate level of complexity obviously depends on the specific
questions under study [Herz 2006]. Zacksenhouse et. al. [Zacksenhouse 1998] devised
a compartmental model of the principal cells of the mammalian lateral superior olive
(LSO). Only the inclusion of Ca2+ dependent K+ channels could reproduce a negative
serial dependence of neighboring ISIs that resembled those observed in in vivo single
unit recordings from the LSO of the anesthetized cat [Tsuchitani 1985]. In the same
issue, Wang [Wang 1998] presented a biophysical model of a cortical pyramidal neuron
with one single dendritic and a somatic compartment. Incorporation of a voltage gated
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Ca2+ conductance and a Ca2+ dependent K+ conductance produced a pronounced
SFA behavior and negative serial correlation of successive intervals for stationary input
conditions. The model predicted that the strength of the negative correlation increases
with the output firing rate. This has recently been confirmed in an experimental in
vitro preparation [Engel 2008] and quantitative prediction for the average correlation
coefficient of −0.3 was well met by the recent experimental estimates listed in Table 2.1.

Using a generalized leaky integrate and fire (I&F) model with spike frequency adap-
tation, Liu and Wang [Liu 2001] predicted values for negative serial interval correlations
in cortical pyramidal neurons, again in the range of −0.19 to −0.24. Recently, Müller
et al. [Muller 2007] presented a conductance based I&F model with SFA. The neuron,
when driven by excitatory and inhibitory synaptic input, reproduces negative serial
interval correlation, the strength of which is rate dependent. This model can be re-
duced to a Markov process for spike frequency adapting neural ensembles by adiabatic
elimination of fast variables [Muller 2007]. This elegant approach synthesizes existing
mean adaptation approaches, population density methods, and inhomogeneous renewal
theory, resulting in a unified and tractable framework which goes beyond renewal and
mean-adaptation theories by accounting for correlations between subsequent inter spike
intervals.

At the next level of reduced complexity, the classic I&F model has been modi-
fied to produce negative interval correlations by numerical simulation. Introducing
a dynamic fatigue of the spike threshold that decays exponentially with physical
time introduces a threshold memory [Chacron 2000, Chacron 2001, Brandman 2002,
Longtin 2003, Lüdtke 2006]. The maximal order and strength of significant serial corre-
lations is then rate dependent. A simpler modification of the I&F model [Chacron 2004]
assumes a threshold memory of fix serial order k and thus produces negative serial cor-
relations only up to order k, independent of the rate.

2.6.4 Point Process Models

Point processes represent a different category of abstract models. They do not provide
a complete model of the single neuron as an input-output system. In the mathematical
definition, the point process intensity is a predescribed deterministic or stochastic func-
tion that describes the time dependence of the event rate, i.e. of the neuron’s output.
Synaptic input per se does not find its analogon in these models. However, so-called
cascade models (cf. [Herz 2006]) combine an input stage that converts synaptic drive
into an intensity variable with a random point process that genereates the spike output.
The merits of a stochastic point process model is its analytic formulation and a highly
efficient numeric simulation.

We presented a simple autoregressive (AR) point process model that may be seen as
a straight foreword extension of the widely used renewal model and earlier interval mod-
els with serial dependencies [Wold 1954, Gaver 1980]. Our approach models a linear AR
process that draws random disturbances ε where the distribution of the random variable
ε is represented on log scale (e.g. the log-gamma distribution). We then exponentially
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transform the resulting sequence to obtain the final sequence of non-negative intervals
(e.g. gamma model). The experimentally observed single unit spike trains showed in
all but two cases an unimodal interval distribution that in many cases could be well
fitted by a log-normal or centralized gamma distribution (cf. Table 2.2). Our model
can be generalized for any well defined interval distribution [Kampen 2007]. The linear
serial correlation coefficients up to finite lag p directly enter our model (2.2). Empiric
estimates of the parameters βi are obtained using appropriate ML estimators based
on a concrete model distribution. An alternative model-free and reliable estimator is
provided by Spearman’s rank-order correlation coefficient ([Kendall 1962, Press 1992],
cf. Figure. 2.3) which replaces the real valued intervals by their rank among all inter-
vals which are assumed to be uniformly distributed. Its disadvantage in comparison
to the appropriate ML estimator is expressed in the reduced power of the significance
test [Lehmann 1953]. For our model we apply the PACF to estimate the serial corre-
lation parameters. This requires a sample size that increases only linearly with serial
correlation order p and allows for parameter estimation from realistic experimental
sample sizes.

A more general approach for generating history dependent sequence of intervals rests
on the conditional probability density function of an interval given the lengths of the
previous intervals as it is described in [Johnson 1996]. This approach of formulating a
point process model with serial correlations up to a lag p requires a model of the full
p-dimensional interval distribution, or likewise the p-dimensional hazard term. The
difficulty of this approach obviously lies in the empiric estimate of the distribution
parameters from experimental data. The number of intervals that is required for a
faithful estimate will generally increase exponentially with the power of (p+ 1).

The formulation of the conditional intensity function [Vere-Jones 2005] provides a
rather general framework to relate the intensity of a point process to its event his-
tory and other covariate functions such as the intensity and spiking history of parallel
processes [Truccolo 2005]. However, empiric estimation of the conditional intensity
function typically requires a large amount of experimental data.

2.6.5 Reduced single neuron discharge variability

The variability of the single neuron discharge across repeated observations, as quanti-
fied by the FF, has been extensively studied in various experimental systems. It may be
interpreted as noise with respect to the signal encoded in the single neuron’s firing rate
which is implicitely assumed to be identical in all experimental repetitions. In point
process theory interval and count statistics are directly related. In the renewal case the
variance of the interval distribution fully determines the variance of the spike count.
Numeric simulations of our non-renewal model predict that the variability of single neu-
ron discharge is smaller than expected under the renewal assumption for all neurons
that show the typical feature of a negative serial interval correlation in their sponta-
neous activity. The very same prediction has previously been established by Chacron et
al. [Chacron 2004] in numeric simulatios of their integrate & fire model with dynamic
threshold. Experimental findings confirm this model prediction. Under spontaneous
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conditions the P-type recptor of the weakly electric fish produce regular spike trains
with a strong 1st order negative serial correlation [Ratnam 2000, Chacron 2000]. This
resulted in a Fano factor that was much smaller than predicted under the renewal as-
sumption, i.e. for a random permutation of the empiric interval series [Chacron 2000].
We could show elsewhere [Nawrot 2007] that cortical spike trains in vivo exhibited a
negative serial interval correlation with an average strength of β̂1 ≈ −0.2. This lead
to a FF that was about 30% smaller than the CV2 which matches well our numerical
calibration in Figure 2.6. The effect of a reduced count variability is naturally also
expressed in the spectral analysis of a spike train. Under stationary conditions, the
negative serial correlation reduces the power of the noise spectrum at low frequen-
cies [Chacron 2004, Neiman 2004] which enhances the information transfer in the low
frequency domain [Chacron 2004]. Note that this effect diminishes at high frequen-
cies. This frequency dependence is equally expressed in the dependence of the FF on
the lenght T of the observation interval. For shorter intervals the FF tends to unity
limT→0 FF(T ) = 1, while the CV tends to zero, independent of the stochastic nature of
the underlying process [Nawrot 2008].

As discussed above, we must expect that erronous spike sorting has frequently lead
to the analysis of ’single unit activity’ that was not 100 % single neuron activity If we
assume a negative interval correlation in the single neuron activity, we may deduce
two major effects of spike sorting erors on the statistics of the sorted unit activity:
(1) The FF increases when serial correlation diminishes, and (2) the variance of the
interval length (CV) likely increases due to false positive and false negative spikes that
truncate or merge the original spike trains with a biased production of too short and
too long intervals. We may speculate that spike sorting errors may have lead to a
systematic overestimation of count and interval variability, and thus may have caused
a biased picture of single neuron variability. We believe that a cautious re-evaluation
of serial spike train statistics, and of spike count variability is necessary, particularly in
the in vivo activity of central neurons. As we have discussed elsewhere [Nawrot 2008],
additional factors may lead to an overestimation of the true single neuron variability
in experimental recordings from awake animals. In central brain structures the most
prominent influence is to be expected from ongoing activity that is not directly related
to the experimental task under observation [Arieli 1996, Leopold 2003, Nawrot 2003,
Rotter 2005].

As outlined above, we hypothesize that the large class of neurons that feature an
intrinsic SFA mechanism generally exhibit a negative serial correlation under sponta-
neous conditions. We may thus formulate the futher going hypothesis that the SFA
mechanism reduces count variability not only under spontaneous conditions, but gen-
erally also under response conditions. This would result in a more reliable transmission
of a signal in favor of a rate code [Farkhooi 2008]. Lüdtke et al. (2006) demonstrated in
a model study that postsynaptic neurons can directly exploit the non-renewal structure
of a presynaptic spike train and benefit from an enhanced sensitivity to weak signals
on a noisy background [Lüdtke 2006].
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2.6.6 Open source tools

We provide implementations of various tools for numeric point process simulation
and parameter estimation within the FIND open source toolbox for neural data
analysis with Matlab [Meier 2008] (http://find.bccn.uni-freiburg.de/). Implementa-
tions in Python will be made available at the portal site of G-Node [Herz 2008]
(www.neuroinf.de), the German node of the International Neuroinformatics Coordi-
nating Facilites (INCF).
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Figure 2.4: Numeric simulations of the log-normal model. The parameter of first order serial corre-
lation was set to either β1 = −0.1 (left) or β1 = −0.5 (right). The parameters of E[∆] = 50ms and
CV = 0.5 were fixed for both cases. (a) Model (red) and empiric (gray) interval distribtion show a
good agreement. (b) Interval return map. The serial dependence of the i + 1st on the ith interval
is difficult to see. The linear regression (dashed line) with linear correlation coefficient %1 of the in-
terval series ∆s underestimates the correlation parameter β1. (c) In the interval return map of the
log-transformed series log(∆s) the strong negative correlation is clearly visible (right). The empiric
correlation coefficient β̂1 is an unbiased estimate of the true correlation β1. (d) PACF estimated for
serial lags p ≤ 10.
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Figure 2.5: Comparison of linear correlation coefficient (black) and MLE estimator for β̂ (red). Each
single estimate is based on a numeric simulation of 10.000 intevals with parameters of neuron # 1 in
Table 2.2. The serial correlation paramter β has been varied in the range [-0.99, 0.99].
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Figure 2.6: Effect of serial interval correlation on spike count variability. We obtained numerical spike
train realizations using our model (2.2). We varied the serial correlation paramter β and adjusted the
parameters (µ, σ) to obtain a fixed value of CV. (a) Fano factor (FF) as a function of β for three
different values of CV as indicated. The horizontal lines indicate the expectation FF = CV2 for a
renewal process. The vertical dotted line represents the renewal model where β = 0. (b) Ratio of
FF and CV2. For the physiologically relevant range with negative 1st order serial correlation β ∈
[−0.5,−0.1] (cf. Table 2.1) the FF is clearly smaller than the CV2 (gray shaded area). For the renewal
model (β1 = 0) we find FF /CV2 ≈ 1 as expected. The gray line represents the linear approximation
(2.15). Each data point represents 10000 trials. Each trial comprised on average 100 spikes; this
number is sufficiently large to avoid a significant bias of estimation for FF and CV2 [Nawrot 2008].
The black square reproduces the results given in [Nawrot 2007] as the average for 7 cortical neurons
with significant 1st order serial correlation of ISIs (see Discussion).



Chapter 3

Adaptation Reduces Variability
of the Neuronal Population Code1

Sequences of events in noise-driven excitable systems with slow variables often show
serial correlations among their intervals of events. Here, we employ a master equa-
tion for general non-renewal processes to calculate the interval and count statistics of
superimposed processes governed by a slow adaptation variable. For an ensemble of
spike-frequency adapting neurons this results in the regularization of the population
activity and an enhanced post-synaptic signal decoding. We confirm our theoretical
results in a population of cortical neurons.

3.1 Introduction

Statistical models of events assuming the renewal property, that the instantaneous
probability for the occurrence of an event depends uniquely on the time since the
last event, enjoys a long history of interest and applications in physics. However,
many event processes in nature violate the renewal property. For instance, it is known
that photon emission in multilevel quantum systems constitutes a non-renewal process
[Soler 2008]. Likewise, the time series of earthquakes typically exhibits a memory of
previous shocks [Livina 2005], as do the times of activated escape from a metastable
state, as encountered in various scientific fields such as chemical, biological, and solid
state physics [Lindner 2007]. Often, the departure from the renewal property arises
when the process under study is modulated by some slow variable, which results in
serial correlations among the intervals between successive events. In particular, the
majority of spiking neurons in the nervous systems of different species show a serial
dependence between inter-event intervals (ISI) due to the fact that their spiking activity
is modulated by an intrinsic slow variable of self-inhibition, a phenomenon known as
spike-frequency adaptation [Liu 2001, Farkhooi 2009b].

In this letter, we present a non-renewal formalism based on a population density
treatment that enables us to quantitatively study ensemble processes augmented with
a slow noise variable. We formally derive general expressions for the higher-order inter-
val and count statistics of single and superimposed non-renewal processes for arbitrary
observation times. In spiking neurons, intrinsic mechanisms of adaptation reduce out-
put variability and facilitate population coding in neural ensembles. We confirm our

1The material in this chapter is a preprint of Farkhooi, F., Muller, E. & Nawrot, M.P. Serial correlation in
neural spike trains: Experimental evidence, stochastic modeling, and single neuron variability. Phys. Rev. E 83,
050905 (2011) and its final version available in the publisher website via http://link.aps.org/doi/10.1103/PhysRevE.
83.050905. This version assessable via ArXiv at http://arxiv.org/abs/1007.3490v2. Please refers to page iii in this
dissertation for the detials of authors contributions.

http://link.aps.org/doi/10.1103/PhysRevE.83.050905
http://link.aps.org/doi/10.1103/PhysRevE.83.050905
http://arxiv.org/abs/1007.3490v2
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theoretical results in a set of experimental in vivo recordings and analyse their impli-
cations for the read-out properties of a postsynaptic neural decoder.

3.2 Non-renewal Master Equation

We define the limiting probability density for an event given the state variable x by
the so-called hazard function hx(x, t) where t denotes explicit dependence on time due
to external input following [Muller 2007] and appendix A. Here, we assume x has a
shot-noise-like dynamics, which is widely used as a model of spike induced neuronal
adaptation [Muller 2007]

ẋ := −x(t)/τ + q
∑

k δ(t− tk), (3.1)

where δ is the Dirac delta function, tk is the time of the kth event, and q is the quantile
change in x at each event. The dynamics of x deviates from standard treatments of
shot-noise (such as in [Gardiner 2004]) in that the rate of events has a dependence on
x as expressed by the hazard function hx(x, t). It is straightforward to show that the
distribution of x in an ensemble, denoted by Pr(x, t), is governed by

∂t Pr(x, t) = ∂x[
x

τ
Pr(x, t)] + hx(x− q, t) Pr(x− q, t)

− hx(x, t) Pr(x, t). (3.2)

Much insight can be gained by applying the method of characteristics [de Kamps 2003]
to establish a link between the state variable x and its time-like variable tx. For
Eq. (3.1) we define tx = η(x) := −τ ln(x/q), whereby d

dt
tx = 1. When an event

occurs, tx 7→ ψ(tx), where ψ(tx) = η(η−1(tx) + q) = −τ ln(e−tx/τ + 1) with its inverse
given by ψ(tx)

−1 = −τ ln(e−tx/τ − 1). Thus, we define h(tx, t) := hx(η
−1(tx), t). This

transformation of variables to tx elucidates the connection of the model to renewal
theory. Here, the reset condition after each event is not tx 7→ 0 (renewal) but tx 7→
η(x+ q), for details refer to appendix A. Therefore, the variable tx that we may call a
’pseudo age’ is a general state variable that no longer represents the time since the last
event (age). Transforming variables in Eq. (3.2) from x to tx yields in the steady state

∂tx Pr(tx) = −h(tx) Pr(tx)

+ (1−Θ0(tx))[h(ψ−1(tx) Pr(ψ−1(tx))], (3.3)

where Θ0(tx) is the Heaviside step function, and for convenience we defined ψ−1(tx ≥
0) ≡ 0. An efficient algorithm for solving Eq. (3.3) is given in [Muller 2007]. We
denote this solution by Preq(tx). Further, the time-like transformation in Eq. (3.3)
allows computation of the ISI by analogy to the renewal theory [Muller 2007] and
also permits the comparison to the master equation for a renewal process as given
in Eq. (6.43) in [Gerstner 2002]. The distribution of tx just prior to an event is
a quantity of interest and it is derived as Pr∗(tx) = h(tx)Preq(tx)/req, where req =∫
h(tx)Preq(tx)dtx is a normalizing constant and also the process intensity or rate of
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the ensemble. Similarly, one can derive the distribution of tx just after the event,
Pr†(tx) = Pr∗(ψ−1(tx))

d
dtx
ψ−1(tx) [Muller 2007]. Then the relationship between tx and

the ordinary ISI distribution can be written as

ρ(∆) =

∫ +∞

−∞
h(tx + ∆)Ω(tx + ∆)Pr†(tx)dtx, (3.4)

where Ω(tx + ∆) = e−
∫ ∆
tx
h(tx+u)du. Now the nth moment µn of the distribution and its

coefficient of variation Cv can be numerically determined.

3.3 Counting Statistics

In order to derive the count distribution, we generalize the elegant approach for deriving
the moment generating function as introduced in [van Vreeswijk 2010]: let ρn(tn, t

n
x|t0x)

be the joint probability density given its initial state t0x, where tn stands for time to nth

event and tnx is the corresponding adaptive state of the process. Thereafter, one can
recursively derive

ρ̃n+1(s, tn+1
x |t0x) =

∫
ρ̃n(s, tnx|t0x)ρ̃(s, tn+1

x |tnx)dtnx, (3.5)

where ρ̃n+1(s, tn+1
x |t0x) = L[ρn+1(tn+1, t

n+1
x |t0x)] and L is the Laplace transform with

resepect to time, assuming ρ̃1(s, t1x|t0x) = ρ̃(s, t1x|t0x) [van Vreeswijk 2010]. Next, defining
the operator Pn(s) and applying bra-ket notation as suggested in [van Vreeswijk 2010],
leads to the Laplace transform of nth events ordinary density

ρ̃n(s) = 〈1 | Pn(s) | Pr†〉 = 〈1 | [P(s)]n | Pr†〉, (3.6)

where the operator P associated with ρ̃(s), which interestingly corresponds to the
moment generating function of the sum of n non-independent intervals f̃n(s) as defined
in [McFadden 1962]. Now, following Eqs. (2.15) in [McFadden 1962] Laplace transform
of count distribution denoted as P̃ (n, s).

The Fano factor provides an index for the quantification of the count variability.
It is defined as JT = σ2

T/µT , where σ2
T and µT are the variance and the mean of the

number of events in a certain time window T . It follows from the additive property of
the expectation that µT =

∫ T
0
r(u)du and assuming constant firing rate µT = reqT . To

calculate the second moment of P̃ (n, s), we require Ãs =
∑

k ρ̃k(s), thus

Ãs = 〈1 | P(s)(I−P(s))−1 | Pr†〉, (3.7)

where I is the identity operator. Note, assuming a renewal interval distribution in
Eq. (3.4) one obtains Ãrs = ρ̃(s)/(1 − ρ̃(s)) and L−1[reqÃs] = reqA(u) is the joint
density of an event at time t and another event at time t+u. Thus, the autocorrlation
of events is A(u) = req[δ(u) + A(u)]. Now, by using Eq. (3.7) and the Eq. (3.3)
in [McFadden 1962], the second moment of the count statistics can be derived. Thus,
we obtain the Fano factor

JT = 1 + (2/T )
∫ T

0
(T − u)A(u)du− reqT, (3.8)
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The asymptotic property of F = limT→∞ JT can be derived from the result stated in
Eq. (7.8) in [McFadden 1962] as

lims→0[Ãs − 1/(µ1s)] = C2
v [1/2 +

∑∞
k=1 ξk]− 1/2, (3.9)

where ξk is the linear correlation coefficient between two k lagged intervals. Provided
the limit exits, we find F = C2

v [1 + 2
∑∞

k=1 ξk] in [Cox 1966].

3.4 Superposition

We now generalize our results on the counting statistics to the superposition of inde-
pendent point processes. This is of practical interest in all cases where we observe
superimposed events that stem from multiple independent process, e.g. in photon de-
tection devices, or in the case of a postsynaptic neuron that receives converging inputs
from multiple lines. We study the superposition of k stationary, orderly, and indepen-
dent processes. The ensemble process will have a rate ř =

∑k
i=1 ri and following Eq.

(4.18) in [Cox 1980] Ǎ(u) = ř + ř−1
∑k

i=1 ri[Ai(u)− ri]. Here, for the sake of simplic-
ity, we derive the desired relationship between C2

v and the ensemble F̌ for k identical
processes. To this end, we plug ř and L[Ǎ(u)] into the Eq. (3.9) and therefore it be-
comes lims→0[Ãs − 1/(µ1s)] = CV2[1/2 + Ξ]− 1/2, where CV and Ξ =

∑∞
i=1 Ξi are the

coefficient of variation and the interval correlations of the superimposed process. Note
that the left hand side of this equation and Eq. (3.9) are simular. Thus, we obtian

CV2[1 + 2 Ξ] = C2
v [1 + 2

∑∞
i=1 ξi]. (3.10)

The left hand side of Eq. (3.10) is indeed the Fano factor F̌ of the ensemble process as
desired. Now, [Cox 1980] suggests as k →∞, CV2 → 1. Interestingly, if all individual
processes fullfill the renewal condition, it follows from Eq. (3.10) that F̌ = C2

v =
[1 + 2Ξ], and therefore if C2

v 6= 1 the population activity is non-renewal with Ξ <
0 (Ξ > 0) for processes with C2

v > 1 (C2
v < 1). This important finding explains

the numerical observation in [Lawrence 1973, Câteau 2006, Lindner 2006] regarding
emergance of non-renewal processes as the result of the superposition operation.

3.5 Adaptation in a Neuronal Ensemble

In [Muller 2007] it has been shown by an adiabatic elimination of fast variables that
the master equation description of a detailed neuron model including voltage dynam-
ics, conductance-based synapses, and spike-induced adaptation reduces to a stochastic
point process simular to Eq. (3.3). The corresponding hazard function can be approx-
imated as

ĥx(x) = at exp(−btx), (3.11)
where at and bt are determined by the time dependent statistics of inputs (see appendix
A and the equilibrium rate consistency equation req ≈ ĥx(reqqτ) [Muller 2007] with the
solution

req =W(abqτ)/(bqτ), (3.12)
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Figure 3.1: Adaptation reduces the Fano factor of the ensemble process. Left Magenta: JT for
arbitrary observation time T according to Eqs. (3.8) and (A.2) with bq = 1.4, a = 5.0 and τ = 400ms.
Blue: Fano factor for equivalent renewal ensemble process with interval distribution of Eq. (3.4).
Square Dots: Numerically estimated Fano factor for superposition of the 5 realization runs of the full-
detailed adaptive neuron model as in [Muller 2007]. Dash-dotted line: C2

v . Right Magenta: Empirical
ĴT estimated from the pooled spike trains of 5 cortical neurons. Blue: Fano factor for the pool of
shuffled spike trains. Dash-dotted: Average C2

v of the 5 individual spike trains.

where W is the Lambert function. In the case of vanishing adaptation (bq → 0) the
process apporaches the Poisson process with req → a.

We show in the appendix A that the adaptation dynamics in Eq. (3.1) produces
negative serial correlations ξk < 0. The strength of serial correlation decays with
increasing lag k and depends on the mean adaptation, E[x] = reqqτ . Such a vanishing of
negative serial interval correlations with increasing lag is well supported by a large body
of experimental evidence [Farkhooi 2009b]. The departure from the renewal property
induced by adaptation reduces the Fano factor Eq. (3.8) for the single process as well
as for the population model of superimposed pocesses.

We validate our theoretical result of the reduced Fano factor in a set of experimental
spike trains of N = 5 in vivo intracellular recorded neurons in the somatosensory cortex
of the rat. The spontaneous activity of each of these neurons shows negative serial in-
terval correlations [Nawrot 2007] where the empirical sum over correlation coefficients
amounts to an average

∑10
i=1 ξi = −0.28. We construct the population activity by su-

perimposing all 5 spike trains. Thereafter, we estimate the Fano factor as a function of
the observation time and compare it to the case where, prior to superposition, renewal
statistics is enforced for each individual neuron through interval shuffling. Our experi-
mental observation in Fig. 3.1 (Right) confirms the theoretical prediction of a reduced
Fano factor simular to individual neurons [Ratnam 2000] in the population level.

3.6 Benefits for Neural Coding

We provide three arguments that demonstrate how the mechanism of spike-frequency
adaptation benefits neural processing and population coding. First, our result of a
reduced Fano factor F̌ < C2

v for the population activity of stationary adaptive processes
(bq > 0) directly implies a reduction of the noise in the neuronal population rate code.
Our analysis of a set of cortical data suggests a reduction of > 50% for long observation



3.6. Benefits for Neural Coding 29

times. The reduction of JT in Fig. 3.1 becomes significant even for small observation
times of ≈ 2 average intervals, which is a relevant time scale for the transmission of a
population rate signal. This result is reminiscent of an effect that has previously been
acknowledged as noise shaping and weak stimuli detection expressed in the reduction
of the low frequency power in a spectral analysis of spike trains with negative serial
interval correlations [Chacron 2004, Fuwape 2008, Chacron 2001]. Our result confirms
their findings at the population level.

Our second argument is concerned with the transmission of a population rate sig-
nal. We may define a functional neural ensemble by the common postsynaptic target
neuron that receives the converging input of all ensemble members. To elucidate the
postsynaptic effect of adaptation we simplify the ensemble autocorrelation function
A(u) following [Moreno-Bote 2008] with an exponential approximation

Â(u) = reqδ(u) + [(F − 1)/2τc] exp(−u/τc), (3.13)

where the second term is the approximation of reqA(u). For given observation time
window u, and τc the reduction of F implies that Âru < Âu. Therefore, the postsynaptic
neuron receives inputs from an adaptive ensemble that expresses an extended autocor-
relation structure as compared to the inputs from a non-adaptive ensemble. Following
the theory on the effect of input autocorrelation on signal transmission in spiking neu-
rons as developed in [Moreno-Bote 2008, Moreno 2002], a longer τc reduces the input
current fluctuations and this facilitates a faster and more reliable transmission of the
modulated input rate signal by the postsynaptic target neuron.

Finally we argue that a postsynaptic neuron can better decode a small change in its
input if the presynaptic neurons are adaptive. To this end, we compute the information
gain of the postsynaptic activity, between two counting distributions of an adaptive
presynaptic ensemble when ĥx(x) is adiabatically transferred to ĥx(x− ε) with a small
change ε in the input ensemble. It is convenient to use ρ̃n(s) which associated with
counting distribution P̃ (n, s). Thus, we apply the Kullback-Leibler divergence to the
Eq. (3.6) before and after the adiabatic change in the input

DKL(ρ̃εn||ρ̃n) =
∑

i ρ̃
ε
i (s) ln(ρ̃εi (s)/ρ̃i(s)). (3.14)

Using Eq. (3.7) we obtain DKL(ρ̃εn||ρ̃n) = Aεs[ln(Aεs/As)]. Due to Eqs. (3.1) and (3.12),
the mean adaptation after the change is E[xε] = τqrεeq. If ε > 0 it follows that rεeq ≥ req.
Therefore the mean adaptation level increases and the adapted process exhibits stronger
negative serial correlations and Aεs > As. Thus, by Eq. (3.13), it is straight forward
to deduce that DKL > Dr

KL, for renewal and adaptive processes with identical interval
distributions.

We now compute the information gain of the adaptive ensemble process relative
to a matched Poisson rate model. For different initial rate values req we assume a
small but fixed increase ε in the input that we express in parameter changes aε and
bε in Eq. (A.2) as outlined in appendix A. This leads to an increase κ = rεeq − req in
rate that is effectively constant over a wide range of initial values req (Fig. 2, Left).
In the rate model, assuming the same initial value of req, the same input step leads
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Figure 3.2: Information gain per spike due to adaptation. Left: Transfer of equilibrium rate for fixed
ε change of the input in adaptive and Poisson model. Right: Kullback-Leibler Divergence per extra
spike as the measure of information gain for nth event density of adaptive and Poisson processes while
u = 200ms and ε = 0.01nS with the same initial req and κ = rεeq − req.

to a higher equilibrium rate increase κPoisson > κ, which depends on the inital rate
(Fig. 2, Left) because the rate model lacks a mechanism of self-inhibition, which in the
adaptive model counteracts the rate increase. Thereafter, we compute the Kullback-
Leibler divergence for both models and normalize it by the change in the output rate
κ. The result in Fig. 2 (Right) shows that DKL/κ is larger for the adaptive model
than for the rate model across the range of tested input rates. Thus, the information
per extra spike is larger in the adaptive ensemble than in the renewal ensemble, and a
postsynaptic neuron can discriminate small changes ε more efficiently, even though the
absolute change in firing rate is lower.

3.7 Discussion

Our results point out a new aspect of spike frequency adaptation that benefits the
reliable transmission and postsynaptic decoding of the neural population code. This
aspect adds to the known properties of compression and temporal filtering of sensory
input signals [Lundstrom 2008] in spike frequency adapting neurons. The specific result
of Eq. (3.10) is also of practical consequence for the empirical analysis of the so-called
multi-unit activity. By estimating Fano factor and serial correlations we readily obtain
an estimate of the average Cv and serial correlation of the individual processes.

We developed a new formalism to treat event emitting systems that are influenced
by a slow state variable, and we provide a number of useful general results on the
higher order event statistics of superimposed renewal and non-renewal event processes,
which are applicable to a wide range of event-based systems in nature, see appendic
A . The derivation of the state dependent hazard and master equation [Muller 2007]
assumes incoherent input fluctuation as in the mean-field theory, where common input
is negligible. Treating a network with coherent fluctuations as encountered in finite size
networks requires an alternative derivation of the hazard function as in appendix A.
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Chapter 4

Response Adaptation Can Explain
Temporally Sparse Code in the Insect

Mushroom Body1

The reconstruction of high dimensional signal representation patterns from limited
numbers of measurements or sparse representation of a complex stimulus is central
to neuroscience and system biology. Here, we established a relationship between an
ubiquitously observed intrinsic response adaptation dynamics among the excitatory
neurons and emergence of a temporal sparse code in the output of a network consist of
them. Using a model of the insect olfactory system, we show that a simple mechanism
of spike-frequency adaptation allows the explicit spare representation of stimulus in
the population of Kenyon cells without extra inhibitory neuronal population. This
explains a set of in vivo Ca-imaging experimental observations from Kenyon cells in
the honeybee, where we find that blockage of inhibition does not alter the temporal
sparseness reflected in the temporal dynamics of the signal. Furthermore, we show the
successive adaptation in population level reduces the variability of responses and allows
an efficient reconstruction; this founding may convey a fundamental characteristic of
adaptive excitatory pathways of information processing in neuronal systems.

4.1 Introduction

Coding of highly complex sensory inputs with a sparse neuronal representation is
a known coding scheme in many neuronal systems, for examples this coding is ob-
served in the visual [Vinje 2000, Tolhurst 2009], auditory [Asari 2006, DeWeese 2003,
Hromádka 2008], olfactory [Perez-Orive 2002, Poo 2009] and motor [Brecht 2004,
Fiete 2004] pathways. Theoretically, sparse coding is desirable, because it allows for an
efficient representation of the complex stimulus at any point in time with only a small
number of vocabulary elements [Olshausen 2004]. This outline is specifically intriguing
for formation of an associative memory architecture at later processing stages in the
brain [Zetzsche 1990, Földiák 1995] and reminiscent of machine learning approaches
that use dimensionality reduction [Palm 1980]. For populations of spiking neurons,
sparse code implies that only very few active neurons code for a specific state, e.g. a
particular stimulus configuration (population sparseness), and that each neuron repre-
sents information over time with only a small number of spikes per time unit (lifetime

1The material in this chapter is partly published in Farkhooi, F., Muller, E. & Nawrot, M. Sequential
sparsening by successive adapting neural populations. BMC Neuroscience 10, O10 (2009). The complete chapter
will be submitted to a peer-reviewed international journal for publication under the same title and the following author
list: Farkhooi, F., Froese, A., Muller, E., Menzel, R. and Nawrot, M.P.. Please refers to page iii in this
dissertation for the detials of authors contributions.
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sparseness). This, in turn, leads to low firing rates and low noise levels, as were de-
scribed in review by Olshausen and Foldiak [Olshausen 2004].

Although the sparse coding strategy is known for many years, little is known about
how spiking neurons produce filters that resemble the encoding in a sparse manner.
Hereby, without loss of generality, we have addressed this issue in a network of insect
olfactory system. In particular, we study, the sparse activity which is a fundamen-
tal aspect of neural code in Kenyan cells (KCs) in mushroom body (MB). It is known
that KCs represent odors in the sense of population sparseness and additionally each re-
sponse consist of a few spikes [Laurent 2002, Ito 2008, Szyszka 2005, Perez-Orive 2002].
The mechanism underlies the sparseness in KCs can be various, it is proposed to be
possibly the mutual effect of network architecture [Jortner 2007] with interaction of
inhibition and excitation component [Assisi 2007, Szyszka 2005] and sub-cellular bio-
physics of KCs [Laurent 2002, Demmer 2009]. Here, we propose an alternative mech-
anism that produces a temporal sparse code in KCs; due to a network effect of a
generally observed intrinsic excitatory neurons phenomena, so called spike-frequency
adaptation (SFA). The transduction of SFA is diverse in olfactory pathway for different
insect and neurons [Kaissling 1987, Mercer 2002, Grunewald 2003, Wüstenberg 2004,
Schafer 1994, Laurent 2002, Demmer 2009, Nagel 2011]; however, olfactory adaptation
is qualitatively similar. We argue these sub-cellular mechanisms at the network level
may underlies the temporal sparse code in the KCs. In principal, this effect resem-
bles the compounding effects of successive adaptive populations. This suggests that
progression of transient responses and high-pass filtering effects of SFA [Benda 2005]
are amplified in successive adapting populations and lead to sparse code at KCs level.
Additionally, a recent evidence by Kazama and Wilson [Kazama 2008] on short-term
synaptic depression (STD) in the input to the principal excitatory cells in antenna lobe,
so called projection neurons (PNs), which produces similar output profile. This acts
in a qualitatively same filtering mechanism [Merkel 2010] and provides an alternative
similar dynamics that possibly contributes to a degree of lifetime spareness in KCs.

We investigate further, the hypothesis of responses adaptation role to produce tem-
porally spares code while in vivo inhibitory neuronal transmitters in honeybee brain
are experimentally blocked. We found in a series of Ca-imaging experiments in the
honeybee under abolishing GABA inhibition mechanisms, KCs time-course of activ-
ity remain unchanged which indicate the possible role of fast adaptation on temporal
sparseness. This is likely to be a general mode for sparse coding also in other systems
where the successive population of adaptive neurons are transmitting a transient like
stimulus.

4.2 Materials and Methods

4.2.1 Experiment

Preparation and dye loading. Experimental procedures for in vivo calcium imaging
were described in detail elsewhere [Haehnel 2009]. In brief, foraging honeybees (Apis
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mellifera) were caught at the entrance of the hive, immobilized, and fixed in a plexiglas
chamber before the head capsule was opened for dye injection. We retrogradely stained
either projection neurons (PN) or clawed Kenyon cells (KC) of the median calyx using
the calcium sensor FURA-2 dextran (Molecular Probes, Eugene, USA) using a dye
loaded glass electrode, which was inserted either into the lateral antenna-cerebralis
tract (l-ACT) to stain PN axons [Sachse 2002] or into KC axons projecting to the
ventral median part of the α-lobe [Szyszka 2005]. After dye injection head capsule was
closed, bees feed and kept in a dark humid chamber for several hours. Before starting
experiment, bees were further prepared as described earlier [Haehnel 2009], but here
preparation has been modified by not covering the brain with silicon, instead bee brains
were covered with ringer solution only.

Calcium imaging and Odor Stimulation. Experiments were performed following
the method published elsewhere in [Haehnel 2009, Szyszka 2005] and the processing of
imaging data was performed with custom written routines in IDL (RSI, Boulder, CO,
USA). In summary, changes in the calcium concentration were measured as absolute
changes of fluorescence; a ratio was calculated from the intensities measured at 340nm
and 380nm illumination, the background fluorescence before odor onset was subtracted
leading to ∆F with F = F340/F380. Odor stimulation were preformed Under the mi-
croscope, the naturally occurring plant odor octanol (Sigma Aldrich, Germany), diluted
1:100 in paraffine oil (FLUKA, Buchs, Switzerland), was delivered to both antennae
of the subjects using a computer controlled, custom made olfactometer (adapted from
Galizia et al., 1997). To this, odor loaded air was injected into a permanent airstream
resulting in a further 1:10 dilution. Stimulus duration was 3 seconds if not mentioned
otherwise. The air was permanently exhausted.

Pharmacology. A solution of 150 µl GABA antagonists dissolved in ringer for
final concentration (10-5M picrotoxin (PTX, Sigma Aldrich, Germany) or 5x104M
CGP54626 (CGP, Tocris Bioscience, USA)) were bath applied to the brain after pre-
treatment measurements. Next measurements started 10 min after drug application.

4.2.2 Network Simulation

Neuron model and simulator software. Our model neuron is chosen to be a gen-
eral conductance-based integrated and fire with spike-frequency adaptation as it is
proposed in [Muller 2007]. The model phenomenologically captures a wide array of
spike-frequncy biophysical mechanisms such as M-type current, afterhyperpolarization
(AHP-current) and even slow recovery from inactivation of the fast sodium current
[Muller 2007]. The model neuron is also known to perform high-pass filtering of the
input frequencies following the universal model of adaptation proposed by Benda and
Herz [Benda 2003] with gain of

g(fs) = f ′∞

√
1 + 2πfsτefff ′0/f

′
∞

1 + (2πfsτeff )2
, (4.1)

where f ′0 and f ′∞ are the slopes of the f − I curves, and f ′s is the frequency component
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of the stimulus [Benda 2005, Benda 2003]. Neuron parameters used for the production
of plots can be reached at the simulation code at ModelDB2. The model used for the
static synapses between the neurons in the SFA network simulations is conductance
based alpha-shape with gamma distributed time constant from Γ(2.5, 4) and Γ(5, 4) for
excitatory and inhibitory synapses, respectively. The dynamic synapses model with
short-term depression (STD) also based on the phenomenological model introduced by
Tsodyks et al. [Tsodyks 1998]. All simulations were performed using NEST simulator
[Gewaltig 2007] version 2.0beta and Pynest interface [Eppler 2008]. The PyNest code
for the model is freely available from ModelDB3.

Network geometry and Connectivity. The model network consists of 1480 ORNs,
24 PNs, 4000 LN and 1000 KCs, thus keeping the ratio between the number neurons
in olfactory pathway of honeybee as in [Menzel 2009]. The network connectivity is
straight forward: each PN and LN receive excitatory connection from 20% randomly
chosen ORNs [Sachse 2002, Chou 2010, Wehr 1996]. Additionally, every PN receives
input from 50% randomly chosen inhibitory LNs [Sachse 2002, Chou 2010]. In our
model the PNs do not excite one another and each PN output diverges to 50% ran-
domly chosen KCs [Szyszka 2005, Assisi 2007, Jortner 2007]. We simulated the input
to each ORN by a independent Poisson distributed events in the receptors level with
background rate of 500Hz and an step intensity increase with 200Hz with the maximum
uniformly distributed onset of 40ms represents the stimulus[Krofczik 2008]. Stimulus
lasted one second and increased the firing rate of ORNs. We simulated odor repetition
by rerunning the simulation.

Network Simulation Tunings. We tune all simulated network to have same spon-
taneous activity as reported previously: the spontaneous firing rate of ORNs set to
15-25Hz [Nagel 2011], LNs 4-10Hz [Chou 2010], PNs 4-12 [Krofczik 2008] and KCs
0.2-1.0Hz [Ito 2008]. This is achieved by tuning the synaptic weights in the network.
We randomized the neurons parameters while tuning the background rate to make sure
the result is valid in a wide parameter regime.

4.3 Results

4.3.1 Inhibition Blockage Experiment

In an extensive study, Szyzska et al. [Szyszka 2005] demonstrated that clawed KCs in
the honeybee consistently show brief odor responses following stimulus onset reflect-
ing the temporal sparseness of clawed KC population responses in the honeybee by
means of Ca-imaging from populations of stained KCs [Szyszka 2005]. The models of
feedforward and feedback inhibition (Figure 4.1) predict that blocking of inhibition
should destroy/undermine the mechanisms by which KC odor responses are shortened.
In a new set of experiments we tested this hypothesis by blocking inhibition/GABA

2At the moment of writing this dissertation the parameters’ tables are not yet uploaded at
http://senselab.med.yale.edu/ModelDB/

3At the moment of writing this dissertation the simulation code is not yet uploaded at
http://senselab.med.yale.edu/ModelDB/
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Figure 4.1: Hypothesis of feedforward and feedback inhibition for KC sparseness. Left: Model of
feedforward inhibition. Following stimulus onset, the pool of PNs provides sustained excitatory input
to the excitatory KC pool and to the inhibitory pool of lateral horn neurons (LHIs). The LHIs provide
inhibitory input to the KC pool with a temporal delay ∆t, which can truncate KC responses after
only one or few spikes. This model was suggested based on anatomical evidence for the inhibitory
connections between LHIs and KCs in the locust. Right: Model of feedback inhibition. PNs activate
KCs, which in turn activate the inhibitory pool of PCT neurons and other excitatory MB extrinsic
neurons (ENs). The PCTs provide inhibitory feedback to the KCs which arrives with a temporal delay
∆t′ after the excitatory input.
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Figure 4.2: Blocking of GABAergic transmission changes amplitude but not duration of Ca response
in the KC population. A: Temporal response profile of the Ca signal imaged from the MB lip region
in one bee for stimulus durations of 0.5s, 1s, 2s and 3s, as indicated by color. B: Temporal response
profiles as in (A) in one bee after application of PTX. C: Response profiles imaged from 6 control
animals (gray) and their average (black) for a 3s stimulus as indicated by the stimulus bar. The
responses measured in 6 animals in which GABA transmission was blocked with PTX (red) show
a considerably higher population response amplitude. D: Average normalized responses are highly
similar in animals treated with PTX (and control animals. E: Blocking GABA transmission with
CGP in 6 animals (blue) again results in an increased response amplitude compared to 6 control
animals (black). Average normalized response profiles are highly similar in CGP-treated and control
animals. F: Dotted gray line indicates average baseline Ca activity before stimulus onset.
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transmission and therefore repeated the Ca-imaging experiments from KC populations
of the honeybee and tested the KC population responses when GABA inhibition was
blocked (see Materials and Methods). Figure 4.2A shows the time-averaged and nor-
malized across trials Ca-influx of population signal within the MB lip region during
a 3s, 2s, 1s and 0.5s odor stimulus in a single bee. This indicates using different du-
rations of the stimulus durations result in the same KC population response profile
Figure 4.2A similar the time course of activity reported in [Szyszka 2005]; while the
population response duration imaged from glomeruli in the AL shows a sustained ac-
tivity throughout the odor stimulus / increased with increasing the stimulus duration
[Sachse 2002], as it is reproduced in Figure 4.3B. In contrast to responses in AL, we
found no differences between short (0.5s) and longer (3s) stimuli in KCs (Figure. 4.2).
The calcium response recorded in the calyx was in all cases a brief phasic response at
odor onset with a characteristic slope as previously reported by [Szyszka 2005]. This
implies that the calcium response in KCs does not reflect the length of an odor applica-
tion. Even shorter stimuli, ranging from 0.1 to 0.3 seconds, evoked the same response
(data not shown). Further on, the bath application of PTX (GABAA blocker) as it
is illustrated in Figure. 4.2 (B, C and D), this did not change the temporal dynamics
of the responses. Here, also, we stimulated the animal with odor stimuli of different
length, ranging from 0.5s to 3s, before and after systemic application of 10-5M PTX.
The effectiveness of the drug was verified by the increased amplitude in response initial
phase. However, we did not find any change in the temporal domain of the observed
activity in the calyxes of 6 subjects. In addition to PTX, we tested the GABAB re-
ceptor blocker, CGP 54626 in a same protocol and found no elongated response after
application of 5x10-4M CGP54626 (Figure 4.2E and F).

4.3.2 Population Response of Adaptive Network Simulations

In order to investigate effect of response adaptation on the sparse coding in network
similar to result in population of KCs in insects; we performed different simulations on
a simplified feedforward network to illustrate the possible role of adaptive responses
due to the spike-frequency adaptation (SFA) and the short-term synaptic depression
(STD) mechanisms for KCs spareness. Elsewhere, we suggested that mechanisms of
self-inhibition provide an alternative hypothesis/model that could possibly explain tem-
poral sparseness of KCs [Nawrot 2010b]. To test this hypothesis we conducted a set
of neural network simulations of the insect olfactory pathway. Following the general
network scheme outlined in [Menzel 2009]. we downscaled the total number of neurons
in each layer keeping the relative numbers of neurons (see Materials and Methods).
In a first set of simulations we assumed that LNs in the AL receive ORN input make
homogeneous random connections to all/ fraction of PNs. We used the same spiking
neuron model for all neuron types (ORNs, PNs, KCs). Importantly, this model is
equipped with a mechanism for SFA [Muller 2007]. The SFA acts as a mechanism of
self-inhibition: with each output spike it initializes a negative conductance of ampli-
tude qs = 2.1ns with a time constant of τ = 110ms for KCs, which is considerably
longer than the synaptic time constants (range of τ = 100 − 500ms is tested) (see
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Figure 4.3: Different stimulus durations affect response length in PNs A: Raw fluorescence image
of the antennal lobe, with false color coded responses during odor application, a subset of glomeruli
numbered: 17, 33, 52. B: For each glomerulus (17, 33, 52) the response to an either 1, 2, or 3 second
stimulus is shown as false color coded response traces, and as line plot (blue: 1s, green:2s, red:3s)
[Froese 2009].

Materials and Methods). Thus, each action potentials has a long-lasting shunting
effect and consequently can undermine excitatory input from the pre-synaptic PN pop-
ulation. The parameters (qs, τ) defines the response properties of the neuron model
[Muller 2007, Farkhooi 2011b] and were chosen differently for different neuron popula-
tions. The input to ORNs was modeled as a constant Poisson input during stimulus.
For the PNs we chose τ = 110ms which results in a dominant phasic-tonic response
profile as demonstrated in Figure 4.4 (second row). As a result, upon receiving excita-
tory input from the PNs, KCs produce action potentials, which in turn lead to a strong
self-inhibition and consequently to a rapid suppression of KC responses. The popula-
tion response profile in Figure 4.4 resembles the experimental spike response profiles
of KCs as in Figure 4.2. We measured also the temporal population sparseness using
the Treves-Rolls population sparseness measure; it is argued [Willmore 2001] that this
is a appropriate measure, since the response distributions are topically uni-modal and
approximately symmetrical. Thus, we calculated

Sp = 1−
[
∑N

j rj/N ]2∑N
j r

2
j/N

(4.2)

where N is number of neurons in the population and rj and the number of spikes
in the responses per time unit. In our first simulation the activity sparseness measure
increased approximately two times, between PNs and KCs (Figure 4.4). In a second set
of simulations we suppressed spiking in the inhibitory LN population. As to be expected
this resulted in a larger population of active KCs and an increased population response
Figure 4.4, third row. The population sparseness significantly decreased. Interestingly,
the temporal response profile did not change but remained stable (compare Fig.4.4
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Figure 4.4: Average activity of the neuronal population in the simulated networks with the SFA.
First Row: Randomly chosen spike trains of neurons in the simulated full network as it described
in Material and Methods section. The ORNs, PNs, LNs(red) and KCs are left, middle, middle and
right, respectively. Second Row: Propagation of activities a network equipped with SFA mechanism
and local inhibition mirco-circuits with adaptation parameters (2.1ns, 110ms) for ORNS and PNs
and (2.1ns, 110ms) for KCs. In the middle graph red line is the firing rate of LNs and all firing rate
estimation has been done using 20ms bin. We set the adaptation of local inhibitory neurons very week.
The temporal sparseness measure (Sp) for PNs is 0.46 and in KCs population is 0.96. Third Row:
Propagation of activities a network similar to the first raw but without extra inhibitory population
and the sparseness measure for KCs become Sp = 0.75. Forth Row: The same network of first raw
while the adaptation parameters set to nil.
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Figure 4.5: Average activity of the neuronal population in the simulated networks with STD. First
Row: Propagation of activities a network equipped with STD mechanism and local inhibition micro-
circuits in the ORNS→PNs connections with recovery time course of 900ms. In the middle graph red
line is the firing rate of LNs and all firing rate estimation has been done using 20ms bin. The temporal
sparseness measure (Sp) increase by 80% from PNs to KCs population. Second Row: Propagation
of activities a network similar to the first raw but without extra inhibitory population. Third Row:
The same network of first raw while the STD is disabled. In the middle graph the purple line is the
firing rate of the PNs while the inhibitory neurons are ineffective.
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second and third rows). Both results resemble our experimental findings from the
Ca-imaging experiments.

As an alternative to the role of SFA, we simulate the network introduced in sec-
tion above with non-adaptive neurons while dynamic synapses are implemented in
ORNs→PNs as it is also experimentally suggested by [Kazama 2008]. The population
responses of each layer presented in Figure 4.5 which support the temporally sparse
KCs showed in Figure 4.2.

4.4 Discussion

We report here that the simple neuron-intrinsic mechanism of spike-frequency adapta-
tion can account for the sparse spike response scheme known as lifetime sparseness
[Willmore 2001] in downstream neurons. The SFA reflects high-pass filter proper-
ties with respect to the temporal profile of the neuron’s input activity [Benda 2005,
Benda 2003]. This suggests that a feedforeward network with the SFA neurons focuses
on the temporal differences of the sensory input. In other words, it suggests that for
higher brain centers it is most relevant to process dynamic changes in the sensory envi-
ronment and to neglect the static receptor sensation. We designed our network model
in coarse analogy to the insect olfactory system. Our model observation match with
experimental observations. It clearly shows that the population response becomes in-
creasingly phasic as it propagates through a network of the SFA neurons or a network
with the STD connectivities which follows the experimental findings. However, in the
control case where we switch off SFA or STD in all neurons or , the step-like input is
conserved across all layers.

Generally, it was suggested that the successive adaptive stages employ a temporal
differentiation of the sensory input in each processing layer similar to the findings in
[Tripp 2009, Lundstrom 2008]. In the insect olfactory pathway this suggests that the
representation evolves from stage to stage [Nawrot 2010b]. The input from ORNs are
phasic-tonic and tonic [Nagel 2011, Kaissling 1987]. A phasic-tonic odor representation
was observed in the PN population [Krofczik 2008, Namiki 2008, Nawrot 2010b] and
it filters the input dynamics [Geffen 2009]. At the next stage, the KCs, the adaptive
responses to the PN output results in a odor representation that strongly focuses on the
dynamic changes in the input. This matches the repeated experimental observations
in extracellular recordings from the locust and manduca (e.g. [Broome 2006, Ito 2008])
and imaging results in the honeybee [Szyszka 2005]. The natural environment provides
time-varying olfactory scene. This has several factors: odor plumes (turbulences),
air mass movement (wind), and autonomous animal behavior, the movement, in par-
ticular the flight of airborne insects, and the antenna movement that may compare
to sniffing in mammals/rodents. In our model, a stimulus with time-varying am-
plitude will lead to a representation in the MB that strongly emphasizes the tem-
poral changes in the input. Moreover, it is known that the SFA plays a significant
role in helping up for patterning of response and synchronization along side with in-
hibitory cells [Sivan 2006, Assisi 2011] which has a high impact on odor coding in lo-
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cust [Mazor 2005, Laurent 1999, Wehr 1996, MacLeod 1996]. Theoretically speaking,
SFA has an extensive synchronizing-desynchronizing effects on population responses
[Latham 2000, Fuhrmann 2002, van Vreeswijk 2000, van Vreeswijk 1994]. This mecha-
nism is sharpen the possibility of synchronization population activity and that increases
the elicitation of temporally sensitive responses in the later stage of processing.

In a resent study by Tripp et al. [Tripp 2009], it is shown that the filtering gain
of a network with feed-forward response adaptation are principally works similar to
a network with feed-forward delayed inhibition. However, the later circuits introduce
greater errors than functionally equivalent feed-forward circuits. It is important to note
the dynamics introduce in delay inhibitory networks operates in fundamentally differ-
ent time-scales than response adaptive networks; since,these circuits are better suited
for calculating the changes/derivatives of signals that evolve on time-scales outside the
range of membrane and synaptic dynamics. Thus, co-existence of both provide a wide
range of timescales needed for precise output sparse code in different time scale, frac-
tional differentiation [Tripp 2009, Lundstrom 2008], spatial-temporal pattering of the
sensory input [Assisi 2011], flexible gain control [Mar 1999] and dynamic information
transmission in networks [Ávila-Åkerberg 2009, Ávila-Åkerberg 2010].

Our results here bears consequences for general coding. The regularizing effect of
self-inhibition reduces the trial-to-trial variability not only of single neurons but also of
the neuronal population that provides the input to downstream neurons. This improves
detectability of weak signals and discriminability of different inputs [Farkhooi 2011b].
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Chapter 5

Discussion

In all living organisms, the systems have evolved to perform tasks in a specific con-
texts; many of these tasks are universal, while the solutions may be organism-specific
[Nemenman 2010]. One of the most common universal functions performed by organ-
isms at all levels of their complexity is signal and information processing to shape
a relevant response. This requires the ability to distinguish signals in a noisy envi-
ronment, whether the noise is extrinsic or generated by internal stochastic molecular
mechanisms. In this regard, the nervous system plays a considerable role in signal
processing, since it is widely known that many relevant biological features of tasks
are processed in the organization of spiking neurons [Nemenman 2008, Laughlin 1981].
However, neural spiking activities exhibit a wide range of variability on various time
scales [Nawrot 2010a]. While the function of this variability is still being debated
[Stein 2005], it is generally agreed, that it is a fundamental aspect of spiking data in
vivo conditions. Therefore, understanding the nature and origin of neuronal variability
at both single cell and in vivo network levels might be of crucial importance for formu-
lating theories about information processing in the nervous system under the condition
of intrinsic and extrinsic noise [Destexhe 2003, London 2010]. In this dissertation, it is
assumed that variability in the nervous system is an essential component of theories in
sensory coding, learning and memory across the spiking neurons in the nervous system.

To measure and understand the variability in spiking data motivated research,
it is frequently assumed as a simplification conceptual link, that neural activ-
ity in vivo conditions can be described by the distribution of inter-spike intervals
[Moore 1966, Perkel 1967a, Perkel 1967b, Shadlen 1998, Bastian 2001]. This allows
a quantification of variability in firing patterns of both peripheral and central neu-
rons estimating coefficient of variation Cv and Fano factor variability FT , where
both provide a measure of variability and irregularity of the neurons, respectively
[Nawrot 2008, Churchland 2010]. However, as it is shown in chapter 2, the statistical
description of variability by assuming a renewal process is essentially not complete and
generally neurons violate renewal assumptions. There is accumulating evidence that
non-renewal patterning (e.g. oscillations, bursting and adaptation) in spike trains con-
tain important information for neuronal information processing [Ávila-Åkerberg 2011].
In particular, it is shown in this dissertation that non-renewal statistics emerge from
spike-frequency adaptation mechanisms in a variety of excitatory neurons. These mech-
anisms do not only alter spike timing, but also have non-mutual and exclusive functional
consequences on variability, signal detection, coding capacity and gain control of both
at single cells and networks’ level.

The seminal work by Brik [Birk 1972] on a spinal motor neuron showed that the
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decoded representation of spike trains with negative inter-spike interval correlations
displays less variability than a spike train with the same firing rate but with indepen-
dent inter-spike intervals. In numerical simulations by [Ratnam 2000, Chacron 2001],
it is demonstrated that a spike train with negative correlations among inter-event inter-
vals displays less count variance than that of spike trains with independent inter-spike
intervals. In cortical cells there is also accumulating evidence that negative serial cor-
relation is the source of reduced variability [Nawrot 2007]. The numerical investigation
of the statistical model in chapter 2 also confirms the effect of altering spike position
due to the serial correlations on the counting process variance for single spike train.
This result according to chapter 3 can be extended to the reduction of variability in
the ensemble activity of a population of independent neurons. It directly implies a
reduction of the noise in the neuronal population rate code. The analysis of a set of
cortical data in chapter 3 suggests a reduction of 50% over a long observation time.
This reduction is also significant even for a relatively short observation window of two
average intervals, where it reduces the post-synaptic fluctuation according to analysis
reported in chapter 3. This result is a reminiscent of an effect that has been acknowl-
edged before as noise shaping for single spike trains [Chacron 2001, Longtin 2003] in a
population of independent neurons. In short, noise shaping is expressed in the reduction
of the low frequency power in a spectral analysis of spike trains with serial correlations.
An interesting founding by [Prescott 2008] reveals that conventional noise shaping im-
proves efficient spike-rate coding at the expense of a spike-timing code by regularizing
the spike train elicited by slow or constant inputs. They used the activation of low
threshold adaptation mechanisms or sub-threshold adaptation to stop the neuron from
spiking repetitively to slow inputs and hence the model could generate isolated and
well timed spikes in response to fast inputs as well [Prescott 2008]. Therefore, it can be
argued that different biophysical mechanisms of spike-frequency adaptation can shape
the noise power in a desirable manner to obtain reliable signal transmission. This can
also be achieved alternatively with a more complicated network of neurons coupled
with inhibitory feedbacks [Mar 1999].

Following the reduction of noise in the rate code, negative serial correlation facilitates
detection of weak signals and increases the statistical power of discriminability for small
changes in the input to neurons [Chacron 2001, Brandman 2002, Goense 2003]. The
improvement of weak signal detection implies that spike-frequency adaptation increases
the mutual information between output and input for a certain range of stimulation
frequencies due to reduction of output entropy as a result of negative serial interval
correlations. This idea is confirmed by Chacron et al. [Chacron 2001] who found that
although negative inter-spike interval correlations reduce signal entropy, it also reduces
the noise entropy with a greater magnitude, thereby increasing the mutual informa-
tion. This phenomenon was first shown in the context of information processing in
fly photo-receptors [Laughlin 1981]. A recent study by [Nesse 2010] has shown that
optimization of mutual information depends on baseline activities and under the con-
ditions that adaptation is not pronounced, the mutual information may significantly
decrease. However, the analysis in chapters 2 and 3 demonstrate that the mechanisms
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of spike-frequency adaptation that give rise to non-renewal spike train statistics alter
spike timing and also all moments of counting process and therefore facilitates decod-
ing of small changes in the input. The effect in all moments of counting process can
be in seen the distance between two count distributions with small differences in their
input level, measured with Kullback-Leibler divergence. The distance indicates that
an adaptive process contains more information in comparison to the equivalent renewal
process with identical inter-event interval distribution. Therefore, the mutual informa-
tion loss as it is argued by [Nesse 2010] does not hinder the better separation of two
count distributions with small differences in their input level and thus it leads to a
better signal detection or/and transmission. In an alternative scenario in chapter 3,
where the effect of adaptation on rate is also considered, an equivalent renewal process
could increase its rate without the boundary of self-negative feedback of adaptation in
the response to an adiabatic change in the input level. Therefore, one can argue that
the separation of two count processes is more efficient for the renewal spiking model,
based on the argument that the distance between two counting processes (information
gain) is much higher due to higher difference in their mean firing rate. However, this
scenario is not realistic as neurons constrain with the number of action potential in
a short time interval, thus normalizing the information gain per extra spike results in
greater information transmission per spike for adaptive process e.g. chapter 3. This
founding would then act synergistically and leads to a better separation of two count
distributions for neurons with small differences in their inputs and a more efficient
signal detection and transmission. Consequently, this affects an increase in the coding
capacity (chapter 3); due to a better separation of two counting processes for adaptive
ensembles. The model for population analysis of adaptation here is principally a cor-
tical network model [Muller 2007]. Briefly, the master equation in chapter 3 and its
time transformed form therein, are derived by an adiabatic elimination of fast variables
from a more generalized master equation for the neuronal cortical field [Muller 2007].
The more general master equation here is given in Eq. (B.1) [Muller 2007] which as-
sumes incoherent fluctuation in the network: The assumption is that a neuron in the
network samples its input from an infinite reservoir of other neurons sparsely, therefore
they share a negligible portion of common input; moreover it is also assumed that the
network heterogeneity, and other sources of quenched randomness affecting the inter-
action in the network and effectively decorrelating firing probabilities. Based on these
assumptions, the fluctuation in other variables are fast and will be eliminated. Inter-
estingly, the hazard function in chapter 3 based on the approach by [Muller 2007] is
the response function of the system in the mean-field theoretical formalism as it has
been derived by [Siegert 1951, Buonocore 2010, Brunel 2000] using the Fokker-Plank
approximation. Although this approach provides valuable methods for analytical treat-
ment of adaptation in population level, it fails when there is sufficient cross-correlations
within the network. A well known case, where the interaction in the network is not
negligible is the network with a finite size. In this regard, one needs to adopt the master
equation with system size expansion as it is develop by [Bressloff 2009]. Despite of its
complexity of analysis, this direction of research may reveal how noise in the single
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cell level translates into the noise at a population level for more realistic biophysical
models. The other condition where network spike-spike cross-correlation is limiting the
results here is the all-to-all networks. To account for such situations, two recent studies
have explored the interesting effect of adaptation in highly correlated all-to-all networks
[Ávila-Åkerberg 2009, Ávila-Åkerberg 2010]. These studies showed that renewal and
adaptive neurons transmit information differentially. In summary, adaptive networks
with excitatory/inhibitory coupling transmit more/less information than networks with
renewal neurons of the same size without coupling. In contrast, renewal networks
with excitatory/inhibitory coupling transmit less/ more information than renewal net-
works of the same size with no coupling. As such, excitatory and inhibitory couplings
each have opposite effects on networks of renewal and non-renewal model neurons. As
anatomical studies have found that the majority of synaptic connections in the brain
are excitatory, it is possible that such connections increase information transmission
by neurons that display non-renewal spike train statistics [Ávila-Åkerberg 2011].

The emergence of gain control due to slow dynamics of adaptation in a single cell is
another very important property of spike-frequency adaptation [Benda 2003]. Mecha-
nistically, adaptation acts subtractively on the input into the neuron and adds a high-
pass filter to the neuron’s transfer function [Nelson 1997, French 2001, Benda 2005]. A
high-pass filter attenuates slow stimulus components including the mean, whereas fast
stimulus components are transmitted with high gain [Benda 2007]. Ideally, under the
condition that the slow stimulus components were suppressed completely, the response
to fast components will be independent of the mean intensity of the stimulus. Therefore,
the response of such a neuron will be intensity invariant [Benda 2007]. It is also argued
that the high-pass filtering properties of adaptation rescale the dynamic range of the re-
sponses to that of the stimulus and maximizes information transmission [Borst 2005]. It
has been also shown that the ideal case of an adaptation high-pass filter is achievable in
a theoretical sense [Tripp 2009]. However, experimental evidence shows adaptive neu-
rons only do a fractional high-pass filter [Lundstrom 2008]. Therefore, the ideal case of
intensity invariant responses cannot be achieved at a single cell processing level, it may
need a network architecture to produce such useful coding scheme. In this regard, in
chapter 4 a complementary aspect of adaptation filtering effect in the network is stud-
ied. It is evidently shown that a feed-forward network of adaptive neurons can produce
an stable and an efficient sparse representation of stimulation across the full possible
range of parameters conditions. This results contributes to recent theoretical and ex-
perimental evidence indicating that many sensory neural systems appear to employ
similar sparse representations with their population codes [Vinje 2002, Lewicki 2002,
Olshausen 1996, Olshausen 2004, Delgutte 1998, Assisi 2007], encoding a stimulus in
the activity of a few neurons and/or a few spikes. Specifically, in chapter 4, it is pro-
posed that neuronal spike-frequency adaptation mechanisms might play a considerable
role in temporal sparseness of a sub-population of insect mushroom-body principal
neurons, so called Kenyon cells. This hypothesis is supported with experimental obser-
vations of Kenyon cells activity [Ito 2008, Szyszka 2005, Perez-Orive 2002] and physio-
logical founding of adaptation mechanisms in the insect olfactory network [Mercer 2002,
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Grunewald 2003, Wüstenberg 2004, Schafer 1994, Laurent 2002, Demmer 2009]. Fur-
ther on, the role of short-term synaptic plasticity in the network sparseness is also
alternatively investigated, where comparably similar qualitative results to the dynam-
ics of spike-frequency adaptive neurons are shown. Using computer simulations, it is
shown that changes in synaptic resources and/or level of adaptation in feed-forward
networks of receptor neurons, projection neurons and Kenyon cells adjust their win-
dow of integration to produce sharp sparse code in the output. In general, this simple
neuronal intrinsic adaptive mechanism may be useful for maintaining sparseness of sen-
sory representations across wide ranges of stimulus conditions. This effect might hint
a new insight towards the prospect that it is in fact these transient responses which
are the signals, and thus they may interpret synchrony and/or signal amplification
[Muller 2007, van Vreeswijk 2000], which in principal contribute to the result on noise
reduction as discussed earlier in this chapter. This approach provides an alternative
model to the previous feed-forward inhibition mechanism that has been suggested to
produce a desirable sparse code [Assisi 2007]. The lacking study here can be the incor-
poration of beyond mean-adaptation theories to study the likely effect of adaptation
temporal variance [Buiatti 2003, Nemenman 2010] on the sparseness of Kenyon cells in
experimental conditions.

Closing remarks. The topics in this dissertation point out the importance of non-
renewal statistics for neuronal dynamics in excitatory cells which has been largely
ignored in neural ensemble studies. It incorporates a rigorous treatment of non-
renewal population density framework to derive useful results on effects that emerge
from beyond renewal spiking statistics of neurons. Given the variety of intriguing
and prominent consequences such as inter-spike interval correlations and regulariza-
tion of activity by reduction of variability and thus signal transmission, amplification
and filtering effects of transient responses in successive populations, alongside with
strong altering of temporal frequency tuning [Ellis 2007, Mehaffey 2008, Lindner 2009,
Peron 2009, Cortes 2011]; it is completely unlikely that spike-frequency adaptation
can be neglected in many neuronal phenomenon. Here, it can be argued that spike-
frequency adaptation maybe have drastic effects when considering, for example, the
dynamic nature of the neural code [Shadlen 1998], the propagation of synchrony
[Abeles 1991, Diesmann 1999, Kumar 2010], or the function of spike-timing based
learning rules [Gerstner 1996, Song 2000, Clopath 2008]. To tackle these questions
we are lacking a good approximation of in vivo like networks with coherent fluctua-
tion and non-Markovian time delays to take into account some aspects of the ensemble
context of many neuronal interactions. This requires a generalization of perturbation
analysis similar to van Vreeswijk’s work [van Vreeswijk 2000] in a network level and
their variability measures of time dependent input to answer fundamental questions:
how does noise at a cellular level translate to population level and propagates to the
post-synaptic population with synaptic dynamics? And how memories are sustained
in biological systems with a significant variability?



Appendix A

Hazard Function and Process Serial
Correlations

A.1 State-Dependent Hazard Function

We define a limiting probability density to an event, given the state variable x, as

hx(x, t) := lim
ε→0

Pr(N [t, t+ ε] > 0|x(t))

ε
, (A.1)

where N [t, t + ε] is a right continuous integer-valued function that jumps 1 at each
event time and is constant otherwise. Thus, N [t, t+ ε] counts the number of events in
the interval (t, t+ε], and x is a general state variable of the system. Here, we assume a
shot noise dynamics as described by Eq. (1) in the main text governs the state variable
x.

The hazard function for neuronal ensembles can be derived from a field master
equation of the system as it is stated in Eq. (B.1) [Muller 2007]. Generally, a full master
equation assumes an infinite reservoir of entities and sparse interaction among them (the
underling assumptions of mean-field theory). Therefore, it results that the fluctuation
in the inputs are incoherent and sufficiently uncorrelated. This allows to apply the
method of elimination of fast variables [Gardiner 1984] given the slow state variable
x [Muller 2007]. Indeed, it can be shown that the hazard function is the response
function of a neuron in the presence of noise, which can be derived by the Fokker-
Planck approximation of the mean field master equation [Siegert 1951, Brunel 2000] as
described in [LaCamera 2004] for mean-adaptation theory.

In [Muller 2007] it is shown that the Kramer rate function [Gardiner 2004]

ĥx(x, t) = at exp(−btx) (A.2)

provides an excellent agreement with the mean field calculation of the response function,
where at and bt are fit parameters to the full model of a neuron including voltage
dynamics and conductance-based synapses. In a dynamic input setting at and bt are
respectively determined by interpolating the mean excitatory and inhibitory synaptic
conductance to the neuron (see section 3 and 4 in [Muller 2007]). In a static case,
at and bt denote as a and b, respectively. Moreover, the effect of input statistics and
varying noise strength on Eq. (A.2) and the resulting inter-event distribution is studied
in [Nesse 2008]. In summary, a corresponds to firing rate of a neuron given the statistics
of input parameters, where x = 0, and b is the adaptation coefficient otherwise and
can be derived using adaptation self-consistency in Eq. (13) in the main text. This
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relationship allows to construct the rate model as in the main text (last argument in
Section Benefits for Neural coding), where a and b are derived using the fit provided in
NeuroTools 1. It is clear from Eq. (A.2) that without adaptation a is the firing rate of
the Poisson rate model. In order to allow comparison, we normalized both processes to
have the same initial firing rate (Fig. 2) by assuming that there exists some constant
regulation 0 < N < 1 that maintains rate equality in the steady-state such that

req = aN =W(abqτ)/(bqτ). (A.3)

Thereafter, we assumed a change ε in the mean conductance on the order of 0.01 nS
and recompute aε and bε, thus the rate model new equilibrium rate is r̄εeq = aεN . The
new equilibrium rate of the adaptive process is obtained by rεeq = W(aεbεqτ)/(bεqτ).
This construction leads to Fig. 2 (Left) in the main text.

A violation of the mean-field theory assumptions, such as a finite size of reser-
voir, in the network bring about “coherent” fluctuations in addition to “incoher-
ent” fluctuations, both can be used to derive the response function of the system
[Mattia 2002, Bressloff 2009], which implicates an alternative form for the hazard func-
tion which includes a stochastic element [Mattia 2002]. However, under the condition
that the correlation time course of the interactions is short compared to adaptation
time scale, namely on the order of the synaptic time constant, interactions can be
treated as fast variables and, in the presence of slow adaptation, will vanish by the
method of elimination of fast variables.

The hazard function has been derived for many physical systems. We mention
the examples of models for earthquake events [Corral 2005], financial risk modeling in
econophysics [Katz 2010]. It is also plausible to apply the adiabatic elimination tech-
nique for quantum dissipative system to obtain a matching hazard model as suggested
in [Casagrande 1985].

A.2 Serial Correlation: Process memory

The history dependency of the slow dynamic shot-noise in Eq. (1) of the main text,
results in a state-dependent reset mechanism ψ which makes the process non-renewal.
Since the state variable x(t) when an event occurs, makes a jump x(t+ dt) = x(t) + q
defining the reset mapping ψ(η(x)), such that the reset condition become η(x) 7→
η(x+ q), it follows that

ψ(tx) = η(η−1(tx) + q) = −τ ln(exp(−tx/τ) + 1) (A.4)

with its inverse given by

ψ−1(tx) = −τ ln(exp(−tx/τ)− 1). (A.5)

It is clear that at the time of event, state variable remapping condition deviates from
tx 7→ 0. However, if we assume q = 0, it results second and third terms in right hand

1http://neuralensemble.org/trac/NeuroTools
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side of Eq. (2) canceling each other, which makes the master equation follows a renewal
theory and non-locality due to q vanishes.

Therefore, the state-dependent reset ψ indicates the memory of the process in the
terms of serial correlation between consecutive inter-event intervals. Here, we shall now
relate the interval correlation coefficient to the probability of observing n events in the
time window T , P (n, T ), using the relationships derived in [McFadden 1962]. Hence,
the correlation of two back to back intervals is∫ ∞

0

P (1, T )dT = lim
s→0

P̃ (1, s) = E[∆0∆1]/µ1 (A.6)

and similarly for k lagged intervals, we have P̃ (k, 0) = E[∆0∆k]/µ1 [McFadden 1962].
Here, we show that serial correlations between inter-events are negative for phe-

nomenological model of adaptation, following the distribution given in Eq. (4) and
its corresponding counting process P (n, T ), for a given hazard function as Eq. (A.2)
and defined ψ in the main text for a static firing rate: As ψ only operates on the
current state and the reset at the kth interval before has a vanishing effect on the cur-
rent state of tx, we have limk→∞ ρ(∆0,∆k) = ρ(∆0)ρ(∆k) [Muller 2007]. Therefore,
applying Lemma (6.5) in [McFadden 1962] limk→∞ P̃ (k, 0) = µ1. Additionally, since
ψ : R 7→ R−, it follows that all trajectories are reinserted at negative pseudo-ages, and
we have ∂txψ < 0, therefore “younger” event trajectories are reinserted at more neg-
ative values and hazard function that explicitly defined in Eq. (A.2) is an increasing
∂txĥx(η(x)) > 0. Hence, for a given µ1 it follows that neuronal adaption model here has
the property µ2

1 ≥ E[∆0∆k]. Thus, the correlation coefficient ξk between two intervals
separated by lag k is negative and dies out for large values of k.

Generally, following the same argument, if ψ and h are monotonous and

∂txψ(tx)∂txh(tx) < 0 (A.7)

then the intervals exhibit a negative serial correlation. The condition on the Eq. (A.7)
also indicates that if ∂txψ(tx)∂txh(tx) = 0 the process is renewal and under the condition
of

∂txψ(tx)∂txh(tx) > 0 (A.8)

process produces positive serial correlation.

A.3 Serial Correlations Beyond the Neuronal Systems

In this letter, we show that the negativity of serial correlation in neural adapta-
tion enhances the signal transmission. Moreover, it has been argued that a sub-
Poissonian statistics (C2

v < 1) is superior for light communication systems because
it exhibits reduced variability the count statistics as compared to the Poisson statistics
[Saleh 1987, Jann 1996]. The phenomenon of negative serial correlations (Eq. (A.7))
is also observed in multi-level quantum systems [Soler 2008] where M measures the
serial correlation between consecutive inter-photon times. According to our results, a



A.3. Serial Correlations Beyond the Neuronal Systems 51

Table A.1: Neuron model parameters as it is used for simulations of the full model neuron with voltage
dynamics, adaptation and conductance-based synapses [Muller 2007], as illustrated in Fig. 3.1. The
simulation is performed in PyNEST [Eppler 2008].

Parameter Description Value
vth Threshold voltage -57mV
vreset Rest voltage -70mV
cm Membrane capacitance 289.5pF
gl Membrane leak conductance 28.95pS
El Membrane reversal potential -70mV
qrr RELREF quantal conductance increase 3214nS
τrr RELREF conductance decay time 1.97ms
Err RELREF reversal potential -70mV
qs SFA quantal conductance increase 14.48nS
τs SFA conductance decay time 110ms
Es SFA reversal potential -70mV
Ee,i Reversal potential of excitatory and inhibitory 0 mV, -75mV

synapses, respectively
qe,i Excitatory and inhibitory synaptic quantal 2nS

conductance increase
τe,i Excitatory and inhibitory synaptic decay time 1.5ms , 10ms
λe,i Excitatory and inhibitory input rate 6Hz, 11.4Hz

superposition of non-renewal photon emitters could enhance reliable information trans-
mission and signal discrimination in photo detecting devices.

The condition in Eq. (A.8) might be of interest for event emitting systems that ex-
hibit a self-exciting feedback and thus depart from renewal assumption by positive serial
correlations between adjacent inter-event intervals. For example, it has been shown in
[Livina 2005] that after major earthquakes the rate of the aftershocks decreases in time
by the Omori law. This decreasing rate generates a memory of inter-events where
small (large) recurrence intervals follow small (large) ones, implying positive correla-
tions among inter-event times.
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