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Abstract

In this thesis, we address different approaches for the construction of kinetic mod-
els of peptides in the framework of Markov State Models. Using human amylin
polypeptide as a test case, we construct kinetic models of peptide’s fragments of
increasing length and uncover an underlying hierarchy of the dynamics. The slow
kinetic modes of groups of highly collaborative residues are combined together to
build a model of the system.
Markov state models are, however, sensitively dependent on the discretization of
the configuration space. A newly introduced variational approach to conformation
dynamics permits to overcome a crisp-state discretization and systematically control
the quality of the model. Here, a basis set for peptides kinetics for the variational
approach is developed and tested. The basis functions are constructed by combining
local residue-centered kinetic modes, obtained from pre-parametrized kinetic models
of terminally blocked amino acids.
However, the quality of the approach depends on how well the basis functions cap-
ture the features of the underlying energy landscape. Thus, the effect of Molecular
Dynamics force fields in capturing kinetic properties, is called into question. By
comparing the dynamic properties of blocked amino acids and short peptides, a
strong force field dependance is identified. Therefore a library of force field depen-
dent residue-centered basis functions is developed and made available for further
applications of the method.
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Zusammenfassung

In dieser Arbeit behandeln wir verschiedene Ansätze für den Aufbau kinetischer
Modelle von Peptiden im Rahmen von Markov State Models. Für den Fall des
Polypeptids Amylin, entwickeln wir kinetische Modelle für unterschiedlich lange
Fragmente und finden so eine grundlegende Hierarchie innerhalb der Dynamiken.
Durch Kombination der langsamen kinetischen Moden von Gruppen hoch koopera-
tiver Aminosäuren wird ein Model für das ganze System erzeugt.
Markov State Models weisen eine hohe Empfindlichkeit bezüglich der Diskretisierung
des Konfigurationsraums auf. Ein neu eingeführter variationeller Ansatz für die Kon-
formationsdynamik erlaubt es, die diskrete Zustandsdefinition zu umgehen und die
Qualität des Modells systematisch zu steuern. Hier entwickeln und testen wir einen
Basissatz zur Beschreibung von Peptidkinetiken mittels des variationellen Ansatzes.
Die Basisfunktionen werden dabei durch Kombination von lokalen Aminosäure-
zentrierten kinetischen Moden konstruiert, die zuvor durch vor-parametrisierte kinetis-
che Modelle von terminal blockierten Aminosäuren bestimmt wurden.
Die Qualität dieses Ansatzes hängt jedoch stark davon ab, wie gut die zugrunde
liegende Energielandschaft durch die Basisfunktionen beschrieben wird. Daher gehen
wir der Frage nach, in wie Fern kinetische Eigenschaften von Kraftfeldern in Molekül-
dynamik Simulationen beeinflusst werden. Durch den Vergleich der dynamischen
Eigenschaften von blockierten Aminosäuren und kurzen Peptiden, können wir eine
starke Kraftfeldabhängigkeit aufzeigen. Deshalb wird eine Bibliothek von kraftfeld-
abhäängigen Aminosäure-zentrierten Basisfunktionen angelegt und für zukünftige
Anwendungen der Methode zugänglich gemacht.
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Chapter 1

Introduction

P
roteins and peptides are biomolecules, which play a central role in living organ-
isms. They participate in virtually every process in a cell and cover a vast array

of functions [1]. For example, they are involved in catalyzing metabolic reactions
[2], replicating DNA [3], responding to stimuli [4] and transporting molecules [5].
The building block of proteins are the amino acids (fig 1.1). They contain an amine
group (-NH2), a carboxylic acid (-COOH), and differentiate for the specific side-
chain (R). When connected together, two amino acids form a covalent bond, known
as the peptide bond [6] (fig 1.1). Amino acids connected by a peptide bond and
part of a protein/peptide are also referred to as residues.
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Figure 1.1: Schematic representation of the peptide bond between two generic amino acids.

The peptide bond is a covalent partial double-bond, due to the resonance con-
tribution of the nitrogen (N) and the oxygen (O). Therefore the rotation around the
bond is restricted. The planar character of the peptide bond imposes some confor-
mational restrictions to the residues. Independently of the side-chain, the possible
conformations of a bounded amino acid are well captured by the torsion angles
φ (rotation around the N-Cα bond) and ψ (rotation around the Cα-C bond) (fig.
1.2.a), known as backbone dihedral angles. The different combinations of {φ, ψ},
which are determined by steric restrictions, can be represented as a two-dimensional
plot, known in the literature as the Ramachandran plane [7] (fig. 1.2.b).
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Figure 1.2: a: Definition of the torsion angles of an amino acid (example Ac-A-NHMe). b:
Ramachandran plot of Ac-A-NHMe

obtained by a 4 µs MD simulation.

The most populated regions of the Ramachandran plane correspond to those reg-
ular motifs that constitute the second level of organization of a sequence of amino
acids. These motifs, known in the literature as secondary structures, are repetitive
arrangements of segments of the sequence, stabilized by hydrogen bonds (electro-
static interaction) between the amino (-NH) and carbonyl groups (C=O) of the main
chain. There are two main motifs (fig. 1.3):

• α-helices, which are right-handed helices consisting of 3.6 amino acids per
turn, formed by hydrogen bonds between the carboxy group of the ith amino
acid and the amino group of the ith − 4 amino acid.

• β-sheets, which correspond to two (or more) segments linked by hydrogen
bonds between complementary groups of the two chains.

Figure 1.3: Representation of the structural levels of a protein: residues chain (primary
structure), α-helix and β-sheets (secondary structure), three-dimensional conformation (ter-
tiary and quaternary structures). Image adapted from Estelle Levetin and Karen McMahon,
Botany Visual Resource Library c© 1996 The McGraw-Hill Companies, Inc. All rights re-
served.
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The particular rearrangements of the secondary structure motifs defines the tertiary
structures of the protein. Some proteins are made of multiple three-dimensional
subunits. The arrangement of these subunits in the final functional configuration is
called quaternary structure of the protein.

The encoded amino acids that form proteins are of twenty different types, i.e.
present twenty different functional groups (R). The specific sequence of amino acids
defines the protein univocally, and determines its three-dimensional structure(s).
The three-dimensional structure of a protein is associated with its function. A typ-
ical example is the lock-and-key model for enzyme-ligand binding. Enzymes are

Enzyme Ligand 1

Ligand 2

Figure 1.4: Schematic representation of the lock and key model for enzymes’ specificity.

proteins which act as catalysts to accelerate a chemical reaction: the ligand binds
to the enzyme and is transformed into product(s). The binding is usually very spe-
cific and can be pictured as complementary geometric shapes fitting exactly into
one another (fig 1.4). If the enzyme’s three-dimensional structure is altered, it can
impede the enzyme from performing its function. Proteins are extremely sensitive
to changes at atomistic level: even a single point mutation can have dramatic effects
on the folded structure and even cause diseases [8]. Understanding how proteins find
their three-dimensional functional conformation is thus of fundamental relevance.

A protein is a multiple-particle system. It can contain easily more than 500
amino acids (e.g. human serum albumin, the most abundant protein in human
blood plasma has 585 [9]) and each amino acid consists, on average, of 20 atoms
(the smallest is glycine with 10 and the largest is tryptophan with 27). The num-
ber of possible rearrangements of so many particles, i.e. the conformations of the
protein, is therefore very large. Such number is reduced by the conformational re-
strictions imposed by the bonds that connect the atoms and the angle constraints,
but remains too large so that finding the native state could be a random event.
Were it the case, protein folding would take longer than the age of the universe
[10] (Levinthal paradox ), whereas it takes only micro-seconds to seconds in vivo and
test-tubes [11], proving that folding is driven by the thermodynamics of the system.

The canonical view of protein folding is the folding funnel approach [12]: given a
sequence of amino acids, there is a small number of conformations, which constitute
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the native folded state of the protein; such conformations are much more energet-
ically favorable than any other, i.e. the energy landscape has the shape of a deep
funnel (fig. 1.5.a). Such view, however, cannot explain proteins which have more

Configuration Entropy

En
er

gy

Native!
State

Unfolded!
State

a) b)

En
er

gy
Native!
State Aggregates

Partially 
folded

Configuration Entropy

Figure 1.5: a) Schematic representation of the energy landscape in the folding funnel
approach. b) Schematic representation of the multiple long-living states energy landscape.

than one long-living configuration (fig. 1.5.b). For instance, intrinsically disordered
proteins (IDPs) [13, 14] can assume a variety of three-dimensional structures and
interconvert quickly between them. Some of these structures perform functions in
the cell, whereas others can cause diseases, such as amyloid formation in Alzheimer’s
disease [15] (amyloid-β) or in diabetes type two [16] (amylin islet polypeptide).
It is thus of essential relevance to understand not only which are the long-living
states of the system, but also how the system interconverts between them. Over
the last thirty years, more and more evidence has shown the importance of protein
dynamics in relation to proteins’ function [17, 18, 19, 20, 21]. Therefore, a complete
understanding of proteins requires atomistically detailed models that capture both
structural heterogeneity and dynamics.

Current laboratory experiments cannot provide a complete description of the
heterogeneity of conformations at the temporal resolution relevant for proteins dy-
namics. Ensemble experiments, such as nuclear magnetic resonance (NMR), atomic
force microscopy (AFM), and electron microscopy (EM), rely on the signal of multi-
ple molecules, with the result that only ensemble averages can be estimated, rather
than the behavior of single molecules. On the other hand, single molecule exper-
iments, such as flourescence resonance energy transfer (FRET) or optical traps,
cannot resolve very short timescales due to the effect of signal-noise ratio [22]. As
a result, computer models are becoming a more and more used tool to complement
experiments [23]. Computer models can provide an unambiguous description of the
evolution of a bio-molecular system at atomistic detail and high temporal resolu-
tion. Moreover, observables derived by computer models can be directly compared
to experimentally resolved features.

This thesis addresses results from a computational approach to investigate the
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long-living conformations of bio-molecular systems and the kinetic network between
them. Using advanced mathematical techniques, we aim at providing quantitative
and statistically relevant models of the dynamics of the studied peptide systems.

1.1 Computational simulations of bio-molecules

In recent years, computational models have become a more and more accepted tool
to study structural and dynamical properties of bio-molecular systems [24, 25, 26,
27, 28]. In 2013, the field of molecular simulations has also received the recognition
of the Nobel Prize in Chemistry (Martin Karplus, Michael Levitt and Arieh Warshel
for their development of “multiscale methods for complex systems”).
There are two main classical simulation methods: Monte Carlo [29] simulations and
Molecular Dynamics [30]. The Monte Carlo algorithm uses random sampling to
infer thermodynamic information, but does not directly capture the dynamics of
the system. In contrast, Molecular Dynamics (MD) simulations model the time
evolution of a number N of interacting particles. This thesis will focus on MD
simulations of proteins and peptides.

1.1.1 Molecular Dynamics simulations of bio-molecules

Molecular Dynamics (MD) is an example of molecular simulations, which permits
the study of complex, dynamical processes like those occurring in biological sys-
tems. In MD atoms are treated as classical point particles and their time-evolution
is determined by numerically solving Newton’s equation of motion. Particles in-
teractions are described by an empirical, phenomenological force field, U(R) (eq.
1.1 and fig. 1.6), which is a function of the positions of all particles R. U(R) is
usually separated in a "bonded" and in a "non-bonded" part, where the interaction
between particles is described by simple analytical forms, modulated by parameters.
The parameters are chosen such that the empirical potential represents a good fit
to ab− initio calculations or reproduces experimental data.
Chemically different bonds are described by different parameter values. In most
cases, the chosen functional form of the bonded terms is assumed to have little
influence, as long as it is physically reasonable. On the contrary, the quality of a
force field crucially depends on the parametrization. Non-bonded atoms interact via
electrostatic and Van der Waals forces, which are treated as pairwise additive. The
non-bonded terms are also modulated by parameters in order to reproduce physical
properties of the system.

U = Ubonded + Unon-bonded =

=
∑

Ubonds +
∑

Uvalence angles +
∑

Utorsion angles+
∑

Uelectrostatic +
∑

UVan der Waals + Uquantum corrections

(1.1)
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Figure 1.6: Example of MD force field adapted from ref. [31].

At the present stage, there are plenty of software packages which can perform
a MD simulation [32, 33, 34, 35, 36] and many research groups have put effort into
developing meaningful force fields [37, 38, 39, 40, 41, 42, 43] .

1.1.2 The Sampling Problem

Reaching biologically relevant timescales and sufficient statistics to characterize a
system’s behavior via simulations is an extremely challenging task. In fact, typical
conformational changes of a protein span over a wide range of timescales, going from
ns to s. On the other hand, internal vibrations of a molecule occur at timescales
of the order of femtoseconds (10−15s). Despite the technological progress and the
constantly increasing computational power, there is still an unfilled gap between bi-
ological and computationally achievable timescales, which is known as the sampling
problem [44]. Consequently, a lot of effort has been placed into developing methods
that could help to overcome this issue.

As an example, Replica Exchange Molecular Dynamics (REMD) [45, 46, 47, 48]
takes advantage of the larger number of conformations accessible at higher tempera-
ture to enhance the sampling at the temperature of interest. Such method is effective
in exploring the different conformations, but requires the information collected at
all temperatures to correctly recover the kinetics.
Another approach is given by biased sampling. Examples are umbrella sampling
[49, 50], metadynamics [51, 52, 53, 54] and ehnanced sampling [55, 56, 57]. The
main difficulty of these approaches lies in discerning a correct way of biasing to
recover the kinetics.
Coarse-grained models represent another method for accelerating simulations [58,
59], by considering group of atoms as one single dynamic unit. As a result an effective
speed-up of the computation is provided, at the cost of a lower resolution; relative
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movements of the atoms in one bead, and their effects on the overall dynamics,
cannot in fact be captured by the model.

Another approach is to parallelize the computational cost over multiple independent
trajectories, i.e. assuming an ensemble view of the dynamics [60]. Markov State
Models (section 1.2) take advantage of this perspective to quantitatively model the
dynamics of the system of interest.

1.2 Markov State Models

On top of the issue of reaching the timescales of biological interest, sufficient data to
infer statistically relevant properties has to be collected. Moreover, even in the case
of extremely long sampling, analyzing the enormous amount of data produced by
MD simulations would not be a trivial task. The traditional approach of "looking"
at the simulated trajectory in search of interesting events would be on the one hand
unfeasible, and, on the other, misleading, as the observed properties carry no sta-
tistical relevance. Therefore, a quantitative, statistically relevant method to discern
the interesting properties from the simulation data is required.

In MD the evolution of the simulated system is a deterministic function of the
current and final states of the system itself. In probability theory and statistics, a
stochastic process that depends only on the initial and final states, without requiring
any prior knowledge of the history of the system, i.e. a memoryless-process, is
identified as markovian. A discrete process that satisfies the markovian property
can be modeled as a Markov State Model (MSM) [61, 62, 63, 64].

In MSMs the dynamics is represented as the chances of jumping, in a time τ , between
n discrete states, which all together comprehend all the possible conformations of
the system. The states are groups of conformations, whose dynamic behavior is
treated as equivalent.

MSMs permit the computation of time independent quantities, such as equilib-
rium probabilities of the discrete states and the energy differences between them.
Moreover, MSMs allow the identification of relevant (i.e. slow) structural changes
and to associate them with timescales, which are directly comparable to experimen-
tally measurable quantities. It is therefore possible to construct a bridge between
experiments and computer simulations. MSMs also enable the measurement of
quantities not immediately accessible via experiments, such as transition pathways
and their probabilities [48, 65], which provide useful insight in understanding pro-
cesses like protein folding. Finally, information extracted from the model itself, can
be used to adaptively drive the model construction, in order to achieve statistical
precision in a shorter amount of time [66].
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1.2.1 Limitations of Markov Models

The dynamics of a perfectly specified system, as described in MD simulations (in-
cluding solvent degrees of freedom and the velocities of all particles) is deterministic
and therefore markovian by construction. In practice, however, schemes to maintain
energy, temperature or pressure constant may introduce some stochasticity, which
contradicts the markovian hypothesis.
Even in for those simulations where markovianity is truly respected, the dimension-
ality of the system, which depends linearly on the number of particles, makes it
impractical to analyze the dynamics in full dimensional space. Thus, one usually
operates in a reduced dimensional space, where the dynamics is projected onto a
suitable, system-dependent, set of variables, denoted as reaction coordinates. How-
ever, the projected dynamics is not guaranteed to still fulfill the markovian property.

The issue of finding a good set of reaction coordinates to describe the dynamical
processes is an entire branch of research. In the field of molecular simulations, the
identification of the reaction coordinate is neither systematic nor consistent. Native
contacts or root mean square deviation of atomic positions (RMSD) are commonly
used as coordinates, nevertheless their suitability should always be verified [67].
Projection onto internal coordinates, such as principal component analysis (PCA)
[68, 28, 69] or time-lagged independent component analysis (TICA) [70, 71] might
help in the construction of the MSM, despite being of difficult interpretation. In
this thesis, we use backbone dihedral angles as reaction coordinates. It has in fact
been checked (ref. [67]) that for short peptides backbone dihedral angles capture
the interesting dynamics appropriately.

Assuming that a good set of reaction coordinates has been chosen, the quality
of the MSM crucially depends on the discretization, i.e. on the way conformations
are grouped together. As kinetic vicinity of conformations is not known a priori,
defining the MSM discrete states (i.e. microstates) is not trivial.
In fact, microstates should be small enough not to contain large energy barriers,
and, at the same time, big enough to allow sufficient statistics, such that transition
probabilities between each pair of states could be estimated accurately. Moreover,
the number of possible states should not be too large for computational feasibility.
The side effect of choosing a too coarse discretization is not only that the model
would be less detailed, but also that memory effects can be introduced. For example,
given a microstate that includes a barrier, trajectories entering into it from different
sides of the barrier would have different dynamical behaviors, which would instead
be treated as equivalent by the model. These memory effects can be reduced by
increasing the lag time of the model, at the cost of a coarser time-resolution and
lower statistics.
In recent years, it has been proved that MSM accuracy can be improved by using a
discretization that well resembles the features of the underlying energy landscape [72,
61]. Such features are, however, unknown a priori, due to the high dimensionality
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of the system. In this thesis we will tackle the issue of appropriate discretizations
in chapter 4.

1.3 The Thesis

In this thesis we aim at highlighting the underlying hierarchical dynamics of short
peptides. We exploit MSMs to analyze MD data, and chapter 2 is dedicated to
summarizing the theoretical background common to the research presented in this
dissertation.

Chapter 3 presents an application of MSMs to model the dynamics of an intrinsi-
cally disordered peptide: human islet amyloid polypeptide (hIAPP). The dynamics
of hIAPP fragments shows inherent hierarchy, as the same long-living configurations
that are found in the model of shorter fragments arises in the model of the longer
sequences, albeit with different timescales.

The analysis presented in chapter 3 is based on a crisp definition of microstates,
whose number, however, increases exponentially with the length of the sequence.
Such approach is therefore computationally unfeasible for longer peptides and pro-
teins. Following a novel description for conformational kinetics of peptides in terms
of smooth basis functions, in chapter 4 we develop a novel set of transferable basis
functions defined as combinations of residue-centered kinetic modes, which are ob-
tained from kinetic models of terminally blocked amino acids. Such basis definitions
has a straightforward interpretation of the dynamics in terms of the slow motions of
the composing amino acids. This approach also identifies a possible path to describe
more complex systems with a hierarchical approach.

Chapter 5 explores the differences induced by the MD force fields on the dynamic
properties and MSMs are presented as a tool for comparison of different kinetic mod-
els. In light of these findings, chapter 6 presents a force-field-dependent library of all
amino acids slowest processes, which constitute the residue-centered basis functions
for the force field of choice.

Finally, the chapter 7 summarizes the most relevant results of this thesis, as well
as some concluding remarks.





Chapter 2

Theory

Throughout this chapter we present a more detailed description of the salient
aspects of the theory of propagators (section 2.1), Markov State Models (sec-

tion 2.2) and the Variational Approach to conformation dynamics (section 2.3). For
further details refer to [73, 61, 74, 64, 75, 76, 77].

2.1 Continuous Markov Model

Lets consider a state space Ω, whose elements x ∈ Ω represent the dynamical states
of the system at study. In the case of molecular systems in explicit solvent, x

contains both the positions and the velocities of all particles (including solvent’s)
of the system. The time-evolution of the system (here for simplicity we consider
time discrete) is the sequence of states {x(t1),x(t2), ...,x(tn)} visited by the system
at times {t1, t2, ..tn}. Such sequence is a trajectory x(t) ∈ Ω. The trajectory x(t)

is a Markov process if it fulfills the markovian property: the time-evolution of the
system is memoryless. This means that the transition probability p(x,y, τ) of being
in state x and going to state y in an amount of time τ , only depends on the initial
and final states and not on the history of the system. It can be described in form
of an operator P(τ), defined as:

p(x,y, τ)dy = P[x(t+ τ) ∈ y|x(t) = x]

x,y ∈ Ω; τ ∈ R0+.
(2.1)

P(τ) is referred to as the propagator and τ is a parameter of the model, known as
the lag-time.
The trajectory obtained from a MD simulation (in full continuous state space) is a
Markov process by construction, because the conformation x(t+ dt) is a determin-
istic function of x(t). Modeling the time-evolution of the system at study in terms
of a propagator constitutes the Markov model of the system’s dynamics.

To better understand the concept of the propagator and what type of informa-
tion can be derived from it, lets consider as an example a diffusion process in the
one-dimension potential shown in fig. 2.1.a, which has been previously used in ref.
[61]. The potential presents four minima, indicated in the figure as A, B, C, D.
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Figure 2.1: (a) Potential energy function with four metastable states: V (x) = 4(x8 +

0.8e−80x2

+ 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2). (b) Trajectory of a jump process between
x and the orthogonal neighbors, i.e. from x to {x, x + 1, x − 1}. x is restricted in the
range (-1,1) and the range is divided in 100 bins of width 0.1 (gray line) or in 4 bins:
(-1,-0.5), [-0.5, 0), [0, 0.5), [0.5,1) (blue line). Probability of jumping is (in units of kBT)
p(i, j) = 1

Zi
min{1, exp(−(V (j) − V (i)))} and Zi =

∑
i min{1, exp(−(V (j) − V (i)))} (c)

Boltzmann distribution relative to the potential in a. (d) Effect of the propagator in evolving
forward in time the probability distribution p(x).

An example trajectory is shown in fig. 2.1.b, where the value of x are recorded
over time (100000 time-steps). The trajectory oscillates in the range x ∈ (−1, 1),
and sharp jumps can be noticed whenever the trajectory overcomes the barrier at
x = 0. Smaller jumps distinguish transitions across the second highest barrier,
whereas transitions across the third barrier occur more frequently.
Looking at all the possible small variations of the reaction coordinate x does not
produce a clear and easily understandable picture of the dynamics. In this ex-
ample, representing the dynamics as jumps between four different regions (vertical
lines in fig. 2.1.a) approximates well the behavior of the trajectory. These are
the regions where the system spends a long time, and are called metastable states.
Within one region in fact x oscillates quickly, whereas transitions out of the region
occur more rarely. The dynamics of the system can thus be modeled as the four
metastable states (roughly identifiable with the minima A, B, C, and D), and the
transition probabilities between them. An equivalent simplification is what we seek
for modeling the dynamics of complex molecular systems: identify the long-living
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conformations of the molecule (metastable states) and the relaxation timescales of
the corresponding conformational changes. Such type of information is encoded in
the propagator.

The propagator transports the probability distribution forward in time (fig. 2.1.d)
Lets assume that at time t0 the probability distribution is concentrated around
x = 0. The probability distribution at time t0 + τ is thus described by:

p(x(t0 + τ)) = P(τ)p(x(t0)). (2.2)

If the dynamics fulfills the markovian property, the probability density of the system
at time t0 + kτ is a deterministic function of the probability density at time t0. For
example, the evolution of the probability density at t0 + 2τ can be seen as:

p(x(t0 + 2τ)) = P(τ)p(x(t0 + τ)) = P(τ)[P(τ)p(x(t0))] = P(2τ)p(x(t0)). (2.3)

Generalizing eq. 2.3 we obtain:

p(x(t+ kτ)) = P(kτ)p(x(t)) = [P(τ)]kp(x(t)), (2.4)

where applying the propagator k times is rewritten as:

P(kτ) = [P(τ)]k. (2.5)

Eq. 2.4 is denoted as the Chapman-Kolmogorov equation. As consequence of eq.
2.4, if the dynamic is truly markovian, the probability distribution of a simulated
trajectory at time t0 + kτ is equivalent to the one predicted by applying the propa-
gator k times to the initial probability distribution. Therefore, the fulfillment of eq.
2.4 can be used to prove the markovianity of the dynamics [28].

For t→∞, the probability distribution evolves towards its equilibrium distribution
(fig. 2.1.c), that at constant temperature is given by the Boltzmann distribution
[78]:

π(x) = Z(β)−1e−βH(x) (2.6)

where H(x) is the Hamiltonian of the system , β = 1/kBT is the Boltzmann con-
stant and Z(β) =

∫
e−βH(x)dx is the partition function.

The Hamiltonian is given by the sum of the potential energy and the kinetic energy.
In MD the kinetic energy depends on the velocities which are distributed according
to the Maxwell distribution [79] and the potential energy is given by the empirical
force field (eq. 1.1). It would thus be theoretically possible to compute π(x) by
simply integrating eq. 2.6. However, the state space of a biomolecular system is
extremely vast and a direct evaluation of Z(β) is not possible.

A way to estimate π(x) is via sampling, if the system is ergodic. This means
that, for infinitely long trajectories, each state x will be visited infinitely often and
the fraction of time the system will spend in each state will be proportional to its
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equilibrium probability. If ergodicity holds, ensemble averages of an observable of
interest A can be computed as time averages:

〈A〉 =
1

T

∫ T

0
A(x(t))dt =

∫
A(x)p(x)dx, (2.7)

i.e. properties of the state space can be inferred via sampling.
Ergodicity implies that any state x ∈ Ω can be reached from any other state in the
state space. The physical process described by MD simulations is ergodic, however,
in MD ergodicity can often only be assumed. In fact there is no way of knowing if
the full state space has been explored and one relies on indirect arguments to verify
the convergence of the simulations.

A property which is not necessary for the propagator, but implies profound
analytical statements is reversibility. A system is reversible if it satisfies the detailed
balance condition:

p(x,y, τ)π(y) = π(x)p(y,x, τ) ∀ x,y, τ . (2.8)

The detailed balance condition implies that the forwards and backwards transition
probabilities between pairs of states are equal. In many cases the model obtained
by MD simulations does not satisfy the detailed balance condition. The fulfillment
of such property is, however, logically expected, as its breaking would indicate the
unphysical scenario of a direction of the dynamics that allows the production of work
from a system in equilibrium. Therefore, in practice, detailed balance is enforced in
the construction of the model.

The properties we are interested in, i.e. metastable states and relaxation timescales
of the transitions between them, are encoded in the eigenvalues and eigenfunctions
of the propagator [60]. To better understand the interpretation of such quantities,
lets first consider another operator, the generator L(x(t)). The generator is a time-
continuous operator that represents the variation of the probability density with
respect to time. Its effect can be expressed as a differential equation, similarly to a
Fokker-Planck equation [80]:

∂

∂t
p(x(t)) = L(x)p(x(t)). (2.9)

The generator L(x(t)) is related to the propagator P(τ) by the integration of eq.
2.9, hence:

P(τ) = eL(x)τ . (2.10)

If the system is in equilibrium (p(x) = π(x)), the variation of probability density in
time is zero. From eq. 2.9:

∂

∂t
π(x) = L(x)π(x) = 0. (2.11)
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Therefore, the equilibrium distribution π(x) is an eigenfunction l1(x) of the gen-
erator associated to the eigenvalue k1 = 0. As a consequence, l1 does not have
negative entries. For ergodic systems the eigenvalue k1 = 0 always exists and it is
non-degenerate [81, 82], which implies the uniqueness of the equilibrium distribution
(eq. 2.6). Moreover, all other eigenvalues are guaranteed to be smaller or equal to
0, i.e. ki ≤ 0 ∀ i (Perron-Froebenius Theorem [81, 82]).
For an isolated system, the generator is time independent, thus the temporal and
the spatial parts of eq. 2.9 can be treated separately, in analogy to the solution
of a time-dependent Schrödinger equation. Hence, the solution to eq. 2.9 is an
exponential decay:

p(x(t)) =
∑

i

cie
kitli(x). (2.12)

Eq. 2.12 indicates that an arbitrary probability density p(x(t = 0)) can be seen as
a superposition of modes given by the eigenfunctions of the generator li(x), whose
expansion coefficients, ciekit are modulated in time and normalized such as that

∫
p(x(0))dx =

∫ ∑

i

cili(x)dx = 1 (2.13)

is assured.
From eq. 2.12 we notice that for t → ∞ all processes disappear (their expansion
coefficients tend to zero), with the exception of the process associated to k1 = 0,
i.e. the stationary distribution. The eigenvalues ki have thus the interpretation
of a relaxation rate, as they indicate how fast a specific eigenfunction (or mode)
will disappear. The modes with decaying constant close to zero indicate the slow
dynamic processes of the system.
The dynamic processes are encoded in the sign-structure of the eigenfunctions li(x).
They assign negative or positive values to each state and represent the exchange of
probability density between groups of states of different sign [60]. States to which
the eigenfunction assigns a value of zero are not effected by the particular process
described by the specific eigenfunction under consideration.
If detailed balance holds, eigenvalues and eigenfunctions of the generator are real
valued [83, 84].
Often in literature instead of decaying rates, implied timescales are used, which are
given by:

ti =
1

ki
. (2.14)

Implied timescales are one of the most interesting kinetic properties captured by
Markov models: they can be related to experimentally measurable quantities and
thus link the experimental observations to conformational changes at the molecular
level accessible by the simulations [28].

The eigenvalues and eigenfunctions of the propagator are linked to those of the
generator. Applying the propagator to the ith eigenfunction of the generator one
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obtains:

P(τ)li(x) = eL(x)τ li(x) (2.15)

and expanding the exponential of an operator as:

eL(x)τ =
∞∑

n=0

τn

n!
L(x)n, (2.16)

we can rewrite eq. 2.15 as:

P(τ)li(x) =
∞∑

n=0

τn

n!
L(x)nli(x) =

=
∞∑

n=0

τn

n!
kni li(x) = ekiτ li(x) = λi(τ)li(x).

(2.17)

Eq. 2.17 indicates that the eigenfunctions of the propagator and those of the genera-
tor are the same and that the eigenvalues of the propagator λi(τ) are time dependent
and related to those of the generator by:

λi(τ) = ekiτ . (2.18)

As a consequence, the spectrum of the propagator is bound from above by λ1(τ) =

ek1τ = 1 [63], which is unique for ergodic systems, i.e.:

|λi(τ)| ≤ λ1 = 1 (2.19)

Hence, for ergodic systems, there is a unique stationary distribution l1(x) = π(x).
The eigenvalues of the propagator are related to the relaxation timescales of the
systems by:

ti =
−τ

ln(λi(τ))
, (2.20)

where ti is the implied timescale of the ith process. If detailed balance holds, then
eigenvalues and eigenfunctions of the propagator are also real valued [83, 84].

An equivalent description to the one of the propagator for the time-evolution
of the probability distribution p(x) is given by the transfer operator T (τ). The
transfer operator is defined as:

p(x(t+ τ)) = T (τ)p(x(t)) =
1

π(x)

∫

y∈Ω
p(y.x)π(x)p(x(t))dy (2.21)

T (τ) and P(τ) share the same eigenvalues, and the eigenfunctions are related by:

li(x) = π(x)ri(x), (2.22)

where li(x) is the ith eigenfunction of the propagator and ri(x) is the correspond-
ing eigenfunction of the transfer operator (also called co-functions). li(x) and ri(x)
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are orthogonal and normalized such that 〈ri(x), lj(x)〉π(x) = δij . The propagator
eigenfunction l1(x), associated to λ1 = 1, is the equilibrium distribution π(x); conse-
quently its co-funtion is r1(x) = l1(x)/π(x) = 1, i.e. it is a constant function on the
entire state space Ω. The dominant eigenfunctions of the transfer operator maintain
the same sign structure possessed by the propagator eigenfunctions and therefore
carry the same information about dynamical transitions. Thinking in terms of T (τ)

is useful for the construction of spatially and temporally discretized Markov models,
which are discussed in section 2.2.

2.2 Discrete Markov Model

Despite MD on a continuous state space being markovian by construction, in prac-
tice, a dimensionality reduction is required. Such dimensionality reduction occurs
in two steps:

• a projection onto a sub set of degrees of freedom, defined as reaction coordi-
nates, which capture the relevant (i.e. slow) dynamics of the system;

• a discretization of the state space into a set N of non-overlapping states (Si ∩
Sj = 0 for all i 6= j), whose union is the totality of the state space (∪ni=1Si =

Ω). The discrete states Si are called microstates. The trajectory is assumed
to be at local equilibrium within one microstate, i.e. each point x ∈ Si has an
equivalent dynamic behavior.

Voronoi Partition

Ω
Figure 2.2: Schematic example of a Voronoi partition

A typical discretization is a Voronoi partition [85] (fig. 2.2), where a set of n centers
x̄i, i = 1, ..., n is defined and the set Si is the union of all the points x closer (ac-
cording to some metric) to x̄i than to any of the other centers. The crucial point in
the Voronoi partition is the choice of the centers, and there are multiple algorithms
which aim at finding the most representative and robust set of centers x̄i [86, 87, 88].

The Markov model on a discretized state space is denoted as Markov State Model
(MSM). In a MSM framework, the probability density of the system p(x(t)) is a
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vector, whose elements represent the probabilities of finding the system in each mi-
crostate at time t. As the microstates constitute a full partition of the state space,
the probability of finding the system at any microstate at time-step t is equal to one.
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Figure 2.3: (a) Potential energy function with four metastable states as in fig. 2.1.a.
(b) Transition matrix estimated for 100 microstates and lag-time τ = 100 time-steps. (c)
First 10 eigenvalues of the transition matrix in b. (d) Left dominant eigenvectors of the
transition matrix in b. (e) Right dominant eigenvectors of the transition matrix in b. (f)
Implied timescales estimated from a MSM with 100 states (solid line) or 4 states (dashed
line).

The time-evolution of the probability density vector is given by:

p(x(t+ τ)) = T(τ)p(x(t)), (2.23)

which is the discrete equivalent of eq. 2.1. T(τ) is the transition matrix and is
the discrete representation of the transfer operator. The elements of the transition
matrix are the transition probabilities between pairs of microstates in an amount of
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time τ :

Tij = P[x(t+ τ) ∈ Sj |x(t) ∈ Si],
Tij ∈ R Tij(τ) ≥ 0 ∀ i, j, τ,

N∑

i

Tij(τ) = 1 ∀ j, τ,
(2.24)

i.e. the transition matrix is a row stochastic matrix.

Going back to our four-well potential example, a visualization of the transition
matrix is show in fig. 2.3.b. The state space Ω : x ∈ (−1, 1) is subdivided in 100
bins of bin-width 0.1, and the entries of the transition matrix Tij are computed at a
lag-time of τ = 100 time-steps. Four regions of higher transition probability can be
identified, which correspond to the four minima of the potential. The low-transition
probability regions represent the barriers.
Given a MD trajectory, the elements Tij can be estimated by counting the number
of times the trajectory is observed initially in state Si and at a time τ later in state
Sj (Kij). Such transition counts between microstates are stored in form of a matrix,
called count matrix, K(τ). If multiple trajectories are available, the contribution to
the count matrix of these trajectories can be computed independently. The elements
of the transition matrix can be estimated from the count matrix according to:

Tij =
Kij

Ki(τ)
, (2.25)

where Kij is the number of transitions between states Si and Sj , and Ki is the
number of transitions originated in Si. In theory, the transitions contributing to the
count matrix should be independent, e.g. x(t0)→ x(t0 + τ),x(t0 + τ)→ x(t0 + 2τ)

etc. This approach, however, has the consequence that a huge portion of simulation
data does not contribute to the estimation of the model (fig. 2.4.a). In practice, one
usually chooses a sliding window approach, which on one hand produces correlated
counts, but on the other permits better statistics ( fig. 2.4.b).

!

time
Independent Countsa)

!

time
Sliding windowb)

Figure 2.4: (a) Independent counts approach. (b) Sliding window approach.



20 Chapter 2. Theory

In analogy to the theory of the transfer operator, the transition matrix eigenval-
ues are related to the relaxation timescales of the system, and the dynamic processes
are encoded in the eigenvectors. Lets refer again to the transition matrix T(τ) of
fig. 2.3.b. The first ten eigenvalues of T(τ) are shown in fig. 2.3.c. The first four
eigenvalues have much higher values compared to the the remaining ones. Such sep-
aration is known as the spectral gap and identifies the dominant kinetic processes
of the system. It is worth to notice that in a real bio-molecular system it is often
difficult to distinguish the dominant processes from the fast-decaying ones, as there
might be no evident spectral gap.
The eigenvalues λi(τ) of a transition matrix T(τ) depend on the lag-time, which is
a parameter of the model. Nonetheless, the associated timescales should be inde-
pendent of the the lag-time at which the model is estimated.

ti = − nτ

ln(λi,T (nτ))
= − nτ

ln(λni,T (τ))
= − nτ

n ln(λi,T (τ))
= − τ

ln(λi,T (τ))
, (2.26)

where λi,T (nτ) is the ith eigenvalue of the model estimated at lag-time nτ . In prac-
tice, however, the timescales are only constant in a limited range of lag-times, due to
memory effects or limited statistics. This can be seen, for instance, in our example
if instead of 100 microstates only four are used, corresponding to the four minima of
the potential (fig. 2.3.f). The first three implied timescales estimated for the finest
discretization (solid line) result constant for all values of τ between 50 and 1500
time-steps. The coarser discretization estimation instead converges to the same val-
ues only at longer lag-times. Assuming that an infinite amount of data is available,
the implied timescales estimated from a transition matrix converge to their true
value as the lag-time τ increases, because the approximation of local equilibrium
within a microstate becomes progressively more accurate. On the other hand, if the
lag-time is too big, the model becomes coarser (many processes have decayed) and
the limited statistics has an effect on the quality of the model itself. In practice,
one looks at the range of lag-times where the slowest relaxation timescales reach a
plateau and selects a value of τ in such range for constructing the model. Moreover,
the behavior of the dominant timescales with respect to τ can be used to check the
quality of the model, as constant implied timescales indicate that the dynamics can
be considered markovian. It should be noted, however, that the convergence of the
implied timescales is not a complete test of markovianity, as the lag-time indepen-
dence of the eigenvectors should also be verified.

The right eigenvectors of the transition matrix are the discrete equivalent of the
eigenfunctions of the transfer operator. The first right eigenvector r1(x) is constant
over the visited microstates. The eigenvectors associated to the slowest timescales
represent the dominant dynamic processes. They indicate the transfer of probability
density between groups microstates of opposite sign and are almost constant within
one metastable state. The left eigenvectors li(x) of the transition matrix are the
discrete representation of the propagator eigenfunction. Fig.s 2.3.d and .e represent
respectively the first four left and right eigenvectors of the transition matrix of fig.
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2.3.b. As expected, the first right eigenvector is constant, whereas the first left
eigenvector is the Boltzmann distribution. The second eigenvector (first dynamic
process) corresponds to transitions across the barrier at x = 0. The second and
third dynamic processes represent the transitions A → B and C → D respectively.
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Figure 2.5: Schematic representation of PCCA. A) PCCA partition of the state space into
5 PCCA clusters. B) Hierarchy of the underlying energy landscape obtained by iterative
use of the PCCA algorithm with increasing number of eigenvectors.

For a high-dimentional molecular system, interpreting the eigenvectors in terms
of conformational changes is not trivial. A dynamic process, in fact, is normally
defined as a transition between the microstates to which the eigenvector assigns
negative values and those to which it assigns positive values. Such approach, how-
ever, may lead to a confused interpretation, due to the arbitrary assignment of those
microstates whose eigenvector entry is close to zero, and therefore are not represen-
tative of the conformational change.
An automatic approach to assign microstates to metastable macrostates is by Perron
Cluster Cluster Analysis (PCCA) [60, 89], a method that exploits the eigenspectrum
of the transition matrix to coarse-grain the MSM. In a PCCA the first M eigenvec-
tors are used to map each of the microstates into M long-living states, in a crisp
or fuzzy manner. A schematic representation of PCCA is shown in fig. 2.5. If
five eigenvectors are provided, the state space is partitioned in five regions, corre-
sponding to five metastable states of the system (fig. 2.5.A). However, this does
not provide any information about the transitions between such metastable states.
An iterative application of the method provides a picture of the hierarchy of the
free-energy barriers of the system by splitting regions of the state space according
to the eigenvectors sign(fig. 2.5.B). Giving as an input the first two dominant eigen-
vectors (fig. 2.5, B.1) the conformational space is split in two long-lived clusters
along the highest energy barrier of the system. The blue and red coloring represent
areas of the configurational space where the eigenvector has opposite sign, whereas
the white area represent those microstates that do not participate to the dynami-
cal process. When the third eigenvector is provided, the algorithm splits the right
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cluster in two kinetically diverse states, based on the eigenvector sign (fig. 2.5, B.2).
Analogously, the information yielded by the fourth eigenvector splits the left cluster
(fig. 2.5, B.3) into two sub sets, and the fifth eigenvector splits the left-most state
in two (fig. 2.5, B.4). Further iterations of the algorithm create more macrostates.
The slowest process of the system can thus be interpreted as transition between the
superimposition of clusters one, two and five on one side and of clusters three and
four on the other. The second slowest process represents transitions between clusters
three and four, whereas the third process represents transitions between cluster two
and clusters one and five superimposed. Finally, the third slow process represents
transitions between cluster one and cluster five. In recent years more efficient and
robust versions of the algorithm have been implemented [90, 67, 91].

2.3 The Variational Approach to Conformation Dynam-
ics

The transition matrix, together with the discretization, constitute the gist of the
MSM. However, it has to be remarked that the dynamics of a MD-trajectory pro-
jected onto a reduced set of discretized degrees of freedom is not guaranteed to fulfill
the markovian property. In fact, within a microstate, all elements are considered as
belonging to the same local minimum and the probability of equilibrating back to
the microstate instead of transitioning out of it is neglected. Therefore, the quality
of the MSM depends crucially on the discretization.

The quality of the model can be improved if a discretization that finely separates
into different states the transition barriers is used [72, 61]. This can be seen in
our four-minima example, by comparing the dominant eigenvectors estimated with
four-states discretization or 100-states discretization (fig. 2.6). However, the fea-
tures of the energy landscape are not known a priori and a fine discretization of
the full state space is unfeasible, due to the high-dimensionality of the state space
itself. MSMs are therefore associated to a systematic error that depends on the
discretization [72, 61].

Discretization comparison
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Figure 2.6: Comparison of the dominant right eigenvectors of the transition matrix in fig
2.3.b estimated with 4 or 100 states.

In recent years a new approach has been developed: instead of approximating
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the transfer operator eigenfunctions on a crisp discretization (i.e. MSM), a linear
combination of basis functions that maps elements of the state space to real values
can be used [75, 76], in analogy to quantum mechanics. Such approach, known as
variational approach to conformation dynamics (VAC), has the advantage of pro-
ducing a precise model of the dynamics with a smaller number of basis functions
than the number of microstates used in conventional MSM. The continuous func-
tions, in fact, help in overcoming limitations provided by the crisp discretization.
For instance, the basis functions can be designed as to mimic the conformational
changes of the system [76]. Moreover, through appropriate selection of basis func-
tions, previously acquired information or chemical intuition may be included in the
model. It is also worth to notice that discrete states often lack a clear structural
meaning, therefore the interpretation of the eigenvectors as conformational changes
is not straightforward. If instead the basis functions carry some structural meaning,
VAC can ease the interpretation of the model (chapter 4).

The VAC exploits the fact that the propagator is a self-adjoint operator with respect
to the weighted scalar product (〈P(τ)f(x), g(x)〉π−1 = 〈f(x),P(τ)g(x)〉π−1) and has
a bounded eigenvalue spectrum. Therefore a variational principle can be formulated:

〈ϕ(x),P(τ)ϕ(x)〉π−1 =

∫

Ω
ϕ(x)π−1(x)P(τ)ϕ(x)dx ≤ λ1 = 1, (2.27)

where ϕ(x) is a trial function normalized such that:

〈ϕ(x), ϕ(x)〉π−1 =

∫

Ω
ϕ(x)π−1(x)ϕ(x)dx = 1. (2.28)

The equality in eq. 2.27 holds if and only if ϕ(x) = l1(x). Finding the trial function
ϕ(x) that maximises the left term of eq. 2.27 is therefore a way to approximate l1(x).
Such a procedure can be iteratively applied to approximate the other eigenfunctions,
under the additional constraint that they will be orthogonal to the previous eigen-
functions.

The trial function ϕ(x) can be linearly expanded in terms of a set of M basis
functions {ψi(x)}Mi=1.

ϕ(x) =
M∑

i=1

aiψi(x),

ai ∈ R.

(2.29)

The method of linear variation can be used to estimate the optimal coefficients ai
that maximize the left term of eq. 2.27, while the basis functions, which are not
required to be orthonormal, are kept constant. The normalization constraint eq.
2.28 is enforced using the method of Lagrange multipliers. The derivation of the
method (appendix A) indicates that the optimal expansion coefficients ai can be
obtained by solving the generalized eigenvalue problem (eq. 2.30)

C(τ)A = ΛSA, (2.30)
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where the matrix elements of A are the expansion coefficients of the first N basis
functions {ψi(x)}; Λ is a diagonal matrix which has the variational estimates of the
eigenvalues as diagonal elements; S is the overlap matrix:

Sij = 〈ψi(x), ψj(x)〉, (2.31)

and C(τ) has the interpretation of time lagged correlation matrix:

Cij = 〈ψi(x),P(τ)ψj(x)〉. (2.32)

Due to the high dimensionality of the state space Ω, the direct evaluation of S

and C(τ) is not feasible. They can, however, be estimated from a MD simulation
trajectory of length T :

Sij = lim
t→∞

ĉorr(χi(x), χj(x), τ = 0)

≈ 1

T

T∑

t=1

χj(x(t))χi(x(t));
(2.33)

Cij = lim
t→∞

ĉorr(χi(x), χj(x), τ)

≈ 1

T − τ
T−τ∑

t=1

χj(x(t))χi(x(t+ τ));
(2.34)

where, in place of the basis functions {ψi(x)}, the corresponding co-functions {χi(x)}
are used, which consist of the original basis functions weighted by π−1(x). Such a
reformulation of the problem is equivalent to:

π−1(x)ϕ(x) =

n∑

i=1

aiπ
−1(x)ψi(x),

=
n∑

i=1

aiχi(x).

(2.35)

If ϕ(x) is the approximated propagator eigenfunction li(x), π−1(x)ϕ(x) is the ap-
proximated ith eigenfunction of the transfer operator ri(x).

The VAC can therefore be used to numerically approximate the dominant eigen-
function eigenvalue pairs of the transfer operator. It is worth to notice that con-
ventional MSM can be seen as a special case of VAC where the basis functions are
chosen as step functions over the microstates.



Chapter 3

Extensive Molecular Dynamics
simulation and MSM analysis of

IDPs dynamics

I
ntrinsically disordered peptides and proteins (IDPs) are a class of proteins which
lack a fixed tridimensional structure. This does not mean that IDPs cannot as-

sume stable structures, but rather that their state space covers a wide range of
(partially) folded conformations. A specific tridimensional structure is selected in
relation to specific conditions, like binding partner, environment, etc. Thanks to
their flexibility, IDPs are involved in a series of functions and regulatory pathways.
Misfolded IDPs can also be related to a number of diseases, such as Parkinson,
Alzheimer’s disease, and diabetes.

The challenge in characterizing IDPs dynamics lies in their extreme structural
flexibility and in the consequent dynamic complexity. In this chapter we use MSM
to characterize the dynamics of human islet amyloid polypeptide (hIAPP), a 37-
residue long IDP. Human IAPP is related to type two diabetes disease, as hIAPP-
rich deposits are found in over 95% of the patients [92, 93, 94]. hIAPP is known
to form fibrils in vitro, and in particular residues 20-29 have been identified as
amyloidogenic [95, 96, 97].
HIAPP can assume a variety of conformations, which can be stabilized by confor-
mational selection upon contact with different binding partners. In this study we
investigate and characterize the long-living configuration of the peptide by simulat-
ing and analyzing progressively longer hIAPP fragments around the amyloidogenic
region (residues 23-27). Our study reveals a hierarchy in the dynamics. The long-
living conformations identified in the model of the shorter fragments are also present
the longer fragments.



Hierarchy in the conformational ensemble of human islet amyloid polypeptideAIP/123-QED

Hierarchy in the conformational ensemble of human islet amyloid polypeptide

F. Vitalini1 and B.G. Keller1, a)

Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin,

Takustraße 3, D-14195 Berlin, Germany

(Dated: 16 December 2015)

Human islet amyloid polypeptide (hIAPP) is an intrinsically disordered protein in-

volved in glucose metabolism. The physiological α-helical structure as well as the

pathogenic amyloid fibril structure are thought to form via a conformational selection

mechanism, in which the structure assembles around a conformation with some sec-

ondary structure content which is transiently sampled by the unstructured protein.

We identify long-lived conformations, which might act as such nucleation points,

in various sequence fragments by molecular-dynamics simulation and Markov state

model analysis. More specifically we simulated the peptides FGAIL 23-27, NFGAIL

22-27, HSSNNF 18-23, ILSSTNV 26-32, HSSNNFGAIL 18-27, FGAILSSTNV 23-32,

HSSNNFGAILSSTNV 18-32 and the full hIAPP 1-37 yielding a total simulation time

of 57.8 µs. The conformations are matched across different fragments of the peptide

sequence by comparing hydrogen bonds and backbone conformations to identify the

hierarchy of interactions. A transiently formed α-helix in FGAILS 23-28 is the likely

nucleation point for the formation of the physiological structure. β-hairpins stabi-

lized by local interactions are less frequently sampled as the chain length increases,

suggesting the formation of pathogenic protofilaments do not require a preformed

structure but possibly only an encounter complex between two hIAPP molecules.
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Keywords: intrinsically disordered protein, conformational dynamics, Markov state model,

molecular-dynamics simulation

Highlights:

• Both, the physiological and the pathogenic structure of the intrinsically disordered

protein hIAPP are thought to form around nucleation points with local secondary

structure.

• We identify long-lived conformations in various sequence fragments by MD simulation

and Markov state model analysis.

• The conformations are matched across different fragments of the peptide sequence by

comparing hydrogen bonds and backbone conformations to identify the hierarchy of

interactions.

• A transiently formed α-helix in FGAILS 23-28 is the likely nucleation point for the

formation of the physiological structure.

• β-hairpins stabilized by local interactions are less frequently sampled as the chain

length increases, suggesting the formation of pathogenic protofilaments do not require

a preformed structure but possibly only an encounter complex between two hIAPP

molecules.

Abbreviations: hIAPP: human islet amyloid polypeptide; MSM: Markov State Model;

MD: Molecular Dynamics; IDP: Intrinsically Disordered Peptide; NMI: Normalized Mutual

Information; PCCA: Perron Cluster Cluster Analysis;
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I. INTRODUCTION

Human islet amyloid polypeptide (hIAPP)1, also known as amylin, is a 37-residue intrisi-

cally disordered peptide (IDP), which is synthesized in the pancreatic β-cells2,3. It is known

to have multiple effects on glucose metabolism and homeostasis, yet the precise mechanism

by which it influences these biochemical pathways has not been established1. Upon contact

with biological membranes, hIAPP forms α-helices4–6. Similar to other IDPs, hIAPP can

also form β-sheets which aggregate into pathogenic amyloid deposits. In particular, these

amyloid deposits are associated to type-2 diabetes7–9. Note that both structures, the phys-

ioligically active α-helical structure and the pathogenic β-sheet structure, are stabilized by

an interaction partner, whereas hIAPP is unstructured in solution.

The physiologically active state of hIAPP consists of two alpha helices (residues 7-17

and 21-28), connected by a kink (residues 18-20), and of a short 310 helix (residues 33-35)

(fig 2 A). The first α-helix (residues 7-17) inserts into the membrane, while the rest of the

structure is solvent-exposed6,10.

The conformation of hIAPP within the amyloid fibril is not known precisely, and a variety

of models for the protofilament have been proposed11–16. Residues 20-29 (SNFGAILSS)

are especially critical for the formation of amyloid fibrils, which has been determined by

comparing the sequences and the amyloid fibril propensities of IAPP variants of different

mammals17. Interestingly, this fragment also contains the central α-helix in the membrane-

bound structure and therefore might act as a switch between the physiological conformation

and the toxic protofilament. It has been proposed that residues 20-29 form a β-strand

in solution and thus act as nucleation point for the formation of amyloid fibrils18,19. The

model in Fig. 2 B is based on this idea and features an S-shaped conformation in which

residues 22 to 27 form the central β-strand12. While the importance of residues 20-29 for the

amyloid formation is undisputed, their role as a nucleation point is now being challenged.13,17.

More recently proposed models were based on solid state NMR13, X-ray crystallography14,

and on EPR experiments16. In all three models, the peptide chain assumes a U-shaped

conformation, in which two β-strands are connected by a loop region which at least partially

includes the critical region (Fig. 2 C, D). In the NMR-model, the loop region is assigned to

residues 18 to 27, in the X-ray model to residues 20 to 23, and in the EPR model to residues

19 to 31. Note that in these models, the β-strands are not stabilized by intramolecular

4
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hydrogen bonds. Instead the fibril consists of two columns of anti-parallel hIAPP monomers

packed against each other along the C-terminal β-strands. According to the NMR and the

X-ray models, within the same column, the β-strands form hydrogen bonds with adjacent

polypeptide chains, generating intermolecular, parallel, in-register β-sheets (Fig. 2 D.2). In

the NMR-model13 the intermolecular contacts are mediated by two serine residues in position

28 and 29, while in the X-ray model the contacts are formed by serine 29 and asparagine

31. Thus, exchanging these residues 28 and/or 29 by proline residues (as for example in rat

IAPP) prevents the formation of intermolecular contacts and thus the formation of amyloid

fibrils.

Additionally to the two folded structures, also the unstructured conformational ensemble

has been characterized by experiment and by computational studies. These studies have

shown that the conformational ensemble is not well described by a random-coil model but

that the peptide transiently samples α-helical as well as β-sheet structures15,20–27. Since

the extraction of specific conformations from ensemble measurements is extremely difficult,

molecular dynamics (MD) simulations have become an indispensable tool for the characteri-

zation of IDPs in solution28–33. Replica Exchange Molecular Dynamics (REMD) simulations

of hIAPP, both coarse-grained23 and atomistic, in either implicit15,26 or explicit22,25,27,31

solvent, have been used to explore the extent of the conformational ensemble. Three dis-

tinct conformational families of hIAPP monomer are found15,22: a β-sheet rich structure,

a β-hairpin and a helix-coil structural family. Comparison to non-amyloidogenic sequences

showed that β-hairpin conformations are only sampled by sequences which are capable of

amyloid formation, whereas helical structures are transiently formed by all sequences24–26.

Thus, a conformational selection mechanism is likely to be at work31: both the physio-

logical α-helical structure and the β-sheet structure are partially and transiently preformed

in solution and can be stabilized upon contact with their binding partner (Fig 3). The

residues which switch between these two structural sub-ensembles are likely to be located in

the critical region from residue 20 to 29 for two reasons: (i) exchanges of amino acids in this

regions strongly affects the amyloid propensity17, and (ii) it contains the central α-helix of

the physiological conformation as well as part of the loop region in the various models of

the conformation within the amyloid fibril.

Note that the complete structures are not preformed in solution, but that local secondary

structure elements act as nucleation points around which the rest of the peptide can fold

5
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when the local secondary structure element is stabilized by an interaction partner (membrane

or amyloid fibril). A prerequisite for a nucleation point is that the conformation has a long

life-time, such that additional stabilizing contacts can be formed by the neighboring residues.

The relative population of a conformation is of lesser importance. The energy landscape

which corresponds to this mechanism is rather flat with multiple local minima representing

conformations with local secondary structure elements (yellow plane in Figs. 3). Since the

nucleation points only span short regions in the peptide, it is reasonable to assume that they

are predominantly stabilized by interactions within these regions, and that the conformation

of the nucleation point can be traced back to a conformation within a corresponding short

peptide fragment. This argument justifies the relevance of studies of peptide fragments20,34–36

(green planes in Figs. 3).

Yet, the conformational dynamics of the full hIAPP is not simply the sum of the confor-

mational dynamics of its fragments. To investigate the hierarchy of the secondary structure

elements, we perform all-atom explicit-solvent MD simulations of seven hIAPP fragments,

which are centered around the critical region form residue 20 to 29. We use Markov State

Models (MSM)37–42 of the conformational dynamics to identify long-lived conformations and

determine how the long-lived conformations of shorter fragments influence the stability of

conformations in longer fragments. The results are compared to structural analysis of MD

simulations of the full-length peptide hIAPP 1-37.

II. RESULTS

A. hIAPP fragments: disordered but not a random coil

All of the seven hIAPP fragments were disordered and highly flexible in the MD simu-

lations, as expected for peptides with 15 or less residues. Fig. 4 compares the φ-ψ-torsion

angle distributions (Ramachandran plots) of corresponding residues in the hIAPP fragments

(see also Fig.11 in the SI). On the level of a single amino acid residue, the backbone dy-

namics is essentially unrestrained with each of the residues occupying all of the canonical

regions in the Ramachandran plot (Fig. 4 B). Moreover, the φ-ψ-distributions of correspond-

ing amino acid residues in different hIAPP fragments differ only marginally (Fig. 13 in the

SI). Nonetheless, the dynamics of the hIAPP fragments cannot be described accurately by

6
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a random coil model, as all of the seven fragments formed several long-lived conformations.

The probability of finding the peptide in one of these long-lived conformations varied from

1 to 23% between the different fragments (Fig. 6-10).

The apparent contradiction between unrestrained dynamics on the level of the single

amino-acid residue and formation of long-lived conformations can be resolved by consider-

ing the properties of joint probability densities. The Ramachandran plots in Fig. 4 can be

understood as the the probability density p(φi, ψi) of finding residue i in a backbone con-

formation {φi, ψi}. The joint probability density p(φi, ψi, φj, ψj) represents the probability

of finding residue i in {φi, ψi} while simultaneously finding residue j in {φj, ψj}. If the two

residues are fully uncorrelated, the joint probability density is given as the product of the

marginal probability densities

p(φi, ψi, φj, ψj) = p(φi, ψi) · p(φj, ψj) . (1)

However, also other joint probability densities are possible which have the same marginal

probability densities, p(φi, ψi) and p(φj, ψj), but cannot be constructed as their product

p′(φi, ψi, φj, ψj) 6= p(φi, ψi) · p(φj, ψj) . (2)

In these cases, the dynamics of residue i and j are correlated. The normalized mutual

information (NMI) measures the difference between the actual joint probability density and

the hypothetical uncorrelated density, and thus the degree to which the two residues are

correlated (see section IV B). In contrast to the Pearson-correlation coefficient, the NMI

also accounts for non-linear correlations43.

Fig. 5 shows the pairwise NMI for the seven hIAPP fragments. Overall, the correlation

between the amino-acid residues is small (NMI < 0.1 for most pairs) but clearly significant

(NMI > 0.01). Throughout the chains, the strongest correlations are found between neigh-

boring residues. Additionally, we find blocks of residues in which all residues are correlated,

e.g. S19-F23 in HSSNNF 18-23, L27-N31 in ILSSTNV 26-32, S19-G24 in HSSNNFGAIL 18-27,

G24-V31 in FGAILSSTNV 23-32, and F23-S28 in HSSNNFGAILSSTNV 18-32. The correla-

tions indicate that conformational dynamics of these peptides deviates substantially from

random coil dynamics.
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B. The short fragments

To identify long-lived conformations of the short fragments, we constructed Markov state

models (MSMs) for the conformational dynamics of the fragments FGAIL 23-27, NFGAIL

22-27, HSSNNF 18-23, and ILSSTNV 26-32 and analyzed the eigenvectors of the MSM

transition matrix using the PCCA+ algorithm44. The PCCA+ analysis additionally yields

information on the hierarchy of the kinetic exchange procsesses between these long-lived

conformations, and thus on the free-energy landscape of the peptides40. The timescale of

the kinetic exchange processes can be calculated from eigenvalues of the MSM transition

matrix (see section IV C). A similar landscape emerged for all four peptides: several states

with low equilibrium population (small states) are identified which, in most cases, exhibit a

specific pattern of backbone conformations in two or more consecutive amino acid residues.

Each of these states is in kinetic exchange with a state with high equilibrium population

and no discernible structural preference in the backbone torsion angles. There is no direct

kinetic exchange between the small states. This corresponds to the situation depicted in

Fig. 3: the large state represents the overall conformational ensemble (yellow plane) from

which the molecule can transition into specific long-lived conformations (orange regions).

The timescales at which the long-lived conformations exchange with the overall confor-

mational ensemble varies between tens and hundreds of nanoseconds. This confirms that the

conformations are indeed stabilized compared to other conformations, and that the peptide

chain is not a random coil.

Fig. 6 illustrates the long-lived conformations of the four short fragments, where we omit-

ted the ensemble state. For FGAIL 23-27 (Fig. 6.A), only two conformations were separated

from the ensemble state, each with a population of 2%. The state C1 is characterized by a

β-conformation in I26 and a Lα conformation in L27, whereas in C1 I26 is in Lα and L27 in

β. Neither of the states is stabilized by hydrogen bonds (SI Table I).

In NFGAIL 22-27 (Fig. 6.B,), we find two states, C2 and C3, which have a low population

of 1% each and which are not stabilized by any hydrogen bonds. In state C1 (5% equilibrium

population), F23 and G24 are locked in the Lα conformation whereas the other residues

are free to transition between the α and the β conformation and, to some extent, the

Lα conformation. The resulting conformation is almost a β-hairpin which is stabilized by

hydrogen bonds from N22 to A25 and I26 (SI Table II). The hydrogen bond between the

8
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carbonyl oxygen of N22 and the backbone amide hydrogen of A25 is the most populated one

(formed in 13.83% of all frames in the C1) and can be classified as a i ← i + 3 backbone

hydrogen bond, where i is a residue number and the arrow indicates the direction of the

hydrogen bond form hydrogen donor to acceptor. Analogously, the hydrogen bond between

N22 and I26 (population within C1: 10.61%) is classified as i ← i + 4. Fig. 6.H shows that

both hydrogen bonds can be formed simultaneously. Additionally, the side chain of N22 acts

as a hydrogen bond donor to the backbone carbonyl groups of A25 and I26 (5.26% and 6.46%,

respectively).

In all three long-lived conformations of HSSNNF 18-23 (Fig. 6.C), S20 is restricted to the

Lα-conformation (with some population in the β-conformation in C2). Additionally either

or both of the neighboring residues show an increased population in the Lα-conformation.

C1 has the most clearly defined backbone structure. The predominant sequence of back-

bone conformations is {α, β,Lα,Lα, α, β}. This hairpin-conformation is stabilized by a the

following sequence of backbone hydrogen bonds (Fig. 6.F and 6.I): carbonyl oyxgen of S19

to amide hydrogen of N22 (21.07%, i ← i + 3), carbonyl oyxgen of S19 to amide hydrogen

of F23 (19.99%, i ← i + 4), and additionally amide hydrogen of S19 to carbonyl oxygen of

F23 (11.44%, i → i + 4) (SI Table III). This is a class 3 β-hairpin45 with three residues

between the doubly hydrogen bonded residues S19 and F23, which is additionally stabilized

the i← i+ 3 hydrogen bond between N22 and S19. Although C2 and C3 have larger popula-

tions than C1, their conformational sub-ensemble exhibits fewer and less populated hydrogen

bonds. Neither of the two states is substantially stabilized by specific interactions.

For ILSSTNV 26-32 (Fig. 6.D), three long-lived conformations could be identified, C3

covers 23% of the entire conformational ensemble and is a class 3 β-hairpin with three

residues between the doubly hydrogen bonded residues L27 and N31 (i ← i + 4: 28.65%,

i → i + 4: 38.13%). The conformation is additionally stabilized by a i ← i + 3 hydrogen

bond from the amide hydrogen of T30 to the carbonyl oxygen of L27 and by a hydrogen

bond from the side chain hydroxyl group of T30 to the carbonyl oxygen of S28 (SI Table

IV). This hydrogen bond pattern is similar to C1 in HSSNNF 18-23 and hence induces an

analogous backbone conformation in residues L27 to N31: {β,Lα,Lα, α, β}. By contrast, C1

an C2 have a low population. C1 can be classified as a class 4 β-hairpin with four residues

between the doubly hydrogen bonded residues I26 and N31 (hydrogen bonds i ← i + 5 and

i → i + 5). However, the most prominent hydrogen bond is formed between the side chain
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hydroxyl group of T30 and the carbonyl group of L27 (52.99%) which is accompanied by a

hydrogen bond from the amide hydrogen of T30 to the carbonyl group of L27 (C1 10.07%).

Both of these hydrogen bonds are also formed in C2 (23.42% and 13.52%, respectively), but

the interactions between I26 and N31 are missing.

To summarize, in three out of four peptide fragments we find a class 3 hairpin confor-

mation (C1 in NFGAIL 22-27, C1 in HSSNNF 18-23, and C3 in ILSSTNV 26-32). These

conformations are stabilized by hydrogen bonds of type i← i+3 and i← i+4, where residues

i+1 and 1+2 are in the Lα backbone conformation. In HSSNNF 18-23 and ILSSTNV 26-32,

the conformation is additionally stabilized by a hydrogen bond of type i→ i+ 4 restraining

the backbone conformation of residues i to i + 4 to {β, Lα, Lα, α}. In ILSSTNV 26-32 we

additionally find a class 4 β-hairpin.

C. HSSNNFGAIL 18-27

The MSM analysis of the fragment HSSNNFGAIL 18-27 yields five long-lived conforma-

tions (Fig. 7). Remarkably in all five states, the formation of a specific backbone structure is

limited to residues H18 to F23, whereas residues G24 to L27 can transition freely between the

canonical backbone conformations. Only in state C2, residue I26 is restricted to the Lα-region

of the Ramachandran plot, whereas residue A26 is restricted to the α/β-region. Possibly,

the flexible backbone torsion angles of G24 prevent structure formation in the C-terminal

part of the peptide.

C3 has a very distinct backbone conformation in residues H18 to F23 ({α, β,Lα,Lα, α, β})
and can be classified as a class 3 β-hairpin with three residues between the doubly hydrogen

bound residues S19 and F23 (i ← i + 4: 33.36%, i → i + 4: 25.11%). The hydrogen bond

between the amide hydrogen of N22 and the carbonyl oxygen of S19 (i ← i + 3: 26.26%)

additionally stabilizes the conformation. With these characteristics, C3 can be related to C1

in HSSNNF 18-23. C3 in HSSNNFGAIL 18-27 is additionally stabilized by hydrogen bonds

between H18 and G24 (5.85%) and between H18 and A25 ((5.33%), which cannot be formed

in HSSNNF 18-23. We also observe a hydrogen bond between the side chain of N22 and the

carbonyl oxygen of S20 (8.17%), which is not present in state C1 of HSSNNF 18-23.

Interestingly, states C1, C2, C4, and C5 are not stabilized by hydrogen bonds. The only

hydrogen bond with a relative population larger than 10% within the sub-ensemble of the
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respective state is found in state C2 between the side chain of S20 and the carbonyl oxygen

of A25. States C4 and C5 have corresponding states in HSSNNF 18-23. In state C4, the

predominant sequence of backbone conformations in residues H18 to N21 is {β,Lα,Lα,Lα},
whereas residues N22 and F23 are flexible. A similar pattern is found in state C2 of HSSNNF

18-23 (Fig. 6.C). Likewise the pattern {β/Lα, β/Lα,Lα} in residues H18 to S20 can be matched

with state C3 of HSSNNF 18-23 (Fig. 6.C). State C1 and C2 seem to be complements.

In state C1, residues S19 to F23 show an increased population in the β/Lα-regions of the

Ramachandran plot, whereas in state C2 the same residues show an increased population of

the α-region. Additionally I26 is restrained to the α/β region in state C1, whereas in state

C2 it is restrained to the Lα-region.

D. FGAILSSTNV 18-27

FGAILSSTNV 23-32 has three long-lived conformations (Fig. 8 and 9). C1 is a class

3 β-hairpin with three residues between the doubly hydrogen bound residues L27 and N31

(i ← i + 4: 26.26%, i → i + 4: 17.79%). The conformation is additionally stabilized by

a i ← i + 3 backbone hydrogen bond between L27 and T30 (17.99%) and by a hydrogen

bond from the hydroxyl group of the threonine side chain to the carbonyl group of S28

(23.59%). C1 is hence completely analogous to C3 of ILSSTNV 26-32. Both conformations

have the same backbone conformation in residues L27 to N31: {β, Lα, Lα, α, β}. I26 is flexible

in ILSSTNV 26-32, but restrained to the α-conformation FGAILSSTNV 23-32.

In C2 of FGAILSSTNV 23-32 is a class 4 β-hairpin with four residues between the doubly

hydrogen bound residues I26 and N31 (i← i+5:18.57%, i→ i+5: 33.72%). It can be related

to C1 in ILSSTNV 26-33. As in this precursor, C2 of FGAILSSTNV 23-32 is additionally

stabilized by a very strong hydrogen bond between the side chain hydroxy group of T30

and the carbonyl oxygen of L27 (60.67%). The hydrogen bond from the amide hydrogen

of A25 to the carbonyl oxygen of N31 is only present in the decamer because A25 is absent

in ILSSTNV 26-33. C2 has the same backbone conformation in residues I26 to T30 as its

precursor: {β,Lα,Lα,Lα, α}.
C3 is again similar to a class 3 β-hairpin with three residues in the loop region. However

the hairpin is shifted compared to C1. The doubly hydrogen bound residues are I26 and

T30 (i ← i + 4: 23.89%, i → i + 4: 26.31%). Similar to the other class 3 hairpins, we also
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observe an i ← i + 3 hydrogen bond between I26 and S29 (23.27%). The conformation is

additionally stabilized by a hydrogen bond from the side chain hydroxy group of S29 to the

carbonyl oxygen of L27 (37.92%) and by a hydrogen bond between the amide hydrogen of

A25 and the side chain amide group of N31 (12.19%). This latter interaction might be the

reason why C3 does not have precursor in ILSSTNV 26-32. The backbone conformation in

residues A25 to T30 is similar to C1 but shifted by a residue: {α, β,Lα,Lα, α, β}.
The DSSP analysis of the trajectories (Fig. 6 and 8 in the SI) shows that, additionally

to the β-hairpin structures identified by the MSM, the peptide can also assume a helical

conformation, which involves residues G24 to L27 and occasionally extends to residue N31

(Fig. 9). The lifetime of the conformation is, however, much shorter than those of β-hairpins.

It is consequently not identified by the MSM analysis as a long-lived conformation.

E. HSSNNFGAILSSTNV 18-32

HSSNNFGAILSSTNV 18-32 is a 15-residues long peptide with the amyloidogenic domain

(FGAIL 23-27) in the center of the sequence. The chain length allows for the formation

of multiple secondary structure elements and five long-lived conformations were identified

by the MSM analysis (Fig. 10 and 11). C1 consists of a β-hairpin-like structure element

and a β-hairpin. The β-hairpin involves residues I26 to N31 which assume the backbone

conformation {α, β,Lα,Lα, αβ}. Its precursor is C1 in FGAILSSTNV 18-27. That is, it is a

class 3 β-hairpin with three residues between the doubly hydrogen bound residues L27 and

N31 (i ← i + 4: 28.32%, i → i + 4: 18.62%). As in the precursor, we additionally observe

a i ← i + 3 hydrogen bond between L27 and T30 (11.79%) and a hydrogen bond between

the side chain hydroxy group of T30 and S28 (22.23 %). One additional i← i+ 5 hydrogen

bond is formed between I26 and N31 (33.58 %). The β-hairpin-like structure stretches from

H18 to F23 and can be related to C3 in HSSNNFGAIL 18-27. The i ← i + 4 and i ← i + 3

hydrogen bonds between the carbonyl oxygen of S19 and the amide hydrogens of F23 and

N22, respectively, are present 25.40% and 26.61% of the frames. But the i→ i+ 4 between

S19 and N22 is missing because its formation is sterically prevented by a hydrogen bond from

the side-chain hydroxy group of S20 to the carbonyl oxygen of H18 (13.38%).

In C2, residues H18 to I26 assume a well-defined backbone conformation:

{β, β,Lα, α, α, β,G: lower right corner, α, β}. Residues L27 to V32 are flexible (Fig. 10). The

12
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conformation can however not be classified as one of the common secondary elements. It is

stabilized by a i ← i + 7 backbone hydrogen bond between S20 and L27 (40.58%) and by a

i ← i + 4 backbone hydrogen bond between H18 and N22 (27.38%). Additionally, the side-

chain backbone hydrogen bonds from the backbone amide hydrogen of H18 to the side chain

amide oxygen of N22 (13.71%) and from the side-chain hydroxy group of S28 to the carbonyl

oxygen of S20 (12.74 %) are formed. This conformation does not have any precursors in the

shorter fragments because none of the fragments is long enough to form the crucial hydrogen

bond between S20 and L27.

C3 is an α-helical conformation, which stretches from F23 to S28. S29 is in the Lα confor-

mation. C3 has an equilibrium population of 9%, which is in line with the DSSP46 analysis

of the trajectories (see Fig. 11, which shows that residues 23 to 28 form an α-helix in 10%

of the trajectory frames). The probability that the DSSP analysis assigns the α-helical state

to an individual residue in this region is roughly 30%. Correspondingly, the probability

of finding these residues in a coil state is significantly lower than in any of the fragments

discussed so far (Fig. 13). The α-helix in C3 is stabilized by a canonical i← i+ 4 backbone

hydrogen bond between F23 and L27 (26.59 %). The next canonical i← i+4 hydrogen bond

between G24 and S28 is also formed, albeit with a much lower probability: 8.88 %. Instead,

a competing hydrogen bond between the side chain hydroxy group of S28 and the carbonyl

oxygen of G24 is formed with 29.83% probability. The precursor of this conformation is the

transient α-helical conformation in FGAILSSTNV 18-27.

In C4, only residues I26 and L27 have a distinct backbone conformation {β/Lα,Lα}, which

is stabilized by a hydrogen bond from the side-chain hydroxy group of S28 to the carbonyl

oxygen of I26(21.22 %). Additionally, there is a hydrogen bond between the side chains of

T30 and N22(11.63%). Similarly, C5 only has a distinct backbone conformation in residues

S19 to N21: {α/Lα,Lα,Lα}, which is stabilized by a i ← i + 3 backbone hydrogen bond

between N22 and S19 (12.04%).

F. hIAPP 1-37

For the full hIAPP 1-37 peptide, we obtained 10.8 µs of aggregated simulation time, which

is sufficient to explore large part of the conformational space of hIAPP but not to construct

a MSM and reliably identify long-lived conformations. The equilibrium {φ−ψ}-distribution
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of all residues is shown in Fig. 13 in the SI. As in the fragments, the backbone dynamics is

essentially unrestricted on the level of the individual residues. All residues, with exception

of I26 and L16, explore the full Ramachandran plot. In I26 and L16, the Lα conformation

is not visited. The mutual information (Fig. 12) exhibits two blocks. One block stretches

from C2 to N21, the other encompasses the amyloidogenic region from F23 to S29. This latter

block is also found in the mutual information plot of HSSNNFGAILSSTNV 18-32 (Fig. 5).

The high mutual information among the residues C2 to C7 is due to a cystein bond between

these two residues which strongly restricts the conformational flexibility of the residues 2 to

7.

The DSSP analysis of the trajectory confirms that hIAPP 1-37 is unstructured in solution

but transiently visits a variety of secondary structures (Fig 12 and Fig. 12 in the SI). The

most prominent secondary structure element is an α-helix in the amyloidogenic region F23

to L27 which is visited in 42.4% of the total simulation time and in 13 out of 16 of the

independent simulated runs. The probability that an individual residue within this region

is found in the α-helical state (as defined by the DSSP-analysis) ranges from 30 to 50%.

This is particularly striking since all other residues are found in an unstructure coil state

with 80% probability. The precursor of the α-helix in residues 23 to 27 are quite clearly

the conformation C3 in HSSNNFGAILSSTNV 18-32 and the transiently visited α-helix in

FGAILSSTNV 23-32. Note however, that the remaining residues are not necessarily fully

flexible when the α-helix is formed, rather they assume a variety of distinct conformations.

Compare for example Fig. 12.B and 12.D.

The DSSP analysis also shows that hIAPP forms several transient β-hairpin structures.

Fig 12 A, C and D show three examples. Fig 12 A shows residues 6 or 7, 17 and 30 forming

distant β-bridges, while the intermediate segments form α-helices and turns. In C, three

β-regions can be identified: residues 30-35 and 7-11, building simultaneously β-sheets and

occasionally β-bridges, and residues 22-24 assuming transient β-structures intertwined by

disordered configurations. Panel D presents residues 34-35 and 15-16 forming β-contacts,

whilst residues 23-27 are in a α-helix. However none of these β-hairpins can be related to

the β-hairpins formed by the fragments.
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III. DISCUSSION

The most critical caveat of MD studies of IDPs is the validity of the force field for these

systems. While classical force fields have improved considerably in recent years with some

force fields reaching experimental accuracy for folded proteins and for short peptides47, it is

less clear how well current force fields are suited to describe the conformational dynamics

of disordered proteins. The balance between α-helical structures and β-sheet structures

can vary drastically between force fields48. Current force fields are also known to generate

conformational ensembles which are too compact compared to experiment, which could be

traced back to underestimated dispersion forces in common water models49. Moreover, the

predicted dynamic properties (kinetic processes, implied timescales) of short peptides varies

across force fields50. Nonetheless, several studies report good agreement with experimental

for specific force fields51. AMBER ff99sb-ILDN, the force field we used in this study, has

not been included in a systematic force field comparison for disordered proteins. However it

performed very good in force field benchmarks for folded proteins47, and the closely related

force field AMBER ff99sb*-ILDN achieves a balance between α-helical structures and β-

structures in rat and human hIAPP which is in agreement with experiment48. Overall,

we expect that the conformation predicted by our simulations as well as the relative order

of their equilibrium populations and the relative order of the implied timescales for the

kinetic exchange with the ensemble state are correct. The absolute values of the equilibrium

populations and of the implied timescales are less reliable.

Our analysis reveals a hierarchy in the long-lived conformations from shorter to longer

peptides (Fig. 14). In particular, the double-β-hairpin structure in C1 of HSSNNF-

GAILSSTNV 18-32 can be related to precursors in the corresponding decamers HSSNN-

FGAIL 18-27 and FGAILSSTNV 23-32 and in shorter sequence fragments by matching

hydrogen bond patterns as well as backbone conformations. The conformational ensemble

of hIAPP 1-37, as simulated so far, does not contain a structure which can directly be

matched with C1 of HSSNNFGAILSSTNV 18-32. This might have two reasons. Either the

corresponding conformation exists but has not yet been discovered by the simulation. Or the

corresponding conformation is destabilized in the full peptide. C1 of HSSNNFGAILSSTNV

18-32 is a nested conformation, which might be prone to sterical clashes if the peptide chain

is prolonged. On the other hand, C- and N-termini of the 15-mer point towards different
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sides of the peptide backbone. It is not obvious how precisely a sterical clash would arise.

Up to the 15-mer HSSNNFGAILSSTNV 18-32, the hierarchy of long-lived structures

covers mostly β-hairpin conformations. This is not surprising since the backbone hydrogen

bonds of β-hairpins are more stable than those of α-helices and less easily attacked by

surrounding water molecules. Hence, β-hairpins readily form in solution whereas α-helices

tend to be unstable in solution. Yet, the relative frequency of α-helical structures increases

as we prolong the sequence. The shortest sequence which exhibits α-helical conformations

is FGAILSSTNV 23-32 as demonstrated by the DSSP analysis (Figs. 6 and 8 in the SI) and

by the slightly elevated α-helix propensities of residues FGAI 23-26 (Fig. 13). However, not

a single α-helical conformation is sampled but rather a set of closely related conformations

with some α-helical content. Each of these conformations has a rather short life time and

therefore no α-helical structure is identified as a long-lived conformation. In the 15-mer,

an α-helix spanning from F23 to S28 is identified as long-lived conformation C3 with an

equilibrium population of 9%, which can be matched with the transiently occuring α-helical

conformations in FGAILSSTNV 23-32. Similar to FGAILSSTNV 23-32, the DSSP analysis

of the 15-mer also shows several related α-helical structures with short life times, such that

the α-helix propensity per residue reaches 30 to 50% in FGAIL 23-27 (Fig. 13). Note that

the α-helix in C3 is stabilized by two canonical α-helix hydrogen bonds and an additional

hydrogen bond form the side chain of S28 to carbonyl of G24, thus compensating the entropy

loss in G24 by an additional enthalpic interaction. C3 of HSSNNFGAILSSTNV 18-32 is a

precursor to α-helical structures sampled by the full peptide hIAPP 1-37. Since the α-helix

in FGAIL 23-27 directly matches the central α-helix of the membrane-bound conformation

of hIAPP (Fig. 2), this conformation is a likely candidate for a nucleation point of the

physiological conformation which is stabilized by the interaction with a membrane.

To summarize, we identified a (possible) nucleation point for the physiological structure

of hIAPP and trace its occurrence back to the conformational ensemble of a ten-residue

fragment. We also find a hierarchy in the β-hairpin structures of different fragment lengths.

However, the relative frequency with which the particularly conserved β-hairpins are sampled

decreases with increasing chain length. In particular, no analogue of the double-β-hairpin

structure in HSSNNFGAILSSTNV 18-32 has been sampled by the simulation of hIAPP

1-37. Instead the ensemble exhibits a range of β-hairpin structures with rather long loop

regions. While it might be impossible to fully prevent the transient formation of β-hairpin
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structures in intrinsically disordered proteins, the formation of an extended β-hairpin which

originates from a set of local stabilizing interaction is clearly hindered in hIAPP. Thus, the

formation of pathological protofilaments does not seem to require an preformed structure

but only an encounter complex between two hIAPP molecules. This is in line with the

finding in Ref. 31 that many of the long-lived conformations in hIAPP exhibit extended

hydrophobic interactions which might promote aggregation. The result might also explain,

why the amyloid fibrils of hIAPP consist of β-strands which are stabilized by intermolecular

hydrogen bonds rather than of a stack intramolecularly stabilized β-hairpins.

IV. MATERIALS AND METHODS

A. MD simulations

system # independent simulations total simulation time

FGAIL 23-27 8 5 µs

NFGAIL 22-27 10 5 µs

HSSNNF 18-22 11 5 µs

ILSSTNV 26-32 5 5 µs

HSSNNFGAIL 18-27 9 4.7 µs

FGAILSSTNV 23-32 10 9.7 µs

30 3 µs

HSSNNFGAILSSTNV 18-32 10 9.6 µs

hIAPP-1-37 16 10.8 µs

TABLE I. Number of independent replicas and total simulation time for each set up.

We performed all-atom molecular dynamics simulations of fragments of human islet amy-

loid polypeptide (hIAPP). Specifically we simulated the sequences : FGAIL (residues 23-27),

NFGAIL (residues 22-27), HSSNNF (residues 18-23), ILSSTNV (residue 26-32), HSSNN-

FGAIL (residues 18-27), FGAILSSTNV (residues 23-32), HSSNNFGAILSSTNV (residues

18-32). The fragments were acetylated at the N-terminus and methylated at the C-terminus.

We also simulated the full 37-residue hIAPP, where the C-terminal of the peptide was capped

with an -NH2 group, and a disulfide bond was present between cysteine residues C2 and C7.
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Starting structures where obtained from an NMR structure of hIAPP in an membrane

environment (PDB ID: 2L86)6. The simulations were performed with the AMBER ff99SB-

ILDN52 force field in explicit water (TIP3P53 water model), using the GROMACS simulation

package54 (versions 4.4.5 and 5.0.2). The NVT ensemble was applied, where the V-Rescale

thermostat55 was used to restrain the temperature to 300 K. Cubic boxes, with a minimum

distance between solute and box walls of 1 nm, were used. After an initial equilibration of

100 ps, 5 to 16 structures for each system were selected randomly from the trajectory and

used as starting conformations for independent simulation runs, yielding a total simulation

time of more than 4.5 µs per system (Tab I). The atom positions of the solute were saved

every 1 ps. We used the leap-frog integrator and applied periodic boundary conditions in

all directions. The LINCS algorithm56 was used to constrain all bonds to hydrogen atoms

(lincs iter = 1, lincs order = 4), allowing for a integration time step of 2 fs. Lennard-Jones

interactions were cut off at 1 nm. The Particle-Mesh Ewald (PME) algorithm57 was applied

to treat electrostatic interactions, with a real space cutoff of 1 nm, a grid spacing of 0.15

nm, and an interpolation order of 4.

In the first 9.7 µs simulations of FGAILSSTNV 23-32, we encountered a sink state, i.e. a

conformation which is entered but not left during the course of remaining trajectory. A sink

state prevents the construction of a converged MSM. We therefore initiated 30 further sim-

ulations of 100 ps each from this conformation. 27 runs were started from the conformation

where AILSSTN 25-31 are in {α, β,Lα,Lα,Lα, α, β} respectively. The remaining 3 runs were

started from equilibrated structures originated from the conformation in which ILSST 26-30

are in {β,Lα,Lα, α, β} conformation. Including these additional 3 µs simulation data into

the MSM analysis yielded a converged model, in which the (former) sink state is identified

as long-lived conformation C3 (Fig. 8).

B. General analysis

Secondary structure analysis of the system was performed using the “dictionary of pro-

tein secondary structure” (DSSP)46 definition - a standard method for secondary structure

assignmen. The DSSP assignments were computed using the built-in function of MDTraj

python-based software package58.

To study the mutual dependencies of the backbone conformations of pairs of residues i and
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j, we computed the normalized mutual information of the φ-ψ-torsion angle distributions

of these residues59. The backbone conformation of a residue i is represented by a discrete

random variable x, which is obtained by discretizing the φ-ψ torsion angle coordinates into

a regular grid of NS = 36× 36 = 1296 bins (36 bins per torsion angle, bin-width 10◦). The

probability distribution p(x) is obtained as a normalized histogram in this state space from

φ-ψ-time series of residue i. The probability distribution of residue j is denoted p(y) and is

obtained analogously. The joint probability density px is the probability of finding residue

one in state x, given that residue two is in state y. The normalized mutual information is a

measure for the correlation between two residues.

The normalized mutual information of two discrete variables x and y (with x, y ∈
1, 2, ...Ns) is defined as:

NMI(x, y) =
1

min(Hx, Hy)

Ns∑

x=1

Ns∑

y=1

p(x, y) log

[
p(x, y)

p(x)p(y)

]
. (3)

p(x, y) is the joint probability distribution of the two variables, and p(x) and p(y) are the

corresponding marginal probability distributions

p(x) =
Ns∑

y=1

p(x, y)

p(y) =
Ns∑

x=1

p(x, y) . (4)

Hx and Hy are the informational entropies associated to the marginal distributions

Hx = −
Ns∑

x=1

p(x) log [p(x)]

Hy = −
Ns∑

y=1

p(y) log [p(y)] . (5)

When estimated from MD data, the probability distributions are subject to statistical un-

certainty. This noise induces are residual value of NMI > 0 even if two residues are fully

uncorrelated. To determine this residual value and hence the significance level of the NMI-

analysis, we estimated the NMI of two residues, G and A, of two independent simulations.

Including a safety margin, the significance level was set to NMI = 0.01, i.e. any two residues

with a NMI < 0.01 were considered fully uncorrelated.
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C. Markov state models - overview

Markov state models (MSMs) approximate the deterministic dynamics in the full phase

space of the molecule and the surrounding water molecules by a stochastic process xt which

switches between N discrete, non-overlapping conformational states. These so-called mi-

crostates are usually defined in terms of only a few internal coordinates. Thus, a MSM is

an approach to reduce the dimensionality of the complex high-dimensional dynamics, such

that the relevant features of the dynamics become humanly understandable. In this section

we present the salient points of MSMs, which are covered in more details elsewhere38,40,60,61.

Let Ω = {S1, S2, .... SN} be the set of microstates on which the MSM is constructed (i.e.

the state space of the MSM). In the model, one assumes that the dynamics in this state space

are ergodic, and Markovian. Ergodicity implies that any microstate Si can be reached from

any other microstate Sj. Markovianity implies that the probability of finding the molecule

in state Sj at time t+ τ only depends on the state Si in which the system has been at time

t. That is, the dynamics are determined by conditional probabilities

Tij(τ) = P(xt+τ = j|xt = i) . (6)

Note that the transition probability Tij(τ) does not imply that the molecule directly jumps

from Si to Sj. It rather represents a probability which is calculated over all possible paths of

length τ which connect the two states. Arranging these transition probabilities in a N ×N
matrix yields the transition matrix T(τ). The lag time τ is a parameter of the model. The

discretization, i.e. the choice of the microstates, and the transition matrix constitute the

gist of the MSM.

The transition probabilities Tij(τ) can be estimated directly from MD data, by counting

the number of transitions between states

T̂ij(τ) =
Cij(τ)

Ci(τ)
=

Cij(τ)∑N
j=1Cij(τ)

. (7)

Cij(τ) is the number of transitions Si → Sj within time τ , i.e. the number of all trajectory

fragments of length τ which originate in Si and end in Sj. Ci(τ) is the number of transition

from state Si to any other states, i.e. the number of all trajectory fragments which originate

in Si. In equilibrium MD simulation (i.e. no external forces) the dynamics are reversible,

which means that, in the limit of infinite sampling, the number of transitions Si → Sj is
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equal to the number of transitions in the opposite direction Sj → Si,

Cij(τ) = Cji(τ) . (8)

Reversibility can be enforced during the estimation of the transition matrix.

If the dynamics are ergodic and reversible, the transition matrix is decomposable in a

complete set of real valued eigenvectors ri and associated eigenvalues λi(τ).

T(τ)ri = λi(τ)ri , (9)

The eigenvectors and eigenvalues contain information on the conformational exchange pro-

cesses in the system. T(τ) has a bound eigenvalues spectrum

λ1 = 1 ≥ |λ2(τ)| ≥ |λ3(τ)|... (10)

where λ1 = 1 is the largest eigenvalue by absolute value. It always exists, and is unique

(non-degenerate) if the dynamics are ergodic. The eigenvector r1 associated to λ1 = 1 is the

stationary process. Eigenvectors associated to eigenvalues close to 1 (dominant eigenvalues)

represent the slow kinetic processes of the system. They can be interpreted as mediating

the conformational exchange between different long-lived conformations. The equilibration

time ti of an exchange process ri is connected to the corresponding eigenvalue λi(τ)

ti = − τ

ln(λi(τ))
(11)

ti is called implied timescale or relaxation time. Note that, if the dynamics are indeed

Markovian, the implied timescales do not vary with the lag time τ of the model. This can

be used to test whether an MSM estimated from MD data is Markovian. A PCCA+ analysis

(Perron Cluster Cluster Analysis +)62 of the first M eigenvectors yields fuzzy memberships

to M long-lived conformations for each microstate. Using these memberships, the conforma-

tional space can be dissected into long-lived conformations and free-energy barriers between

them. A visual example of the PCCA+ assignment of microstates to long-lived macrostates

is shown in Fig. 2 in the SI.

D. Markov state models - construction and analysis

The microstates of all Markov state models were defined in terms of the φ- and ψ-backbone

torsion angles, which are known to be suitable coordinates for peptide systems39,50,63,64.
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Time series of the backbone torsion angles of all systems were extracted from the simulated

trajectories using the GROMACS command g rama. Two-dimensional histograms of the

{φ−ψ}-distribution of each residue (Ramachandran plots) were constructed from the torsion

angle time series (bin-widt 1◦ × 1◦) and are shown in fig. 4 and in Fig. 13 in the SI.

For the construction of the microstates of FGAIL 23-27, NFGAIL 22-27, HSSNNF 18-23,

and ILSSTNV 26-32, the {φ−ψ}-space of each residue was discretized into three or five bins

(exception six for glycine), such that each bins captures a maximum in the Ramachandran

plot of the respective residue (See Fig. 1 A, C, B in the SI respectively). The conformation of

a particular amino acid residue in the peptide chain is then represented by the corresponding

bin index. The conformation of the peptide chain is represented by the combination of the

bin indices of all amino acids. Each possible combination of bin indices is a microstate of the

MSMs. This approach yields 486 possible microstates for FGAIL 23-27, 6144 for NFGAIL

22-27, 729 for HSSNNF 18-23 and 2187 for ILSSTNV 26-32. Of these microstate only a

fraction are accessible at 300 K.

For longer peptide the Ramachandran-based discretization quickly leads to an untractable

number of microstates. In FGAILSSTNV 23-27, we discretized residues G24 to N31 based on

their Ramachandran plots, whereas the terminal residues F23 and V32 were discretized in only

two states (Fig. 1 D in the SI). This yielded 26244 possible microstates, of which 3518 are

visited in the simulations. For HSSNNFGAIL 18-27 and HSSNNFGAILSSTNV 18-32 this

discretization did not yield a converged MSM. We therefore adopted a hierarchical approach.

For HSSNNFGAIL 18-27, a residue based MSM was constructed for the subsegment SSNN

19-22 (see Fig. 4 in the SI). The fact that the MSM of the subsegment converges shows that

the dynamics of the subsegment is largely uncorrelated from the dynamics of the remaining

chain. This MSM was subjected to a PCCA+ analysis yielding four long-lived states within

this segment. The conformation of the subsegment is then represented by the index of

the corresponding long-lived state, whereas the conformations of the remaining residues are

represented as before by residue-based bin indices. This yielded 5832 microstates, of which

1889 where visited by the trajectory. Similarly, the fragment HSSNNFGAILSSTNV 18-

32, was divided into three subsegments HSSNN 18-22, FGAI 23-26 and LSSTNV 27-32, for

which MSMs were constructed using the residue-based discretization (see Fig. 9 in the SI). A

PCCA+ analysis of these MSMs identified 4 long-lived states for HSSNN 18-22 and LSSTNV

27-32, and 3 long-lived states for FGAI 23-26. Thus, the MSM of the HSSNNFGAILSSTNV
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18-32 was constructed using 48 possible microstates (44 actually visited).

The MD trajectory is projected onto the microstates of the system. The resulting

microstate trajectory is the input for the Markov state model analysis which was per-

formed using the EMMA software package65 (see pyemma.org). With the command

mm connectivity the subset of connected microstates was generated. On this reduced

set (option -restrictToStates), the actual transition matrices were estimated, using

a sliding window algorithm (option -slidingwindow) and enforcing reversibility (option

-reversible). From the analysis of the implied timescales associated to the eigenvalues

(eq. 11) on a range of lag times spanning from 1 to 50 ns, a suitable lag time for the MSM

construction for all models was found (10 ns for all systems; exceptions of NFGAIL 22-27,

5 ns, and FGAILSSTNV 23-32, 20 ns). The transition matrix was thus estimated using

the command mm estimate (using -restrictToStates -slidingwindow -reversible op-

tions) and further analyzed using mm transitionmatrixAnalysis to extract the stationary

density, the first eigenvalues and left and right eigenvectors. The PCCA+ analysis was

performed using the mm pcca command implemented in EMMA. Further processing of the

eigenvalues and eigenvectors was implemented in Python66.
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32Schor, M.; Mey, A. S. J. S.; Noé, F.; MacPhee, C. E. J. Phys. Chem. Lett. 2015, 6,

1076–1081.

33Stanley, N.; Esteban-Mart́ın, S.; De Fabritiis, G. Prog. Biophys. Mol. Biol. 2015, 119,

47–52.

34Moriarty, D. F.; Raleigh, D. P. Biochemistry 1999, 38, 1811–1818.

35Goldsbury, C.; Goldie, K.; Pellaud, J.; Seelig, J.; Frey, P.; Müller, S. A.; Kistler, J.;

Cooper, G. J.; Aebi, U. J. Struct. Biol. 2000, 130, 352–362.

36Azriel, R.; Gazit, E. J. Biol. Chem. 2001, 276, 34156–34161.
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FIG. 2. Schematic representation of the suggested models. A) FGAIL 23-27 in a α-helix. B) β-

serpentine fold. C) β-hairpin with turn at FGAIL 23-27. D) Extended β-hairpin, with FGAIL23-27

in a β-strand configuration.
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FIG. 3. Schematic representation of the configurational space of a fragment, with respect to the

full peptide. The energy landscape is mainly flat with few minima that are slightly deeper than

the rest. By lengthening the sequence, the configurational space is extended. Some of the more

stable conformations can have a further increased or reduced stability. Specific conformations can

be selected in presence of binding partners, such as membranes or oligomers.

27

52
Chapter 3. Extensive Molecular Dynamics simulation and MSM

analysis of IDPs dynamics



Hierarchy in the conformational ensemble of human islet amyloid polypeptide

3

6

0

5

4

2

1

ln
 ( 

#c
ou

nt
s 

)

H18 S19 S20 N21 N22 F23 G24 A25 I26 L27 S28 S29 T30 N31 V32

A)

!

"

"

"

"L!!
#

$ 180-180 0
-180

0

180B)

FIG. 4. A) Ramachandran distribution of all residues for each considered fragment. B) Example

of Ramachandran plane of a capped amino acid and interpretation of the minima.

28

3.1. Hierarchy of the Dynamics of hAIPP 53



Hierarchy in the conformational ensemble of human islet amyloid polypeptide

NFGAIL 22-27

F G A I LN

F
G
A
I
L

N

HSSNNF 18-23

S S N N FH

S
S
N
N
F

H

ILSSTNV 26-32

S T N VSLI

S
T
N
V

S
L
I

HSSNNFGAIL 18-27

S S N N FH G A I L

S
S
N
N
F

H

G
A
I
L

S S N N FH G A I L S T N VS

S
S
N
N
F

H

G
A
I
L

S
T
N
V

S

HSSNNFGAILSSTNV 18-32
0.2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

FGAILSSTNV 23-32

F G A I L S S T VN
F
G
A
I
L
S
S
T

V
N

FIG. 5. Normalized Mutual Information (NMI) between each amino acid pair for each of the

short fragments. FGAIL 23-27 presents very low NMI and is not included in the figure Groups of

not-adjacent residues with a high NMI are involved secondary structure elements. Self NMI set to

zero. A cutoff at 0.01 is used.

29

54
Chapter 3. Extensive Molecular Dynamics simulation and MSM

analysis of IDPs dynamics



Hierarchy in the conformational ensemble of human islet amyloid polypeptide

The Short Fragments

NFGAIL 22-27B)

C1!
18.2 ns!

0.05

C2!
28.8 ns!

0.01

C3!
26.3 ns!

0.01

N22 F23 G24 A25 I26 L26

HSSNNF 18-23

H18 S19 S20 N21 N22 F23

C1!
47.5 ns!

0.02

C2!
109.1 ns!

0.09

C3!
35.7 ns!

0.09

ILSSTNV 26-32

I26 L27 S28 S29 T30 N31

C1!
288.8  ns !

0.02

C2!
226.4 ns!

0.01

C3!
137.2 ns!

0.23
V32

E)

C) F)

D) G)

H)

I)

L)
I

L

S

S

T

N

V
Cluster 1

F

N

NS

S

H
Cluster 1

N

F

G

A

I

LCluster 1

FGAIL 23-27A)
C1!

28.5 ns!
0.02

C2!
17.6 ns!

0.02

F23 G24 A25 I26 L26

0 < x < 10%
10 < x < 20%
20 < x < 30%

1 pt
3 pt
5 pt

30 < x < 40%
40 < x < 50%
50 < x < 60%

7 pt
9 pt

11 pt

H

S

N

S

F

N

Ac

NHMe

C1

N

G

F

I

A

L

NHMe

C1

Ac

I

L

Ac

N

T

V

NHMe

S S

C1

N

T

V

NHMe

S

L

S

I

Ac

C3

L

S

S

T

N

VCluster 3

I
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probability higher than 5% are shown (E, F, G). Pattern of hydrogen bonds with probability higher

than 10% (the direction of the arrow goes from donor to acceptor) and most relevant hydrogen

bonds marked in the structures of the corresponding cluster (H, I, L).
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are indicated. B) Hydrogen bonds with probability higher than 5%. C) Example structure and

DSSP plot (resolution 100 frames) and pattern of hydrogen bonds with probability higher than

10% of cluster three (the direction of the arrow goes from donor to acceptor).
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The weight of each cluster and the timescale of the process are indicated.
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The weight of each cluster and the timescale of the process are indicated.
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at 0.01.
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FIG. 13. Secondary structure probability per residue for hIAPP 1-37 (solid line) and HSSNNF-

GAILSSTNV 18-32 (dashed line, circular marks) HSSNNFGAIL 18-27 (dotted line square marks)

and FGAILSSTNV 23-32 (dash-dotted line triangular marks)
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FIG. 14. Schematic representation of the hierarchy of the dynamics. The long-living configurations

of the peptides’ are identified with circles whose area is proportional to the equilibrium probability

associated to the conformation by the model. Some of the long-living conformations of the shorter

fragments are found in the long-lived conformations of the longer fragments (connected by arrows)

and present the same hydrogen-bonds pattern.
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I. RESULTS

In this section we present additional results to the study.

A. Discretization

The quality of a Markov State Model (MSM) crucially depends on how well the dis-

cretization captures the features of the energy landscape1,2. In this study we use backbone

dihedral angles as reaction coordinates. The Ramachandran-plane of each residue is then

discretized in two, three, five or six states. Fig 1 shows the stark boundaries in the four

cases.

The {φ − ψ}-distribution of an amino acid within a sequence has a typical distribution

(fig 4 B in the main manuscript) with three minima: β, α and Lα. A three-states dis-

cretization (fig. 1 A) separates such minima in three distinguished states. Glycine, however,

does not have a side-chain, thus its {φ − ψ}-distribution is different, allowing for more of

the configuration space to be populated. A six states discretization as in fig. 1 B separates

the minima into different states. For the model of NFGAIL 22-27, a finer discretization

of five states per Ramachandran-plane (fig. 1 C) produced a better converged model. In

FGAILSSTNV 23-32 we used a two states discretization (fig. 1 D) to model the {φ − ψ}-
space of F23 and V32.

For systems with a longer chain a three-states per residue discretization may not produce

a converged model. Sub-blocks of residues are therefore treated independently (sec ID and

sec I F). Long-lived states of each sub-block are defined, and subsequently combined with a

three-states per residue discretization of the remaining sequence to identify the state of the

system.

B. PCCA+

We model the dynamics by projecting it onto the backbone dihedral angles pairs of each

residue. We applied the Perron Cluster Cluster Analysis (PCCA+) method to interpret

the dynamics as exchanges between long-lived conformations. The PCCA+ method uses

the dominant eigenvecotrs of the transition matrix to assign microstates to coarser sets3,4.

By iteratively repeating the PCCA+ analysis with increasing number of eigenvectors, the

2
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hierarchy of the free-energy barriers in the system can then be characterized. Fig. 2 shows

a schematic representation of the application of the method. Providing the first four eigen-

vectors to the algorithm, four long-lived configurations are identified (fig 2, A). However,

this does not provide any information on the relative hight of the free energy barriers be-

tween long-lived conformations. In order to interpret the dynamical processes as conforma-

tional probability density exchanges between the PCCA+ clusters, it is necessary to perform

PCCA+ iteratively with increasing number of eigenvectors (fig. 2, B). Providing the first

two dominant eigenvectors (fig. 2, B1) the conformational space is split in two long-lived

clusters along the highest energy barrier of the system. When the third eigenvector is pro-

vided the algorithm splits the right cluster in two kinetically diverse states, based on the

eigenvector sign (fig. 2, B2). The blue and red coloring represent areas of the configurational

space where the eigenvector has opposite sign. The white area of the configurational space

represent those microstates that do not participate to the dynamical process. Analogously,

the information yielded by the fourth eigenvector splits the left cluster (fig. 2, B3) into

two sub sets. Further iterations of the algorithm create more macrostates. Therefore, the

slowest process of the system can be interpreted as transitions between the conformational

state of the joint clusters one and two and the joint clusters three and four. Process two

represents transitions between clusters one and two, whereas the third process represents

transitions between cluster three and four. The main limitation of the PCCA+ method is

given by the rather arbitral assignment of microstates that do not participate strongly in

each dynamical process, leading to compounding error that is propagated with each itera-

tion. The PCCA+ algorithm avoids the propagation of such error by considering multiple

eigenvectors simultaneously4,5. In analogy to this example we can interpret the dynamics of

the short fragments HSSNNF 18-23, NFGAIL 22-27 and FGAIL 23-27, ILSSTNV 26-32 and

the longer fragments HSSNNFGAIL 18-27, FGAILSSTNV 23-32 and HSSNNFGAILSSTNV

18-32 as transition between PCCA+ clusters.

C. FGAIL 23-27

FGAIL 23-27 is a pentamer of aliphatic amino acids. Therefore, it is extremely flexible

and does not form secondary structure elements. This can be seen in fig. 3, where we plot

the normalized mutual information (NMI) of each residue pair. Adjacent residues share the

3
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highest NMI. G24 has a slightly higher NMI than any other amino acid, probably due to the

different backbone angles distribution typical of glycines.

D. HSSNNFGAIL 18-27

The number of microstates depends exponentially on the length of the sequence. For the

decamer HSSNNFGAIL 18-27, a discretization based on three states per residue leads to a

non-converged model. We thus combine a sub-model of four residues (SSNN, i.e. residues

19 to 22) with a 3-states per residue discretization of the remaining sequence, as described

in details in sec. IVD in the main manuscript. Here we show the analysis of the sub-model

SSNN.

The Ramachandran plane of each residue in the segment 19-22 is discretized in three bins,

based on the {φ−ψ}- distribution features (fig. 4 A). Each bin-combination corresponds to

a microstate of the system, i.e. 34 = 81 possible microstates. The discretized time-series,

obtained by projecting the simulation onto the discretization, is used as input for the MSM.

At10 ns the slowest three timescales have reached a plateau (fig. 4 B), therefore we choose

this value as the lag time for the MSM.

Using the PCCA+ algorithm, the microstates are divided into four clusters. Such PCCA+

clusters correspond to long-lived regions of the sub-model. A structural characterization of

the clusters is shown in fig. 4 B in terms of the Ramachandran distribution of each considered

residue and bundle of structures.

Cluster one, which accounts for 8% of the equilibrium distribution, shows a very distinc-

tive structure: S19 is confined in a β conformation; S20 and N21 populate the Lα region and

N22 populates the α minimum. This recurring pattern is the mark of a β-hairpin structure.

Cluster two, which represent 12% of the equilibrium distribution, presents a preferences of

residues 19 to 21 for the Lα configuration. Cluster four, which represents 20% of the equi-

librium distribution, is characterized by S20 in the Lα state. Cluster three resembles the

equilibrium distribution and accounts for 60% of the equilibrium distribution. By looking at

the splitting of the microstates into PCCA+ clusters, one can associate the slowest process,

which occurs at c.a. 300 ns, to a conformational exchange between thr equilibrium (cluster

four) and the β-hairpin (cluster one). The second slowest process, whose timescale is of c.a.

70 ns, is the transition between cluster four and configurations with S20 in the Lα state.

4
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The third process (c.a. 50 ns) is characterized by transitions between the equilibrium state

and configurations with the residues 19 to 21 in a Lα conformation.

To construct the model of the full system, the time-series of the backbone dihedral angles

explored by residues 19-22 over the simulation is projected on the four PCCA+ clusters and

combined to a three-states per residue discretization of the remaining sequence, as shown in

the main manuscript.

Furthermore, we analyzed the secondary structure configurations assumed by the peptide

HSSNNFGAIL 18-27 over the simulated trajectory (fig. 5). The 9 replicas have different

lengths, spanning from 266 ns to 1 µs, with the exception of the eighth replica that is

only 8 ns long and was thus excluded from the MSM construction. Fig. 5 A shows the

DSSP analysis of each independent run at a time resolution of 1 ns. Residues 23-27, i.e

the FGAIL sub-fragment, do not assume a helical structure. The main secondary structure

element comprises residues 19 and 23 forming a β-bridge. It is interesting to compare the

DSSP assignment to our Ramachandran-based discretization. In fig. 5 B, each residue at

each time-step is color-coded according to the dihedral angle values (fig 1 A). The hairpin-

like structure correspond to residues S19 and F23 in the β state, residues 20-21 in the Lα

configuration, and residue N22 in the α state. Such hairpin structure is found as long-lived by

the full-system MSM. The other dynamical processes involve single residues, with exception

of the third process, where residues 19-22 prefer the Lα state (Cluster 4 in fig 7). The latter

configuration, however, is identified as coil by the DSSP algorithm, pointing at the absence

of stabilizing hydrogen bonds in the configuration.

E. FGAILSSTNV 23-32

In analogy to the analysis of HSSNNFGAIL 18-27, we carried out a DSSP analysis of

the secondary structure configurations the peptide FGAILSSTNV 23-32 assumes over time

(fig. 6 A) at a time resolution of 1 ns. The FGAIL sub-fragment can assume helical struc-

tures, in agreement with the longer fragment HSSNNFGAILSSTNV 18-32. Such helical

structures are, however, more transient than in HSSNNFGAILSSTNV 18-32 and there-

fore the corresponding long-lived state is not captured by our PCCA+ analysis. Moreover,

β-structures between residues I26-T30, L27-N31 and I26-N31 are formed. The first two hairpin-

like structures have the same dihedral angle pattern found in HSSNNFGAIL 18-27, where

5
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the residues forming the β-bridge are in a β-state and the residues in between are in the

states {Lα,Lα, α}. The β-structure between I26-N31 has a similar pattern, but the residues

in the Lα conformation are three instead of two. This can be noticed in the DSSP-like plots

of fig. 6 B. Here, for each time-step, each residue is color-coded according to the backbone

dihedral angle state (fig 1 A).

The first 10 µs of simulated data exhibit a sink state, i.e. a state which is accessed by

the simulation but never left. More specifically, the sink state is the β-hairpin conformation

between I26-N31 in replica 9. A MSM estimated from this simulation data will assign a very

long life-time and consequently an extremely high equilibrium probability to this state. Fig

7 A shows a comparison of the relative equilibrium populations predicted by the MSM with

the equilibrium populations estimated directly form the MD simulations. The equilibrium

population of the sink state is grossly overestimated by the MSM. To construct a more

realistic MSM one has to have a more realistic estimate of the state life-time. We hence

started 27 short simulations (100 ns) from the sink state and three simulations from the

closely related state in which residues I26 and T30 come in the β conformation (fig 8). From

the combined data set we constructed a MSM where we discretized the residues G24 to

N31 into three states each and F23 and V32 into two states each. This yields converged

implied timescales (fig. 14) for τ = 20 ns (slightly larger than the other MSM) and an

equilibrium distribution which is in agreement with populations estimated directly from

the MD data (fig. 7 B). We checked the convergence of the eigenvectors by calculating the

Euclidean distance between the eigenvector li(τ) and the corresponding reference eigenvector

li(τ = 20ns) at different lag times. A distance of less than 0.1 indicates a well converged

model ( Ref6).

F. HSSNNFGAILSSTNV 18-32

As in HSSNNFGAIL 18-27, we use a hierarchical approach for the discretization of the

conformational space of HSSNNFGAILSSTNV 18-32. We identified three different regions

that we treated separately: i) residues 18-22 (HSSNN), ii) residues 23-26 (FGAI) and iii)

residues 27-32 (LSSTNV). The segment 18-22 (block i) was discretized with a three-states

per residue binning, i.e. 35 = 243 (fig. 9 A). From the analysis of DSSP plots (fig 10), it

results that the central region (FGAI 23-26), which constitutes block ii, has high propensity

6
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to form α-helical structures. The Ramachandran plane of each of the residues in this region

was thus binned into two states: one for the φ − ψ combinations corresponding to an α-

helix, and one for the remaining allowed combinations, for a total of 24 = 16 possible

states (fig. 9 B). Such two-states discretization, despite being less refined than three-states

discretization, produces a better converged model. Moreover, it captures the interesting

conformational change in this region, which corresponds to the formation of an α-helix.

Block iii also produces a converged model with the Ramachandran-plane of each residue

being partitioned into three states, for a total of 36 = 729 possible microstates (fig. 9 C).

By analyzing the dynamics of each block (fig. 9 D, E, F), we notice that blocks i and iii

both present the slowest process at a timescale of c.a. 500 ns. Those processes are, however,

independent and different. For block i the slowest process corresponds to the transition

towards a conformation where residues S20 and N21 are in the Lα minimum. Process two

occurs at c.a. 150 ns and shows again S20 in the Lα configuration, whilst residues 21 and

22 are in the α-helix state. Process three takes place at a similar timescale (c.a. 150 ns),

but involves the exchange between α and β configuration in residue S19, whilst S20 and N21

are in the Lα configuration. Block iii instead shows a slowest process characterized by L27

populating the Lα region. Process two (c.a 230 ns) presents S29 in the Lα configuration and

S28 populating both the β and the Lα minima. The third dynamic process occurs at c.a. 180

ns and involves residues 27 and 28 in a α state, combined with S29 in the Lα configuration.

For both blocks i and iii, the dynamics was projected onto four PCCA+ states for further

modeling.

The central fragment FGAI 23-26 shows faster processes compared to the other blocks.

As only three PCCA+ states were used to construct the complete model, we present hereby

only three long-lived conformations and two dynamic processes between them. As previ-

ously mentioned, such processes involve the formation of an α-helix. The slowest movement

involves residue I26 assuming the α-helix conformation (process one at c.a. 140 ns). The

entire fragment forming an α-helix, instead occurs at 60 ns.

The combination of the PCCA+ states of each sub-model forms the full-length peptide

microstates, which constitute the input for the MSM, whose results are presented in fig. 10

in the main manuscript. It is worth to mention that the discretization is rather coarse;

nonetheless, it is capable of identifying all the main secondary structure elements explored

by the system.

7
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Furthermore, we analyzed the secondary structure configurations assumed by the peptide

HSSNNFGIALSSTNV 18-32 over the simulated trajectory (fig. 10). Of the ten replicas,

eight have a length of 1 µs and two are shorter (666 ns and 909 ns), for a total aggregated

simulated time of c.a. 9.6 µs. Fig. 10 A shows the DSSP analysis of each independent run at

a resolution of 1 ns. Despite the central part forming an α-helix being the main secondary

structure configuration, transient β-structures are also visited. In particular, one replica

explores a conformation where a β-bridge is formed between residue N22 and V32, with the

amyoloidogenic region (residues 23-27) mostly in a bend (fifth row). Such configuration is

a possible precursor to a β-hairpin presenting the FGAIL 23-27 fragment in a turn. On

the other hand, conformations with the FGAIL 23-27 fragment forming a β-strand are also

visited (first row).

It is interesting to notice how the secondary structure elements evidenced by DSSP anal-

ysis are translated into residue-based {φ − ψ}-discretization (fig. 10, B). Whereas the α-

helix, which is a local interaction, corresponds to the residues populating the α minimum of

the Ramachandran-plane, β-structures affect residues which are far apart in the sequence.

Multiple backbone dihedral angles states combinations can be thus associated to the same

secondary structure feature. Moreover, residues assuming a stable Lα-conformation can be

found in a variety of secondary structure elements according to the DSSP definition.

To further investigate how much of the state space is visited by the shorter fragments, we

compared the equilibrium {φ−ψ}-distributions of each residue of each fragment with those

of the 15-mer HSSNNFGAILSSTNV 18-32 (fig. 11). Throughout the sequences, we notice

a higher propensity of HSSNNFGAILSSTNV 18-32 residues for the α minimum. This is

not surprising, given that the formation of an α-helix is one of the main processes in the

system. However, qualitatively all fragments agree in the {φ−ψ} equilibrium distributions,

and all the three minima (α, β and Lα) are populated in each residue of each fragment.

This indicates that the exploration of different structures in the fragments does not depend

on the single residues but on the correlated dynamics of groups of residues.

G. hIAPP

hIAPP is a 37-residue long intrinsically disordered peptide, i.e. its dynamics involves

transitions between many different conformations. In order to construct a converged MSM

8
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and analyze the dynamics, more than the currently available 10.8 µs of data are thus needed.

We present here a qualitative analysis of equilibrium properties.

We performed a DSSP analysis of the trajectories (fig. 12, and in the main manuscript

fig. 12), which confirms that the peptide is intrinsically disordered in solution, but does not

behave as a random coil. In addition, we investigated the equilibrium {φ− ψ}-distribution
of each residue in the sequence of hIAPP 1-37 (fig. 13). As the peptide is not capped on

the N-terminus, the φ-torsion angle of K1 is not properly defined and K1 is not included

into the analysis. Every residue is highly flexible in its backbone conformations, i.e. another

confirmation of the intrinsic disorder of the peptide. It is also worthy of notice that residues

L16 and I26 do not populate the Lα minimum. Additional simulations might explore these

regions of the conformational space. The latter is particularly interesting, as it participates

in the slow dynamic processes of the smaller fragments.

From the DSSP analysis of each independent simulation run (fig 12), we notice again an

abundance of α-helix at the central region. An helical propensity is also shown in other

parts of the sequence. Residues 5-20 and 25-32 can assume α-helical configurations, whereas

residues 2-4 are mainly found in a 3-helix or a coil. Moreover, transient β-structures are also

visited. However, which residues participate to the β-structure is not consistent through-

out the simulations: different trajectories explore different β-structures. Distant residues

forming a β-sheet or a β-bridge, separated by residues in a turn/bend configuration, sug-

gest the formation of a β-hairpin-like structure. None of the independent runs explored

configurations with three β-strands as in model B of fig. 2 of the main manuscript.

H. Timescales

In this section we present the implied timescales at different lag times, obtained from the

MSMs of each fragment. As described in section IVC in the main manuscript, the conver-

gence of the implied timescales with respect to the lag time can be used as a confirmation

of the Markovianity of the dynamics. Fig. 14 shows the implied timescales for the slowest

processes for each system. At the lag time of model analysis (10 ns for each system, except

NFGAIL 18-23 τ = 5 ns and FGAILSSTNV τ = 20 ns), the implied timescales have reached

a plateau. The timescales of FGAILSSTNV 23-32 show the worst convergence. This is an

effect of the sink state, which is not completely erased by the additional simulations. At the

9
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lag time of model construction (τ=20 ns), however, the eigenvectors are independent of the

lag time (fig: fig:FGAILSSTNV-sink).

I. Hydrogen bond analysis

In this section we present the results of a hydrogen bond analysis performed with the

VMD: visual molecular dynamics7 software, to characterize the long-lived states of each frag-

ment. The hydrogen bonds are defined by a donor-acceptor distance cut-off of 3 Angstrom

and an angle cut-off of 20◦. For each system we create separate trajectories containing those

frames belonging to each PCCA+ cluster, i.e. the long-lived states, and calculate the relative

population of each hydrogen bond using VMD. The results are listed in tables I-VII.

By comparing the hydrogen bonds of different fragments, a hierarchy of the dynamics

is evinced. The same long-lived configurations, stabilized by the same hydrogen bonds

patterns, are found in the shorter and in the longer fragments. The hierarchy of the hydrogen

bonds is visualized in fig. 15. Reappearing bonds are coded in the same color.

10
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FGAIL 23-27:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

ILE26-Main PHE23-Main 0.41% ILE26-Main PHE23-Main 0.72%

LEU27-Main PHE23-Main 0.97%

LEU27-Main ALA25-Main 1.08%

TABLE I. Hydrogen bonds identified by VMD for each PCCA+ cluster of FGAIL 23-27. Hydrogen

bonds with a relative population > 0.4% are listed.

NFGAIL 22-27:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

ALA25-Main ASN22-Main 13.83% GLY24-Main ASN22-Side 0.76%

ASN22-Side ALA25-Main 5.26%

ASN22-Side ILE26-Main 6.46%

ILE26-Main ASN22-Side 1.16%

GLY24-Main ASN22-Side 1.18%

ILE26-Main ASN22-Main 10.61%

ASN22-Main ILE26-Main 2.14%

Cluster 3

donor acceptor percentage

LEU27-Main GLY24-Main 1.22%

ILE26-Main PHE23-Main 1.01%

ASN22-Side LEU27-Main 0.99%

TABLE II. Hydrogen bonds identified by VMD for each PCCA cluster of NFGAIL 22-27. Hydrogen

bonds with a relative population > 1% are listed.
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HSSNNF 18-23:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

ASN22-Main SER19-Main 21.07% ASN22-Main SER19-Main 6.68%

PHE23-Main SER19-Main 19.99% ASN22-Side SER19-Main 5.15%

SER19-Main PHE23-Main 11.44% ASN22-Main HIS18-Main 4.91%

Cluster 3

donor acceptor percentage

ASN21-Main HIS18-Main 5.51%

TABLE III. Hydrogen bonds identified by VMD for each PCCA+ cluster of HSSNNF 18-23. Hy-

drogen bonds with a relative population > 5% are listed.

12
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ILSSTNV 26-32:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

THR30-Side LEU27-Main 52.99% THR30-Main LEU27-Main 13.52%

ASN31-Main ILE26-Main 5.61% THR30-Side SER28-Main 7.56%

ILE26-Main ASN31-Main 15.28% THR30-Side LEU27-Main 23.42%

THR30-Main LEU27-Main 10.07%

Cluster 3

donor acceptor percentage

THR30-Side SER28-Main 24.35%

THR30-Main LEU27-Main 20.40%

ASN31-Main LEU27-Main 28.65%

LEU27-Main ASN31-Main 38.13%

TABLE IV. Hydrogen bonds identified by VMD for each PCCA+ cluster of ILSSTNV 26-32.

Hydrogen bonds with a relative population > 5% are listed.
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HSSNNFGAIL 18-27:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

ALA25-Main ASN22-Main 2.95% SER20-Side ALA25-Main 12.25%

ASN21-Main ILE26-Main 3.21% ASN22-Main HIS18-Main 6.90%

Cluster 3 Cluster 4

donor acceptor percentage donor acceptor percentage

ASN22-Main SER19-Main 26.26% LEU27-Main PHE23-Main 2.25%

ASN22-Side SER20-Main 8.17% ASN22-Main SER19-Main 2.69%

PHE23-Main SER19-Main 33.36%

SER19-Main PHE23-Main 25.11%

SER19-Side GLY24-Main 10.01%

HIS18-Main GLY24-Main 5.85%

HIS18-Main ALA25-Main 5.33%

Cluster 5

donor acceptor percentage

ASN21-Main HIS18-Main 5.63%

ASN22-Main HIS18-Main 5.21%

TABLE V. Hydrogen bonds identified by VMD for each PCCA+ cluster of HSSNNFGAIL 18-27.

Hydrogen bonds with a relative population > 5% are listed.
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FGAILSSTNV 23-32:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

THR30-Main LEU27-Main 17.99% THR30-Side LEU27-Main 60.67%

THR30-Side LEU27-Main 7.04% ALA25-Main ASN31-Main 22.58%

THR30-Side SER28-Main 23.59% ILE26-Main ASN31-Main 33.72%

ASN31-Main LEU27-Main 26.26% ASN31-Main ILE26-Main 18.57%

ILE26-Main ASN31-Main 8.81% THR30-Main LEU27-Main 6.17%

LEU27-Main ASN31-Main 17.79%

Cluster 3

donor acceptor percentage

SER29-Main ILE26-Main 23.27%

SER29-Side LEU27-Main 37.92%

THR30-Main ILE26-Main 23.89%

THR30-Side ILE26-Main 6.42%

ALA25-Main ASN31-Side 12.19%

ILE26-Main THR30-Main 26.31%

TABLE VI. Hydrogen bonds identified by VMD for each PCCA+ cluster of FGAILSSTNV 23-32.

Hydrogen bonds with a relative population > 5% are listed.
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HSSNNFNFGAILSSTNV 18-32:

Cluster 1 Cluster 2

donor acceptor percentage donor acceptor percentage

LEU27-Main ASN31-Main 18.62% ILE26-Main PHE23-Main 7.66%

THR30-Side SER28-Main 22.23% SER28-Main ASN21-Main 6.40%

THR30-Main LEU27-Main 11.79% SER28-Side ASN21-Main 12.74%

ASN31-Main LEU27-Main 28.32% LEU27-Main SER20-Main 40.58%

ASN22-Main SER19-Main 26.61% HIS18-Main ASN22-Side 13.71%

ILE26-Main ASN31-Main 33.58% ASN21-Side ASN22-Side 7.03%

SER20-Side HIS18-Main 13.38% ASN22-Main HIS18-Main 27.38%

PHE23-Main SER19-Main 25.40% ASN21-Side LEU27-Main 7.17%

SER19-Side GLY24-Main 9.43%

SER19-Main THR30-Main 9.69%

ASN22-Side SER20-Main 5.19%

Cluster 3 Cluster 4

donor acceptor percentage donor acceptor percentage

LEU27-Main PHE23-Main 26.59% SER28-Side ILE26-Main 21.22%

SER28-Side GLY24-Main 29.83% ASN21-Main HIS18-Main 5.97%

SER28-Main GLY24-Main 8.88% SER28-Main ALA25-Main 6.33%

THR30-Main ALA25-Main 9.45% ASN22-Side THR30-Side 11.63%

ASN22-Main HIS18-Main 5.58% THR30-Main ASN22-Side 9.58%

ASN21-Main HIS18-Main 5.22% PHE23-Main SER29-Side 4.94%

ASN31-Main ALA25-Main 5.52% GLY24-Main ASN22-Side 6.33%

Cluster 5

donor acceptor percentage

ASN22-Main SER19-Main 12.04%

THR30-Side ILE26-Main 7.62%

THR30-Side PHE23-Main 7.55%

ASN22-Side SER19-Main 7.15%

LEU27-Main PHE23-Main 4.91%

SER19-Side GLY24-Main 4.96%

SER29-Side ALA25-Main 5.60%

PHE23-Main HIS18-Main 5.83%

PHE23-Main SER19-Main 5.14%

TABLE VII. Hydrogen bonds identified by VMD for each PCCA+ cluster of HSSNNFGAILSSTNV

18-32. Hydrogen bonds with a relative population > 5% are listed.
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FIG. 1. Example of discretizations. A) Three-states discretization. B) Glycine six-states discretiza-

tion. C) Five states discretization. D) Two states discretization

FIG. 2. Schematic representation of PCCA+. A) PCCA+ partition of the phase space into PCCA+

clusters. B) Hierarchy of the underlying energy landscape obtained by iterative use of the PCCA+

algorithm with increasing number of eigenvectors.

FIG. 3. Normalized Mutual Information (NMI) between each amino acid pair for FGAIL 23-27.

Self NMI and NMI < 0.01 set to zero (significance level of the NMI analysis, see section IV B in

the main manuscript).
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FIG. 4. Sub-model of HSSNNFGAIL at τ = 10 ns. A) Discretization of the Ramachandran plane

of the residues taken into consideration in the sub model. B) Timescales plots and interpretation of

the dynamics as exchange of probabilities between long-lived conformations (clusters 1-4); for each

cluster the Ramachandran plots of each residue and example structures are shown.
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FIG. 5. 9 independent simulation runs of HSSNNFGAIL 18-27 A) DSSP plot, time resolution 1

ns:. B) {φ− ψ}-state of each residue.
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FIG. 6. 10 independent simulation runs of FGAILSSTNV 23-32: A) DSSP plot, time resolution 1

ns. B) {φ− ψ}-state of each residue.
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FIG. 7. A) Relative equilibrium population per microstate as predicted by a MSM with 3-states

per residue (grey), compared with the relative equilibrium population estimated from 10 µs of

simulation data (blue). B) Relative equilibrium population per microstate as predicted by a MSM

with terminal residues discretized in 2 states and remaining sequence 3-states (grey), compared with

the relative equilibrium population estimated from 13 µs of simulation data (blue). C) Convergence

of the eigenvectors measured as the Euclidean distance d(li(τ), li(τref)), where τref = 20ns is the

lag-time of the MSM in B.
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FIG. 8. 30 independent simulation runs of FGAILSSTNV 23-32: A) DSSP plot, timeresolution 100

ps. B) {φ− ψ}-state of each residue.
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FIG. 9. Sub-models of HSSNNFGAILSSTNV at τ = 10 ns. A, B, C) Discretization of the Ra-

machandran plane of the residues taken into consideration in each model. D, E, F) Timescales plots

and interpretation of the dynamics as exchange of probabilities between long-lived conformation; for

each conformation the Ramachandran plots of each residue and a bundle of structures are shown.
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FIG. 10. 10 independent simulation runs of HSSNNFGAILSSTNV 18-32: A) DSSP plot, time

resolution 1 ns. B) {φ− ψ}-state of each residue.
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FIG. 11. HSSNNFGAILSSTNV 18-32 backbone dihedral angles distribution distribution (his-

togram of the logarithm of the counts) and difference plots of {φ−ψ}-distributions of each residue

for each fragment with respect to HSSNNFGAILSSTNV 18-32 distribution (histogram of the dif-

ference of the counts).
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FIG. 12. DSSP analysis of the first 700 ns of the 16 independent simulation runs of HSSNNF-

GAILSSTNV 18-32, time resolution 0.1 ns.
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FIG. 13. Ramachandran plots of each residue in hIAPP (histogram of the logarithm of the counts).

Residue K1 is not constrained on the φ backbone angle and is thus not shown.
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FIG. 14. Implied timescales as a function of the lag times for the MSMs of each peptide.
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FIG. 15. Most probable (>10%) hydrogen bonds for the long-lived states of the fragments. The

direction of the arrow goes from donor to acceptor. The color highlights the the same hydrogen

bonds patter.

REFERENCES

1M. Sarich, F. Noé, and C. Schütte, “On the Approximation Quality of Markov State

Models,” Multiscale Model. Sim. 8, 1154–1177 (2010).
2J.-H. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. D. Chodera, C. Schütte,

and F. Noé, “Markov models of molecular kinetics: generation and validation.” J. Chem.

Phys. 134, 174105 (2011).
3C. Schütte, A. Fischer, W. Huisinga, and P. Deuflhard, “A Direct Approach to Conforma-

tional Dynamics based on Hybrid Monte Carlo,” J. Comput. Phys. , 146–168 (1999).
4P. Deuflhard and M. Weber, “Robust Perron cluster analysis in conformation dynamics,”

Linear Algebra Appl. 398, 161–184 (2005).
5F. Noé, I. Horenko, C. Schütte, and J. C. Smith, “Hierarchical analysis of conformational

29

92
Chapter 3. Extensive Molecular Dynamics simulation and MSM

analysis of IDPs dynamics



Hierarchy in the conformational ensemble of human islet amyloid polypeptide

dynamics in biomolecules: transition networks of metastable states.” J. Chem. Phys. 126,

155102 (2007).
6F. Vitalini, A. S. J. S. Mey, F. Noé, and B. G. Keller, “Dynamic properties of force fields,”

J. Chem. Phys. 142, 084101 (2015).
7W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics.” J. Mol.

Graphics Modell. 14, 33–38, 27–28 (1996).

30

3.2. Supporting material to Hierarchy of the Dynamics of hAIPP 93



94
Chapter 3. Extensive Molecular Dynamics simulation and MSM

analysis of IDPs dynamics

3.3 hIAPP 1-37 extended simulations

As mentioned in the previous section, 10.8 µs of aggregated simulation time of
hAIPP 1-37 resulted insufficient for the construction of a converged MSM. Therefore,
we decided to extend the simulations up to over 21 µs. In this section, we present
the analysis of such extended simulations. For simulation details please refer to sec.
IV A in the manuscript.

3.3.1 Convergence of the Simulations

Backbone dihedral angles of an amino acid in a sequence have a very characteristic
distribution which can be represented in a Ramachandran plane (fig. 1.2). For
extremely flexible systems, such as IDPs, all regions of the Ramachandran plane are
expected to be populated.
Using the GROMACS command g_rama, we extracted the {φ − ψ}-timeseries for
each amino acid in the sequence of the extedended simulations. In fig. 3.1, we plot,
the per-residue {φ−ψ}-distribution, as logarithm of the counts (bins of 1◦). Residue
K1 does not present a standard backbone φ angle, therefore it is not included. By
comparing it with fig 13 in the supporting information, we notice that new con-
figurations have been explored, where residue I26 populates the Lα minimum. On
the contrary, L16 does not present any {φ − ψ}-combinations corresponding to the
Lα minimum. This is not expected to be the consequence of structural property
of hIAPP 1-37, because of the high flexibility of the IDP. This thus hints at a not-
convergence of the simulations.

It is not trivial, however, to estimate the convergence of MD simulations. Usual
convergence checks relay on the variations of properties estimated from the tra-
jectory being within a user-defined cut-off. These are indirect measures and do
not necessarily implicate that the full configurational space has been visited by the
simulation.
For instance, in fig 3.2.A, we show the variation of the average end-to-end distance
with increasing simulation time. The end-to-end distance is computed between the
Cα of residue K1 and the Cα of residue Y37. After the first 10 million time-steps the
average end-to-end distance is converged to c.a. 1.6 nm and there is no dramatic
improvement in the confidence interval over the subsequent 11 million time-steps.
Analogously the average radius of gyration (fig 3.2.B), which measures the level of
compactness of the molecule, is converged after the first one million time-steps to
a value of c.a. 1 nm. Fig. 3.2.C shows the convergence of the average number of
residues in a α-helix. After 10 million time-steps the average number of residues in a
α-helix is of about three residues, and its standard deviation does not improve with
increasing simulation time. Despite these three parameters hinting at a convergence
of estimated properties of the MD simulations, in practice these properties show
only few aspects of the structural complexity of the system. In fact, to the same
value of radius of gyration can correspond multiple structures, characterized by a
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C2 N3 T4 A5 T6 C7

A8 T9 Q10 R11 L12 A13
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S20 N21 N22 F23 G24 A25

I26 L27 S28 S29 T30 N31

V32 G33 S34 N35 T36 Y37

hIAPP 1-37

0

3

6

Figure 3.1: Per-residue {φ−ψ}-distribution as logarithm of the one-degree-grid histogram
of the counts over the trajectory.

different number of residues in a α-helix configuration (fig. 3.2D).

A much more meaningful measure is the number of uniquely visited microst-
states, as it is directly related to the exploration of the state space. As explained in
sec. IV D in the paper, each configuration explored by the simulations is mapped into
a numbered-string, corresponding to the combinations of backbone angles of each
residue (α = 0, β = 1, Lα=2). The mapped string is the microstate associated to the
configuration. Such three-states per-residue characterization is sufficiently refined
for a meaningful description of different configurations, without being computation-
ally unfeasible. The unique configurations explored by the extended trajectory are
114903. Fig. 3.3.A shows the number of unique states (normalized with respect to
the total number of unique states) visited with increasing simulation time. It is
thus evident that the extra simulations are exploring new parts of the configura-
tional space and that convergence is not yet reached.

However, the newly discovered states might be of small relevance, if their equilib-
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Figure 3.2: A) Average end-to-end distance with respect to simulation time. B) Average
Radius of gyration with respect to simulation time. C) Average number of residues in a
α-helix with respect to simulation time. D) Radius of Gyration with respect to number of
amino acids in a α-helix.

rium probability is very small. To verify it, we computed the weight of each unique
state by counting the number of visits throughout the trajectory. Note that this
would be equivalent to the equilibrium probability of the state if the simulations
are converged. Using such weights we evaluate the percentage of equilibrium prob-
ability visited with increasing simulation time. Fig 3.3.B shows an almost constant
increase in the portion of equilibrium distribution visited in time, i.e. the contribu-
tion adduced by each new explored state is equivalently relevant.

This can be explained by looking at the weights of each state (fig 3.4.A). Only
84 out of 114903 states have a probability of over 0.1%, and only one state is 1%
probable. Therefore, each new visited state adds a small and almost comparable
contribution to the total equilibrium probability. Fig 3.4.B shows the seven states,
whose probability is over 0.5%. Four of those structures present the FGAIL 23-27
fragment in the α-helix configuration, whereas the remaining three show the helical
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Figure 3.3: A) Percentage of unique visited states with respect to simulation time. B)
Percentage of equilibrium distribution with respect to simulation time.

motive shifted along the sequence. The preference of the FGAIL 23-27 fragment
for the helical motif had already arisen in the previous work and is confirmed in
the extended simulations analysis. As shown in fig 3.4.C, residue N21- L27 have a
significant probability of being in a α-helix, with residues F23 - A25 showing a higher
helical propensity than random coil. In comparison with fig 12 in the manuscript,
such propensity is not as pronounced.

This indicates that the extended simulations explore new configurations where
FGAIL 23-27 is not mainly helical. It is thus interesting to check wether the con-
figuration space of the fragment is converged. On the line of argument followed for
fig 3.3, we evaluate the percentage of unique states visited by the fragment with
increasing simulation time (fig 3.5.A). After 5 µs of simulation, i.e. in the 5th in-
dependent run, a new portion of the configuration space is discovered and after 17
µs the percentage of unique states visited is at convergence. Obviously this is not a
full proof of complete exploration of the configuration space, as it cannot be demon-
strated that there is not an ulterior energy barrier yet to be overcome. This issue
is, however, common to all simulation studies and of non-trivial solution.
Fig 3.5.B shows the percentage of equilibrium distribution (relative to the fragment
in question) visited throughout the trajectory, where with equilibrium distribution
we intend the count of the visits of each unique state of the fragment. Comparing
fig 3.5.B and fig 3.5.A, we evidence that the states visited after the first 10 µs of
simulation contribute marginally to the equilibrium distribution. Or better, the
states visited in the second half of the simulations are visited only a few times by
the trajectory, either because their true equilibrium probability is small, or because
of limited statistics.
Fig 3.5.C shows the probability of each unique state explored by the FGAIL 18-23
fragment. As expected, such probability distribution is peaked around the helical
state, which is populated 50% of the time. On the contrary, a state where all residues
assume a β-sheet conformation is only 0.7% probable.
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Figure 3.4: A) Per state equilibrium probability. B) Seven most probable states as color-
coded strings and corresponding structures. C) Secondary structure probability per residue.

Despite the results for FGAIL 23-27 configurational space exploration, fig 3.3
demonstrates that the simulations are not yet converged for the full-length system.
It is therefore interesting to evaluate at which segment-length the convergence check
breaks. We investigate this in fig 3.6, where segments of progressively increasing
length are taken into consideration. Segments NFGAILS 22-28 and NNFGAILSS
21-29 both reach the 100% of unique visited states in 17 µs and their percentage
of equilibrium distribution is also at convergence in the same amount of simulation
time. However, segment HSSNNFGAILSSTNV 18-32 presents a behavior in line
with the full-length system, i.e. the number of uniquely visited states is constantly
increasing with extended simulation time and the weight of each newly discovered
state is comparable.

From the analysis of the convergence of the simulation it is thus clear that we
cannot claim to have explored the full configurational space, and therefore we do not
have sufficient data for the construction of a meaningful MSM. As future prospective,
we plan to further extend the simulations, to achieve sufficient statistics of the rare
transitions for inferring a meaningful model of the dynamics.
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Figure 3.5: A) Percentage of unique visited states by the FGAIL 23-27 fragment with
respect to simulation time. B) Percentage of equilibrium distribution of the FGAIL 23-
27 fragment with respect to simulation time. C) Per state equilibrium probability of the
FGAIL 23-27 fragment. The states corresponding to full α-helix and full β-sheet are marked
and corresponding structures are shown.

3.3.2 Analysis of the Extended Simulations

Despite the not-convergence of the simulation data, it is possible to deduce inter-
esting properties of the system. For instance, the correlation between the backbone
dihedral angles distributions of residue-pairs can be estimated via the normalized
mutual information (NMI).
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Figure 3.7: Mutual information. Plot obtained using 21 µs and 100 ps downsampling.

NMI is a measure of the difference between the real joint probability density
the case of uncorrelated distributions. It can be used to highlight the formation
of transient secondary structures. For further discussion of the NMI please refer
to sec. IV B in the manuscript. Fig. 3.7 shows the pair-wise NMI for the ex-
tended simulations. Note that, for computational tractability, the simulation data
has been down-sampled by a factor of 100 time-steps. Such downsampling has an
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effect on the NMI as the entropy associated to the independent variables is smaller.
As a consequence, the NMI between two residues has a higher value the bigger the
downsampling factor, which explains the higher pair-wise correlation of fig. 3.7 with
respect to fig 11 E in the manuscript. Qualitatively however fig. 3.7 and fig 11 E in
the manuscript are in agreement, and the secondary structures elements evidenced
by both analysis are the same: (i) a strong correlation between residues one to
seven, induced by the cysteine bond between residues C2 and C7; (ii) the formation
of helical structures induces high NMI values in the regions 7-19 and 23-29; (iii)

residues 5-14 show long-distance communication with residues 23-34; (iv) G24 and
G33 present strong correlation with the distribution of all the other residues in the
sequence, which is to be related to the peculiar glycine {φ− ψ}-distribution.
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Figure 3.8: Contact Map. Average contact probability throughout the trajectory. Two
residues are defined in contact if the Cα-Cα distance is smaller than 1 nm.

The long-range interaction identified by the NMI are also found in the contact
map analysis (fig. 3.8). In this analysis we consider two residues in contact if their
Cα-Cα distance is smaller than 1 nm. For each time-step a binary contact map
is evaluated using the md.compute_contacts built-in function of MDTraj python-
based software package[98]. Subsequently we compute the average contact map
throughout the simulation data. As shown in fig. 3.8, neighbor residues are in
contact, as well as residues 1-7 due to the cysteine bond. The high propensity of
FGAIL 23-27 to form α-helices is shown in the high contact probability of residues
23-27. Moreover, configurations with residues 5-10 in proximity of residues 34-37
are found in 40% of the data. Residue 30 is also likely to form contacts with residues
21-27.
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Another standard methodology to analyze protein configuration is to assign con-
figurations to structure elements via the Define Secondary Structure of Proteins al-
gorithm (DSSP) [99]. The DSSP algorithm assigns a secondary structure element
to each residue in the sequence, based on hydrogen bonds formation. Multiple
types of secondary structures are distinguished: 310 (grey in this analysis), α (blue)
and π (magenta) helices, corresponding to repetitive sequences of hydrogen bonds
between residues respectively three, four or five positions apart in the sequence;
β-sheets (red) corresponds to strands of residues forming the typical hydrogen pat-
tern; β-bridges (black) are localized β-sheets hydrogen bonds; turns (light green) are
single hydrogen bonds typical of helices; bends (dark green) are regions with high
curvatures and the only element not to depend on hydrogen bonds. Figs 3.9-3.12
show DSSP plots of all replicas in sniplets of 100 ns and resolution of 100 ps. It can
be noted that multiple configurations are explored, spanning between helical and β
structures. Which are the residues involved in the β structures, however, is not a
constant, indicating that the simulations visit varied β structures This is another
confirmation of the necessity of extra data.
As already shown in the previous study, it is of interest to compare standard DSSP
plots and the three-states per residue discretization time-series (fig 12 in the support-
ing information). The discretization is only based on dihedral angles and does not
consider the stabilizing effect of hydrogen bonds. Fig. 3.13 presents DSSP-like plots
per replica, based on the three-states discretization of each residue. The residues of
the FGAIL 23-27 fragment are often in {φ, ψ}-combinations that correspond to a
α-helix, in agreement with fig. 3.5.C. The residues involved in the bend structures
identified in the shorter fragments are also present in the full-length system. Occa-
sionally those bend structures are substituted by more stable β-bridges connected
by a loop. The simulations also explore other long range β-bridges, not observed in
the short fragments.

3.3.3 Conclusive Reamarks

In this section we have analyzed extended simulations of hAIPP 1-37. We have
accumulated an aggregated simulation time of over 21 µs. The exploration of the
configurational space is, however, only partial, hinting at the necessity of collecting
additional data. We have here presented different possible indirect measurements of
the convergence of the simulations, pointing out the limitation of using structural
properties that are not directly linked to the configurational space. We have also
showed that the number and statistical weight of the configurations visited by the
simulations is a better measure for testing the convergence of the simulations.

Despite the limited convergence of the simulations, important findings can still be
obtained. HAIPP 1-37 is an IDP, but is not a random coil in solution: it explores a
variety of conformations that could be stabilized upon contact with different binding
partners. We have used the DSSP algorithm to investigate which conformations are
assumed by the system. These conformations involve β-structures, which could act
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as precursors to amyloid formation, as well as helical structures, which the peptide is
known to assume in presence of membranes. A conformational selection mechanism
could thus stabilize hAIPP 1-37, according to the binding partner.
The FGAIL 23-27 fragment, which is the core of the so-called amyloidogenic region,
has a preference for the the helical configuration, but is also involved in the forma-
tion of long-range β-structures. It is worth to notice though that the preference of
the helical configuration might be an effect of the force field, as it is known that
different force fields produce different secondary structure distributions [100].

As the simulations are not converged, it is impossible to construct a meaningful
model of the dynamics. In general it is not trivial to construct a dynamical model
of an IDP. IDPs conformational ensemble is in fact extremely vast and obtaining
sufficient statistics to model the transitions between conformations requires much
data. It is our plan to extend further our data set, in order to build a model of the
dynamics of hAIPP 1-37.
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Figure 3.9: DSSP plots of independent runs 1-4 in sniplets of 100 ns.
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Figure 3.10: DSSP plots of independent runs 5-8 in sniplets of 100 ns.
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Figure 3.11: DSSP plots of independent runs 9-12 in sniplets of 100 ns.
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Figure 3.12: DSSP plots of independent runs 13-16 in sniplets of 100 ns.



108
Chapter 3. Extensive Molecular Dynamics simulation and MSM

analysis of IDPs dynamics

Figure 3.13: DSSP-like plots for the 3-states discretization.



Chapter 4

Basis Set Description of Peptides’
Dynamics

The previous chapter focused on small peptides, whose intrinsic disorder re-
sulted in non-trivial kinetic models construction. Substantial user-interaction

was therefore necessary for the construction and interpretation of a converged MSM,
especially for the longer sequences, where a regular Ramachandran-based grid re-
sulted into a computationally unfeasible number of states. The hierarchical states
definition, despite providing a useful description of the dynamics in the presented
cases, relies on considerable arbitrariness. How to combine residue dynamic, without
being driven by prior knowledge of the system and experience, remains a subjective
choice, which might introduce errors in the model. Therefore, it becomes evident the
need of overcoming the traditional MSM, in favor of simulation data independent
methods, capable of identifying the interesting dynamic modes without relying on
the definition of an excessive number of discrete states.

The recently introduced variational approach to conformation dynamics (VAC)
[75, 76] has opened up a route to the construction of kinetic models based on basis
functions, in place of crisp-states as in standard MSM. VAC describes a general
approach for the combination of basis functions, so to find the best approximation
of the true eigenfunctions of the propagator given the basis set. VAC also allows to
systematically control the approximation quality of the model, by varying the basis
set size. For further details please refer to section 2.3.
A crucial step in the application of VAC is the definition of the basis functions. If the
basis functions model faithfully the features of the energy landscape, only a small
number of basis functions would be relevant to approximate each of the dominant
eigenfunctions of the propagator. Therefore, a good model can be obtained with a
smaller number of basis functions than discrete states in a standard MSM. Coupling
VAC with optimization algorithms, such as a Tensor-Train approach [101], hints at
the applicability of the method for large size systems, by automatically define the
optimal sub-set of basis functions.

In this chapter we introduce and test a basis set for a variational description
of peptides’ kinetics. The proposed basis set is constructed by combining local
residue-centered kinetic modes that are obtained from a library of kinetic models
of terminally blocked amino acids. Such residue-centered kinetic modes are system-
independent, therefore the basis functions depend only on the sequence. Moreover,
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such definition of the basis functions allows for a direct interpretation of the slow
kinetic modes, without an additional clustering in the space of the dominant eigen-
functions. Additionally, changes in the conformational kinetics due to point muta-
tions can be directly quantified, as the basis functions definition allows for direct
model comparison.



4.1. A basis set for peptides 111

F.Vitalini, F. Noé and B. G. Keller; A Basis Set for Peptides for the Variational
Approach to Conformational Kinetics; Journal of Chemical Theory and Computa-
tion, 11, 3992-4004; 2015.

dx.doi.org/10.1021/acs.jctc.5b00498

dx.doi.org/10.1021/acs.jctc.5b00498


124 Chapter 4. Basis Set Description of Peptides’ Dynamics

F.Vitalini, F. Noé and B. G. Keller; A Basis Set for Peptides for the Variational
Approach to Conformational Kinetics; Journal of Chemical Theory and Computa-
tion, 11, 3992-4004; 2015.

http://dx.doi.org/10.1021/acs.jctc.5b00498

http://dx.doi.org/10.1021/acs.jctc.5b00498


Chapter 5

Dynamic Properties dependance
on Force Fields

The significance of a dynamic model derived form MD data depends on to what
extent the MD simulations are representative of the true dynamics. Current

MD force fields are not parametrized against dynamic properties, however, the re-
cent developments in in silico computations permit not only to calculate equilibrium
populations of conformations, but also to compute the transition rates between such
conformations. Assessing the reliability of MD force fields in capturing dynamic
properties is therefore called into question.

In this chapter MSM are used to compare dynamic models of test systems sim-
ulated with different force fields. Representative of each of the major force field
families are used to evaluate how do the dynamic properties of capped amino acids
and test peptides differ in simulations, where all parameters except the force field
are identical.
A significant dependance of timescales and conformational changes is evinced by
the analysis, suggesting that dynamic properties should be taken into consideration
in the development of future force fields. Moreover, we propose MSM based on a
regular discretization of the backbone dihedral angle space as a tool for inferring
and comparing dynamic properties of force fields.
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Chapter 6

Basis Set Library of commonly
used Force Fields

The accuracy of the basis set introduced in chapter 4 depends also on how well the
residue-centered basis functions represent the dynamic modes within the peptide
sequence. Given that there is quite a discrepancy between the dynamics simulated
by different force fields, it is important to match each simulation with the residue-
centered basis functions of the corresponding force fields. Hereby we introduce the
simulations of the twenty encoded amino acids in combinations with the force fields
introduced in chapter 5. Such data has been made publicly available on a ftp
repository. Finally, a library of the residue-centered basis functions for the twenty
encoded amino acids and the different force fields combinations is presented.
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6.2 Residue Centered Basis Functions Library

In this section we present a force field dependent library of the residue-centered
basis functions introduced in chapter 4. For each residue, a MSM was constructed
(lag time τ=50 ps for all residues in all force fields except Glycine in AMBER03 and
all residues in GROMOS43a1 where τ=20 ps). The lag time is chosen such as the
first three eigenvectors represent stable and clearly defined processes. The first left
eigenvector (equilibrium distribution π) and the first three right eigenvectors (RBVs)
are shown (figs. 6.1 to 6.5 for AMBER99SB-ILDN; figs. 6.6 to 6.10 for AMBER03;
figs. 6.11 to 6.15 for CHARMM27; figs. 6.16 to 6.20 for OPLS-AA; figs. 6.21 to 6.25
for GROMOS43a1).

For further details on the MD simulations and the MSM construction, refer to
the Method section in chapter 4.
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Figure 6.1: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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ff_AMBER99SB-ILDN
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Figure 6.2: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.3: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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ff_AMBER99SB-ILDN
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Figure 6.4: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.5: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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ff_AMBER03
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Figure 6.6: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.7: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.8: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.9: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.10: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.11: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.12: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.13: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.14: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.15: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.16: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.17: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.18: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.19: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.20: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.21: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.22: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.23: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.24: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Figure 6.25: First left eigenvector (π), corresponding to the equilibrium distribution, and
right eigenvectors 1-3, corresponding to the RBVs associated to the amino acid.
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Conclusions

Within this thesis, we have exploited MD simulations to gain an atomistic rep-
resentation of the time evolution of peptides. MD simulations produce an

enormous amount of high dimensionality data; therefore, obtaining a quantitative
and humanly understandable picture of the dynamics is not trivial. A classic “look
and see” approach is bound to be unsuccessful, as it cannot provide a quantitative
and statistically meaningful picture. We use MSMs to model the dynamics as tran-
sitions between a (small) number of long-living configurations.

In chapter 3 MSMs have been applied to model the dynamic properties of human
amylin polipeptide, a 37-mer long intrinsically disordered peptide (IDP), related to
type-2 diabetes. Projecting the dynamics onto backbone dihedral angles, we could
asset the relationship between slow dynamic modes of short and longer hIAPP frag-
ments, uncovering the hierarchy of the underlying dynamics. The same metastable
configurations assumed by short peptide fragments can in fact be found in the model
of the longer sequences, albeit with different timescales. The presence of long-living
configurations hints at a conformational selection process taking place: in fact a
configuration has to be sufficiently stable to meet to a specific binding partner and
be stabilized.
This study remarks the benefits of MSMs as a tool to describe IDPs dynamics.
IDPs’ high flexibility makes it non-trivial to extract structural information from
experiments. For example, on the one hand, it is challenging to crystallize an IDP,
while on the other it is not representative of the variety of conformations that an
IDP can assume. In addition, the small relative equilibrium populations and the
fast relaxation times of the partially structured configurations of an IDP are difficult
to measure in ensemble experiments. MD simulations in combination with MSM
analysis can be extremely useful at identifying the long-living configurations of the
system at atomistic resolution, and at estimating the timescales of the associated
conformational changes.

The quality of a MSMs depends sensitively on the discretization. At a given
lag-time, for fixed simulation data and reaction coordinates, a states definition
that finely discretizes the barriers of the energy landscape produces a better model
[72, 61]. The features of a high-dimensional energy landscape are, however, unknown
a priori and a fine discretization of the full configuration space is computationally
unfeasible. Therefore, in recent years the novel variational approach to conforma-
tion dynamics (VAC) [75, 76], which overcomes the crisp-states definition in favor of
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continuous basis functions, has been put forward. VAC exploits the variational prin-
ciple together with the method of linear variations to gain the best approximation
of the true propagator eigenfunctions and eigenvalues in terms of the user-defined
basis functions. The methods also permits a systematic control over the discretiza-
tion error, by increasing the size of the basis set.
In chapter 4 we have presented and validated a specific basis set for the application
of VAC, optimized to model the kinetics of peptides. The basis functions are defined
as combinations of residue-dependent dynamic modes, which are pre-parametrized
from kinetic models of terminally blocked amino acids. Such basis set definition
depends only on the peptide sequence and a library of the residue-based functions
has been presented in chapter 6.
The main advantage of such basis set relies in the straight-forward interpretation of
the dynamic modes in terms of single amino acids conformational changes, without
requiring any subsequent projection onto the space of eigenvectors. The analo-
gous interpretation of the residue-centered basis functions renders model compar-
ison straight-forward, which proves particularly useful in comparing the effects of
point-like mutations. The code and the library of residue-centered basis functions
have been made public in form of a python-package for further applications of the
method (github.com/markovmodel/variational).
At the current state, the main limitation for the application of the residue-derived
basis functions for the variational model is given by the basis set size, which in-
creases as 3N , with N number of residues in the sequence. Even if only a small
number of basis functions is necessary for a good approximation of the slowest dy-
namic processes of the bio-molecular system, how to identify these functions a priori
is still an open question. Recent developments of the method [101] aim at finding
automatically the optimal subset of basis functions for the application of VAC.
Future development of the method would work towards the definition of basis func-
tions specific for secondary structure elements, such as α-helix, β-sheet or turns. In
a hierarchical fashion, such elements could be combined with residue-centered basis
functions to extend the applicability of the method to larger peptides and proteins.

The effect of the MD force fields on the time-evolution of bio-molecular systems
have also been investigated (chapter 5). The reliability of dynamic models based on
MD simulations depends on how well the empirical force fields capture the dynamic
properties of the system. Dynamic properties, however, are usually not taken into
account in the parametrization of the force fields themselves.
To asset to which extent the force field effects the dynamics, we simulated two
capped aliphatic amino acids and two test peptides with equivalent set-up options,
except for the force field. The results confirm a strong dependence of the dynamic
properties on the force field of choice. In the case of capped amino acids, where the
expected slow processes are known, the main effect is in the order of the dynamic
modes and in the associated timescales values, which can vary up to an order of
magnitude. For peptides, where the entity of the slow dynamic modes is unknown,
the force fields show discrepancies in both the process type and the timescales, which
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can also vary up to an order of magnitude. We have therefore suggested the con-
sideration of dynamic properties in the development of new force fields and we have
proposed MSM as a tool for comparing dynamic models and relate to experiments.

Given the strong force-field dependance of the dynamics also at the amino
acid level, the basis functions introduced in chapter 4 have to be force field spe-
cific. Therefore, chapter 6 presents the residue-dependent dynamic modes of the
twenty encoded amino acids in five different commonly used force fields: AM-
BER ff-99SB-ILDN[38] , AMBER ff-03[39], OPLS-AA/L[40], CHARMM27[41] and
GROMOS43a1 [42, 43]. The library can be easily extended to newly developed
force fields for future applications of the method. The simulation data set has also
been made available as a useful test-bed for methods and force fields development
(ftp://bdg.chemie.fu-berlin.de/).





Appendix A

Derivation of the Variational
Principle for a transfer operator

In ref. [75, 76] it is shown that for a self-adjoint operator whose spectrum is bounded,
a Variational Principle can be stated.
Here we prove that, due to reversibility, the Propagator P(τ) is a self-adjoint oper-
ator with respect to the weighted scalar product, thus:

〈f |P(τ)|g〉π−1 = 〈g|P(τ)|f〉π−1 , (A.1)

where with scalar product weighted with respect to the equilibrium distribution
〈·|·〉π−1we intend:

〈f |g〉π−1 =

∫

Ω
g(x)?π−1(x)f(x)dx, (A.2)

where g(x)? stands for complex conjugate of g(x).

Eq. A.1 can be rewritten as:

〈f |P(τ)|g〉π−1 =

∫

Ω
[

∫

Ω
p(x,y, τ)f(x)dx]

1

π(y)
g(y)dy, (A.3)

where p(x,y, τ) is the probability of transitioning to y, given that the system was
in x a lag-time τ earlier.
If detailed balance holds:

p(x,y, τ) = p(y,x, τ)
π(y)

π(x)
(A.4)

Thus:

〈f |P(τ)|g〉π−1 =

∫

Ω
[

∫

Ω
p(y,x, τ)

π(y)

π(x)
f(x)dx]

1

π(y)
g(y)dy

=

∫

Ω
[

∫

Ω
p(y,x, τ)g(y)dy]

1

π(x)
f(x)dx

= 〈g|P(τ)|f〉π−1

(A.5)

which proves that the propagator is a self-adjoint operator with respect to the
weighted scalar product defined in eq. A.2.
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Appendix A. Derivation of the Variational Principle for a transfer

operator

This has the consequence of the eigenfunctions of P(τ) being a full basis set for the
Hilbert space of square-integrable functions.

The Variational Principle for the propagator states that, for any trial function
|f〉, normalized as |f | =

√
〈f |f〉π−1 , the following inequality holds:

〈f |P(τ)|f〉π−1 =

∫

X
f(x)π−1(x)P(τ)f(x)dx ≤ 1 (A.6)

Given any trial function |f〉, it can be linearly expanded using a basis of M basis
functions {|ψi〉}Mi=1 as:

|f〉 =

M∑

i=1

ai|ψi〉 (A.7)

According to the Method of Linear Variation, the coefficient ai are varied while the
basis functions are kept constant, in order to maximize:

〈f |P(τ)|f〉π−1 =

∫

X
f(x)π−1P(τ)f(x)dx (A.8)

As |f〉 =
∑M

i ai|ψi〉

1 ≥ 〈f |P(τ)|f〉π−1 =

〈
M∑

i

aiψi|P(τ)|
∑

j

ajψj〉π−1 =

M∑

i,j=1

aiaj〈ψi|P(τ)|ψj〉π−1 =

M∑

i,j=1

aiajCi,j

(A.9)

Where C is interpretable as time-lagged correlation matrix.

To maximize 〈f |P(τ)|f〉π−1

∂

∂ak
〈f |P(τ)|f〉π−1 = 0

∂

∂ak

M∑

i,j=1

aiajCi,j = 0 ∀k = 1...M − 1
(A.10)

with the normalization condition 〈f |f〉π−1 =
∑M

i,j=1 aiaj〈ψi|ψj〉π−1 =
∑M

i,j=1 aiajSi,j ,
where S has the meaning of overlap matrix.
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To include this constraint in the optimization problem, Lagrange Multipliers are
used.

L =
M∑

i,j=1

aiaj〈ψi|P(τ)|ψj〉π−1 − λ[
M∑

i,j=1

aiaj〈ψi|ψj〉π−1 − 1]

=

M∑

i,j=1

aiajCi,j − λ[

M∑

i,j=1

aiajSi,j ]

(A.11)

The variational problem is then reduced to:

L =
M∑

i=1

aiCi,j − λ
M∑

i=1

aiSij = 0 (A.12)

Which can be rewritten in a matrix form as:

Ca = λSa (A.13)

where a is the vector of the expansion coefficients.

To estimate Cij we define the co-functions of ψ as ψi(x) = π−1ϕi(x). Consequently:

Cij(τ) = 〈ψi|P(τ)|ψj〉π−1

= 〈ϕiπ|P(τ)|πϕj〉π−1

=

∫ ∫
ϕi(z)p(z, y, τ)π(y)ϕj(y)dydz

(A.14)

which can be interpreted as a time-lagged cross-correlation between ϕi and ϕj .

corr(ϕi, ϕj , τ) =

∫ ∫
ϕi(z)p(xt+τ = z|xt = y)ϕj(y)p(xt = y)dzdy (A.15)

In the limit of T →∞ it can be estimated from the trajectory as:

ĉorr(ϕi, ϕj , τ) =
1

T − τ

∫ T−τ

0
ϕj(xt)ϕi(xt−τ )dt

=
1

T − τ
T−τ∑

t=1

ϕj(xt)ϕi(xt−τ )∆t.

(A.16)

Analogously Sij can be estimated from the trajectory as:

Sij = 〈ψi|ψj〉π−1

=

∫ T

0
ϕj(xt)ϕi(xt)dt

=

T∑

t=1

ϕj(xt)ϕi(xt)∆t.

(A.17)
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