6. Literatur

Ich möchte mich bei allen entschuldigen, deren Arbeiten aus Platzgründen hier nicht genannt werden konnten.


Davies, R. C., et al. (1998) WT1 interacts with the splicing factor U2AF65 in an isoform-dependent manner and can be incorporated into spliceosomes. Genes Dev. 12: 3217-3225


Englert, C., et al. (1995b) WT1 suppresses synthesis of the epidermal growth factor receptor and induces apoptosis. EMBO J. 14: 4662-4675


Gan, L., et al. (1999) POU domain factor Brn-3b is essential for retinal ganglion cell differentiation and survival but not for initial cell fate specification. Dev. Biol. 210: 469-480


Mayo, M. W., et al. (1999) WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J. 18: 3990-4003


Theil, T., et al. (1993) Mouse Brn-3 family of POU transcription factors: a new amino terminal domain is crucial for the oncogenic activity of Brn-3a. Nucleic Acids Res. 21: 5921-5929


Wang, S. W., et al. (2002): Brn3b/Brn3c double knockout mice reveal an unsuspected role for Brn3c in retinal ganglion cell axon outgrowth. Development 129: 467-477


Wang, Z. Y., et al. (1995b) WT1, the Wilms’ tumor suppressor gene product, represses transcription through an interactive nuclear protein. Oncogene 10: 1243-1247


