
7 Application to Large Systems

In this section we want to demonstrate that the algorithmic strategy pre-
sented in Section 3.2 can be applied to identify biomolecular conformations
even for large systems as, for instance, small biomolecules with hundreds of
atoms. For large systems, we have to face two particular problems:

1. How to approximate the stationary distribution in a high–dimensional
space?

2. How to decompose the high–dimensional state space in order to dis-
cretize the propagator?

We will address these problems in the following.

7.1 Monte Carlo methods

The typical approach to sample the canonical distribution in a high–dimen-
sional space is via Monte Carlo techniques. There is an extremely rich and
varied literature on Monte Carlo methods (see, e.g., [44, 75]) and every
converging method would allow to realize the problem of sampling the in-
variant distribution. In addition, we may also apply molecular dynamics
based techniques, e.g., constant temperature sampling of the canonical dis-
tribution [54, 2]. It is widely known, that Monte Carlo simulations may
suffer from possible “trapping problems” [48]. This kind of problem occurs
when the Monte Carlo Markov process gets trapped near a local potential
energy minimum due to high energy barriers so that a proper sampling of
the entire state space within reasonable computing times is impossible. As
illustrated in [68], this phenomenon is related to the existence of metastable
subsets for the Monte Carlo Markov process.

There exists various strategies addressing the trapping problem. Espe-
cially the so–called extended ensemble methods, which are based on reweight-
ing techniques, are gaining significant popularity. Recently, Fischer pre-
sented a promissing alternative approach, the uncoupling–coupling Monte
Carlo (UCMC) technique [20]. It links Monte Carlo sampling methods with
the algorithmic strategy to the identification of metastable subsets, as de-
scribed in this thesis. Loosely speaking, it exploits a clustering of the state
space, when metastability starts to become “visible” but is far from causing
trapping problems. As outline in [22] this may allow to sample the canonical
distribution with reasonable computational effort.

7.2 Adaptive Discretization Techniques

There are different ways of facing the second problem, the decomposition
of the state space. We assume that the canonical distribution has properly
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been sampled by some Monte Carlo method. Then the following possibilities
arise.

Essential Degrees of Freedom. Typical biomolecular systems contain
hundreds or thousands of atoms. If we would generate a decomposition of
the state space by simply decomposing every degree of freedom, the number
of subsets within the decomposition and thus the dimension of the stochastic
transition matrix would grow exponentially with the size of the molecular
system. Chemical insight into biomolecular systems allows to circumvent
this “curse of dimensionality”. Conformations of biomolecules are mostly
described in terms of a few essential degrees of freedom. In the subspace of
essential degrees of freedom most of the positional fluctuations occur, while
in the remaining degrees of freedom the motion can be considered as “phys-
ically constrained”. Based on the sampling of the canonical distribution, we
may determine essential degrees of freedom either in the position space ac-
cording to Amadei et al. [1] or in the space of internal degrees of freedom,
e.g., dihedral angles [35], by statistical analysis of circular data. Either case
is based on a principal component analysis of the sampling via analyzing a
covariance matrix. As shown in [35], this procedure may results in a tremen-
dous reduction of the number of degrees of freedom and, consequently, in
a moderate number of subsets within the decomposition when discretizing
the essential variables only. The principal component analysis is a linear
approach to essential degrees of freedom. A characterization and identifi-
cation of more general nonlinear essential degrees of freedom is subject to
investigations within a current research project [70] and part of a current
diploma thesis [78].

Self–Organizing Maps. An alternative approach is to discretize the prop-
agator by means of self–organizing maps, a special kind of neural networks.
Self–organizing maps allow to cluster the Monte Carlo sampling data by
assigning each sampling point to the nearest neurons, each of them repre-
senting a subset of the decomposition. We have demonstrated its successful
application to sampling data of biomolecular systems in [28]. More advanced
extensions, such as “box–neurons” and a hierarchical embedding, have re-
cently be designed [26, 27].

Clustering Algorithms. A third approach of decomposing the state space
is based on clustering the sampling data by means of clustering algorithms
(see, e.g., [37] and cited references). These methods cluster according to
structural similarity: The set of sampling points is partitioned into disjoint
subsets with the property that two states belonging to the same subset are
in some sense structural closer to each other than two states belonging to
different subsets. A crucial question is the design of appropriate measures
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of structural similarity. In the biomolecular application context, these mea-
sures can either be based on the Cartesian coordinates of the molecules or
on the internal degrees of freedom. In contrast to the former the latter ap-
proach is invariant under rotations and translations of the entire molecule.
For an application to biomolecular systems see [35].

Solving the Eigenvalue Problem. Finally, we want to remark that al-
though the stochastic transition matrix resulting from the discretization
may be quite large, it turns out to be sparse in our application context.
Furthermore, since the algorithmic strategy is based solely on the dominant
eigenvalues and corresponding eigenfunctions, we can apply subspace ori-
ented iterative techniques (see, e.g., [64]) to solve the eigenvalue problem.
It is important to notice that the convergence rate of those methods de-
pends only on the spectral gap between the cluster of dominant eigenvalues
and the remaining part of the spectrum and is independent of the size of
the stochastic transition matrix and hence of the number of discretization
subsets.

However, it should be clear that any refinement process of the discretiza-
tion is limited by the quality of the underlying sampling data, since the ap-
proximation quality of the stochastic transition matrix is based on the inter-
play between sampling data and fineness of the discretization (see Sec. 5.3).

7.3 Analyzing a Small Biomolecule

This section illustrates the performance of the algorithmic approach to the
triribonucleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin (r(ACC)) model sys-
tem in vacuum, see Figure 11. Its physical representation is based on the
GROMOS96 extended atom force field [77], resulting in N = 70 atoms,
hence Ω = R210 and Γ = R420. The internal fluctuations are modeled w.r.t.
the Hamiltonian system with randomized momenta. For details see [35].

The sampling of the canonical distribution was generated using an adap-
tive temperature hybrid Monte Carlo15 (ATHMC) method [21] at T = 300K
resulting in the sampling sequence q1, . . . , q32000 ∈ Ω. The dynamical fluc-
tuations within the canonical ensemble were approximated by integrating
M = 4 short trajectories of length τ = 80fs starting from each sampling
point. To facilitate transitions, analogous to the ATHMC sampling, the mo-
menta were chosen according to the momenta distribution P(p) correspond-
ing to four different temperatures between 300K − 400K and reweighted
afterwards. This resulted in a total of 4×32.000 = 128.000 transitions.

The configurational space was discretized using all four essential degrees
of freedom, which were identified by means of a statistical analysis of the
sampling data (see Sec. 7.2), resulting in d = 36 discretization subsets.

15ATHMC is part of the earlier mentioned UCMC method (see Section 7.1).
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Figure 11: Two representatives of different conformations of r(ACC). Left: The χ angle
around the first glycosidic bond is in anti position (-175 degrees) and the terminal ribose
pucker P is in C(3’)endo C(2’)exo conformation. Right: The χ angle is in syn position
(19 degrees) and the terminal ribose in C(2’)endo C(3’)exo conformation. Visualization
by amira [42].

Then the 36×36 stochastic transition matrix S was computed based on the
128.000 transitions taking the different weighting factors into account. The
computation of the eigenvalues of S close to 1 yielded a cluster of eight
eigenvalues with a significant gap to the remaining part of the spectrum, as
shown in the following table:

k 1 2 3 4 5 6 7 8 9 . . .

λk 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.90 0.81 . . .

Finally, we computed conformations based on the corresponding eight eigen-
vectors of S via the identification algorithm presented in Section 5.4. We
identified eight conformations; their statistical weights and metastabilities
are shown in the following table:

conformations C1 C2 C3 C4 C5 C6 C7 C8

statistical weight 0.11 0.01 0.12 0.03 0.32 0.04 0.29 0.10
metastability 0.99 0.94 0.96 0.89 0.99 0.95 0.98 0.96

The transition probabilities between the different conformations are visu-
alized schematically in Figure 12. The matrix allows to define a hierarchy
between the clusters, which is inherent to the algorithm. On the top level,
there are two clusters, one consisting of the conformations C1, . . . , C4 and
the other consisting of the conformations C5, . . . , C8. This structure cor-
responds to the two 4×4 blocks on the diagonal. On the next level, each
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of these clusters splits up into two subclusters yielding four conformations
{C1, C2}, {C3, C4}, {C5, C6}, {C7, C8}. On the bottom level, each cluster is
further divided resulting in eight conformations.
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Figure 12: Schematical visualization of the transition probabilities p(τ, Ci, Cj) between
the conformation Ci (row) and Cj (column). The colors are chosen according to the
logarithm of the corresponding entries: from p ≈ 0 (light) to p ≈ 1 (dark).

77


