
6 Theoretical and Numerical Investigations

Based on the results of the last two sections, we want to theoretically and
numerically analyze our four model systems. We will see that under suit-
able conditions on the potential energy function all model systems but the
deterministic Hamiltonian system satisfy the two basic conditions (C1) and
(C2). The application to a three–well potential show significant similarities
for the model systems on a mesoscopic level.
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Figure 5: Three well potential (top left) and corresponding canonical density fcan for
β = 2 (top right). The positional canonical density Q (bottom left) and canonical density
of momenta P (bottom right).

In the following we consider the three well potential V : Ω→ R with

V (q) =
1

400
(q6 − 30q4 + 238q2 + 56q + 100) (63)

as our test system. We choose Ω = [−5, 5] as the position space with periodic
boundary conditions, and modify the potential function at the boundary ±5
in such a way that it is smooth (cf. Remark below). Its graph, the canonical
distribution fcan corresponding to β = 2 and its two marginal distributions
Q and P are shown in Figure 5. We choose τ = 1 as the observation time
span. Intuitively, we would expect to exist three metastable subsets around
the (local) minima of the potential function for moderate temperature.

Remark. The positional canonical density Q already indicates that it
is very unlike to stay near the periodic boundary at ±5; this can also be
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observed from the realization shown in Figure 6. Hence, numerically it might
be difficult to resolve the difference between an unbounded position space
and one with periodic boundary conditions. Yet, in special situations this
is possible, as we are going to exemplify for the Hamiltonian system with
randomized momenta in application to a harmonic potential test system (see
end of Section 6.2).

6.1 Deterministic Hamiltonian System

Denote by Pτ the propagator corresponding to the deterministic Hamilto-
nian system.

Proposition 6.1 For both bounded systems and periodic systems, the prop-
agator Pτ : Lr(µcan) → Lr(µcan) neither satisfies condition (C1) nor condi-
tion (C2) in Lr(µcan) with r = 1, 2.

Proof: For the statement on r = 1, we observe that the stochastic tran-
sition function pτ (x, dy) = δΦτx(dy) is singular w.r.t. the invariant mea-
sure µcan(dy) = fcan(y)dy implying ∆(Pτ ) = 1 by Theorem 4.9. Since
pnτ (x, dy) = δΦnτx(dy), we more generally have ∆(Pnτ ) = 1 for every n ∈ Z+

and hence ress(Pτ ) = 1 by Theorem 4.6. This violates condition (C1).
Now, define for an arbitrary smooth function F : R → R+ the density
f : X → R by f(x) = F(H(x)) and the thereby induced measure µf by
µf (dy) = f(y)dy. Since the Hamiltonian flow is energy–preserving, µf is a
finite invariant measure for every f ∈ L1(µcan). This way we may construct
arbitrarily many invariant probability measures, which violates condition
(C2). The statement for r = 2 follows from the fact that Pτ is unitary in
L2(µcan), as stated in Section 2.1. �

Within the proof of Proposition 6.1 we have shown that the deterministic
Hamiltonian system admits infinitely many invariant probability measures.
Due to this ambiguity, in our context pure Hamiltonian dynamics seems
not to be appropriate for modeling internal fluctuations within one specific
stationary ensemble, in our case the canonical ensemble.

6.2 Hamiltonian System with Randomized Momenta

Denote by Pτ the propagator corresponding to the Hamiltonian system with
randomized momenta. We first state under which conditions on the poten-
tial function the two requirements (C1) and (C2) on Pτ hold. Then, we
numerically analyze the induced essential statistical behavior w.r.t. the po-
sitional canonical ensemble.

Proposition 6.2 For periodic systems with position space Ω ⊂ Rd, some
fixed observation time span τ > 0 and smooth periodic potential function

57



V : Ω → R, the propagator Pτ : Lr(µQ) → Lr(µQ) satisfies the conditions
(C1) and (C2) in Lr(µQ) with r = 1, 2.

Proof : The statement for r = 1 is based on results in [68]. Due to [68,
Lem. 4.51 and Prop. 4.18] the Lebesgue decomposition of the stochastic
transition function pτ (q,dy) = pa(q, y)µQ(dy) + ps(q,dy) has the following
two properties:

(i) the absolutely continuous part satisfies: ess sup
(q,y)∈Ω

pa(q, y) <∞.

(ii) the singular part satisfies: ess sup
q∈Ω

pa(q,Ω) < 1.

Application of Theorem 4.9 proves that condition (C1) holds. Since Pτ is
asymptotically stable according to [68, Lem. 4.51], condition (C2) is a conse-
quence of Corollary 4.22. In order to prove the statement for r = 2 we note
that due to [68, Lem. 4.31] the Markov process corresponding to the Hamil-
tonian system with randomized momenta is µQ–irreducible. Therefore, the
statement is a consequence of Theorem 4.32. Using a different approach,
the statement for r = 2 was already proved by Schütte in [68]. �
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Figure 6: Typical realization of the Hamiltonian system with randomized momenta for
β = 2, observation time span τ = 1 and initial distribution Q0 ∼ 1.

By Proposition 6.2 the application of our algorithmic approach to the
test systems is theoretically justified. In order to discretize the propagator,
we proceed according to Example 5.1 using the Trapezoid rule with N =
300000, M = 1 and the Leapfrog discretization [65] of the Hamiltonian flow
with internal step size ∆t = 0.02. A typical realization is shown in Figure 6.
We observe that the Markov process stays for some time close to one of the
three (local) minima, then suddenly jumps close to another minimum, stays
there for a while, jumps again and so on. Hence, by looking at the realization
we visually identify three metastable subsets. Discretizing the state space
Ω = [−5, 5] with periodic boundary conditions into 30 equal–sized intervals,
we obtain a 30 × 30 stochastic transition matrix S. Solving the eigenvalue
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problem for S yields:

λ1 λ2 λ3 λ4 λ5 λ6 . . . λ30

1.000 0.975 0.958 0.599 0.490 0.369 . . . −0.435

Evaluating the indicator for ress(Pτ ) we get [∆(Pτ )] = 0.557—for a further
analysis of the indicator within a hierarchical context see below. Looking at
the spectrum of S, we identify a cluster of three eigenvalues {λ1, λ2, λ3} close
to 1 that is well separated from the remaining part of the spectrum by a gap.
Hence, in view of our algorithmic strategy we look for a decomposition into
three metastable subsets. The eigenfunctions corresponding to the largest
eigenvalues are shown in Figure 7 (left). We observe almost constant levels
around the three minima for the first three eigenfunctions, while the fourth
eigenfunction does not show this particular structure. This almost constant
level structure is exploited by the identification algorithm outlined in Sec-
tion 5.4. Application to our example yields a clustering {C1, C2, C3} with
C1 = {q ≤ −2.1}, C2 = {−2.1 < q ≤ 1.8} and C3 = {1.8 < q}. The statisti-
cal weights µ(Ck) within the canonical ensemble µQ and the metastabilities
p(τ, Ck, Ck) are given by the following table:

metastable subset C1 C2 C3

statistical weight 0.324 0.616 0.060
metastability 0.966 0.973 0.908

The essential statistical behavior, i.e., the probability of transitions between
the metastable subsets, is described by the coupling matrix C = (cjk)j,k=1,2,3

with cjk = p(τ, Cj , Ck). For our example, we obtain

C =

 0.966 0.034 0
0.018 0.973 0.009

0 0.092 0.908

 .

Analyzing only the coupling matrix C and the metastability of the clusters,
we would predict that a typical realization of the Markov process would
stay most of the time in C2, sometimes moving to C1, stay there for some
time, then moving back and so on. Rarely, there will be transitions to C3,
where in addition the Markov process is unlikely to stay for a while. This
is what we observed for the realization shown in Figure 6. In this sense the
clustering, its metastabilities and the corresponding coupling matrix allow
to describe the essential statistical behavior of the model system.
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Figure 7: The four dominant eigenfunctions of the propagator Pτ for different model sys-
tems. Left: Hamiltonian system with randomized momenta corresponding to the eigenval-
ues 1.000, 0.975, 0.958, 0.599 (from top to bottom). Middle: Langevin equation for γ = 1.0
corresponding to the eigenvalues 1.000, 0.969, 0.949, 0.430; eigenfunctions projected on the
position space. Right: Smoluchowski equation for γ = 1.0 corresponding to the eigenvalues
1.000, 0.950, 0.915, 0.387.
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Let us have a closer look at the indicator [∆(Pτ )]. As suggested in
Section 5.1, the indicator should be used within some hierarchy of decompo-
sitions. The following table shows the indicator for our test system evaluated
in a hierarchy of decompositions into m equal–sized intervals:

m 30 50 100 200 500 1000
[∆(Pτ )] 0.557 0.423 0.315 0.207 0.152 0.117

We deduce that the essential spectral radius is likely to be much less than
the initially value of [∆(Pτ )] = 0.557 indicated. Moreover, while [∆(Pτ )]
drastically decays for finer decompositions of the state space, the dominant
eigenvalues of Pτ are quite insensitive w.r.t. refinements. This was already
illustrated for a small molecule in [69]. However, we do not know the exact
value of ress(Pτ ) in order to validate the results.

This is possible for the systems presented in Example 4.10 (ii), where
we considered a harmonic potential on the position space Ω = [−1, 1] with
periodic boundary conditions. Let us choose β = 2 and consider the cor-
responding propagator Pτ . Analytically, we have ∆(Pτ ) = 0.841 according
to Example 4.10. The following table shows the indicator [∆(Pτ )] based on
different decompositions of the state space into m equal–sized intervals:

m 30 50 100 200
[∆(Pτ )] 0.846 0.849 0.850 0.859

We observe that a finer decomposition of the state space does not signifi-
cantly change the value of [∆(Pτ )]; the results are in good agreement with
the analytical value. For the unbounded state space Ω = R described in
Example 4.10 (i) we have Pτ = Id and hence ress(Pτ ) = 1. This perfectly
illustrates the influence of periodic boundary conditions and also demon-
strates that it is possible to resolve the difference to the unbounded state
space numerically.

6.3 Langevin Equation

Let Pτ denote the propagator corresponding to the Langevin Markov process
and pτ its stochastic transition function. Up to now, the stability proper-
ties of the Langevin Markov process are only partially understood. While
(µ–a.e.) geometric or V –uniform ergodicity can be proved for both bounded
systems and periodic systems under reasonable conditions on the potential
function [51, 76], little is known about (µ–a.e.) uniform ergodicity. It is be-
lieved that the Markov process is not (µ–a.e.) uniformly ergodic for bounded
systems, while the periodic case is even less understood [33]. These topics
are subject to current investigations. Since the Langevin Markov process
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is not reversible, it is an ideal test system to demonstrate the effects of
time–symmetrization. Hence, we analyze both the “original” as well as the
time–symmetrized Markov process.

Proposition 6.3 The following holds for the Langevin equation:

(i) Fix some observation time space τ > 0 and consider a periodic system
with position space Ω ⊂ Rd and smooth potential function V : Ω→ R.
Then, µcan is the unique invariant probability measure of the Langevin
Markov process Xn = {Xnτ}n∈Z+ and its stochastic transition function
pτ is (µcan–a.e.) geometrically and V –uniformly ergodic.

(ii) Fix some observation time space τ > 0 and consider a bounded system
with position space Ω = Rd and smooth potential function V : Ω→ R
satisfying V (q) ≥ 0 for q ∈ Ω and growing at infinity like ‖q‖2l for
some positive integer l. Then, µcan is the unique invariant probability
measure of the Langevin Markov process Xn = {Xnτ}n∈Z+ and its
stochastic transition function pτ is (µcan–a.e.) geometrically and V –
uniformly ergodic.

Proof: Statement (i) is an immediate result of Theorem 3.1 by Stuart [76],
while statement (ii) immediately follows from Theorem 3.2 by Mattingly et
al. [51]. �

We remark that according to Mattingly et al. [51] the condition on the
growth rate of the potential function in the case of bounded systems can
be further weakened (see cond. 3.1 in [51]). While we are able to prove
(µcan–a.e.) geometric and V –uniform ergodicity for the Langevin equation,
reversibility fails to hold, since the infinitesimal generator L and therefore
the propagator Pτ is not self–adjoint in L2(µcan). In this case, Theorem 4.31
states nothing about the validity of the conditions (C1) and (C2) in L2(µcan).
Although the application of our algorithmic approach is not (yet) theoreti-
cally justified, the numerical results presented below are very promising.

In order to discretize the propagator in application to our test system,
we proceed according to Example 5.2, hence exploit a realization of the
discrete time Markov process Xn. We use the Leapfrog discretization for the
deterministic part with internal step size ∆t = 0.02 and random variables
Nn ∼ σ

√
∆tN (0, 1) for a realization of the white noise (within each internal

step). We discretize the state space X = Ω×R with Ω = [−5, 5] and periodic
boundary conditions into m = 900 subsets as follows: discretize the position
space Ω = [−5, 5] into 30 equal–sized intervals and the momenta space R
by partitioning [−3,+3] into 28 equal–sized intervals and adding the two
infinite intervals (−∞,−3] and [3,∞). Note that in view of the momenta
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Figure 8: Spectrum of Pτ for the Langevin equation for γ = 0.01 (upper left), γ = 0.16
(upper right), γ = 1.0 (lower left) and γ = 4.0 (lower right).

distribution shown in Figure 5, the statistical weight of the infinite intervals
is negligible. This way, we obtain a 900 × 900 non self–adjoint stochastic
transition matrix S. Solving the eigenvalue problem for S yields

λ1 λ2 λ3 λ4 λ5/6 . . .

1.000 0.969 0.949 0.430 0.369± 0.372i . . .

with [∆(Pτ )] = 0.750 for m = 400 discretization subsets and [∆(Pτ )] =
0.667 for m = 900. Hence, [∆(Pτ )] indicates that the first three dominant
eigenvalues belong to the discrete spectrum and are separated by a spectral
gap from the remaining part of the spectrum. This is in agreement with
the fact that the dominant eigenvalues are rather insensitive w.r.t. further
refinements of the decomposition. The next table show the eigenvalues of
maximal modulus for different decompositions into m subsets:

m λ1 λ2 λ3 λ4

400 1.000 0.968 0.947 0.412
900 1.000 0.969 0.949 0.430
1600 1.000 0.969 0.949 0.436
2500 1.000 0.969 0.950 0.440

We deduce from this results that numerically the two conditions (C1) and
(C2) are satisfied and proceed with the case m = 900. The eigenfunctions
corresponding to the largest eigenvalues are shown in Figure 10 (middle),
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Figure 9: First four dominant eigenvalues (maximal real part) of Pτ for the Langevin equa-
tion (top left) and Smoluchowski equation (top right) for different values of γ. Metasta-
bilities of the three subsets for the Langevin equation (bottom left) and Smoluchowski
equation (bottom right) for different values of γ.

their projections onto the position space are depicted in Figure 7 (middle).
We remark that, since the first three eigenvalues are real, the correspond-
ing eigenfunctions can be chosen real–valued. Moreover, because the largest
scalar product between either two different normalized eigenfunctions is of
order 10−3, the first three eigenfunctions are almost orthogonal, although
the propagator is not reversible. The same holds for the projected eigenfunc-
tions. Hence, the dominant part of Pτ is nearly self–adjoint and we would
identify metastable subsets by application of the identification algorithm.
However, we proceed in a slightly different way, since our aim is to identify
conformations induced by the Langevin equation.

Recall from Section 1.1 that conformations are thought to be objects in
the position space. For reduced models acting only on the position space Ω
like, e.g., the Hamiltonian system with randomized momenta, the notions of
conformations and metastable subsets coincide (see end of Sec. 1.1). This
is different for models acting on the phase space Γ = Ω×R (positions and
momenta) like, e.g., the Langevin equation. In this case we characterized
conformations as special metastable subsets of the form C = Ĉ×R ⊂ Γ with
Ĉ ⊂ Ω. Hence, for every position q ∈ Ĉ, the conformation C contains all
states of the form (q, p) with p ∈ R. Our strategy to identify conformations
induced by the Langevin equation is therefore as follows: In the position
space Ω, run the identification algorithm based on the first three projected
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eigenfunctions and extend the identified metastable subsets Ĉj ⊂ Ω to the
“cylindrical” subsets Cj = Ĉj ×R ⊂ X. Finally check for metastability of
the Cj w.r.t. the Langevin Markov process in Γ.

Applying this strategy13, we end up with a clustering {C1, C2, C3} with
C1 = [q ≤ −2.0] ×R, C2 = [−2.0 < q ≤ 1.7] ×R and C3 = [1.7 < q] ×R.
The statistical weights µ(Ck) within the canonical ensemble µcan and the
metastabilities p(τ, Ck, Ck) are given by the following table:

metastable subset C1 C2 C3

statistical weight 0.350 0.594 0.055
metastability 0.963 0.966 0.884

(64)

Calculating the coupling matrix yields

C =

 0.963 0.037 0
0.023 0.966 0.011

0 0.116 0.884

 . (65)

So far we have analyzed the Langevin equation for the specific choice
of friction constant γ = 1 and stochastic excitation σ = 1, resulting in the
inverse temperature β = 2. Recalling that β = 2γ/σ2, we find that there
is a one–parameter family of Langevin equations corresponding to the same
inverse temperature: choose σ =

√
2γ/β for arbitrary γ > 0. Figure 8 il-

lustrates the dependence of the spectrum on γ. It shows the spectrum of
the stochastic transition matrix S obtained from discretizing the propagator
Pτ corresponding to β = 2 and different values of γ. We observe that for
small values of γ the spectrum of S is spread all over the unit disc, while it
concentrates more and more on the interval [0, 1] for larger values of γ. This
reflects the fact that the Langevin equation is similar to the deterministic
Hamiltonian system for γ ≈ 0 [23], while it is similar to the Smoluchowski
equation for γ � 1. Hence, the Langevin equation exhibits different be-
havior depending on the friction constant γ. This might also explain the
dependence of the dominant eigenvalues on γ, as shown in Figure 9 (top).
The eigenvalues accumulate in λ = 1 for γ ≈ 0 as well as for γ � 1. The
former effect reflects the fact that the deterministic Hamiltonian system ad-
mits infinitely many invariant probability distributions (see Sec. 6.1), while
the latter effect is due to the behavior of the Smoluchowski equation for
large γ.

13We could think of different strategies like, e.g., projecting the Langevin Markov process
onto the position space Ω and considering the corresponding propagator. Alternatively,
we could modify the Langevin model similar to the Hamiltonian system with randomized
momenta in order to obtain a Langevin system with randomized momenta in the position
space only. Our strategy is motivated by the fact that it fits best our context, as we are
going to see below and in Section 6.5.
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Figure 10: Left and middle: Dominant eigenfunctions for the Langevin equation for
γ = 1.0. Eigenfunctions of the time–symmetrized discretization of Pτ corresponding
to the eigenvalues 1.000, 0.984, 0.974, 0.701 (left) and eigenfunctions corresponding to the
discretization of Pτ corresponding to 1.000, 0.969, 0.949, 0.430 (middle). Right: Second
eigenfunction of Pτ for γ = 0.16, 1.0, 4.0, 16.0 (top to bottom).
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Seemingly in contrast to the behavior of the eigenvalues is the decay of
metastability of the corresponding clusterings, as shown in Figure 9 (bot-
tom). This effect is due to our definition of conformations as cylindrical
metastable subsets (see Sec. 1.1). Due to energy conservation in the de-
terministic Hamiltonian case, we would expect that subsets of the state
space X = Γ corresponding to a certain energy range get more and more
metastable for small γ. Since these subsets follow contour lines of H or,
equivalently, of fcan (see Figure 5), every “cylindrical” subset will necessar-
ily only partially intersect with these energy range subsets. This causes loss
of metastability and explains the decay of metastability for small values of
γ. Nevertheless, we would expect to find metastable subsets—subject to no
restriction—for small γ, since the energy fluctuation of the Langevin equa-
tion decay for γ tending to zero. The mentioned structure due to nearly
energy conservation is already visible in Figure 10 for the top left eigenfunc-
tion (see also [49]).

In the last part of this section we want to study the effects of time–
symmetrization. Since the Langevin equation is not reversible, it is an ideal
test model. In order to facilitate a comparison of the original and the time–
symmetrized approach, we use the same realization of the Langevin Markov
process Xn for the subsequent numerical discretization as above. The next
proposition is a direct application of Theorem 4.31.

Proposition 6.4 Fix some observation time span τ > 0 and assume that
the stochastic transition function rτ corresponding to the time–symmetrized
Langevin Markov process Zn = {Zn}n∈Z+ is geometrically ergodic. Then the
propagator Pτ : L2(µcan)→ L2(µcan) corresponding to the time–symmetrized
Markov process satisfies the conditions (C1) and (C2) in L2(µcan).

The assumption in Proposition 6.4 is in particular satisfied, if the stochas-
tic transition function corresponding to the original Langevin Markov pro-
cess can proved to be uniformly ergodic. We now discretize the propagator
Pτ corresponding to the time–symmetrized Langevin Markov process ac-
cording to Example 5.2. Proceeding as in the first part, we end up with a
self–adjoint 900×900 stochastic transition matrix S. Solving the eigenvalue
problem for S yields:

λ1 λ2 λ3 λ4 λ5 λ6 . . .

1.000 0.984 0.974 0.701 0.649 0.539 . . .

In view of our algorithmic strategy, we are looking for a decomposition into
three metastable subsets. The eigenfunctions corresponding to the largest
eigenvalues are shown in Figure 10 (left). Application of our identification
strategy yields a clustering {C1, C2, C3} with C1 = [q ≤ −1.9] × R, C2 =
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[−1.9 < q ≤ 1.8]×R and C3 = [1.8 < q]×R. The statistical weights µ(Ck)
within the canonical ensemble µcan and the metastabilities p(τ, Ck, Ck) are
given by the following table:

metastable subset C1 C2 C3

statistical weight 0.358 0.585 0.057
metastability 0.975 0.977 0.921

(66)

The coupling matrix based on the realization of the original Langevin Markov
process Xn w.r.t. the clusters based on the time–symmetrized Markov pro-
cess is given by

C =

 0.975 0.025 0
0.015 0.977 0.008

0 0.079 0.921

 . (67)

As predicted by Theorem 3.2 the metastability w.r.t. the time–symmetrized
Markov process Zn (see table (66)) and the metastability w.r.t. the origi-
nal Markov process Xn (see table (64)) are identical. However, comparing
the two coupling matrices (65) and (67), we see that a clustering based on
the time–symmetrized process might differ from results based on the origi-
nal process. This a consequence of the different resulting propagotors and
corresponding (projected) eigenfunctions.

6.4 Smoluchowski Equation

Denote by Pτ the propagator corresponding to the Smoluchowski Markov
process. We first state under which conditions on the potential function the
two requirements (C1) and (C2) on Pτ hold. Then, we numerically analyze
the induced essential statistical behavior w.r.t. the positional canonical en-
semble µQ.

Proposition 6.5 The following holds for the Smoluchowski equation:

(i) For periodic systems with position space Ω ⊂ Rd, some fixed obser-
vation time space τ > 0 and smooth potential function V : Ω → R,
the propagator Pτ : L1(µQ) → L1(µQ) satisfies ress(Pτ ) = 0 and is
asymptotically stable, hence conditions (C1) and (C2) are fulfilled in
L1(µQ).

(ii) For bounded systems with position space Ω = Rd, some fixed obser-
vation time space τ > 0 and smooth potential function V : Ω → R
satisfying for some integer α > 0 the growth conditions V (q) ∼ ‖q‖2α,
∇V (q) ∼ ‖q‖2α−1 and ∂2V (q) ∼ ‖q‖2α−2 as ‖q‖ → ∞, the propaga-
tor Pτ : L2(µQ) → L2(µQ) satisfies the conditions (C1) and (C2) in
L2(µQ).
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Proof: For periodic systems, application of Theorem 3 of Ichihara and Ku-
nita [36] yields that the stochastic transition function p(t, q,dy) is absolutely
continuous w.r.t. µQ admitting a C∞ density. Hence, the density is bounded,
since Ω is compact, and therefore ress(Pτ ) = 0 by Theorem 4.9. Further-
more, we get asymptotic stability of Pτ according to [46], hence conditions
(C1) and (C2) hold in L1(µQ). For bounded systems, the statement follows
by Theorem 4.31, if we can prove that the stochastic transition function is
V –uniformly ergodic. But this is an immediate result of Theorem 5.3 by
Mattingly et al. [51]. �

Due to Mattingly et al. [51], the condition on the growth rate of the
potential function in the case of bounded systems can be weakened (see
cond. 5.1 in [51]). For an analysis of the Smoluchowski equation from a
symmetric Markov semigroup point of view see Davies [8].

By Proposition 6.5 the application of the algorithmic approach to our test
systems is theoretically justified. In order to discretize the propagator, we
proceed according to Example 5.1 using the Trapzoid rule with N = 300000,
M = 1 and the forward Euler or Euler–Maruyama scheme [41] with internal
step size ∆t = 0.02. A realization looks comparable to Figure 6. Discretizing
the state space Ω = [−5, 5] with periodic boundary conditions into 30 equal–
sized intervals, we obtain a 30× 30 stochastic transition matrix S. Solving
the eigenvalue problem for S yields:

λ1 λ2 λ3 λ4 λ5 λ6 . . .

1.000 0.950 0.915 0.387 0.227 0.125 . . .

Evaluating the indicator for ress(Pτ ) we get [∆(Pτ )] = 0.361—for a further
analysis of the indicator within a hierarchical context see below. As for the
preceding model systems, we look for a decomposition into three metastable
subsets. The eigenfunctions corresponding to the largest eigenvalues are
shown in Figure 7 (right). Applying the identification algorithm, we end up
with a clustering {C1, C2, C3} with C1 = {q ≤ −2.1}, C2 = {−2.1 < q ≤
1.7} and C3 = {1.7 < q}. The statistical weights µ(Ck) within the positional
canonical ensemble µQ and the metastabilities p(τ, Ck, Ck) are given by the
following table:

metastable subset C1 C2 C3

statistical weight 0.353 0.589 0.058
metastability 0.948 0.956 0.867

The essential statistical behavior is given by the coupling matrix

C =

 0.950 0.050 0
0.030 0.957 0.013

0 0.138 0.862

 .
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From a theoretical point of view we know that ress(Pτ ) = ∆(Pτ ) = 0
holds for periodic systems due to Prop. 6.5. Does the indicator [∆(Pτ )]
reproduce this result? The following table shows the indicator based on
different decompositions of the state space into m equal–sized intervals:

m 30 50 100 200
[∆(Pτ )] 0.361 0.224 0.116 0.070

(68)

The values are in good agreement with the theoretical value ress(Pτ ) = 0.
The previous results are based on a discretization of the propagator ac-
cording to Example 5.1. This was possible, since the state space is very
low–dimensional. In higher dimensions, we will have to use a discretiza-
tion procedure according to Example 5.2 that is based on a realization of
the Markov process Xn = {Xnτ} for some fixed time τ > 0. Exploiting a
realization of Xn we see that the dominant eigenvalues, the resulting cluster-
ings, their statistical weights and their metastabilities are almost indistin-
guishable from the results previously obtained, while the indicator [∆(Pτ )]
behaves quite differently:

m 30 50 100 200
[∆(Pτ )] 0.409 0.389 0.500 0.500

The values for [∆(Pτ )] decrease first and then stay constant for a decom-
position into more than 100 subsets. This seems to contradict the theo-
retical results, but can be understood in the context mentioned at the end
of Section 5.1: Since the Smoluchowski process is reversible, we used the
original as well as the reversed sampling to discretize the propagator. An-
alyzing the stochastic transition matrix S for, e.g., m = 100 we see that
[∆(P )] = S2,13 = S2,16 = 0.5. Since the statistical weight of the 2nd subset
is 3e−6, it implies that only one sampling point hit the second subset. Tak-
ing into account also the reversed sampling, we see that the second subset
was exactly hit two times, which after normalization results in the value
S2,13 = S2,16 = 0.5. In this case, [∆(Pτ )] indicates an insufficient sampling
of the 2nd subset rather than an upper bound of the essential spectral ra-
dius, as was already discussed at the end of Section 5.1. A refinement of
the sampling would decrease the value of [∆(Pτ )], as we already know from
table (68).

As in the Langevin case, for a fixed inverse temperature β there is a
one–parameter family of Smoluchowski equations parameterized by γ (or
σ). The corresponding family of infinitesimal generators {Lγ}γ>0 has a very
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simple form, since for fixed β and arbitrary γ > 0

Lγ =
1
γ

 1
β

∆q −∇qV (q) · ∇q︸ ︷︷ ︸
Lβ

 . (69)

Hence, each generator Lγ is simply a multiple of Lβ and we get the following
relationship for the eigenvalues and -functions:

Lβ v = λv ⇔ Lγ v =
λ

γ
v.

We deduce that the eigenfunctions of Lγ are independent of γ. For the
corresponding propagator Ptv = exp(tLγ)v we deduce

Lγ v =
λ

γ
v ⇒ Ptv = exp

(
λ

γ
t

)
v. (70)

Figure 9 (top right) shows the eigenvalues of Pτ = exp(τLγ) for different
values of γ. From (70) we would expect a logarithmic decay with 1/γ,
which can be observed in a semi–logarithmic plot (not shown). Since the
eigenvalues decay with decreasing γ, we expect that the metastabilities of
the resulting decompositions also decay with decreasing γ due to the upper
bound in Thm. 3.1. This phenomenon can be observed in Figure 9 (bottom
right).

6.5 Comparison of Model Systems

In broad terms the Hamiltonian system with randomized momenta, the
Langevin equation and the Smoluchowski equation behave quite similar (for
the chosen model parameters). The numerical investigations show com-
parable results for the clusterings into metastable subsets, their statistical
weights and the corresponding coupling matrices reflecting the essential sta-
tistical behavior. Qualitative different behavior is displayed by the fourth
eigenfunctions (bottom line of Figure 7). But since for each model dynamics
the fourth eigenvalue is well separated from the three dominant ones by a
spectral gap, the influence on the dynamical behavior is expected to be less
important.

The Hamiltonian system with randomized momenta is uniquely deter-
mined by specifying a potential function and some inverse temperature,
hence specifying the canonical ensemble. In contrast to that, for fixed β,
the Langevin and the Smoluchowski equation still depend on the friction
constant γ, which can be related to the viscosity of the surrounding. As
a consequence, the results the dynamical behavior depends on γ. Com-
paring the Langevin and the Smoluchowski model, we observe increasing
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agreement of eigenvalues and metastabilities for increasing values of γ (see
Figure 9). This is what we should expect, since the Smoluchowski equation
was derived as a high–friction approximation of the Langevin equation (Sec-
tion 2.4). This can also be understood from a dominant eigenfunction point
of view: Figure 10 (right) shows the second dominant eigenfunctions for dif-
ferent values of γ; the not depicted third eigenfunctions behaves similarly.
For small friction the eigenfunctions still display features of the determin-
istic Hamiltonian system, while for larger values of γ the eigenfunctions
convert more and more to a special product form, namely the product of
a function acting on positions times a constant function in the momenta.
Since the “loss of information” by projecting such a function to the position
space is negligible, this might explain the good approximation quality of the
Langevin by the Smoluchowski equation in the case of high friction. This is
also reflected by the observation that the spectrum of the Langevin propaga-
tor becomes more and more “real–valued” (see Figure 8), as this is the case
for the Smoluchowski equation. However, for small γ, the Langevin and the
Smoluchowski equation exhibit different behavior. While in the Langevin
case some eigenvalues accumulate in λ = 1 for γ � 1, this is not the case
for the Smoluchowski equation, where all eigenvalues but λ = 1 tend to zero
due to relation (70).

So far, we have presented an analysis of metastability for some fixed
observation time span τ > 0. How do the results depend on τ? For
the Hamiltonian system with randomized momenta, first investigations are
documented in [68]. Exemplified for a small molecule, the dependence of
the eigenvalues on τ is analyzed14. It looks almost exponential. For the
Langevin and Smoluchowski equation the exponential dependence of the
eigenvalues on τ is theoretically deducible on the basis of the semigroup
property Pτ = exp(τL). We further conclude that in this case the corre-
sponding eigenfunctions and hence the thereon based metastable subsets are
independent of any observation time span.

14Actually, Schütte analyzed in [68] the dependence of the eigenvalues on the inverse
temperature β, which in combination with Section 3.7.2 of [68], where an (inverse) tem-
perature scaling is related to a rescaling of the observation time span τ , gives the stated
result.
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