
5 Discretization of Transfer Operators

If we want to identify metastable subsets we have to compute certain eigen-
functions of the propagator Pτ . In the following we describe the discretiza-
tion procedure of the eigenvalue problem Pτv = λv. Throughout this sec-
tion we assume that Pτ satisfies the conditions (C1) and (C2) defined in
Section 3.2. Part of this section follows from [68, 69].

5.1 Galerkin Discretization

Let D = {D1, . . . , Dn} denote a decomposition of the state space and define
the associated finite dimensional ansatz space by Vn = span{1D1 , . . . ,1Dn}.
Then, the Galerkin projection Πn : L1(µ) → Vn of v ∈ L1(µ) is defined
by

Πnv =
n∑
k=1

〈v,1Dk〉µ
〈1Dk ,1Dk〉µ

1Dk ,

where 〈·, ·〉µ is the duality bracket between L1(µ) and L∞(µ). The resulting
discretized propagator ΠnPτΠn induces an approximate eigenvalue problem
ΠnPτΠnv = λΠnv in Vn. Using v =

∑n
k=1 νk1Dk , the discretized eigenvalue

problems reads in coordinate representation

n∑
l=1

〈1Dl , Pτ1Dk〉µ νl = λ 〈1Dk ,1Dk〉µ νk (59)

for k = 1, . . . , n. After division of (59) by 〈1Dk ,1Dk〉µ = µ(Dk) > 0, we
obtain the convenient form

Sν = λν

with ν = (ν1, . . . , νn) ∈ Cn and n×n stochastic transition matrix S = (Skl),
whose entries are given by the one–step transition probabilities from Dk to
Dl within the time τ :

Skl =
〈Pτ1Dk ,1Dl〉µ
〈1Dk ,1Dk〉µ

= p(τ,Dk, Dl). (60)

Since Pτ is a Markov operator, its Galerkin discretization S is a (row)
stochastic matrix, i.e., Skl ≥ 0 and

∑n
l=1 Skl = 1 for every k = 1, . . . , n.

Hence, all its eigenvalues λ satisfy |λ| ≤ 1. Moreover, we have the following
three important properties [68, 69]:

(i) The row vector π = (π1, . . . , πn) with πk = µ(Dk) represents the
discretized invariant probability measure µ. It is a left eigenvector
corresponding to the eigenvalue λ = 1, i.e., πS = π.
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(ii) S is irreducible and aperiodic. As a consequence, the eigenvalue λ = 1
is simple and dominant. In particular, the discretized invariant density
π is the unique invariant density of S.

(iii) If Pτ is reversible then S is self–adjoint w.r.t. the discrete scalar prod-
uct 〈u, v〉π =

∑
uiv̄iπi. Equivalently, S satisfies the detailed balance

condition πk Skl = πl Slk for every k, l ∈ {1, . . . , n}. Consequently, all
eigenvalues of S are real–valued and contained in the interval [−1, 1].

The discretization of the propagator can be interpreted as a coarse grain-
ing procedure: Coarse graining the state space {x ∈ X} → {D1, . . . , Dn}
results in a coarse graining of the propagator Pτ → S corresponding to
a coarse graining of the Markov process p(τ, x, C) → p(τ,Dk, Dl) with in-
variant measures µ → π. In doing so, the discretization inherits the most
important properties of the propagator.

In numerical experiments, it is desirable to estimate the essential spectral
radius ress(Pτ ). Since ress(Pτ ) ≤ ∆(Pτ ), we suggest the following heuristics
to define an indicator [∆(Pτ )] for some upper bound on ress(Pτ ). The basic
idea is to use a decomposition D = {D1, . . . , Dn} of the state space and a
“discretized” version of

∆(Pτ ) = lim sup
µ(A)→0

sup
0 6=v∈L1(µ)

1
‖v‖1

‖1A ◦ Pτv‖1.

Hence, replacing suprema by maxima w.r.t. the decomposition D we get

[∆(Pτ )] = max
D∈D

max
06=v∈Vn

1
‖v‖1

‖1D ◦ Pτv‖1

= max
j,k

1
µ(Dk)

∥∥1Dj ◦ Pτ1Dk∥∥1

= max
j,k

Sjk.

Therefore, the maximal entry of the stochastic transition matrix S, ob-
tained from discretizing the propagator Pτ , can be used as an indicator
for ress(Pτ ). In order to better capture the nature of the limit process
µ(A)→ 0, we suggest to use a sequence of decompositions D1, . . . ,Dm that
get finer and finer, and consider the corresponding sequence of indicators
[∆(Pτ )]D1 , . . . , [∆(Pτ )]Dm . A proof about the reliability of the indicator
seem to be possible under additional regularity conditions on the stochastic
transition function. However, it should be clear that these regularity condi-
tions conflict the fact that a non–vanishing essential spectral radius is related
to singular and therefore irregular behavior of the underlying dynamics (see
Theorem 4.9 and Lemma 4.29).

For a fixed decomposition, the indicator may still advantageous be ex-
ploited in a hierarchical context to indicate regions of further refinement: If
[∆(Pτ )] = Sjk ≈ 1 for some pair (j, k), then we may suggests
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(i) a refinement of the sampling corresponding to the jth box, since the
approximation quality for the jth box was too bad, or

(ii) a further subdivision of the kth box, since the statistical weight µ(Dk)
was too big.

If neither of the two strategies decreases the value of [∆(Pτ )], then the
essential spectral radius may indeed be close to 1. The indicator works quite
well for Markovian systems, as we are going to demonstrate it in Section 6; it
has also already been successfully applied to biomolecular systems [7]. As it
was pointed out by G. Froyland [24], it might be less useful for deterministic
systems, in particular for hyperbolic deterministic systems, where we would
expect the maximal entry of S to be approximately 0.5 due to expansion
and contraction of the dynamics.

5.2 Convergence of Discrete Eigenvalues

We restrict our considerations to the important class of reversible propa-
gators Pτ : L2(µ) → L2(µ) satisfying the conditions (C1) and (C2). Under
these assumptions, convergence results have been proved (see [68] for de-
tails).

Denote by σ(Pτ ) the spectrum of Pτ in L2(µ) and by σdiscr(Pτ ) ⊂ σ(Pτ )
the discrete spectrum. We are interested in approximating a cluster of (real–
valued) discrete eigenvalues λc, . . . , λ1 ∈ σdiscr(Pτ ) close to 1 and “outside”
the disc with radius ress(Pτ ). Assume that the eigenvalues are repeated
according to their multiplicity with

ress(Pτ ) < λc ≤ · · · ≤ λ2 < λ1 = 1.

and corresponding eigenfunctions vc, · · · , v1, orthogonal w.r.t. 〈·, ·〉µ. Fur-
thermore, we require that the sequence of the Galerkin ansatz spaces V1 ⊂
V2 ⊂ . . . is dense in L2(µ) and the corresponding decompositions D1,D2, . . .
are getting finer and finer, i.e., maxD∈Dn diam(D) → 0 as n → ∞. De-
note by S(Vn) the stochastic transition matrix obtained from discretizing
the propagator Pτ w.r.t. the ansatz space Vn. Furthermore, denote the
eigenvalues and corresponding eigenvectors of S(Vn) by λi(Vn) and ui(Vn),
respectively (ordered in decreasing magnitude and taken into account mul-
tiplicity). Under these assumptions the dominant eigenvalues of S(Vn) are
good approximations of the dominant eigenvalues of Pτ , whenever the dis-
cretization is fine enough. In this case S(Vn) also has a cluster of eigenvalues
λc(Vn) ≤ . . . ≤ λ2(Vn) < λ1(Vn) = 1 close to 1. More precisely, for every
j = 1, . . . , c, we get

λj(Vn) −→ λj and uj(Vn) −→ uj

in modulus and in the L2(µ)–norm, respectively, as n→∞ [68].
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5.3 Evaluating the Stochastic Transition Matrix

We consider the evaluation of the stochastic transition matrix S obtained
from discretizing Pτ .

Consider two elements B,C of some decomposition of the state space.
Combining p(τ, x, C) = Ex[1c(Xτ )] with Eq. (32) we get

p(τ,B,C) =
1

µ(B)

∫
B

Ex[1c(Xτ )]µ(dx), (61)

which can be approximated within two steps:

(A1) approximation of the integral∫
B
g(x)µ(dx) ≈

N∑
k=1

αk g(xk)

by some deterministic or stochastic integration scheme with parti-
tion points or random variables x1, . . . , xN , respectively, and weights
α1, . . . , αN [16, 29];

(A2) approximation of the expectation value

Ex[1c(Xτ )] ≈
1
M

M∑
j=1

1C (Xτ (ωj , x))

by relative frequencies, where Xτ (ωk, x) denotes a realization of the
Markov process at time τ with initial distribution X0 ∼ x [52, Chap-
ter 17].

A combination of the two steps (A1) and (A2) with g(x) = Ex[1c(Xτ )]
results in

p(τ,B,C) ≈ 1
M

N∑
k=1

M∑
j=1

αk 1C (Xτ (ωkj , xk)) ;

hence, for each initial point xk, the Markov process Xτ is realized M times.
This allows us to approximate the entries of the stochastic transition matrix
S due to Sjk = p(τ,Dj , Dk). The approximation quality of p(τ,B,C) de-
pends on the interplay between the two approximation steps (A1) and (A2).
Numerical experiments in low dimensions show that it is even possible to
take M = 1, if the number of partition points N is chosen in such a way that
the number of points per subset of the decomposition D is reasonable large.
For high–dimensional problems, we in general will be forced to use stochas-
tic integration schemes, such as Monte Carlo methods, to approximate the
integral in (A1); for further details see Section 7.1. For low–dimensional
problems, we may also use deterministic integration schemes:
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Example 5.1 Assume that X = [a, b] ⊂ R and the invariant measure is
absolutely continuous w.r.t. the Lebesgue measure, i.e., µ(dx) = f(x)dx for
some density f . For N ∈ Z+ define the partition points xk = a + kh with
k = 1, . . . , N and h = (b− a)/N . Using the Trapezoid rule in (A1), and M
realization of the Markov process in (A2) we get

p(τ,B,C) ≈ 1
M #[xk ∈ B]

∑
j, k

1B(xk) 1C
(
(Xτ (ωj , xk)

)
f(xk),

where #[xk ∈ B] denotes the total number of partition points xk in B.

Already in moderately low dimensions the strategy presented in Exam-
ple 5.1 may cause serious memory problems and unacceptable numerical
effort. Here the adaptive discretization technique by Dellnitz and Junge
[12, 13] can be of significant use. Developed to study in particular hyperbolic
dynamical systems, its successful application to a small molecular system is
described in [14]. For the analysis of biomolecules, e.g, small peptides, a dif-
ferent approach has to be chosen, as will be outlined in Section 7. Performing
a realization of the discrete time Markov process Xn = {Xn}n∈Z+ , we may
also combine the two approximation steps (A1) and (A2). Recall that we de-
fined for some fixed τ > 0 the time–reversed Markov process Yn = {Yn}n∈Z+

with stochastic transition function qτ and the time–symmetrized Markov
process Zn = {Zn}n∈Z+ with stochastic transition function rτ , see Sec-
tion 3.3 .

Example 5.2 Let x0, . . . , xN denote a sequence of sampling points obtained
from a realization of the discrete time Markov process Xn. Then

p(τ,B,C) ≈ #[xk ∈ B and xk+1 ∈ C]
#[xk ∈ B]

, (62)

where convergence is guaranteed for µ–a.e. initial points x0 by conditions
(C1) and (C2) and the law of large numbers [52]. Since the reversed sam-
pling xN , . . . , x0 is a realization of the time–reversed Markov process Yn with
stochastic transition function qτ , we have

qτ (1, B, C) ≈ #[xk ∈ B and xk−1 ∈ C]
#[xk ∈ B]

.

Hence, we can approximate the stochastic transition function rτ correspond-
ing to the time–symmetrized Markov process Zn by

rτ (1, B, C) ≈ #[xk ∈ B and xk+1 ∈ C] + #[xk ∈ B and xk−1 ∈ C]
2 #[xk ∈ B]

.

For a reversible Markov process the identity qτ (1, B,C) = pτ (1, B, C) and
consequently rτ (1, B, C) = pτ (1, B, C) holds. Thus, for reversible Markov
processes we may “double” the information by considering both the original
as well as the reversed sampling.
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Intuitively, it should be clear that the technique described in Example 5.2
becomes less efficient, if the Markov process admits a decomposition of the
state space into very metastable subsets. Then, convergence to equilibrium
is very slow so that we have to use a different approach (see Section 7).

5.4 The Numerical Identification Algorithm

We briefly outline the identification algorithm, a detailed description can be
found in Deuflhard et al. [17].

The aim is to completely decompose the state space X into metastable
subsets. Hence, given a decomposition D = {D1, . . . , Dn} of X, we have to
determine a clustering {C1, . . . , Cc} into c metastable clusters by assigning
each Dj with j = 1, . . . , n to some cluster Ck with k = 1, . . . , c. This
is done by exploiting the almost constant level structure of the dominant
eigenvectors, which shows up in Theorem 3.1. Denote by v1, . . . , vc the
eigenvectors corresponding to a cluster of c eigenvalues close to 1. Then,
they are almost constant on each metastable subset, i.e., if Di and Dj belong
to the same metastable subset, then vk(Di) ≈ vk(Dj) for k = 1, . . . , c.
Associate to each subset Dj the c–tuple of eigenvector components

Dj 7−→ (v1(Dj), . . . , vc(Dj))

and define a clustering {C1, . . . , Cc} by collecting subsets Dj with almost
identical c–tuples into the same cluster. Then, as it is shown in [17], this is
sufficient to define a clustering into metastable clusters in the case of weak
coupling. The identification of metastable clusters is reduced to cluster c–
tuples w.r.t. geometrical similarity. We have implemented an algorithm,
which also copes with larger perturbations in the eigenvector components
due to stronger coupling between metastable subsets; for details see [17].
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