
4 Analysis of Transfer Operators

In the preceding section we have presented an algorithmic approach to the
identification of metastable subsets under the two conditions (C1) and (C2),
which are functional analytical statements on the spectrum of the propaga-
tor Pτ . In this section, we want to transform these conditions into a more
probabilistic language, which will result in establishing equivalent condi-
tions on the stochastic transition function. For general Markov processes it
is natural to consider Pτ acting on L1(µ), the Banach space that includes
all probability densities w.r.t. µ. Yet, for reversible Markov processes it is
advantageous to restrict the analysis to L2(µ), since the propagator will then
be self–adjoint. Therefore, in the first two sections we start with analyzing
the conditions (C1) and (C2) in L1(µ), while in the third section, we then
concentrate on L2(µ). For convenience we use the abbreviation P = Pτ and
p(x,C) = p(τ, x, C) for some fixed time τ > 0. As a consequence, Pn = Pnτ
corresponds to the Markov process sampled at rate τ with stochastic tran-
sition function given by pn(·, ·) = p(nτ, ·, ·). The results presented in this
section mainly follow [?].

4.1 The Spectrum and its Parts

Consider a complex Banach space E with norm ‖ · ‖ and denote the spec-
trum6 of a bounded linear operator P : E → E by σ(P ). For an eigenvalue
λ ∈ σ(P ), the multiplicity of λ is defined as the dimension of the general-
ized eigenspace; see e.g., [?, Chap. III.6]. Eigenvalues of multiplicity 1 are
called simple. The set of all eigenvalues λ ∈ σ(P ) that are isolated and of
finite multiplicity is called the discrete spectrum, denoted by σdiscr(P ).
The essential spectral radius ress(P ) of P is defined as the smallest real
number, such that outside the ball of radius ress(P ), centered at the origin,
are only discrete eigenvalues, i.e.,

ress(P ) = inf{r ≥ 0 : λ ∈ σ(P ) with |λ| > r implies λ ∈ σdiscr(P )}.

This definition of ress(P ) is unusual in the sense that it does not involve any
definition of the essential spectrum; yet, it is the way we will exploit ress(P )
and it will be justified by Theorem 4.1 below. Usually, the essential spectral
radius is related to the smallest disc containing the entire essential spectrum
σess(P ) of P . Unfortunately, there are many different characterizations of
essential spectra (see e.g., [?, ?] or [?, Chapter 107]). The definition that
results in the smallest set is due to Kato [?, Chapter IV.5.6] who defines
σess

Kato(P ) as the complement of {λ ∈ C : λ − P is semi Fredholm7}. The
6For common functional analytical terminology see, e.g., [?, ?, ?, ?].
7A bounded linear operator P : E → E on a Banach space E is said to be semi

Fredholm, if its range R(P ) = {y = Px : x ∈ E} is closed and the dimension of its kernel
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definition that results in the largest set is due to Browder [?] according to
whom σess

Browder(P ) is the complement of the discrete spectrum, as defined
above. According to Lebow and Schechter [?] we get the surprising result
that all other known definitions of essential spectra fall between those of
Kato and Browder and lie inside the ball with radius ress(P ) centered at the
origin:

Theorem 4.1 For every bounded linear operator P : E → E on a complex
Banach space E holds

sup{|λ| : λ ∈ σess
Kato(P )} = ress(P ) = sup{|λ| : λ ∈ σess

Browder(P )}.

Loosely speaking, Theorem 4.1 states that the essential spectral radius
is invariant under the definition of the essential spectrum.

As a guiding example for our strategy to bound the essential spectral
radius, consider the following semi–norm ‖ · ‖c defined by

‖P‖c = inf{‖P − S‖ : S compact}.

Then the essential spectral radius is characterized by

ress(P ) = lim
n→∞

‖Pn‖1/nc .

Note the analogy to the spectral radius r(P ) of P , defined as the smallest
upper bound for all elements of the spectrum: r(P ) = sup{|λ| : λ ∈ σ(P )}.
In terms of the operator norm ‖ · ‖1, the representation r(P ) = lim ‖Pn‖1/n1

as n → ∞ is well–known [?, Chap. VII.3.5]. The above characterization of
ress(P ) is closely related to quasi–compactness:

Definition 4.2 ([?]) A bounded linear operator P : E → E is called quasi–
compact, if there exist some m ∈ Z+ and a compact operator S : E → E
such that ‖Pm − S‖ < 1.

Combining quasi–compactness with the characterization of ress(P ) yields:

Corollary 4.3 For bounded linear operator P : E → E holds

(i) if ress(P ) < 1 then P is quasi–compact

(ii) if P is quasi–compact for some m ∈ Z+ and compact operator S with
‖Pm − S‖ = 1− η < 1, then ress(P ) ≤ (1− η)1/m < 1.

N(P ) = {x ∈ E : Px = 0} or the codimension of its range, i.e., dimE/R(P ), are finite [?,
Chapter IV.5]. If both, the dimension of the kernel and the codimension of the range are
finite, then P is called a Fredholm operator.
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We conclude that the essential spectral radius can be bound by using
compact operators:

Find for some power Pm with m ∈ Z+ a decomposition into a
compact part S and the remaining part Pm−S. Then, we have
the upper bound: ress(P ) ≤ ‖Pm − S‖1/m.

In other words, the “larger” the compact part of Pm is, the smaller the
essential spectral radius of P will be. Our goal is to relate compactness of
S to properties of the stochastic transition function that defines P . Due to
the various possible definitions of essential spectra, this approach might not
be restricted to compact operators. This is indeed the case, as we will see
below. The crucial point will be to find the class of operators that fits best
both the Banach space as well as the propagator and the Markov process. In
L1(µ) weakly compact operators are better adapted for our purpose, while in
L2(µ) the compact ones will do a good job. This is basically due to the fact
that in either case we can characterize the property of being (weakly) com-
pact in terms of the underlying probability space, which finally enables us to
relate bounds on the essential spectral radius to properties of the stochastic
transition function. For relations between the essential spectral radius and
measures of non–compactness, see [?, ?].

Spectral conditions can be quite sensitive to the Banach space of func-
tions the operator is regarded to act on. This is illustrated by the following
example due to Davies [?, Chapter 4.3].

Example 4.4 Consider the Smoluchowski equation

q̇ = −q + Ẇ (41)

on the state space X = R. It corresponds to the harmonic potential V (q) =
q2/2 with γ = σ = 1 and invariant probability measure

µQ(dq) =
1
Z

exp(−q2)dq.

The Markov process defined by (41) is known as the Ornstein–Uhlenbeck
process [?]. The evolution of densities v = v(t, q) w.r.t. µQ is governed by
the Fokker–Planck equation

∂tv =
( 1

2
∆− q · ∇q︸ ︷︷ ︸

L

)
v, (42)

which defines a strongly continuous contraction semigroup Pt = exp(tL) on
Lr(µ) for every 1 ≤ r < ∞. The spectra of L and Pt have the following
properties:
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(i) In L1(µ) it is σ(L) = {z ∈ C : Re(z) ≤ 0}, with every z ∈ σ(L)
satisfying Re(z) < 0 being an eigenvalue of multiplicity two. This
implies for the propagator that

σ(Pt) = {z ∈ C : |z| ≤ 1},

with every z ∈ σ(Pt) satisfying |z| < 1 being an eigenvalue of infinite
multiplicity, hence ress(Pt) = 1.

(ii) In L2(µ) it is σ(L) = {z ∈ C : z = 0,−1,−2, . . . }, with the nth
Hermite polynomial being the eigenfunction corresponding to λn = −n.
Hence, the entire spectrum is discrete. This implies for the propagator

σ(Pt) = {z ∈ C : z = e−tn for n = 0, 1, 2, . . . },

with ress(Pt) = 0.

From a numerical point of view, we would like to consider the space of
functions that is “generated” by the discretization procedure for finer and
finer decompositions of the state space. This, however, is believed to be a
very tough question.

4.2 Bounds on the Essential Spectral Radius in L1(µ)

This section analyzes the essential spectral radius of an arbitrary propagator
P : L1(µ)→ L1(µ) in terms of its stochastic transition function. In doing so,
weakly compact operators will play an important role. The main result is
stated in Theorem 4.13, which relates the essential spectral radius, uniform
constrictiveness and a certain Doeblin–condition.

Definition 4.5 ([?, ?]) A bounded linear operator S : L1(µ) → L1(µ) is
called weakly compact if it maps the closed unit ball B1(X) onto a relatively
weakly compact set, i.e., the closure of S(B1(X)) is compact in the weak
topology.

Obviously, every compact operator is weakly compact; the converse is
not true. The next theorem characterizes the essential spectral radius of an
arbitrary bounded linear operator in terms of weakly compact operators.

Theorem 4.6 ([?, ?]) Let P : L1(µ) → L1(µ) denote a bounded linear op-
erator. Define the semi–norm ∆(P ) according to

∆(P ) = min {‖P − S‖1 : S is weakly compact } .

Then the essential spectral radius of P is characterized by

ress(P ) = lim
n→∞

∆(Pn)1/n. (43)

In particular, ress(P ) ≤ ∆(P ).
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The theorem states that the larger the weakly compact part of P is,
the less the essential spectral radius will be. Hence, good upper bounds
on ress(P ) require a detailed analysis of weak compactness. It should be
clear from the introductory statements of this section that we could also
apply Corollary 4.3 to characterize the essential spectral radius in L1(µ) by
compact operators. The utility of weakly compact operators will become
apparent by the next theorem that relates this particular class of operators
to the underlying measure space (X,A, µ).

Theorem 4.7 ([?, ?]) Let P : L1(µ) → L1(µ) denote a bounded linear op-
erator. Then

∆(P ) = lim sup
µ(A)→0

‖1A ◦ P‖1, (44)

where the limit is understood to be taken over all sequences of subsets whose
µ–measure converges to zero, and 1A is interpreted as a multiplication op-
erator: (1Av)(x) = 1A(x)v(x). In particular,

lim sup
µ(A)→0

‖1A ◦ P‖1 = 0,

if and only if P is weakly compact.

As a consequence of Theorem 4.7, we will deduce in the following that
absolutely continuous stochastic transition functions may give rise to weakly
compact operators, while transition functions that are singular w.r.t. µ never
do so. This will finally enable us to characterize the essential spectral radius
in terms of properties of the stochastic transition function.

Corollary 4.8 Consider some propagator S : L1(µ)→ L1(µ) defined by

Sv(y) =
∫

X
v(x)p(x, y)µ(dx) (45)

associated with some absolutely continuous stochastic transition function
p(x,dy) = p(x, y)µ(dy). Then S is weakly compact if there exits some s > 1
such that ‖p(x, ·)‖s ∈ L∞(µ) as a function of x, i.e.,

ess sup
x∈X

∫
X
p(x, y)sµ(dy) < ∞

holds. In particular, S is weakly compact if ess supx,y∈X p(x, y) <∞.

Proof: For A ∈ B(X), we have

‖1A ◦ S‖1 = sup
‖v‖1≤1

∫
A

∫
X
v(x)p(x, y)µ(dx)µ(dy).
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Applying Hölder’s inequality twice, we finally get

‖1A ◦ S‖1 ≤ ess sup
x∈X

∫
A
p(x, y)µ(dy) ≤ ‖1A‖r ess sup

x∈X
‖p(x, ·)‖s

with 1 ≤ r, s ≤ ∞ and 1/s + 1/r = 1. For 1 < s, the limit of ‖1A ◦ S‖1 as
µ(A)→ 0 tends to zero, since ‖1A‖r = r

√
µ(A). �

For analyzing propagators corresponding to not necessarily absolutely
continuous stochastic transition functions, consider the Lebesgue decom-
position of p(x,dy) = pa(x, y)µ(dy) + ps(x,dy), where pa and ps represent
the absolutely continuous and the singular part w.r.t. µ, respectively [?].
Furthermore, define the (not necessarily stochastic) transition function

rn(x, y) =
{
pa(x, y) if pa(x, y) ≥ n
0 otherwise

.

With this notation, we are ready to state the important

Theorem 4.9 ([?]) For an arbitrary propagator P : L1(µ) → L1(µ) the
equality

∆(P ) = inf
n∈Z+

ess sup
x∈X

{rn(x,X) + ps(x,X)}

holds.

In the particular case, where pa gives rise to a weakly compact operator,
Theorem 4.9 states that

∆(P ) = ess sup
x∈X

ps(x,X) = 1− ess inf
x∈X

∫
X
pa(x, y)µ(dy).

If only some decomposition P = R+S with weakly compact S is known, we
may still apply Theorem 4.6 to get an upper bound on ∆(P ). Assume that
the stochastic transition function can be decomposed according to p(x,dy) =
pR(x, dy) + pW (x, dy) such that S, defined via Sv(y) =

∫
X v(x)pW (x, dy), is

weakly compact. Then

∆(P ) ≤ ess sup
x∈X

pR(x,X) ≤ 1− ess inf
x∈X

pW (x,X)

by Theorem 4.6. Using one of the inequalities involving ∆(P ), we are able to
bound the essential spectral radius due to Theorem 4.6. This is illustrated
by the following example due to Schütte [?, Chapter 4.1].

Example 4.10 Consider the Hamiltonian system with randomized momenta
for the harmonic potential V (q) = q2/2 on some position space Ω ⊂ R with
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inverse temperature β and positional canonical distribution µQ. Choose the
observation time span τ = 2π and decompose the stochastic transition func-
tion according to

pτ (q,dy) = pa(q, y)µQ(dy) + ps(q,dy)

into an absolutely continuous and singular part w.r.t. µQ. Depending on the
position space, we distinguish two cases

(i) Consider Ω = R, the bounded system case. Since τ = 2π is the pe-
riod of the harmonic oscillator, we deduce that Pτ = Id and hence
ress(Pτ ) = 1. In terms of the stochastic transition function this means
that pa = 0 and ps(q,dy) = δq(dy) for every q ∈ Ω.

(ii) Consider Ω = [−1, 1] with periodic boundary conditions. It can be
shown that in this case the density pa is bounded and satisfies

inf
q∈Ω

∫
Ω
pa(q, y)µQ(dy) = 2 Φ(−

√
β)

where Φ denotes the distribution function of the standard normal dis-
tribution. Setting

η = 2Φ(−
√
β) = 2

(
1− Φ(

√
β)
)

we have 0 ≤ η ≤ 1 and finally ress(Pτ ) ≤ ∆(Pτ ) = 1− η due to8 The-
orem 4.9. In other words, the (upper bound on the) essential spectral
radius depends on the inverse temperature and therefore on the mean
energy of the ensemble. The lower the mean energy (and hence the
higher the inverse temperature) is, the larger the essential spectral ra-
dius will be. This corresponds to the intuition that the periodic system
behaves more and more like the bounded system for decreasing mean
energy.

So far we have shown how to prove ress(P ) < 1 in terms of the stochastic
transition function p. The properties imposed on p emerged from functional
analytical requirements on the propagator P . We now link these results to
the theory of Markov processes and Markov operators. An important prop-
erty of Markov operators is constrictiveness [?]; it rules out the possibility
that for some initial density v the iterates Pnv eventually concentrate on a
set of very small or vanishing measure.

8For the propagator regarded to act on L2(µQ) the stronger statement ress(Pτ ) = 1−η
is proved in [?].
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Definition 4.11 A propagator P : L1(µ) → L1(µ) is called constrictive if
there exist constants ε, δ > 0 such that for every density v ∈ L1(µ) there
exists m = m(v) ∈ Z+ with

µ(A) ≤ ε ⇒
∫
A
Pnv(y)µ(dy) ≤ 1− δ, (46)

for every n ≥ m. We call a propagator uniformly constrictive if there
exists m ∈ Z+ such that (46) holds for n ≥ m uniformly in L1(µ).

For arbitrary v ∈ L1(µ), uniform constrictiveness can be restated as
µ(A) ≤ ε ⇒ ‖1A ◦ Pn‖1 ≤ 1 − δ for every n ≥ m. Moreover, it is sufficient
to assume that the condition holds for n = m only, since due to ‖P k‖1 =
1 for k ∈ Z+ this already implies (46) for all n ≥ m. In view of the
characterization of ∆(P ) in (44), uniform constrictiveness seems to be closely
related to ∆(P ) < 1 and thus to some bound on the essential spectral
radius; this is indeed the case, as we will see below. Furthermore, there
should exist a similar condition involving the backward transfer operator
T . This, in turn, is closely related to the Doeblin–condition, which is well–
known in the theory of Markov processes [?, ?, ?]. It states that there
exists a probability measure ν, constants ε, δ > 0 and m ∈ Z+ such that
ν(A) ≤ ε ⇒ supx∈X pm(x,A) ≤ 1 − δ. To suit our context, we slightly
adapt the Doeblin–condition in the way that we require ν = µ and that the
implication holds for µ–a.e. points only:

Definition 4.12 The stochastic transition function p is said to fulfill the
µ-a.e. Doeblin–condition if there exist constants ε, δ > 0 and m ∈ Z+

such that

µ(A) ≤ ε ⇒ pm(x,A) ≤ 1− δ (47)

for µ–a.e. x ∈ X and every A ∈ B(X).

Using the backward transfer operator, we deduce that (47) is equivalent
to µ(A) < ε ⇒ ‖Tm1A‖∞ = ess supx∈X pm(x,A) ≤ 1 − δ. In fact, the
condition is true for all n ≥ m, since ‖Tm+k1A‖∞ ≤ ‖T k‖∞‖Tm1A‖∞ and
‖T k‖∞ = 1 holds for k ≥ 1. The next theorem states the main result of this
section. It relates the functional–analytical, the Markov operator theoretical
and the Markov process theoretical point of view.

Theorem 4.13 Let P : L1(µ)→ L1(µ) denote the propagator corresponding
to a stochastic transition function p : X×B(X)→ [0, 1]. Then, the following
statements are equivalent:

(i) The essential spectral radius of P is less than one: ress(P ) < 1.

(ii) The propagator P is uniformly constrictive.
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(iii) The stochastic transition functions fulfills the µ-a.e. Doeblin–condition.

If conditions (ii) or (iii) are satisfied for some ε, δ > 0 and m ∈ Z+, then
condition (i) holds with ress(P ) ≤ (1− δ)1/m.

Proof: Assume (i) holds, i.e., ress(P ) < 1. Due to Eqs. (43) and (44), there
exists m ∈ Z+ such that ∆(Pm) < 1, which implies the µ-a.e. Doeblin–
condition (4.12) due to ‖1A ◦ Pn‖1 = ‖Tn1A‖∞ (see Lemma 4.1 in [?]). As
just stated, (iii) is equivalent to (ii). Using the note following Def. 4.11, it is
obvious that (ii) and (i) are equivalent. The bound on ress(P ) follows from
(43) and (44). �

In view of the established equivalence, the essential spectral radius is
related to the possibility of the system to eventually concentrate on a set
of small or vanishing measure. In other words, the more the dynamics is
smeared over the entire state space, the less is the essential spectral radius,
while irregular or singular behavior may give rise to a large essential spectral
radius.

4.3 Peripherical Spectrum and Properties in L1(µ)

This section analyzes the peripherical spectrum and its relation to properties
of propagators P acting on L1(µ). Due to our particular interest—cf. con-
dition (C1)—we restrict the analysis to uniformly constrictive propagators,
i.e., we assume that ress(P ) < 1. We will see that under this assumption the
peripherical spectrum completely characterizes the asymptotic properties of
P , as it is known from the finite dimensional case.

Recall that we require throughout this thesis that the probability mea-
sure µ is invariant w.r.t. the Markov process. This is equivalent to the
condition P1X = 1X. A subset E ⊂ X is called non–null if µ(E) > 0.
A non–null subset E ⊂ X is called invariant if P1E = 1E . Parts of the
following two theorems are scattered over the literature see, e.g., [?, ?, ?].

Theorem 4.14 (Invariant Decomposition) Let P : L1(µ) → L1(µ) de-
note a uniformly constrictive propagator. Then

(i) there are only finitely many eigenvalues λ ∈ σdiscr(P ) with |λ| = 1,
each being a root of unity. The dimension of each eigenspace is finite
and equal to the multiplicity of the corresponding eigenvalue;

(ii) the eigenvalue λ = 1 is of multiplicity d, if and only if there exists a
decomposition of the state space

X = E1 ∪ · · · ∪ Ed ∪ F

into d mutually disjoint invariant subsets Ej and a set F = X \
⋃
j Ej

of µ–measure zero.
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Proof: Direct application of Thm. 4.13 of this thesis and Thm. 3 of [?, VIII.8]
proves the first part. For the second statement, we exploit the fact that
Pv = v implies Pv+ = v+ and Pv− = v−, where v+/− denotes the positive
or negative part of v, respectively [?]. Assume that the multiplicity of λ = 1
is d. Then, as a consequence of the first part, there exist d linear independent
eigenfunctions v1, . . . , vd. Due to the decomposition result for v, we can also
choose d linear independent densities, which we again denote by v1, . . . , vd.
We now show that the densities can be chosen in such a way that their sup-
ports Ej = supp(vj) are mutually disjoint, i.e., µ(Ej ∩Ek) = 0 for j 6= k. If
for some choice of linear independent densities v1, . . . , vd there exist vj , vk
such that µ(Ej∩Ek) > 0, we simply substitute vj , vk by (vj−vk)+, (vj−vk)−.
This is possible, since span{(vj − vk)+, (vj − vk)−} = span{vj , vk} and
span{(vj − vk)+, (vj − vk)−, vj , vk} > 2 would be in contradiction to the
fact that the multiplicity of λ = 1 is d. Due to P1X = 1X, we have
vj = 1Ej/µ(Ej) and

∑
j µ(Ej) = 1. Finally, define F = X \

⋃
j Ej . Since

any decomposition into d mutually disjoint invariant subsets results in a
multiplicity of λ = 1 of at least d, the second statement is proved. �

The decomposition of the state space given by the theorem is unique
up to µ–equivalence. There is an analogous decomposition result for the
stochastic transition function p, since for every invariant subset E the iden-
tity

µ(E) =
∫
E

1E(y)µ(dy) =
∫
E
P1E(y)µ(dy) =

∫
E
p(x,E)µ(dx)

implies p(x,E) = 1 for µ–a.e. x ∈ E. Thus, the decomposition of The-
orem 4.14 induces a decomposition of the stochastic transition function,
which again is unique up to µ–equivalence. For a “strong” decomposition
holding everywhere see, e.g., [?]. For some root of unity ω = exp(2πi/m)
with m ∈ Z+, we call σcycle(ω) = {ω, ω2, . . . , ωm} an eigenvalue cycle
associated with ω. A further subdecomposition of an invariant subset E
into m mutually disjoint, non–null subsets {E1, . . . , Em} is called a subset
cycle of length m if P1Ej = 1Ej+1 for j = 1, . . . ,m with the convention
Em+1 = E1. For the next theorem, an eigenvalue of multiplicity ν is inter-
preted as ν equal eigenvalues λ1, . . . , λν of multiplicity 1.

Theorem 4.15 (Cycle Decomposition) Let P : L1(µ)→ L1(µ) denote a
uniformly constrictive propagator. Then

(i) each discrete eigenvalue λ ∈ σdiscr(P ) of unit modulus is part of some
eigenvalue cycle, i.e., there exists m ∈ Z+ such that λ ∈ σcycle(ω) with
ω = exp(2πi/m);

(ii) there is a one–to–one correspondence between eigenvalue cycles and
subset cycles. More precisely, let d denote the multiplicity of λ = 1.
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Then the set of all eigenvalues of unit modulus can be decomposed into
d eigenvalue cycles σcycle(ωj) with ωj = exp(2πi/mj), mj ∈ Z+ and
j = 1, . . . , d, if and only if the state space X can be decomposed into
d subset cycles {Ej 1, . . . , Ej mj} of length mj for j = 1, . . . , d.

Proof: Use Theorem 4.14 of this thesis and Theorem 11 in [?], which also
holds in our case, to show that each invariant subset E can be decomposed
into a subset cycles {E1, . . . , Em} of length m. Consider the restricted prop-
agator PE = 1E ◦P ◦1E , which is well–defined by Theorem 4.14. Then, the
length m is equal to the multiplicity of λ = 1 of PEm. Thus, it remains to
show that σ(PE) ∩ {|λ| = 1} = σcycle(ω) with ω = exp(2πi/m). But every
subset cycle {E1, . . . , Em} of P is also a subset cycle of PE and allows us to
define m linear independent eigenfunctions vk+1 =

∑m−1
j=0 ω−kjP jE1E1 , see

e.g. [?], which correspond to the eigenvalues ωk for k = 1, . . . ,m. This
completes the proof. �

From a functional analytical point of view, the decomposition results
are related to a partial spectral decomposition of P , as we will see in the
next result due to Dunford and Schwartz [?, Chapter VIII]. It exploits the
fact that uniform constrictiveness is equivalent to quasi–compactness of the
propagator (Thm. 4.13 and Cor. 4.3).

Theorem 4.16 (Spectral Decomposition) Let P : L1(µ) → L1(µ) de-
note a uniformly constrictive propagator and let Πλ denote the spectral pro-
jection corresponding to the discrete eigenvalue λ. Then, for every n ∈ Z+,

Pn =
∑

λ∈σ(P ),|λ|=1

λnΠλ +Dn

with some strict contraction D : L1(µ)→ L1(µ) satisfying ‖Dn‖1 ≤Mqn for
some M > 0 and 0 < q < 1. Furthermore, the projections fulfill

Πλ = lim
n→∞

1
n

n∑
k=1

1
λn
Pn, (48)

where the limit is understood to be uniform.

Now, we exploit the above results to analyze properties of the propaga-
tor P and the underlying Markov process given by its stochastic transition
function p.

Definition 4.17 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator.

(i) P is said to be ergodic if every invariant subset E is of µ–measure 1.
Equivalently, P1E = 1E implies µ(E) = 0 or µ(E) = 1.
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Figure 4: Top: idealized spectra of uniformly constrictive propagators. All eigenvalues are
assumed to be simple except for λ = 1 in the left graphic, which must be at least two
fold. Outer disc of radius r = 1 containing the entire spectrum and inner disc with radius
ress < 1 containing the essential spectrum. Bottom: decomposition of the state space
(rectangle) into invariant sets (separated by solid lines) and subset cycles (separated by
dashed lines) corresponding to the spectra above. Left: two eigenvalues cycles with m = 3
and m = 2, respectively resulting in a decomposition of the state space into two invariant
subsets that can be further decomposed into subset cycles of length m = 3 and m = 2,
respectively. Middle: one eigenvalue cycle with m = 3 resulting in a decomposition of the
state space into a subset cycle of length m = 3. Right: The eigenvalue 1 is simple and
dominant. Hence, there neither exists a decomposition of the state space into invariant
subsets nor subset cylcles.

(ii) P is called periodic with period p if it is ergodic and p is the largest
integer for which a subset cycle of length p occurs. If p = 1, then P is
called aperiodic.

According to [?], a Markov operator P : L1(µ)→ L1(µ) satisfying P1X =
1X is said to be ergodic if Pnv converges in the sense of Cesàro for every
density v ∈ L1(µ) weakly to 1X. Anticipating the results of the next corollary
and using Thm. 5.5.1 from [?, Sec. 5.5], it can easily be shown that for
uniformly constrictive propagators this definition is equivalent to Def. ??
(i). In the theory of Markov processes, the term ergodicity is used slightly
different, since it requires aperiodicity. Corollary ?? may be used to establish
the relation. The next corollary states how these properties are related to
the decomposition results previously obtained.

Corollary 4.18 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator. Then

(i) P is ergodic if and only if the eigenvalue λ = 1 is simple.

(ii) P is aperiodic if and only if the eigenvalue λ = 1 is simple and domi-
nant, i.e., η ∈ σ(P ) satisfying |η| = 1 implies η = 1.
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Ergodicity is related to the fact that it is impossible to decompose the
state space into independent parts. The analogue in the theory of Markov
processes is irreducibility expressing that it is possible to move from (almost)
every state to every “relevant” subset within a finite time:

Definition 4.19 ([?, ?]) A stochastic transition function p is said to be
µ-a.e. irreducible if

µ(A) > 0 ⇒ pm(x,A) > 0 (49)

for µ–a.e. x ∈ X, every A ∈ B(X) and some m = m(x,A) ∈ Z+. If (??)
holds for every x ∈ X then p is called µ–irreducible.

The next theorem relates the two statements about indecomposability:

Theorem 4.20 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator corresponding to the stochastic transition function p. Then P
is ergodic if and only if p is µ-a.e. irreducible.

Proof : Due to the remark following Def. ??, P is ergodic if and only if
P (1B/µ(B)) converges to 1X in the sense of Cesàro for every B ∈ B(X)
with µ(B) > 0. For arbitrary A ∈ B(X) with µ(A) > 0 this is equivalent to

lim
n→∞

1
n

n∑
k=1

∫
X
P k1B(y)1A(y) µ(dy) = µ(A) µ(B)

⇔ lim
n→∞

∫
B

1
n

n∑
k=1

pk(y,A)µ(dy) =
∫
B
µ(A)µ(dy)

⇔ lim
n→∞

1
n

n∑
k=1

pk(y,A) = µ(A); µ–a.e.,

where we used Lebesgue’s dominated convergence theorem. Since by as-
sumption µ(A) > 0, this is equivalent to µ-a.e. irreducibility according to
Def. ??. �

Often, we are interested in dynamical systems—deterministic or stocha-
stic—that exhibit a unique invariant density and guarantee that for every
initial density v the iterates Pnv converge to the invariant density. In view
of Corollary ??, these systems are necessarily connected to ergodic propa-
gators, but due to possible cyclic behavior, ergodicity is not sufficient.

Definition 4.21 ([?, Chap. 5.6]) A propagator P : L1(µ)→ L1(µ) is called
asymptotically stable if

lim
n→∞

‖Pnv − 1X‖1 = 0 (50)

for every density v ∈ L1(µ).
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Define the limit propagator P∞ : L1(µ)→ L1(µ) by

P∞v(y) ≡
∫

X
v(x)µ(dx) (51)

for arbitrary v ∈ L1(µ), which corresponds to the projection onto the eigen-
space spanned by 1X. In terms of P∞ we can restate (??) in the equivalent
form: limn→∞ ‖Pnv − P∞v‖1 = 0 for v ∈ L1(µ). Finally, we get [?]

Corollary 4.22 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator. Then P is asymptotically stable if and only if P is ergodic and
aperiodic. In either case,

‖Pn − P∞‖1 ≤ Mqn n ∈ Z+

for some constants q < 1 and M <∞.

An analogous result to Cor. ?? for the backward transfer operator is well
established in the theory of Markov chains. It is related to a property of the
stochastic transition function called uniform ergodicity [?]. To state it, we
introduce the total variation norm on measures:

‖ν‖TV = sup
|u|≤1

∫
X
u(y)ν(dy).

Definition 4.23 A stochastic transition function p is said to be µ-a.e. uni-
formly ergodic if

‖pn(x, ·)− µ‖TV ≤ Mqn n ∈ Z+ (52)

for µ–a.e. x ∈ X and some constants q < 1 and M < ∞. If (??) holds for
every x ∈ X then p is called uniformly ergodic.

In terms of the backward transfer operator and its limit backward
transfer operator T∞ : L∞(µ)→ L∞(µ) defined by

T∞u(x) ≡
∫

X
u(y)µ(dy),

we can restate (??) in the equivalent form limn→∞ ‖Tn−T∞‖∞ = 0. Exploit-
ing the duality P ∗∞ = T∞, we can relate asymptotically stable propagators
and µ-a.e. uniformly ergodic stochastic transition functions as follows:

Theorem 4.24 Let P : L1(µ) → L1(µ) denote some propagator. Then P
is uniformly constrictive and asymptotically stable if and only if its corre-
sponding stochastic transition function p is µ-a.e. uniformly ergodic.
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Proof : The result follows from the fact that µ-a.e. uniform ergodicity is
equivalent to limn→∞ ‖Tn − T∞‖∞ = 0, which due to duality is equivalent
to uniform constrictiveness and asymptotic stability due to Cor. ??. �

As a result, we can reformulate the two conditions (C1) and (C2) imposed
on the propagator Pτ regarded to act on L1(µ) in the equivalent form:

(C1) The propagator Pτ is uniformly constrictive. Equivalently, the stochas-
tic transition function p(x,A) = p(τ, x,A) fulfills the µ–a.e. Doeblin–
condition.

(C2) Condition (C1) holds and Pτ is asymptotically stable.

Moreover, the propagator Pτ satisfies conditions (C1) and (C2) if the stochas-
tic transition function is µ–a.e. uniformly ergodic. Since the reformulated
conditions are stated in the language of Markov operators and Markov pro-
cesses, we can exploit the rich literature on these topics (see [?, ?] and cited
reference therein) to verify the conditions (C1) and (C2) for different model
systems in Section ??.

4.4 Reversibility and Properties in L2(µ)

The basic idea in analyzing reversible propagators on L2(µ) will be to fol-
low along the lines of the L1(µ) approach. In doing so, compact operators
will replace the role previously played by weakly compact operators. Both
cases are special situations of a much more general ∆–calculus introduced
by Schechter [?] in 1972. His aim was to study strictly singular opera-
tors9, which play an important role as admissible perturbations of Fred-
holm operators10 [?, ?]. These, moreover, are closely related to essential
spectra and in particular to the essential spectral radius [?]. Schechter in-
troduced his quantity for an arbitrary bounded linear operator on some
Banach space. For the L1(µ) case, Weis proved in [?] the very useful iden-
tity ∆(P ) = lim supµ(A)→∞ ‖1A ◦ P‖1, which played the key role for the
subsequent analysis in Section 4.2. As we will see, this characterization of
∆ does unfortunately not carry over to L2(µ) in general—but it remains true
for integral operators [?].

Before we start studying propagators on L2(µ), we want to recall that
due to Hölder’s inequality we have ‖v‖1 ≤ ‖v‖2 for every v ∈ L2(µ). Hence,

9A closed bounded linear operator P : E → E on some Banach space E is called strictly
singular, if it does not possess a bounded inverses on any infinite dimensional subspace
M of E [?]. Equivalently, the existence of some constant γ > 0 such that ‖Px‖ ≥ γ‖x‖
for every x ∈M ⊂ E implies that M is finite dimensional [?, Chapter 4.5].

10For a definition see footnote on page 31.
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any convergence rate obtained in L2(µ) will imply the same rate in the
L1(µ) norm, when restricted to square integrable functions, i.e., whenever
‖Pnv − P∞v‖2 ≤Mqn holds, then also

‖Pnv − P∞v‖1 ≤ Mqn

for every v ∈ L2(µ). This way we obtain probabilistic interpretations of
results established in L2(µ).

Theorem 4.25 ([?]) Let P : L2(µ) → L2(µ) denote a bounded linear oper-
ator. Define the semi–norm ∆(P ) according to

∆(P ) = min {‖P − S‖2 : S is compact} .

Then the essential spectral radius of P is characterized by

ress(P ) = lim
n→∞

∆(Pn)1/n. (53)

In particular, ress(P ) ≤ ∆(P ). If additionally P is positive11 and self–
adjoint, then ress(P ) = ∆(P ).

Note that Corollary 4.3 applies to our situation, hence ress(P ) < 1 if and
only if P is quasi–compact. This was the path followed in [?] by Schütte
to prove that the essential spectral radius is less than 1. Our aim in the
following is to relate the property of quasi–compactness and hence ress(P ) <
1 to properties of the stochastic transition function and the corresponding
Markov process. We start by giving a characterization of compact operators
comparable to Theorem 4.7. To do so, we have to introduce the notion of
compactness in measure.

Definition 4.26 ([?, Chapter 1.3.3]) Let S : L2(µ) → L2(µ) denote a
bounded linear operator. Then S is called compact in measure if it maps
weakly convergent sequences to sequences converging in measure. More pre-
cisely, if {fn}n∈Z+ ⊂ L2(µ) is weakly convergent, then for every ε > 0 there
is n0 ∈ Z+ such that µ({|Sfn − Sfm| ≥ ε}) < ε for every n,m > n0.

An important class of operators being compact in measure are positive
integral operators [?], and hence all propagators corresponding to absolutely
continuous transition functions. We are now able to give a characterization
of compact operators in terms of the probability measure µ.

11Here, positivity is understood in the Markov operator sense: Pv ≥ 0 if v ≥ 0 as stated
on page 10. This is different from positivity of self–adjoint operators on a Hilbert space:
〈v, Ptv〉µ ≥ 0 for every v.
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Lemma 4.27 ([?, Thm. 3.1]) Let S : L2(µ) → L2(µ) denote a bounded
linear operator. Then S is compact, if and only if it is compact in measure
and satisfies

lim sup
µ(A)→0

‖1A ◦ P‖2 = 0, (54)

where the limit is understood to be taken over all sequences of subsets whose
µ–measure converges to zero and 1A is interpreted as a multiplication oper-
ator: (1Av)(x) = 1A(x)v(x).

Weis proved that for an arbitrary integral operators, the expression of
the left hand side of (??) is identical to the ∆ semi–norm and therefore
allows to bound the essential spectral radius.

Theorem 4.28 ([?]) Let P : L2(µ) → L2(µ) denote a bounded linear inte-
gral operator. Then

∆(P ) = lim sup
µ(A)→0

‖1A ◦ P‖2. (55)

In particular,

lim sup
µ(A)→0

‖1A ◦ P‖2 = 0,

if and only if P is compact.

As in the L1(µ) case, we now want to link the results concerning the ∆
semi–norm to properties of the stochastic transition function, in terms of
which the propagator is defined. The next lemma is comparable to Cor. 4.8.

Lemma 4.29 Consider the reversible propagator S : L2(µ)→ L2(µ) defined
by

Sv(y) =
∫

X
v(x)p(x, y)µ(dx) (56)

associated with some absolutely continuous stochastic transition function
p(x,dy) = p(x, y)µ(dy), and assume that p is jointly measurable in x and
y. Then, S is compact, if the stochastic transition function satisfies the
Kontorovic condition:

there exist 1 ≤ r, s ≤ ∞ with 1/r+1/s = 1 such that ‖p(x, ·)‖s ∈
Lr(µ) as a function of x, i.e.,∫

X

∫
X
p(x, y)sµ(dy)r/sµ(dx) < ∞. (57)
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In addition, S is compact if the stochastic transition function satisfies the
condition p(·, ·) ∈ Lr(µ× µ) for some 2 ≤ r ≤ ∞.

Proof: The first statement is due to Theorem 7.2 of Krasnoseslkii et al. [?,
Chapter 2], where we have to choose τ = (1/2− 1/r)/(1/s− 1/r) for r 6= s
and τ = 1/2 for r = s. The second statement is a consequence of the first
and Hölder’s inequality, since Lr(µ× µ) ⊂ L2(µ× µ) for 2 ≤ r ≤ ∞. �

For s = r = 2 the Kontorovic condition is equivalent to the statement
that S is a Hilbert–Schmidt operator, which is known to be compact [?].

Due to investigations initiated by Roberts and Rosenthal [?], quasi–
compactness of P is related to certain stability properties of Markov pro-
cesses. To state them, let M : X→ R+ denote an integrable function, i.e.,
M ∈ L1(µ) and define the induced M–norm on measures by

‖ν‖M = sup
|v|≤M

|
∫

X
v(x)ν(dx)|,

where |v| ≤ M is understood to hold pointwise for every x ∈ X. For the
special case M ≡ 1, the M–norm coincides with the total variation norm.

Definition 4.30 Let p denote some stochastic transition function. Then

(i) p is called µ-a.e. geometrically ergodic if

‖pn(x, ·)− µ‖TV ≤ M(x)qn; n ∈ Z+ (58)

for µ–a.e. x ∈ X, some constant q < 1, and some function M : X→ R
satisfying M <∞ pointwise.

If inequality (??) holds for every x ∈ X and some function M ∈ L1(µ),
then p is called geometrically ergodic.

(ii) p is called V –uniformly ergodic12 if

‖pn(x, ·)− µ‖M ≤ CM(x)qn; n ∈ Z+

for every x ∈ X, constants q < 1 and C ≤ ∞, and some function
M ∈ L1(µ) satisfying 1 ≤M pointwise.

The relation between the stability properties defined above is as follows:
By definition, V –uniform ergodicity implies geometric ergodicity, which in
turn implies µ-a.e. geometric ergodicity. On the other hand, for irreducible
and aperiodic stochastic transition functions µ-a.e. geometric ergodicity im-
plies V –uniform ergodicity according to [?, Prop. 2.1]. We now get the
following important result:

12The notion V –uniform ergodicity is due to the fact that the function M involved in
its definition is usually called V . However, in this thesis we already used V to denote the
potential energy function.
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Theorem 4.31 Let P : L2(µ) → L2(µ) denote a reversible propagator.
Then P satisfies conditions (C1) and (C2) in L2(µ), if and only if its stochas-
tic transition function is µ–irreducible and µ-a.e. geometrically ergodic. The
latter two conditions on the stochastic transition function p are particularly
satisfied, if p is geometrically or V –uniformly ergodic.

Proof : If P satisfies the two conditions (C1) and (C2), then p is µ-a.e.
geometrically ergodic due to Theorem 1 of [?]. On the other hand if p is re-
versible, µ–irreducible and µ-a.e. geometrically ergodic, then P satisfies the
conditions (C1) and (C2) as an immediate result of Theorem 2 of [?] and
Theorem 2.1 of [?]. The second statement follows directly from the remark
preceding the theorem. �

The assumption of µ–irreducibility of the stochastic transition function
in Theorem ?? seems to be artificial. One would rather expect µ–a.e. ir-
reducibility, which furthermore would be a consequence of µ-a.e. geometric
ergodicity. Hence, we expect Theorem ?? to hold without the assumption
of µ–irreducibility. For reversible propagators we finally get the following
relation between the conditions (C1) and (C2) in L1(µ) and those in L2(µ):

Theorem 4.32 Let P : L1(µ) → L1(µ) denote some propagator satisfying
conditions (C1) and (C2) in L1(µ). If P is reversible and its stochastic
transition function is µ–irreducible then P : L2(µ) ⊂ L1(µ) → L2(µ) also
satisfies the conditions (C1) and (C2) in L2(µ).

Proof: In L1(µ) the conditions (C1) and (C2) are equivalent to µ–a.e. uniform
ergodicity of the associated Markov process (see Theorem ??). Since µ–a.e.
uniform ergodicity implies µ–a.e. geometric ergodicity, P satisfies (C1) and
(C2) in L2(µ) due to Theorem ??. �

We finally obtain the useful

Corollary 4.33 If P : Lr(µ) → Lr(µ) with r = 1, 2 is reversible and its
stochastic transition function p is uniformly ergodic, then P satisfies the
conditions (C1) and (C2) both in L1(µ) and L2(µ).

As a result of this section, we can state the conditions (C1) and (C2) in
a more probabilistic language. Particularly, Theorem ?? will be very useful
when verifying conditions (C1) and (C2) for new model systems.
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