
1 Modeling Conformational Dynamics

The chemically interesting function of many important biomolecules, like
proteins or enzymes, results from their dynamical properties, particularly
from their ability to undergo so–called conformational transitions [86]. The
term conformations describes metastable global states of the molecule, in
which the large scale geometric structure is understood to be conserved.
While on the smallest time scale of about femto- to picoseconds molecular
dynamics consists of fast oscillations or fluctuations around equilibrium po-
sitions, conformational transitions show up only on a nano- or millisecond
time scale and are therefore rare events.

The classical description of molecular processes deals with the micro-
scopic configuration of a molecule, i.e., the positions q and momenta p of all
atoms, and leads to a mathematical model in terms of coupled equations of
motion for all atoms in the systems (see model systems in Section 2). How-
ever, most applications of molecular dynamics are in the context of ther-
modynamic, not only because most experiments measure thermodynamic
quantities, but also since most biomolecular processes can only be under-
stood within a thermodynamical context.

1.1 Thermodynamics and Biomolecular Conformations

Most experiments on biomolecular systems are performed under the con-
ditions of constant temperature T and volume. In equilibrium thermody-
namics, the corresponding stationary ensemble is known as the canonical
ensemble, whose density w.r.t. the Lebesgue measure dx we denote by fcan.
To give an explicit formula of fcan, we introduce the Hamiltonian function

H(q, p) =
1
2
pTM−1p + V (q), (1)

which denotes the internal energy of some single molecular system in state
x = (q, p). Here V : Rd → R is a differentiable potential energy function
describing all interactions between the atoms, and M denotes the mass
matrix1. The phase space of a single molecular system is given by X ⊂ R6N ,
where N is the number of atoms. In most cases, it has the simpler form
Γ = Ω×R3N , where Γ is called the phase space and Ω ⊂ R3N is called the
position space. Within this setting, the canonical density fcan associated
with the Hamiltonian H is defined as

fcan(x) =
1
Z

exp (−β H(x)) , (2)

where Z =
∫

Γ exp (−β H(x)) dx denotes the partition function, β = 1/(kBT )
the inverse temperature and kB Boltzmann’s constant. Since H separates

1For simplicity, we assume in the following that M is the identity matrix.
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into the sum of two parts depending either only on the momenta or only on
the positions, the canonical density factorizes into a product of two densities
P and Q depending on the momenta and the positions, respectively, only:

fcan(x) =
1
Zp

exp
(
−β

2
pTM−1p

)
︸ ︷︷ ︸

P(p)

1
Zq

exp (−β V (q))︸ ︷︷ ︸
Q(q)

. (3)

For later reference, we denote by µcan and µQ the probability measures in-
duced by the densities fcan and Q, respectively.

Typically, metastability w.r.t. the canonical ensemble is measured via
the following two–step experiment:

1. Pre–Selection: Select from the canonical ensemble all such systems
with states x ∈ C, where the subset C corresponds to some (mea-
surable) physical property. This selection prepares a sub–ensemble
µC . Physically the sub–ensemble is associated with the property C;
mathematically it is associated with the subset C of the state space.

2. Transition-Counting: Fix some observation time span τ > 0 and de-
termine the relative frequency of systems within the sub–ensemble µC
that stay in C after the time τ .

A sub–ensemble µC will be called metastable (on the timescale τ), if the
fraction of systems in the sub–ensemble that stays in C after the time τ is
close to 1. Hence, metastability depends on C and τ . Identifying metastable
sub–ensembles mathematically necessitates the description of internal fluc-
tuation within the canonical ensemble.

Since equilibrium thermodynamics states nothing about the mi-
croscopic dynamics of single systems within the ensemble, we
have to specify some microscopic dynamics. We will see in the
next section that there is no “canonical” single system dynamics
but several [31].

We will restrict our considerations to the broad class of microscopic dy-
namics that can be interpreted as Markov processes. This will enable us
to describe internal fluctuations within the stationary ensemble by studying
transfer operators induced by the Markov process, as we are going to outline
in the next sections.

In the introduction we have characterized conformations as metastable
large scale geometric structures. Hence, conformations are thought to be
objects in the position space. However, both the canonical ensemble as
well as the classical models for microscopic dynamics presented below are
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defined in the phase space Γ (positions and momenta). Therefore, we have
to specify the relation between metastable sub–ensembles defined in Γ and
conformations, characterized in terms of the position space Ω only. In [68]
the following relation is proposed:

A conformation C ⊂ Ω will be identified with the particular
metastable sub–ensemble µC×R3N corresponding to the partic-
ular subset C × R3N ⊂ Γ. Hence, for every position q ∈ C,
the conformation contains all states with q ∈ Ω and arbitrary
p ∈ R3N .

In this sense, conformations contain no information on momenta, and are
determined within the positions space only. With this characterization of
conformations in mind, we could think of reduced microscopic models de-
fined only in the position space Ω. Such simplified models indeed exist and
will be presented below. They allow to describe internal fluctuations within
the positional canonical density Q. In agreement with the relation above,
metastable sub–ensembles of reduced models are called conformations, too.

1.2 Single System Dynamics and Markov Processes

This section gives a brief mathematical description of Markovian systems.
For a detailed introduction see, e.g., [18, 52, 55].

Consider the state space X ⊂ Rm for some m ∈ Z+ equipped with the
Borel σ–algebra A on X. The evolution of a single microscopic system is
supposed to be given by a homogeneous Markov process Xt = {Xt}t∈T

in continuous or discrete time with T = R+ or T = Z+, respectively. We
write X0 ∼ µ, if the Markov process Xt is initially distributed according to
µ, i.e., if P[X0 ∈ A] = µ(A) for every A ∈ A, and X0 ∼ x if µ = δx for
the dirac measure at x. The motion of Xt is given in terms of a stochastic
transition function p according to

p(t, x, A) = P[Xt+s ∈ A |Xs = x], (4)

for every t, s ∈ T, x ∈ X and A ∈ A. The map p : T ×X × B(X) → [0, 1]
has the following properties

(i) x 7→ p(t, x, A) is measurable for every t ∈ T and A ∈ B(X),

(ii) A 7→ p(t, x, A) is a probability measure for every t ∈ T and x ∈ X.

(iii) p(0, x,X \ {x}) = 0 for every x ∈ X.

(iv) the Chapman–Kolmogorov equation

p(t+ s, x,A) =
∫

X
p(t, x,dz) p(s, z, A) (5)

holds for every t, s ∈ T, x ∈ X and A ∈ A.
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The relation between Markov processes and stochastic transition functions
is one–to–one, i.e., every homogeneous Markov process defines a stochastic
transition function satisfying properties (i) to (iv), and vice versa [52, Chap-
ter 3]. We say that the Markov process Xt admits an invariant probability
measure µ, or µ is invariant w.r.t. the Markov process, if∫

X
p(t, x, A)µ(dx) = µ(A) (6)

for every t ∈ T and A ∈ A [52, Chapter 10]. Note that the invariant
probability measure needs not be unique. A Markov process Xt is called
reversible w.r.t. an invariant probability measure µ, if∫

A
p(t, x,B)µ(dx) =

∫
B
p(t, x, A)µ(dx) (7)

for every t ∈ T and A,B ∈ A. If µ is unique, Xt is simply called reversible.
For the special case of a stochastic transition function being absolutely con-
tinuous w.r.t. µ, the Markov process Xt is reversible, if p(t, x, y) = p(t, y, x)
for every t ∈ T and µ–a.e. x, y ∈ X.

1.3 Ensemble Dynamics and Transfer Operators

Based on the assumption that the microscopic dynamics is given by a ho-
mogeneous Markov process we are now able to introduce a Markov operator
that allows to describe internal fluctuations within the stationary ensemble.

The basic idea is the following: Consider all systems within the station-
ary ensemble µ with states in some subset C ∈ A (see pre–selection step in
Section 1.1). This sub–ensemble of systems is distributed according to the
probability measure

ν0(A) =
1

µ(C)

∫
A

1C(x)µ(dx),

where 1C denotes the characteristic function of the subset C. In other
words, the sub–ensemble corresponds to the density 1̂C = 1C/µ(C) w.r.t. to
µ. Since every single microscopic system evolves according to the dynamics
of the Markov process, the distribution of the sub–ensemble at time t ∈ T
is given by the probability measure

νt(A) =
∫

X
P[Xt ∈ A|X0 = x] ν0(dx)

=
∫

X
1̂C(x) p(t, x, A) µ(dx). (8)

Therefore, the relative frequencies of systems within the sub–ensemble that
stay in C after the observation time span τ (see transition counting step in
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Section 1.1) is determined by ντ (C). Note that (8) for the special choice of
C = X, and hence ν0 = µ becomes νt(A) =

∫
X p(t, x, A)µ(dx). Since the

canonical ensemble µ is by assumption stationary, we have to require that
νt = µ for every t ∈ T and obtain∫

X
p(t, x, A)µ(dx) = µ(A) (9)

for every t ∈ T and A ∈ A. Thus, we will henceforth assume that the
probability measure µ is invariant w.r.t. the Markov process Xt.

Our interest is to define an operator Pt that propagates sub–ensembles
in time, thus allows to describe the evolution of νt. Since invariance of
µ implies that νt � µ whenever ν0 � µ [60, Chapter 4], we consider the
operator on the space of measures that are absolutely continuous w.r.t. µ—
or equivalently, on the space of densities w.r.t. µ—rather than on the space
of arbitrary probability measures. To do so, we introduce the Banach spaces
of equivalence classes of measurable functions

Lr(µ) =
{
u : X→ C :

∫
X
|u(x)|rµ(dx) <∞

}
. (10)

for 1 ≤ r <∞ and

L∞(µ) =
{
u : X→ C : µ-ess sup

x∈X
|u(x)| <∞

}
with corresponding norms ‖ · ‖r and ‖ · ‖∞, respectively. Due to Hölder’s
inequality we have Lr(µ) ⊂ Ls(µ) for every 1 ≤ s ≤ r ≤ ∞. Based on the
initially given motivation, we define the semigroup of propagators or
forward transfer operators Pt : L1(µ)→ L1(µ) with t ∈ T according to∫

A
Ptv(y) µ(dy) =

∫
X
p(t, x, A)v(x)µ(dx) (11)

for A ∈ A. As a consequence of the invariance of µ, the characteristic
function 1X of the entire space is an invariant density of Pt, i.e., Pt1X = 1X.
Furthermore, Pt is a Markov operator, i.e., Pt conserves norm: ‖Ptv‖1 =
‖v‖1 and positivity: Ptv ≥ 0 if v ≥ 0, which is a simple consequence of
the definition. Using the propagator in the context of the initially given
motivation, we see that the sub–ensemble νt, originating from ν0 at time
t = 0, is distributed according to

νt(A) =
∫

X
Pt1̂A(x)µ(dx).

Consequently, Pt1̂A is the density of νt w.r.t. µ. The semigroup of propa-
gators mathematically models the physical phenomena of evolution of sub–
ensembles in time.
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In the theory of Markov processes a different semigroup of operators
is considered. We will call it2 the semigroup of backward transfer
operators Tt : L∞(µ)→ L∞(µ) with t ∈ T, defined by

Ttu(x) = Ex[u(Xt)] =
∫

X
u(y)p(t, x, dy). (12)

As a consequence of property (ii) of the stochastic transition function, we
have Tt1X = 1X for every t ∈ T. Both operators are closely related via the
duality bracket

〈v, u〉µ =
∫

X
v(x)u(x)µ(dx)

for v ∈ L1(µ) and u ∈ L∞(µ), namely 〈Ptv, u〉 = 〈v, Ttu〉. Thus, the back-
ward transfer operator is the adjoint of the propagator: Pt

∗ = Tt. Since
L1(µ) is a proper subset of the dual of L∞(µ), we have Pt  T ∗t , hence Pt
is not the adjoint of Tt. As a consequence, it is much easier to relate prop-
erties of Pt to Tt than vice versa. If the Markov process corresponds to a
deterministic dynamical system, the propagator and the backward transfer
operator are known as the Frobenius–Perron and the Koopman operator,
respectively [46].

Propagators associated with reversible Markov processes are of particular
interest, since they possess additional structure on the Hilbert space L2(µ).
Such propagators will be called reversible, too. Note that the propagator is
well–defined on any Banach space Lr(µ) for 1 ≤ r < ∞ with ‖P‖r ≤ 1, see
[62] and cited reference.

Proposition 1.1 Let Pt : L2(µ) ⊂ L1(µ) → L2(µ) denote the propagator
corresponding to the Markov process Xt. Then Pt is self–adjoint w.r.t. the
scalar product 〈·, ·〉µ in L2(µ), i.e.,

〈u, Ptv〉µ = 〈Ptu, v〉µ; t ∈ T

for every u, v ∈ L2(µ), if and only if Xt is reversible.

Proof: For u, v ∈ L2(µ) we have

〈u, Ptv〉µ =
∫

X
u(y)Ptv(y)µ(dy) =

∫
X

∫
X
u(y)v(x)p(t, x, dy)µ(dx)

=
∫

X

∫
X
u(y)v(x)p(t, y,dx)µ(dy) =

∫
X
Ptu(x)v(x)µ(dx)

= 〈Ptu, v〉µ,
2The nomenclature is motivated by the fact that the forward transfer operator is for

some model systems related to a reweighted version of the forward Kolmogorov equation,
while the backward transfer operator is related to the backward Kolmogorov equation (see
the Langevin and the Smoluchowski equation in Sections 2.3 and 2.4, respectively).
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where the first identity in the second line is due to reversibility of the Markov
process. The reversed implication is just a rearrangement of the calculation.
�

We want to close this section with a remark about the mathematical
model used to describe internal fluctuations within the canonical ensemble.
Physical experiments on molecular ensembles allow to measure relative fre-
quencies in the canonical ensemble µ. Assuming, as in our case, that µ has
the form

µ(dx) = f(x)dx,

i.e., is absolutely continuous w.r.t. the Lebesgue measure dx, physical ex-
periments correspond to the densities of the form

vphys(x) = 1̂C(x)f(x)

w.r.t. the Lebesgue measure dx. Whenever physicists use the phrase “prob-
ability density” they refer to vphys rather than to densities

vmath(x) = 1̂C(x)

w.r.t. probability measure µ, as we do. As will become apparent later, it
is mathematically advantageous to consider the semigroup of propagators
acting on densities vmath rather than on vphys. However, it should be clear
that results obtained in either of the two pictures can be transformed into
the other.
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