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Introduction

While computer power is becoming ever more increasing, there are many
problems in physics, chemistry, biology—like climate modeling, protein fold-
ing etc.—where the length and time scales of interest remain entirely beyond
the capacity currently available, and will remain out of reach in the fore-
seeable future. As a consequence, there is an increasing need for simplified,
reduced–order descriptions. Reduced–order models may provide insight and
numerical simulations for larger length scales and longer time scales, but of
course at the cost of discarding some level of detail. Instead of simply ne-
glecting some degrees of freedom, one is rather interested in reduced models
that incorporate into their dynamical behavior the effective influence of the
neglected coordinates. There a two basic approaches for the reduction of
complexity, one is based on elimination like, e.g., elimination of fast degrees
of freedom [3], or stochastic approches like Brownian and Langevin models
[87], and the other one is based on remodeling like, e.g., base pair and rod
models [58] in the biomolecular context. The design of new reduced model
systems is a growing field of research. In order to verify the approximation
quality of reduced models or even to automatically construct reduced model
systems the numerical approximation of essential features of dynamical sys-
tems becomes an important task.

Recently, efficient techniques for the numerical approximation of the es-
sential statistical behavior of deterministic and stochastic dynamical systems
have been developed [13, 14, 69]. They are based on the fact that, when
modeling the overall dynamics in terms of some transfer operator, certain
features of the dynamics are related to its eigenvalues on and close to the unit
circle, and can be identified by exploiting the corresponding eigenfunctions.
A thereon based strategy has first been proposed by Dellnitz and Junge [13]
to analyze almost invariant subsets, attractors and (almost) cyclic behavior
of discrete deterministic dynamical systems subject to small additive noise.
It has been successfully applied to examine metastable behavior of determin-
istic Hamiltonian systems by Deuflhard et al. [14]. Although the numerical
results of the latter approach were intriguing and seemed to catch the essen-
tial features of the molecular system, the deterministic Hamiltonian model
appeared to be unsatisfactory for both theoretical discrepancies and com-
putational complexity [72]. Guided by concepts of statistical physics and
Monte Carlo techniques, Schütte et al. introduced in [68, 69] a substantially
remodeled stochastic Hamiltonian model. It is based on a special discrete–
time Markov process that can be understood as a Hamiltonian systems with
randomized momenta. Its reliable application to biomolecular systems is
demonstrated in [35, 69].

Modeling, theory and numerics presented herein are motivated by the
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successful study of biomolecular systems within the stochastic Hamiltonian
model and the desire to extend the concepts to a broader class of systems. It
is based on a series of preceding studies, where we investigated in detail the
Hamiltonian system with randomized momenta [35, 72] and subsequently
extended the approach to other molecular systems [34, 71, 72]. This the-
sis presents a unified and extended transfer operator based approach to
metastability of general Markovian systems. It addresses the question of
how modeling, theory and algorithmic aspects should be generalized from
the weakly perturbed deterministic and from the Hamiltonian setting to the
class of Markovian systems. We contribute a profound analysis of metasta-
bility and a theoretical justification of the algorithmic strategy for the iden-
tification of metastable subsets. This is achieved by combining results on
Markov processes by Meyn & Tweedie [52], Markov operators by Lasota &
Mackey [46], Markov semigroups by Davies [9, 10] and Singleton [73, 74], and
(weakly) compact operators by Weis [79, 80, 81, 82, 83]. As a consequence,
we are able to establish new links between spectral properties of transfer op-
erators and well–established Doeblin and ergodicity conditions on Markov
processes and operators. This turns out to be particularly advantageous
when aiming at a theoretical justification of the algorithmic approach for new
model systems, as we consider herein. This thesis investigates for the first
time the essential statistical behavior of the Langevin and the Smoluchowski
equation in comparison with the Hamiltonian systems with randomized mo-
menta. All in all, the transfer operator based approach to metastability has
proven to be very powerful. Its application to the small biomolecule r(ACC),
in comparison with other techniques to study biomolecular conformations,
is documented in [35].

Most applications of molecular dynamics are in the context of thermody-
namics, not only because most experiments measure thermodynamic quan-
tities, but also since most biomolecular processes can only be understood
within a thermodynamical context. In the macroscopic theory of equilib-
rium thermodynamics, the so–called canonical ensemble describes the distri-
bution of microscopic systems under the condition of constant temperature,
volume and number of particles [30]. The canonical ensemble is stationary
and hence does not change in time. But at the same time each microscopic
single systemevolves in time, causing internal fluctuations within the ensem-
ble. The characterization and identification of the most relevant fluctuations
is of main interest. From a biochemical point of view, these fluctuations are
related to the conformational dynamics of a biomolecule. In this setting, a
conformation describes a metastable global state of the molecule, in which
the large scale geometric structure is understood to be conserved, whereas
on smaller scales the molecule may well vibrate, oscillate or deform (see
Figure 1). As a consequence, we model conformations as metastable subsets
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Figure 1: Visualization of two different conformations of a small biomolecule. The so–
called ball and stick representations (configurations) correspond to two different confor-
mations of the molecule. The surrounding densities indicate the flexibility within each
conformation. Visualization by amira [42].

of the state space and hence include geometric as well as dynamical prop-
erties of the system. Both, conformations and their dynamics are expected
to gain further insight into the nature of biomolecules and their influence in
biochemical reactions.

From a theoretical point of view, the analysis of metastability permits a
statistical description of the essential behavior of dynamical systems. The
identification of metastable subsets is based on the following idea: Describe
internal fluctuations within the invariant distribution by means of a transfer
operator defined in terms of the dynamical system. Then the state space
can be decomposed into metastable subsets and the essential statistical be-
havior can be identified by exploiting eigenfunctions of the transfer operator
corresponding to eigenvalues close to 1 [13, 17, 69]. Following [72], we give
a new theoretical justification of the algorithmic approach in terms of a
simple and intriguing relation between the existence of metastable subsets
and eigenvalues close to 1 (see Theorem 3.1). We want to emphasize that
metastability, as considered herein, is defined w.r.t. some fixed invariant
distribution, which in the biomolecular application context is given by the
canonical ensemble. This might differ from other approaches to metastabil-
ity, e.g., the approach via exit times.

The identification strategy requires two particular conditions on the
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transfer operator in order to be theoretically justifiable and numerically
applicable. Stated in terms of the spectrum of the transfer operator these
are (i) the essential spectral radius is less than 1 and (ii) the eigenvalue 1 is
simple and dominant (see Sec. 3.2 for a discussion). Within the stochastic
Hamiltonian context, Schütte proved in [68] that these two conditions can be
reduced to a property of the Hamiltonian flow, which he called momentum–
invertibility, and some mixing condition on the dynamics. Having in mind a
generalization to Markovian systems, we have to look for alternative condi-
tions independent of particular properties of special model systems. Here the
so–called stochastic transition function—a family of probability measures—
will play a key role. On the one hand it uniquely characterizes the Markov
process representing the microscopic dynamics of single systems. On the
other hand it defines the transfer operator modeling the macroscopic evo-
lution of ensembles. In a first step, we are going to relate the two spectral
conditions—which are purely functional analytically—to properties of the
stochastic transition function. Then, in the second step, these properties
will be transformed into more probabilistic conditions on the transfer oper-
ator or the Markov process. This enables us to exploit the rich and powerful
literature on Markov operators (e.g., Lasota & Mackey [46]) and Markov
processes (e.g, Meyn & Tweedie [52]). As a result, we combine results from
either of the mathematical theories like, e.g., the fundamental Theorem 4.13,
which relates a bound on the essential spectral radius, uniform constrictive-
ness and the Doeblin–condition.

When dealing with transfer operators, we have to specify the space of
functions, the operator is regarded to act on. In the stochastic Hamiltonian
approach [68] Schütte considered a weighted Hilbert space of square inte-
grable functions L2. For the general Markovian setting, however, the natural
space is a weighted Banach space of integrable functions L1 that includes
all probability densities on the state space. Thus, a particular emphasis lies
on a detailed analysis of transfer operators acting on L1. Nevertheless, we
do study transfer operators on L2 for the special class of reversible Markov
processes. Reversibility describes the property that the Markov process and
its time–reversed counterpart are statistically the same. It has the advan-
tageous consequence that then the transfer operator is self–adjoint in L2.

Within this extended transfer operator based approach to metastabil-
ity, we analyze theoretically as well as numerically four Markovian systems
for molecular dynamics: the deterministic Hamiltonian system, the Hamilto-
nian system with randomized momenta, the Langevin and the Smoluchowski
equation. For the first time we investigate the essential statistical behav-
ior of the Langevin and the Smoluchowski equation in comparison with the
Hamiltonian system with randomized momenta. The numerical results give
detailed insight into the model systems and prove the transfer operator based
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approach to metastability as very powerful.
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1 Modeling Conformational Dynamics

The chemically interesting function of many important biomolecules, like
proteins or enzymes, results from their dynamical properties, particularly
from their ability to undergo so–called conformational transitions [86]. The
term conformations describes metastable global states of the molecule, in
which the large scale geometric structure is understood to be conserved.
While on the smallest time scale of about femto- to picoseconds molecular
dynamics consists of fast oscillations or fluctuations around equilibrium po-
sitions, conformational transitions show up only on a nano- or millisecond
time scale and are therefore rare events.

The classical description of molecular processes deals with the micro-
scopic configuration of a molecule, i.e., the positions q and momenta p of all
atoms, and leads to a mathematical model in terms of coupled equations of
motion for all atoms in the systems (see model systems in Section 2). How-
ever, most applications of molecular dynamics are in the context of ther-
modynamic, not only because most experiments measure thermodynamic
quantities, but also since most biomolecular processes can only be under-
stood within a thermodynamical context.

1.1 Thermodynamics and Biomolecular Conformations

Most experiments on biomolecular systems are performed under the con-
ditions of constant temperature T and volume. In equilibrium thermody-
namics, the corresponding stationary ensemble is known as the canonical
ensemble, whose density w.r.t. the Lebesgue measure dx we denote by fcan.
To give an explicit formula of fcan, we introduce the Hamiltonian function

H(q, p) =
1
2
pTM−1p + V (q), (1)

which denotes the internal energy of some single molecular system in state
x = (q, p). Here V : Rd → R is a differentiable potential energy function
describing all interactions between the atoms, and M denotes the mass
matrix1. The phase space of a single molecular system is given by X ⊂ R6N ,
where N is the number of atoms. In most cases, it has the simpler form
Γ = Ω×R3N , where Γ is called the phase space and Ω ⊂ R3N is called the
position space. Within this setting, the canonical density fcan associated
with the Hamiltonian H is defined as

fcan(x) =
1
Z

exp (−β H(x)) , (2)

where Z =
∫

Γ exp (−β H(x)) dx denotes the partition function, β = 1/(kBT )
the inverse temperature and kB Boltzmann’s constant. Since H separates

1For simplicity, we assume in the following that M is the identity matrix.
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into the sum of two parts depending either only on the momenta or only on
the positions, the canonical density factorizes into a product of two densities
P and Q depending on the momenta and the positions, respectively, only:

fcan(x) =
1
Zp

exp
(
−β

2
pTM−1p

)
︸ ︷︷ ︸

P(p)

1
Zq

exp (−β V (q))︸ ︷︷ ︸
Q(q)

. (3)

For later reference, we denote by µcan and µQ the probability measures in-
duced by the densities fcan and Q, respectively.

Typically, metastability w.r.t. the canonical ensemble is measured via
the following two–step experiment:

1. Pre–Selection: Select from the canonical ensemble all such systems
with states x ∈ C, where the subset C corresponds to some (mea-
surable) physical property. This selection prepares a sub–ensemble
µC . Physically the sub–ensemble is associated with the property C;
mathematically it is associated with the subset C of the state space.

2. Transition-Counting: Fix some observation time span τ > 0 and de-
termine the relative frequency of systems within the sub–ensemble µC
that stay in C after the time τ .

A sub–ensemble µC will be called metastable (on the timescale τ), if the
fraction of systems in the sub–ensemble that stays in C after the time τ is
close to 1. Hence, metastability depends on C and τ . Identifying metastable
sub–ensembles mathematically necessitates the description of internal fluc-
tuation within the canonical ensemble.

Since equilibrium thermodynamics states nothing about the mi-
croscopic dynamics of single systems within the ensemble, we
have to specify some microscopic dynamics. We will see in the
next section that there is no “canonical” single system dynamics
but several [31].

We will restrict our considerations to the broad class of microscopic dy-
namics that can be interpreted as Markov processes. This will enable us
to describe internal fluctuations within the stationary ensemble by studying
transfer operators induced by the Markov process, as we are going to outline
in the next sections.

In the introduction we have characterized conformations as metastable
large scale geometric structures. Hence, conformations are thought to be
objects in the position space. However, both the canonical ensemble as
well as the classical models for microscopic dynamics presented below are
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defined in the phase space Γ (positions and momenta). Therefore, we have
to specify the relation between metastable sub–ensembles defined in Γ and
conformations, characterized in terms of the position space Ω only. In [68]
the following relation is proposed:

A conformation C ⊂ Ω will be identified with the particular
metastable sub–ensemble µC×R3N corresponding to the partic-
ular subset C × R3N ⊂ Γ. Hence, for every position q ∈ C,
the conformation contains all states with q ∈ Ω and arbitrary
p ∈ R3N .

In this sense, conformations contain no information on momenta, and are
determined within the positions space only. With this characterization of
conformations in mind, we could think of reduced microscopic models de-
fined only in the position space Ω. Such simplified models indeed exist and
will be presented below. They allow to describe internal fluctuations within
the positional canonical density Q. In agreement with the relation above,
metastable sub–ensembles of reduced models are called conformations, too.

1.2 Single System Dynamics and Markov Processes

This section gives a brief mathematical description of Markovian systems.
For a detailed introduction see, e.g., [18, 52, 55].

Consider the state space X ⊂ Rm for some m ∈ Z+ equipped with the
Borel σ–algebra A on X. The evolution of a single microscopic system is
supposed to be given by a homogeneous Markov process Xt = {Xt}t∈T

in continuous or discrete time with T = R+ or T = Z+, respectively. We
write X0 ∼ µ, if the Markov process Xt is initially distributed according to
µ, i.e., if P[X0 ∈ A] = µ(A) for every A ∈ A, and X0 ∼ x if µ = δx for
the dirac measure at x. The motion of Xt is given in terms of a stochastic
transition function p according to

p(t, x, A) = P[Xt+s ∈ A |Xs = x], (4)

for every t, s ∈ T, x ∈ X and A ∈ A. The map p : T ×X × B(X) → [0, 1]
has the following properties

(i) x 7→ p(t, x, A) is measurable for every t ∈ T and A ∈ B(X),

(ii) A 7→ p(t, x, A) is a probability measure for every t ∈ T and x ∈ X.

(iii) p(0, x,X \ {x}) = 0 for every x ∈ X.

(iv) the Chapman–Kolmogorov equation

p(t+ s, x,A) =
∫

X
p(t, x,dz) p(s, z, A) (5)

holds for every t, s ∈ T, x ∈ X and A ∈ A.
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The relation between Markov processes and stochastic transition functions
is one–to–one, i.e., every homogeneous Markov process defines a stochastic
transition function satisfying properties (i) to (iv), and vice versa [52, Chap-
ter 3]. We say that the Markov process Xt admits an invariant probability
measure µ, or µ is invariant w.r.t. the Markov process, if∫

X
p(t, x, A)µ(dx) = µ(A) (6)

for every t ∈ T and A ∈ A [52, Chapter 10]. Note that the invariant
probability measure needs not be unique. A Markov process Xt is called
reversible w.r.t. an invariant probability measure µ, if∫

A
p(t, x,B)µ(dx) =

∫
B
p(t, x, A)µ(dx) (7)

for every t ∈ T and A,B ∈ A. If µ is unique, Xt is simply called reversible.
For the special case of a stochastic transition function being absolutely con-
tinuous w.r.t. µ, the Markov process Xt is reversible, if p(t, x, y) = p(t, y, x)
for every t ∈ T and µ–a.e. x, y ∈ X.

1.3 Ensemble Dynamics and Transfer Operators

Based on the assumption that the microscopic dynamics is given by a ho-
mogeneous Markov process we are now able to introduce a Markov operator
that allows to describe internal fluctuations within the stationary ensemble.

The basic idea is the following: Consider all systems within the station-
ary ensemble µ with states in some subset C ∈ A (see pre–selection step in
Section 1.1). This sub–ensemble of systems is distributed according to the
probability measure

ν0(A) =
1

µ(C)

∫
A

1C(x)µ(dx),

where 1C denotes the characteristic function of the subset C. In other
words, the sub–ensemble corresponds to the density 1̂C = 1C/µ(C) w.r.t. to
µ. Since every single microscopic system evolves according to the dynamics
of the Markov process, the distribution of the sub–ensemble at time t ∈ T
is given by the probability measure

νt(A) =
∫

X
P[Xt ∈ A|X0 = x] ν0(dx)

=
∫

X
1̂C(x) p(t, x, A) µ(dx). (8)

Therefore, the relative frequencies of systems within the sub–ensemble that
stay in C after the observation time span τ (see transition counting step in
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Section 1.1) is determined by ντ (C). Note that (8) for the special choice of
C = X, and hence ν0 = µ becomes νt(A) =

∫
X p(t, x, A)µ(dx). Since the

canonical ensemble µ is by assumption stationary, we have to require that
νt = µ for every t ∈ T and obtain∫

X
p(t, x, A)µ(dx) = µ(A) (9)

for every t ∈ T and A ∈ A. Thus, we will henceforth assume that the
probability measure µ is invariant w.r.t. the Markov process Xt.

Our interest is to define an operator Pt that propagates sub–ensembles
in time, thus allows to describe the evolution of νt. Since invariance of
µ implies that νt � µ whenever ν0 � µ [60, Chapter 4], we consider the
operator on the space of measures that are absolutely continuous w.r.t. µ—
or equivalently, on the space of densities w.r.t. µ—rather than on the space
of arbitrary probability measures. To do so, we introduce the Banach spaces
of equivalence classes of measurable functions

Lr(µ) =
{
u : X→ C :

∫
X
|u(x)|rµ(dx) <∞

}
. (10)

for 1 ≤ r <∞ and

L∞(µ) =
{
u : X→ C : µ-ess sup

x∈X
|u(x)| <∞

}
with corresponding norms ‖ · ‖r and ‖ · ‖∞, respectively. Due to Hölder’s
inequality we have Lr(µ) ⊂ Ls(µ) for every 1 ≤ s ≤ r ≤ ∞. Based on the
initially given motivation, we define the semigroup of propagators or
forward transfer operators Pt : L1(µ)→ L1(µ) with t ∈ T according to∫

A
Ptv(y) µ(dy) =

∫
X
p(t, x, A)v(x)µ(dx) (11)

for A ∈ A. As a consequence of the invariance of µ, the characteristic
function 1X of the entire space is an invariant density of Pt, i.e., Pt1X = 1X.
Furthermore, Pt is a Markov operator, i.e., Pt conserves norm: ‖Ptv‖1 =
‖v‖1 and positivity: Ptv ≥ 0 if v ≥ 0, which is a simple consequence of
the definition. Using the propagator in the context of the initially given
motivation, we see that the sub–ensemble νt, originating from ν0 at time
t = 0, is distributed according to

νt(A) =
∫

X
Pt1̂A(x)µ(dx).

Consequently, Pt1̂A is the density of νt w.r.t. µ. The semigroup of propa-
gators mathematically models the physical phenomena of evolution of sub–
ensembles in time.
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In the theory of Markov processes a different semigroup of operators
is considered. We will call it2 the semigroup of backward transfer
operators Tt : L∞(µ)→ L∞(µ) with t ∈ T, defined by

Ttu(x) = Ex[u(Xt)] =
∫

X
u(y)p(t, x, dy). (12)

As a consequence of property (ii) of the stochastic transition function, we
have Tt1X = 1X for every t ∈ T. Both operators are closely related via the
duality bracket

〈v, u〉µ =
∫

X
v(x)u(x)µ(dx)

for v ∈ L1(µ) and u ∈ L∞(µ), namely 〈Ptv, u〉 = 〈v, Ttu〉. Thus, the back-
ward transfer operator is the adjoint of the propagator: Pt

∗ = Tt. Since
L1(µ) is a proper subset of the dual of L∞(µ), we have Pt  T ∗t , hence Pt
is not the adjoint of Tt. As a consequence, it is much easier to relate prop-
erties of Pt to Tt than vice versa. If the Markov process corresponds to a
deterministic dynamical system, the propagator and the backward transfer
operator are known as the Frobenius–Perron and the Koopman operator,
respectively [46].

Propagators associated with reversible Markov processes are of particular
interest, since they possess additional structure on the Hilbert space L2(µ).
Such propagators will be called reversible, too. Note that the propagator is
well–defined on any Banach space Lr(µ) for 1 ≤ r < ∞ with ‖P‖r ≤ 1, see
[62] and cited reference.

Proposition 1.1 Let Pt : L2(µ) ⊂ L1(µ) → L2(µ) denote the propagator
corresponding to the Markov process Xt. Then Pt is self–adjoint w.r.t. the
scalar product 〈·, ·〉µ in L2(µ), i.e.,

〈u, Ptv〉µ = 〈Ptu, v〉µ; t ∈ T

for every u, v ∈ L2(µ), if and only if Xt is reversible.

Proof: For u, v ∈ L2(µ) we have

〈u, Ptv〉µ =
∫

X
u(y)Ptv(y)µ(dy) =

∫
X

∫
X
u(y)v(x)p(t, x, dy)µ(dx)

=
∫

X

∫
X
u(y)v(x)p(t, y,dx)µ(dy) =

∫
X
Ptu(x)v(x)µ(dx)

= 〈Ptu, v〉µ,
2The nomenclature is motivated by the fact that the forward transfer operator is for

some model systems related to a reweighted version of the forward Kolmogorov equation,
while the backward transfer operator is related to the backward Kolmogorov equation (see
the Langevin and the Smoluchowski equation in Sections 2.3 and 2.4, respectively).
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where the first identity in the second line is due to reversibility of the Markov
process. The reversed implication is just a rearrangement of the calculation.
�

We want to close this section with a remark about the mathematical
model used to describe internal fluctuations within the canonical ensemble.
Physical experiments on molecular ensembles allow to measure relative fre-
quencies in the canonical ensemble µ. Assuming, as in our case, that µ has
the form

µ(dx) = f(x)dx,

i.e., is absolutely continuous w.r.t. the Lebesgue measure dx, physical ex-
periments correspond to the densities of the form

vphys(x) = 1̂C(x)f(x)

w.r.t. the Lebesgue measure dx. Whenever physicists use the phrase “prob-
ability density” they refer to vphys rather than to densities

vmath(x) = 1̂C(x)

w.r.t. probability measure µ, as we do. As will become apparent later, it
is mathematically advantageous to consider the semigroup of propagators
acting on densities vmath rather than on vphys. However, it should be clear
that results obtained in either of the two pictures can be transformed into
the other.
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2 The Model Systems

We introduce four popular models for molecular dynamics: the determin-
istic Hamiltonian system, the Hamiltonian system with randomized mo-
menta, the Langevin and the Smoluchowski equation. While the determin-
istic Hamiltonian system and the Langevin equation are classical models on
the phase space Γ (positions and momenta), the Hamiltonian system with
randomized momenta and the Smoluchowski equation are reduced models
acting only on the position space Ω. For each model system we assume that
Ω belongs to one of the two fundamentally different cases:

1. Bounded system: The position space Ω is unbounded, typically
Ω = R3N , and the potential energy function V is smooth, bounded
from below, and satisfies V → ∞ for |q| → ∞. Such systems are
called bounded, since the energy surfaces {(q, p) ∈ Γ : H(q, p) = E}
are bounded subsets of Γ for every energy E.

2. Periodic systems: The position space Ω is some 3N–dimensional
torus and the potential energy function V is continuous on Ω and thus
bounded. There is an intensive discussion concerning the question of
whether V can also be assumed to be smooth as we will do herein, see
[68, Sec. 2] for details.

Both cases are typical for molecular dynamics applications. Periodic systems
in particular include the assumption of periodic boundaries, which is by far
the most popular modeling assumption for biomolecular systems.

2.1 Deterministic Hamiltonian System

The deterministic Hamiltonian system

q̇ = p, ṗ = −∇q V (q). (13)

defined on the state space X = Γ models an energetically closed system,
whose total energy is given by the HamiltonianH as defined in (1); its energy
is conserved under the dynamics. The Markov process Xt = {Xt}t∈R+

defined by the deterministic Hamiltonian system coincides with the flow Φτ

associated with (13); hence Xt = Φtx0 for the initial distribution X0 ∼ x0.
This allows us to denote the stochastic transition function as

p(t, x, C) = 1C
(
Φtx

)
= δΦtx(C) (14)

for every t ∈ R+ and C ∈ A. It is well known that canonical ensemble µcan

is invariant w.r.t. Xt. The evolution of densities v = v(x, t) w.r.t. µcan is
governed by the Liouville equation

∂t v =

−p · ∇q + ∇qV · ∇p︸ ︷︷ ︸
iL

 v, (15)
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where L denotes the Liouville operator defined on some suitable subspace
of L1(µcan). Since the solution of (15) satisfies v(x, t + s) = v(Φ−tx, s) for
every t, s ∈ R+, the semigroup of propagators Pt : L1(µcan)→ L1(µcan) with
t ∈ R+ is defined by

Ptv(x) = exp(itL)v(x) = v
(
Φ−tx

)
. (16)

This is exactly the definition of the Frobenius–Perron operator correspond-
ing to the Hamiltonian flow Φt [46]. Since L is self–adjoint w.r.t. the scalar
product in L2(µ) the operator Pt is unitary in L2(µ). The semigroup of
backward transfer operators Tt : L∞(µ)→ L∞(µ) with t ∈ R+ is given by

Ttu(x) = u
(
Φtx

)
, (17)

which is identical with the Koopman operator corresponding to Φt [46].

2.2 Hamiltonian System with Randomized Momenta

Aiming at a conformational analysis of biomolecular systems, Schütte intro-
duced in [68] some kind of stochastic Hamiltonian system. It is a reduced
dynamics defined solely on the position space and derived from the determin-
istic Hamiltonian system by “randomizing the momenta” and integrating for
some fixed observation time span τ .

Let us briefly sketch the derivation. Fix some observation time span
τ > 0 and denote by pΓ(τ, x,A) the stochastic transition function corre-
sponding to the full deterministic Hamiltonian system on Γ (for a comment
on the time τ see remark below). In view of the relation between metastable
sub–ensembles and conformations, we are interested in a simplified model
describing the dynamics between “cylindric” subsets B ×Rd and C ×Rd.
Inserting these special subsets into definition (14) yields

pΓ(τ,B ×Rd, C ×Rd)

=
1∫

B×Rd µcan(dx)

∫
B×Rd

1C×Rd(Φτ (x))µcan(dx)

=
1∫

B µQ(dq)

∫
B

∫
Rd

1C(ΠqΦτ (q, p))µP(dp)︸ ︷︷ ︸
pτΩ(1,q,C)

µQ(dq). (18)

= pτΩ(1, B,C),

where Πq : Γ → Ω denotes the projection onto the position space. Equa-
tion (18) defines a one–step stochastic transition function, whose n–step
version is determined via the Chapman–Kolmogorov equation (5). The as-
sociated discrete time Markov process Qn = {Qn}n∈Z+ , defined on the state
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space X = Ω, solves the Hamiltonian system with randomized mo-
menta [68]

Qn+1 = ΠqΦτ (Qn, Pn); n ∈ Z+ (19)

where Pn is chosen randomly from the canonical distribution of momenta
P, as defined in (3). As shown in [68] the positional canonical ensemble µQ
is invariant w.r.t. the Markov process Qn. The semigroup of propagators
Pn : L1(µQ)→ L1(µQ) for n ∈ Z+ is given by Pn = (P1)n with

P1v(q) =
∫

Rd

v(ΠqΦ−τ (q, p))P(p)dp. (20)

Exploiting that µQ is invariant and Φτ is reversible and symplectic, it is
shown in [68] that P1, and thus the semigroup, is self–adjoint in L2(µQ).

Remark. For arbitrary, but fixed τ > 0 we have defined in (19) the
one–step transition function pτ (1, q,D). Changing the observation time to
σ > 0 results in a new one–step transition function pσ(1, q,D). In general
we will have p2τ (1, q,D) 6= pτ (2, q,D) and, consequently, P1

2τ 6= P2
τ , where

the superscripts indicate the corresponding observation time spans (for an
example see [68, Sec. 3.7.1]). In terms of the Hamiltonian system with
randomized momenta, this is not surprising, since P1

2τ includes only one
choice of momenta according to P, while P2

τ does include two.

2.3 Langevin Equation

The most popular model for an open system stochastically interacting with
its environment is the Langevin equation3 [61]

q̇ = p, ṗ = −∇q V (q) − γ p + σ Ẇ (21)

corresponding to some friction constant γ > 0 and external force Fext = σẆ
given by a standard 3N -dimensional Brownian motion W . Eq. (21) defines
a continuous time Markov process Xt = {(Qt, Pt)}t∈T on the state space
X = Γ.

In the Langevin model, the effects of solvent molecules not explicitly
present in the system being simulated are approximated in terms of a fric-
tional drag on the solute as well as random collisions associated with the
thermal motion of the solvent molecules. The Hamiltonian H describes
the internal energy of the systems, which is not conserved due to energy

3In our context, the notion Ẇ is a convenient form of the more common dW . Hence,
the Langevin equation (21) should be understood as dq = pdt and dp = −∇qV (q)dt −
γpdt + σdW , which moreover is just the common abbreviation for the corresponding
integral notion, see e.g., [57]. For convenience we will henceforth use the ”dot” without
further comments.
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transfer with the surrounding, the so–called heat bath. Yet, the interplay
between stochastic excitation and damping equilibrates the internal energy
to β = 2γ/σ2. As a result, the canonical ensemble µcan corresponding to
the inverse temperature β is invariant w.r.t. the Markov process defined by
(21). The evolution of densities v = v(t, x) w.r.t. µcan is governed by the
Fokker–Planck equation

∂tv =

σ2

2
∆p − p · ∇q + ∇qV · ∇p − γp · ∇p︸ ︷︷ ︸

L

 v (22)

regarded on some suitable subspace of L1(µcan). Therefore, L is the infinites-
imal generator of the semigroup of propagators Pt : L1(µcan)→ L1(µcan) with
t ∈ R+ defined by

Ptv = exp(tL)v (23)

for v ∈ L1(µcan). In general, Pt is not self–adjoint in L2(µ).

Remark. The evolution of some physical density4 vphys = vfcan ∈ L1(dx)
with v ∈ L1(µcan) is governed by the so–called forward Kolmogorov equa-
tion ∂tvphys = Afwvphys with

Afw =
σ2

2
∆p − p · ∇q +∇qV · ∇p + γp · ∇p + γ

acting on a suitable subspace of L1(dx) [38, Chapter 5.1]. It permits to
define the semigroup of propagators P fw

t : L1(dx)→ L1(dx) by

P fw
t vphys = exp(tAfw)vphys.

As a consequence of the invariance of µ, we obtain the relation

P fw
t (vfcan) = (Ptv)fcan; v ∈ L1(µcan) (24)

between the two semigroups of propagators. To derive the evolution equa-
tion (22) for v, we insert vphys = vfcan into the forward Kolmogorov equation
and obtain after simple manipulations

∂t(vfcan) = Afw(vfcan) = (Lv)fcan,

which is the infinitesimal version of (24). Exploiting time–independence and
positivity of fcan, we finally end up with the Fokker–Planck equation (22).

4See remark about our mathematical model at the end of Section 1.3.
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In some sense dual to the forward Kolmogorov equation is the backward
Kolmogorov equation ∂tu = Abwu with

Abw =
σ2

2
∆p + p · ∇q −∇qV · ∇p − γp · ∇p

acting on a suitable subspace of L1(dx). For bounded and periodic systems,
we have 〈Afwv, u〉2 = 〈v,Abwu〉2 on the Hilbert space L2(dx) and hence
Afw and Abw are adjoint to each other. Therefore neither Afw nor Abw is
self–adjoint in L2(dx). The generator Abw permits to define the semigroup
of backward transfer operators T bw

t : L1(dx)→ L1(dx) by

T bw
t u(x) = Ex[u(Xt)] = exp(tAbw)u(x),

see, e.g., [38, Chapter 5.1]. We remark that although the formal definition
of the two semigroups of backward transfer operators Tt and T bw

t via ex-
pectation is the same, they differ in the space of functions regarded to act
on.

2.4 Smoluchowski Equation

As a second reduced model system, we introduce the Smoluchowski equa-
tion. It is derived from the Langevin equation by considering the high
friction limit γ → ∞. In contrast to the Langevin equation it defines a
reversible Markov process.

Write the Langevin equation (21) in second order form

q̈ = −∇qV (q)− γq̇ + σẆ . (25)

For the high friction limit, we introduce some smallness parameter ε > 0
and transform the friction constant to γ/ε; in order to conserve the inverse
temperature β = 2γ/σ2 of the surrounding heat bath and hence the canon-
ical ensemble, we simultaneously have to scale the white noise constant to
σ/
√
ε. This yields

q̈ = −∇qV (q)− γ

ε
q̇ +

σ√
ε
Ẇ .

After rescaling the time according to t 7→ εt we finally get

ε2q̈ = −∇qV (q)− γq̇ + σẆ .

Since the white noise process Ẇ is unbounded, we cannot simply assume
that the acceleration ε2q̈ is small for ε � 1. However, investigations by
Nelson [53] show that the solution qεLan(t; q0, p0) of the Langevin equation
(26) and the solution qSmol(t; q0) of the Smoluchowski equation

q̇ = −1
γ
∇qV (q) +

σ

γ
Ẇ (26)

are close to each other for high friction γ.
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Theorem 2.1 [53, Theorem 10.1] Assume that ∇qV (q) is global Lipschitz.
Then, for every p0, with probability one

lim
ε→0
|qSmol(t; q0)− qεLan(t; q0, p0)| = 0

uniformly for t in compact subintervals of [0,∞).

Hence, in the high friction case, the Smoluchowski dynamics is a good
approximation of the Langevin dynamics. This fact will be analyzed in the
following section.

The stochastic differential equation (26) defines a continuous time Markov
process Qt = {Qt}t∈R+ on the state space X = Ω with transition kernel
p = p(t, q, C) and invariant probability measure µQ [61]. The evolution of
densities v = v(t, q) w.r.t. µQ is governed by the Fokker–Planck equation
(see Remark below for derivation)

∂tv =

 σ2

2γ2
∆q −

1
γ
∇qV (q) · ∇q︸ ︷︷ ︸
L

 v (27)

regarded on some suitable subspace of L1(µQ). Therefore, L is the infinites-
imal generator of the semigroup of propagators Pt : L1(µQ) → L1(µQ) with
t ∈ R+ defined by

Ptv = exp(tL)v (28)

for v ∈ L1(µ).

Proposition 2.2 The semigroup of propagators Pt : L2(µQ) → L2(µQ) is
self–adjoint w.r.t. the scalar product 〈·, ·〉µQ in L2(µQ).

Proof : We prove that L is self–adjoint in L2(µQ). The statement of the
theorem then follows from [8, Thm. 4.6]. Consider v, u ∈ L2(µQ) in the
domain of L. Then Q

1
2 v,Q

1
2u ∈ L2(dq) and

〈Lv, u〉µQ = 〈(Q
1
2LQ−

1
2 )(Q

1
2 v),Q

1
2u〉2.

A simple calculation proves that Q
1
2LQ−

1
2 = Ls for the generator Ls defined

in (30) below. Since Ls is a so–called Schrödinger operator, it is self–adjoint
in L2(dq) and we obtain

〈Lv, u〉µQ = 〈Q
1
2 v, (Q

1
2LQ−

1
2 )(Q

1
2u)〉µQ = 〈v,Lu〉µQ ,

hence L is self–adjoint in L2(µQ). �
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There is a strong relation of our approach to the theory of large devia-
tions and first exit times (see, e.g., Freidlin and Wentzell [23]); a brief outline
is given in [72]; further investigations are part of a current diploma thesis
[49].

Remark.5 The evolution of some physical density vphys = vQ ∈ L1(dq)
with v ∈ L1(µQ) is governed by the so–called forward Kolmogorov equa-
tion ∂tvphys = Afwvphys with

Afw =
σ2

2γ2
∆q +

1
γ
∇qV (q) · ∇q +

1
γ

∆qV (q)

acting on a suitable subspace of L1(dq) [38, Chapter 5.1]. It permits to
define the semigroup of propagators P fw

t : L1(dq)→ L1(dq) by

P fw
t vphys = exp(tAfw)vphys.

As a consequence of the invariance of µ, we obtain the relation

P fw
t (vQ) = (Ptv)Q; v ∈ L1(µQ) (29)

between the two semigroups of propagators. To derive the evolution equa-
tion (27) for v, we insert vphys = vQ into the forward Kolmogorov equation
and obtain after simple manipulations

∂t(vQ) = Afw(vQ) = (Lv)Q,

which is the infinitesimal version of (29). Exploiting time–independence and
positivity of Q, we finally end up with the Fokker–Planck equation (27).
In some sense dual to the forward Kolmogorov equation is the backward
Kolmogorov equation ∂tu = Abwu with

Abw =
σ2

2γ2
∆q −

1
γ
∇qV (q) · ∇q

acting on a suitable subspace of L1(dq). Although L and Abw are formally
the same, they are regarded to act on different function spaces. For bounded
and periodic systems, we have 〈Afwv, u〉2 = 〈v,Abwu〉2 on the Hilbert space
L2(dq) and hence Afw and Abw are adjoint to each other. However, neither
Afw nor Abw are self–adjoint in L2(dq), while L is self–adjoint in L2(µQ).
The generator Abw permits to define the semigroup of backward transfer
operators T bw

t : L1(dq)→ L1(dq) according to

T bw
t u(q) = Eq[u(Xt)] = exp(tAbw)u(q),

5We are aware of the fact that large parts of this remark are analogous to those made
for the Langevin equation and could hence be abbreviated. Yet, for sake of clarity, we
prefer to state everything explicitly, since there are also important differences.
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see, e.g., [38, Chapter 5.1]. We remark that although the formal definition
of the two semigroups of backward transfer operators Tt and T bw

t via ex-
pectation is the same, they differ in the space of functions regarded to act
on.

Sometimes it is advantageous to consider yet another generator

Ls =
σ2

2γ2
∆q −

 1
2σ2

(∇V (q))2 − 1
2γ

∆V (q)︸ ︷︷ ︸
U(q)

 (30)

regarded to act on a suitable subspace of L2(dq). It is defined in terms of
the potential function U : Ω → R and allows to apply the powerful theory
of Schrödinger operators (see, e.g., Reed and Simon [59]); for a brief outline
see [71]. The Schrödinger operator Ls is related to the generators L by
the identity Q

1
2Lv = Ls(Q

1
2 v) for every v ∈ L1(µQ).
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3 Metastability

We present a mathematical characterization of metastability, its connection
to eigenvalues of the transfer operator close to its dominant eigenvalue 1,
and a theoretical as well as numerical identification strategy.

3.1 Characterizing Metastability

There is no unique but several definitions of metastability in literature (see,
e.g., [4, 9, 72, 73]), each adapted to suit the context. Our definition fits
the biomolecular application context and measures metastability w.r.t. the
canonical ensemble. Combining the physical characterization of metastable
sub–ensembles in Section 1.1 and the mathematical specification in Sec-
tion 1.3, we aim at defining a transition probability from a subset B into
C within the time span τ , denoted by p(τ,B,C), such that an invariant
sub–ensemble C is characterized by p(τ, C,C) = 1, while a metastable sub–
ensemble can be characterized by p(τ, C,C) ≈ 1. Being ”close to 1” is
obviously a vague statement—however, in most applications we are inter-
ested in a decomposition into the most metastable subsets, which eliminates
the problem of interpreting ”close to 1”. Instead we have to determine the
number of subsets, we are looking for. In our approach, this is done by exam-
ining the spectrum of the propagator Pτ . Alternatively, we could determine
a cascade of decompositions with an increasing number of metastable sub-
sets.

Define the transition probability p(t, B,C) from B ∈ A to C ∈ A
within the time span t as the conditional probability

p(t, B,C) = Pµ[Xt ∈ C |X0 ∈ B] =
Pµ[Xt ∈ C and X0 ∈ B]

Pµ[X0 ∈ B]
, (31)

where Pµ indicates that the initial distribution of the Markov process Xt

is due to µ, hence X0 ∼ µ. The similar symbols for both the transition
probability between subsets p(t, B,C) as well as for the stochastic transition
function corresponding to the Markov process emphasize the strong relation
to the definition of p(t, x, C) in (4), which allows to rewrite (31) as

p(t, B,C) =
1

µ(B)

∫
B
p(t, x, C)µ(dx). (32)

The transition probability quantifies the dynamical fluctuations within the
stationary ensemble µ. For later reference, we state the following two prop-
erties:

(i) using the duality bracket 〈·, ·〉µ between L1(µ) and L∞(µ), we get

p(t, B,C) =
〈Pt1B,1C〉µ
〈1B,1B〉µ

. (33)
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(ii) metastability of C may equivalently be characterized by the condition
that p(t, C,X \ C) ≈ 0, which yields [73]:

p(t, C,X \ C) =
1

2µ(C)
‖Pt1C − 1C‖1 . (34)

In Section 1.1 we have seen that metastability of sub–ensembles can
experimentally be measured w.r.t. some observation time τ . Therefore, we
will fix some τ > 0 and concentrate in the sequel on the single propagator
Pτ rather than on the entire semigroup of propagators {Pt}t∈T.

3.2 Identifying Metastable Subsets

We now present the fundamental algorithmic strategy used to identify meta-
stable subsets. The basic idea is to interpret metastability as almost in-
variance. Since invariant subsets are associated with the eigenvalue λ =
1 and can be identified exploiting the corresponding eigenfunctions [17],
metastable subsets are thought to be associated with almost λ = 1 eigen-
values and can be identified by exploiting the corresponding eigenfunctions.

Consider the propagator Pτ : Lr(µ) → Lr(µ) with r = 1, 2; its spectrum
is contained in the unit disc {λ ∈ C : |λ| ≤ 1}. Whenever a proper subset
C ⊂ X is invariant under the Markov process, i.e., p(t, x,X \ C) = 0 for
all x ∈ C, the probability density 1̂C = 1C/µ(C) is an eigenfunction corre-
sponding to λ = 1. In particular, since µ is assumed to be invariant, 1̂X is an
eigenfunction corresponding to λ = 1. Loosely speaking, a characterization
of metastability according to (34) suggests that C is metastable if 1̂C is an
approximate eigenfunction corresponding to an eigenvalue close to λ = 1.
This motivates the following algorithmic strategy:

Metastable subsets (on the time scale τ > 0) can be identified via
eigenfunctions of the propagator Pτ corresponding to eigenvalues
|λ| < 1 close to the Perron root λ = 1. In doing so, the number
of metastable subsets is equal to the number of eigenvalues close
to 1, including λ = 1 and counting multiplicity.

The strategy mentioned above has first been proposed by Dellnitz and
Junge [13] for discrete dynamical systems with weak random perturbations
and has been successfully applied to molecular dynamics in different contexts
[69, 71, 68]; a justification is given by Theorem 3.1. The algorithmic strategy
necessitates the following two conditions on the propagator Pτ :

(C1) The essential spectral radius of Pτ is less than one, i.e., ress(Pτ ) < 1.

(C2) The eigenvalue λ = 1 of Pτ is simple and dominant, i.e., η ∈ σ(Pτ )
with |η| = 1 implies η = 1.
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It is important to remember that we defined transition probabilities between
subsets, and therefore metastability, w.r.t. the invariant measure µ. Assume
that the Markov process Xt admits another invariant measure ν, which, for
sake of simplicity, is absolutely continuous w.r.t. µ with density f ∈ L1(µ).
Then, f is an eigenfunction of Pτ corresponding to λ = 1. As a conse-
quence, we will not be able to decide in general whether an eigenfunction
corresponding to some eigenvalue λ ≈ 1 is related to metastable behavior
of the ensemble represented by µ or by ν. Thus, the algorithmic strategy
requires uniqueness of the invariant measure. Additionally, the physical in-
terpretation of the ensemble excludes other eigenvalues than λ = 1 on the
unit circle. Hence, λ = 1 has to be simple and dominant. For the numer-
ical realization and discretization of the eigenvalue problem, we moreover
need that the relevant eigenvalues are isolated and of finite multiplicity. For
those eigenvalues convergence results of the numerical discretization algo-
rithm can be established. This implies that the essential spectral radius has
to be less than 1, hence permitting the existence of isolated eigenvalues of
finite multiplicity close to λ = 1.

3.3 Metastable Subsets and Eigenvalues Close to 1

We now give a mathematical justification of the algorithmic strategy in-
troduced above. The main result is stated in Theorem 3.1. It illuminates
the strong relation between the existence of a cluster of eigenvalues close to
1 and a possible decomposition of the state space into metastable subsets.
We state the theorem under the additional assumption of reversibility of
the Markov process Xt and comment on how the results can be applied to
non–reversible Markov processes.

Consider the propagator Pτ : L2(µ)→ L2(µ) satisfying the two conditions
(C1) and (C2), and assume that the Markov process is reversible. Due to
Proposition 1.1, Pt is self–adjoint and its spectrum has the form

σ(Pτ ) ⊂ [l, r] ∪ {λ2} ∪ {1},

with −1 < l ≤ r ≤ λ2 < λ1 = 1. We restrict our considerations to the
case that the Perron root is “nearly two–fold degenerate”: We assume that
λ2 is a simple isolated eigenvalue, hence r = λ3 < λ2, and further that the
corresponding eigenfunction v2 is normalized by 〈v2, v2〉µ = 1 and satisfies
v2 ∈ L∞(µ). Note that 〈v2,1X〉µ = 0, since Pτ is self–adjoint.

A decomposition D = {D1, . . . , Dn} of the state space X is a collection
of subsets Dk ⊂ X with the properties:

(i) positivity: µ(Dk) > 0 for every k,

(ii) disjointness: Dk ∩Dl = ∅ for k 6= l, and
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(iii) covering property: ∪nk=1Dk = X.

For a decomposition D = {B,C} of X into two subsets, we define the
following function

vBC =

√
µ(C)
µ(B)

1B −

√
µ(B)
µ(C)

1C , (35)

which is constant on either of the two sets B and C, and is normalized to
‖vBC‖2 = 1. Under the assumptions on the propagator Pτ stated above we
obtain the following relation between the existence of metastable subsets
and eigenvalues close to 1.

Theorem 3.1 Let D = {B,C} be an arbitrary decomposition of X into two
subsets. Then

1 + κλ2 ≤ [ p(τ,B,B) + p(τ, C,C) ] ≤ 1 + λ2, (36)

with κ = 〈v2, vBC〉2µ ≤ 1. In addition, choosing

B = {x ∈ X : v2(x) ≥ 0} and C = {x ∈ X : v2(x) < 0},

we have 1− 8c2ε ≤ κ with constants ε = (1− λ2)/(1− λ3) and c = ‖v2‖∞.

Proof : The proof is based on results by Davies [9, 10] and a subsequent
paper of Singleton [73]. In order to be applicable to our situation, we have
to extend their results, since in general, we cannot assume the existence of
an infinitesimal generator as in [9, 10, 73]. In [73] we have to replace the
strongly continuous semigroup exp(−Ht) by Pτ . Furthermore, to match the
assumptions on the spectrum in [73] with ours, we have to rescale the time
of the semigroup. Interpreting p(τ,B,C) as µ(C)〈Pτ1B/µ(B),1C/µ(C)〉µ,
as stated by property (i) in Section 3.1, Lemma 4 of [73] and its subsequent
remark state that

p(τ,B,C) =
1

2µ(B)
‖1B − Pτ1B‖1 = µ(C) 〈vBC − PτvBC , vBC〉µ.

We then exploit Theorem 5 of [73] to bound the scalar product by

1− λ2 ≤ 〈vBC − PτvBC , vBC〉µ ≤ 1− κλ2

with κ = 〈v2, vBC〉2µ ≤ 1. Putting everything together, we end up with

µ(B)(1− λ2) ≤ p(τ,B,C) ≤ µ(B)(1− κλ2). (37)

Repeating the calculation with vCB = −vBC and exchanged roles of B and
C, we see that inequality (37) holds in an analogous way for p(τ, C,B).
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Hence, summing up both inequalities and exploiting µ(B) + µ(C) = 1, this
finally gives

1− λ2 ≤ [ p(τ,B,C) + p(τ, C,B) ] ≤ 1− κλ2

⇔ 1 + κλ2 ≤ [ p(τ,B,B) + p(τ, C,C) ] ≤ 1 + λ2,

which is the first statement of Theorem 3.1. For the second statement on
the lower bound on κ, we conclude from Theorem 3 of [73] that

κ = 1− 1
2
‖v2 − vBC‖22. (38)

In the following we determine, analogous to Theorem 3 in [9], an upper
bound on ‖v2 − vBC‖2, which implies a lower bound on κ. Once again,
exp(−Ht) has to be replaced by Pτ and furthermore, the infinitesimal gen-
erator −H has to be substituted by Id− Pτ . Define the function

ψ =

√
‖v−2 ‖2
‖v+

2 ‖2
v+

2 +

√
‖v+

2 ‖2
‖v−2 ‖2

v−2 ,

where v+
2 and v−2 denote the positive and negative part of v2, respectively.

Note that 〈Pτψ,ψ〉µ ≥ λ1 implies

〈(Id− Pτ )ψ,ψ〉µ ≥ 1− λ2. (39)

Now, define ξ = ψ − 〈ψ,1X〉1X. Since ξ is orthogonal to 1X and v2, we
obtain by means of Cauchy–Schwarz 〈Pτξ, ξ〉 ≤ λ3‖ξ‖22 and therefore

(1− λ3)‖ξ‖22 ≤ 1− λ3‖ξ‖22 ≤ 1− 〈Pτξ, ξ〉 ≤ 〈(Id− Pτ )ξ, ξ〉. (40)

Assembling (39) and (40) results in

(1− λ3)‖ξ‖22 ≤ 〈(Id− Pτ )ξ, ξ〉
= 〈(Id− Pτ )ψ,ψ〉 − 〈ψ, 1〉〈(Id− Pτ )ψ,1X〉
−〈ψ, 1〉〈(Id− Pτ )1X, ψ〉+ 〈ψ, 1〉2〈(Id− Pτ )1X,1X〉

= 〈(Id− Pτ )ψ,ψ〉 ≤ 1− λ2,

which implies ‖ξ‖22 ≤ ε with ε = (1 − λ2)/(1 − λ3). With this modification
in the proof of Theorem 3 in [9], we finally get

‖v2 − vBC‖22 ≤ 16‖v2‖2∞ε,

which together with (38) gives the lower bound on κ. �

Theorem 3.1 highlights the strong relation between a decomposition of
the state space into two metastable subsets and a second eigenvalue close
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Figure 2: Data based on Smoluchowski equation. Left: metastability of a decomposition
D = {B,C} with B = (−∞, q] and C = (q,∞] in dependence on q. The problem of
finding the maximal value corresponding to the optimal decomposition is ill–conditioned.
The vertical line corresponds to the decomposition B = {x ∈ X : h2(x) ≥ 0} and C =
X \ B defined by the second eigenfunction h2 (right). We obtain κ = 0.984 according to
Theorem 3.1.

to the dominant eigenvalue 1. For an arbitrary decomposition D = {B,C}
let us call p(τ,B,B) + p(τ, C,C) the metastability of the decomposition
D. Then Theorem 3.1 states that the metastability of a decomposition
D = {B,C} cannot be larger than 1 + λ2, while it is at least 1 + κλ2. The
upper bound is “large” whenever the eigenfunction v2 corresponding to λ2

is almost constant on the two metastable subsets B and C. As stated by
the second part of Theorem 3.1, we can guarantee metastability for the par-
ticular decomposition into B = {x : v2(x) ≥ 0} and C = {x : v2(x) < 0}
whenever (i) the gap between the second and third eigenvalue is large, hence
ε = (1 − λ2)/(1 − λ3) is small, and (ii) the essential maximum c = ‖v2‖∞
of the second eigenfunction v2 is small. In [10] Davies proved, that in the
case of a strongly continuous positive semigroup of self–adjoint propagators,
e.g., in the case of the Smoluchowski dynamics, the lower bound on κ is in
fact independent of c = ‖v2‖∞, whenever c < ∞. Nevertheless, the lower
bound on p(τ,B,B) + p(τ, C,C) via ε � 1 implies the quite restrictive as-
sumption: λ3 � λ2 on the spectrum Pτ . In numerical experiments we have
observed intriguing results of the identification strategy even for situations
corresponding to large ε-values [17].

In view of Theorem 3.1, it is natural to ask, whether there is an optimal
decomposition with highest possible metastability. The answer is illustrated
by Figure 2: Even if there exists an optimal decomposition, the problem of
finding it might be ill–conditioned. The graph shows the metastability of a
family of decompositions. It is based on the propagator Pτ corresponding
to the Smoluchowski equation for the double–well potential on X = R. The
conditions (C1) and (C2) on Pτ are justified by Proposition 6.5, while the
assumption on the spectrum can be fulfilled by choosing an appropriate in-
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verse temperature β. We identify a whole domain of decompositions that
are nearly optimal. In this case the problem of finding the maximum is
ill–conditioned. We also observe that the decomposition suggested by our
identification algorithm is nearly optimal. The phenomenon illustrated by
Figure 2 is believed to by typical in our application context, which is due to
the fact that the canonical ensemble has large regions of almost vanishing
probability.

Having an application to more complicated dynamical behavior in mind,
we claim the following generalization of Theorem 3.1 for a decomposition
into more than two subsets: Assume that the propagator Pτ , acting on
L2(µ), is associated with a reversible Markov process and satisfies the con-
ditions (C1) and (C2). Moreover, assume that its spectrum is of the form
σ(Pτ ) ⊂ [l, r] ∪ {λn} ∪ · · · ∪ {λ2} ∪ {1} with simple, isolated eigenvalues
λn < . . . < λ2 < λ1 = 1 and corresponding eigenfunctions in L∞(µ). Given
a decomposition D = {D1, . . . , Dn} of X, denote by {vD1 , . . . , vDn} some
µ–orthonormal basis of span{1D1 , . . . ,1Dn}.

0 5 10 15 20 25
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2.2

2.4

2.6

2.8

3

γ

Figure 3: Illustration of the Conjecture for a decomposition of the state space into three
subsets. The graph is based on the propagator Pτ corresponding to the Smoluchowski
equation. The test system is the three–well potential defined in (63) for β = 2 and different
values of γ. For details on the discretization see Section 6. The top solid line represents
the upper bound 1 + λ2 + λ3 in the Conjecture, while the dashed line corresponds to the
metastability p(τ,D1, D1) + p(τ,D2, D2) + p(τ,D3, D3) of the decomposition obtained by
applying the identification algorithm. The bottom solid line represents the lower bound
κ11 + κ2λ2 + κ3λ3.

Conjecture. Let D = {D1, . . . , Dn} be an arbitrary decomposition of
X into n subsets. Then

κ11 + . . .+ κnλn ≤ [ p(τ,D1, D1) + . . .+ p(τ,Dn, Dn) ] ≤ 1 + . . .+ λn

with κj = 〈vj , vDj 〉2µ ≤ 1.

For a numerical verification of the Conjecture for a decomposition of the
state space into n = 3 subsets see Figure 3. The conjecture is in agreement
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with all numerical experiments performed in Section 6.

In the following, we want to comment on an extension to non–reversible
Markov processes. In his PhD thesis [74], Singleton proved results about
metastable states for non–self–adjoint strongly continuous Markov semi-
groups, which might be used to extend Theorem 3.1. The main problem
in the absence of self–adjointness is to control both, the propagator and its
adjoint at the same time. This necessitates increasing technical effort, since
we have to pose conditions on spectral projections and resolvents rather
than on the distribution of eigenvalues to handle non–self–adjointness. As
Singleton stated in [74], the results obtained for suitable non–self–adjoint
operators are of the same order of magnitude.

We will proceed in a different way based on an idea due to Froyland
and Dellnitz [25]. They made the fascinating observation that we can asso-
ciate to every non–reversible Markov chain a reversible Markov chain that
possesses the same invariant measure and the same metastable subsets. We
will extend this approach for our purpose from the finite state space to
the general state space. Consider a Markov process Xt = {Xt}t∈T and
assume that its stochastic transition function p is absolutely continuous,
hence p(t, x, dy) = p(t, x, y)µ(dy) with density jointly measurable in x and
y. For some fixed observation time span τ > 0, consider the discrete–time
Markov process Xn = {Xτn}n∈Z+ ; its stochastic transition function is given
by pτ (n, x,dy) = p(τn, x, dy). We define the time–reversed Markov pro-
cess Yn = {Yn}n∈Z+ via its stochastic transition function qτ given by

qτ (n, x, dy) = qτ (n, x, y)µ(dy) = pτ (n, y, x)µ(dy),

which by definition is again absolutely continuous and discrete in time.
The map qτ satisfies the requirements for a stochastic transition function,
since qτ (n, x,X) = 1 due to invariance of µ, and

∫
X qτ (n, x,dz)qτ (1, z, A) =

qτ (n + 1, x, A), which implies the Chapman–Kolmogorov equation. If pτ is
reversible then qτ = pτ , as we would expect. The time–reversed Markov
process Yn has two important properties (analogous to [25]):

(i) The probability measure µ is invariant w.r.t. Yn, since∫
X
qτ (n, x,A)µ(dx) =

∫
X

∫
A
p(τn, y, x)µ(dy)µ(dx)

=
∫
A

∫
X
p(τn, y, x)µ(dx)µ(dy) = µ(A).

(ii) The time–reversed Markov process Yn has the same metastable subsets
as the original process Xn, i.e.,

pτ (n,C,C) = qτ (n,C,C)
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for arbitrary C ∈ A and every n ∈ Z+. This is a special case of the
general identity µ(C) pτ (n,C,D) = µ(D) qτ (n,D,C), which is due to

µ(C) pτ (n,C,D) =
∫
C

∫
D
pτ (n, x, y)µ(dy)µ(dx)

=
∫
C

∫
D
qτ (n, y, x)µ(dy)µ(dx)

= µ(D) qτ (n,D,C).

Although neither Xn nor Yn need to be reversible, we can use them to
construct a reversible Markov process (analogous to [25]):

Theorem 3.2 Define the time–symmetrized Markov process Zn =
{Zn}n∈Z+ via its one–step stochastic transition function

rτ (1, x,dy) =
1
2

[ pτ (1, x, y) + qτ (1, x, y) ]µ(dy).

Its n–step version given by the Chapman–Kolmogorov equation. Then, Zn is
invariant w.r.t. to µ, reversible and possesses the same one step metastability
as Xn, i.e.,

pτ (1, C, C) = rτ (1, C, C)

for arbitrary C ∈ A.

Proof: The statements about the invariance of µ and the metastability are
obvious. Now, let us prove that Zn is reversible w.r.t. µ, hence we have to
prove condition (7). For A,B ∈ A we have∫

A
rτ (1, x,B)µ(dx) =

∫
A

∫
B

1
2

[pτ (1, x, y) + qτ (1, x, y)]µ(dx)µ(dy)

=
∫
A

∫
B

1
2

[qτ (1, y, x) + pτ (1, y, x)]µ(dx)µ(dy)

=
∫
B
rτ (1, x, A)µ(dx);

hence Zn is reversible. �

If the original Markov process Xt is reversible, then rτ = pτ and the
time-symmetrized Markov process coincides with the original one sampled
at rate τ . For the interesting case of an originally non–reversible Markov
process this is quite different. In general, we have:

(i) The n–step transition probability rτ (n, ·, ·) is not defined via the sum
of the n–step transition probabilities pτ (n, ·, ·) and qτ (n, ·, ·), since al-
ready

rτ (2, x, A) 6=
∫

X

1
2

[ pτ (2, x, A) + qτ (2, x, A) ].
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This is not surprising, because the left hand side, defined via the
Chapman–Kolmogorov equation, involves the product of pτ (1, ·, ·) and
qτ (1, ·, ·), while the right hand side does not.

(ii) Due to (i) we have pτ (n,C,C) 6= rτ (n,C,C) for n > 1.

(iii) There exists no continuous–time Markov process Ẑt = {Ẑt}t∈R such
that Zn is obtained by sampling Ẑt at rate τ , i.e., such that Zn = Ẑnτ
for n ∈ Z+. Hence, even if the original Markov process is defined via
a stochastic differential equation, this is not the case for the time–
symmetrized Markov process.

Sums of transition probabilities are frequently encountered in the Markov
chain Monte Carlo theory, where it is well known that a realization of the
time–symmetrized Markov process can be performed in two steps: (i) choose
randomly one of the two transition functions pτ or qτ with equal probability
1/2. (ii) proceed according to the chosen transition function. Repeat this
procedure for every discrete time step. However, in order to discretize the
propagator corresponding to the time–symmetrized Markov process, we will
proceed in a different way, as outlined in Section 5.3.

In view of Theorem 3.2, we conclude that the original, possibly non–
reversible Markov process Xt possesses a decomposition into metastable
subsets (on the timescale τ), if the time–symmetrized Markov process Zn
does. This allows us to apply Theorem 3.1. In particular, the eigenfunctions
related to the time–symmetrized Markov process can be used to identify the
metastable subsets of the original, non–reversible Markov process. We will
exemplify the time–symmetrization approach for the Langevin equation in
Section 6.3.
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4 Analysis of Transfer Operators

In the preceding section we have presented an algorithmic approach to the
identification of metastable subsets under the two conditions (C1) and (C2),
which are functional analytical statements on the spectrum of the propaga-
tor Pτ . In this section, we want to transform these conditions into a more
probabilistic language, which will result in establishing equivalent condi-
tions on the stochastic transition function. For general Markov processes it
is natural to consider Pτ acting on L1(µ), the Banach space that includes
all probability densities w.r.t. µ. Yet, for reversible Markov processes it is
advantageous to restrict the analysis to L2(µ), since the propagator will then
be self–adjoint. Therefore, in the first two sections we start with analyzing
the conditions (C1) and (C2) in L1(µ), while in the third section, we then
concentrate on L2(µ). For convenience we use the abbreviation P = Pτ and
p(x,C) = p(τ, x, C) for some fixed time τ > 0. As a consequence, Pn = Pnτ
corresponds to the Markov process sampled at rate τ with stochastic tran-
sition function given by pn(·, ·) = p(nτ, ·, ·). The results presented in this
section mainly follow [34].

4.1 The Spectrum and its Parts

Consider a complex Banach space E with norm ‖·‖ and denote the spectrum6

of a bounded linear operator P : E → E by σ(P ). For an eigenvalue
λ ∈ σ(P ), the multiplicity of λ is defined as the dimension of the generalized
eigenspace; see e.g., [40, Chap. III.6]. Eigenvalues of multiplicity 1 are
called simple. The set of all eigenvalues λ ∈ σ(P ) that are isolated and of
finite multiplicity is called the discrete spectrum, denoted by σdiscr(P ).
The essential spectral radius ress(P ) of P is defined as the smallest real
number, such that outside the ball of radius ress(P ), centered at the origin,
are only discrete eigenvalues, i.e.,

ress(P ) = inf{r ≥ 0 : λ ∈ σ(P ) with |λ| > r implies λ ∈ σdiscr(P )}.

This definition of ress(P ) is unusual in the sense that it does not involve any
definition of the essential spectrum; yet, it is the way we will exploit ress(P )
and it will be justified by Theorem 4.1 below. Usually, the essential spectral
radius is related to the smallest disc containing the entire essential spectrum
σess(P ) of P . Unfortunately, there are many different characterizations of
essential spectra (see e.g., [66, 47] or [32, Chapter 107]). The definition that
results in the smallest set is due to Kato [40, Chapter IV.5.6] who defines
σess

Kato(P ) as the complement of {λ ∈ C : λ − P is semi Fredholm7}. The
6For common functional analytical terminology see, e.g., [19, 32, 40, 84].
7A bounded linear operator P : E → E on a Banach space E is said to be semi

Fredholm, if its range R(P ) = {y = Px : x ∈ E} is closed and the dimension of its kernel
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definition that results in the largest set is due to Browder [5] according to
whom σess

Browder(P ) is the complement of the discrete spectrum, as defined
above. According to Lebow and Schechter [47] we get the surprising result
that all other known definitions of essential spectra fall between those of
Kato and Browder and lie inside the ball with radius ress(P ) centered at the
origin:

Theorem 4.1 For every bounded linear operator P : E → E on a complex
Banach space E holds

sup{|λ| : λ ∈ σess
Kato(P )} = ress(P ) = sup{|λ| : λ ∈ σess

Browder(P )}.

Loosely speaking, Theorem 4.1 states that the essential spectral radius
is invariant under the definition of the essential spectrum.

As a guiding example for our strategy to bound the essential spectral
radius, consider the following semi–norm ‖ · ‖c defined by

‖P‖c = inf{‖P − S‖ : S compact}.

Then the essential spectral radius is characterized by

ress(P ) = lim
n→∞

‖Pn‖1/nc .

Note the analogy to the spectral radius r(P ) of P , defined as the smallest
upper bound for all elements of the spectrum: r(P ) = sup{|λ| : λ ∈ σ(P )}.
In terms of the operator norm ‖ · ‖1, the representation r(P ) = lim ‖Pn‖1/n1

as n→∞ is well–known [19, Chap. VII.3.5]. The above characterization of
ress(P ) is closely related to quasi–compactness:

Definition 4.2 ([32]) A bounded linear operator P : E → E is called
quasi–compact, if there exist some m ∈ Z+ and a compact operator S : E →
E such that ‖Pm − S‖ < 1.

Combining quasi–compactness with the characterization of ress(P ) yields:

Corollary 4.3 For bounded linear operator P : E → E holds

(i) if ress(P ) < 1 then P is quasi–compact

(ii) if P is quasi–compact for some m ∈ Z+ and compact operator S with
‖Pm − S‖ = 1− η < 1, then ress(P ) ≤ (1− η)1/m < 1.

N(P ) = {x ∈ E : Px = 0} or the codimension of its range, i.e., dimE/R(P ), are finite
[40, Chapter IV.5]. If both, the dimension of the kernel and the codimension of the range
are finite, then P is called a Fredholm operator.
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We conclude that the essential spectral radius can be bound by using
compact operators:

Find for some power Pm with m ∈ Z+ a decomposition into a
compact part S and the remaining part Pm−S. Then, we have
the upper bound: ress(P ) ≤ ‖Pm − S‖1/m.

In other words, the “larger” the compact part of Pm is, the smaller the
essential spectral radius of P will be. Our goal is to relate compactness of
S to properties of the stochastic transition function that defines P . Due to
the various possible definitions of essential spectra, this approach might not
be restricted to compact operators. This is indeed the case, as we will see
below. The crucial point will be to find the class of operators that fits best
both the Banach space as well as the propagator and the Markov process. In
L1(µ) weakly compact operators are better adapted for our purpose, while in
L2(µ) the compact ones will do a good job. This is basically due to the fact
that in either case we can characterize the property of being (weakly) com-
pact in terms of the underlying probability space, which finally enables us to
relate bounds on the essential spectral radius to properties of the stochastic
transition function. For relations between the essential spectral radius and
measures of non–compactness, see [56, 83].

Spectral conditions can be quite sensitive to the Banach space of func-
tions the operator is regarded to act on. This is illustrated by the following
example due to Davies [11, Chapter 4.3].

Example 4.4 Consider the Smoluchowski equation

q̇ = −q + Ẇ (41)

on the state space X = R. It corresponds to the harmonic potential V (q) =
q2/2 with γ = σ = 1 and invariant probability measure

µQ(dq) =
1
Z

exp(−q2)dq.

The Markov process defined by (41) is known as the Ornstein–Uhlenbeck
process [38]. The evolution of densities v = v(t, q) w.r.t. µQ is governed by
the Fokker–Planck equation

∂tv =
( 1

2
∆− q · ∇q︸ ︷︷ ︸

L

)
v, (42)

which defines a strongly continuous contraction semigroup Pt = exp(tL) on
Lr(µ) for every 1 ≤ r < ∞. The spectra of L and Pt have the following
properties:
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(i) In L1(µ) it is σ(L) = {z ∈ C : Re(z) ≤ 0}, with every z ∈ σ(L)
satisfying Re(z) < 0 being an eigenvalue of multiplicity two. This
implies for the propagator that

σ(Pt) = {z ∈ C : |z| ≤ 1},

with every z ∈ σ(Pt) satisfying |z| < 1 being an eigenvalue of infinite
multiplicity, hence ress(Pt) = 1.

(ii) In L2(µ) it is σ(L) = {z ∈ C : z = 0,−1,−2, . . . }, with the nth
Hermite polynomial being the eigenfunction corresponding to λn = −n.
Hence, the entire spectrum is discrete. This implies for the propagator

σ(Pt) = {z ∈ C : z = e−tn for n = 0, 1, 2, . . . },

with ress(Pt) = 0.

From a numerical point of view, we would like to consider the space of
functions that is “generated” by the discretization procedure for finer and
finer decompositions of the state space. This, however, is believed to be a
very tough question.

4.2 Bounds on the Essential Spectral Radius in L1(µ)

This section analyzes the essential spectral radius of an arbitrary propagator
P : L1(µ)→ L1(µ) in terms of its stochastic transition function. In doing so,
weakly compact operators will play an important role. The main result is
stated in Theorem 4.13, which relates the essential spectral radius, uniform
constrictiveness and a certain Doeblin–condition.

Definition 4.5 ([19, 50]) A bounded linear operator S : L1(µ) → L1(µ)
is called weakly compact if it maps the closed unit ball B1(X) onto a
relatively weakly compact set, i.e., the closure of S(B1(X)) is compact in
the weak topology.

Obviously, every compact operator is weakly compact; the converse is
not true. The next theorem characterizes the essential spectral radius of an
arbitrary bounded linear operator in terms of weakly compact operators.

Theorem 4.6 ([81, 83]) Let P : L1(µ) → L1(µ) denote a bounded linear
operator. Define the semi–norm ∆(P ) according to

∆(P ) = min {‖P − S‖1 : S is weakly compact } .

Then the essential spectral radius of P is characterized by

ress(P ) = lim
n→∞

∆(Pn)1/n. (43)

In particular, ress(P ) ≤ ∆(P ).
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The theorem states that the larger the weakly compact part of P is,
the less the essential spectral radius will be. Hence, good upper bounds
on ress(P ) require a detailed analysis of weak compactness. It should be
clear from the introductory statements of this section that we could also
apply Corollary 4.3 to characterize the essential spectral radius in L1(µ) by
compact operators. The utility of weakly compact operators will become
apparent by the next theorem that relates this particular class of operators
to the underlying measure space (X,A, µ).

Theorem 4.7 ([81, 82]) Let P : L1(µ) → L1(µ) denote a bounded linear
operator. Then

∆(P ) = lim sup
µ(A)→0

‖1A ◦ P‖1, (44)

where the limit is understood to be taken over all sequences of subsets whose
µ–measure converges to zero, and 1A is interpreted as a multiplication op-
erator: (1Av)(x) = 1A(x)v(x). In particular,

lim sup
µ(A)→0

‖1A ◦ P‖1 = 0,

if and only if P is weakly compact.

As a consequence of Theorem 4.7, we will deduce in the following that
absolutely continuous stochastic transition functions may give rise to weakly
compact operators, while transition functions that are singular w.r.t. µ never
do so. This will finally enable us to characterize the essential spectral radius
in terms of properties of the stochastic transition function.

Corollary 4.8 Consider some propagator S : L1(µ)→ L1(µ) defined by

Sv(y) =
∫

X
v(x)p(x, y)µ(dx) (45)

associated with some absolutely continuous stochastic transition function
p(x,dy) = p(x, y)µ(dy). Then S is weakly compact if there exits some s > 1
such that ‖p(x, ·)‖s ∈ L∞(µ) as a function of x, i.e.,

ess sup
x∈X

∫
X
p(x, y)sµ(dy) < ∞

holds. In particular, S is weakly compact if ess supx,y∈X p(x, y) <∞.

Proof: For A ∈ B(X), we have

‖1A ◦ S‖1 = sup
‖v‖1≤1

∫
A

∫
X
v(x)p(x, y)µ(dx)µ(dy).
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Applying Hölder’s inequality twice, we finally get

‖1A ◦ S‖1 ≤ ess sup
x∈X

∫
A
p(x, y)µ(dy) ≤ ‖1A‖r ess sup

x∈X
‖p(x, ·)‖s

with 1 ≤ r, s ≤ ∞ and 1/s + 1/r = 1. For 1 < s, the limit of ‖1A ◦ S‖1 as
µ(A)→ 0 tends to zero, since ‖1A‖r = r

√
µ(A). �

For analyzing propagators corresponding to not necessarily absolutely
continuous stochastic transition functions, consider the Lebesgue decom-
position of p(x,dy) = pa(x, y)µ(dy) + ps(x,dy), where pa and ps represent
the absolutely continuous and the singular part w.r.t. µ, respectively [45].
Furthermore, define the (not necessarily stochastic) transition function

rn(x, y) =
{
pa(x, y) if pa(x, y) ≥ n
0 otherwise

.

With this notation, we are ready to state the important

Theorem 4.9 ([82]) For an arbitrary propagator P : L1(µ) → L1(µ) the
equality

∆(P ) = inf
n∈Z+

ess sup
x∈X

{rn(x,X) + ps(x,X)}

holds.

In the particular case, where pa gives rise to a weakly compact operator,
Theorem 4.9 states that

∆(P ) = ess sup
x∈X

ps(x,X) = 1− ess inf
x∈X

∫
X
pa(x, y)µ(dy).

If only some decomposition P = R+S with weakly compact S is known, we
may still apply Theorem 4.6 to get an upper bound on ∆(P ). Assume that
the stochastic transition function can be decomposed according to p(x,dy) =
pR(x, dy) + pW (x, dy) such that S, defined via Sv(y) =

∫
X v(x)pW (x, dy), is

weakly compact. Then

∆(P ) ≤ ess sup
x∈X

pR(x,X) ≤ 1− ess inf
x∈X

pW (x,X)

by Theorem 4.6. Using one of the inequalities involving ∆(P ), we are able to
bound the essential spectral radius due to Theorem 4.6. This is illustrated
by the following example due to Schütte [68, Chapter 4.1].

Example 4.10 Consider the Hamiltonian system with randomized momenta
for the harmonic potential V (q) = q2/2 on some position space Ω ⊂ R with
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inverse temperature β and positional canonical distribution µQ. Choose the
observation time span τ = 2π and decompose the stochastic transition func-
tion according to

pτ (q,dy) = pa(q, y)µQ(dy) + ps(q,dy)

into an absolutely continuous and singular part w.r.t. µQ. Depending on the
position space, we distinguish two cases

(i) Consider Ω = R, the bounded system case. Since τ = 2π is the pe-
riod of the harmonic oscillator, we deduce that Pτ = Id and hence
ress(Pτ ) = 1. In terms of the stochastic transition function this means
that pa = 0 and ps(q,dy) = δq(dy) for every q ∈ Ω.

(ii) Consider Ω = [−1, 1] with periodic boundary conditions. It can be
shown that in this case the density pa is bounded and satisfies

inf
q∈Ω

∫
Ω
pa(q, y)µQ(dy) = 2 Φ(−

√
β)

where Φ denotes the distribution function of the standard normal dis-
tribution. Setting

η = 2Φ(−
√
β) = 2

(
1− Φ(

√
β)
)

we have 0 ≤ η ≤ 1 and finally ress(Pτ ) ≤ ∆(Pτ ) = 1− η due to8 The-
orem 4.9. In other words, the (upper bound on the) essential spectral
radius depends on the inverse temperature and therefore on the mean
energy of the ensemble. The lower the mean energy (and hence the
higher the inverse temperature) is, the larger the essential spectral ra-
dius will be. This corresponds to the intuition that the periodic system
behaves more and more like the bounded system for decreasing mean
energy.

So far we have shown how to prove ress(P ) < 1 in terms of the stochastic
transition function p. The properties imposed on p emerged from functional
analytical requirements on the propagator P . We now link these results to
the theory of Markov processes and Markov operators. An important prop-
erty of Markov operators is constrictiveness [46]; it rules out the possibility
that for some initial density v the iterates Pnv eventually concentrate on a
set of very small or vanishing measure.

8For the propagator regarded to act on L2(µQ) the stronger statement ress(Pτ ) = 1−η
is proved in [68].
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Definition 4.11 A propagator P : L1(µ) → L1(µ) is called constrictive if
there exist constants ε, δ > 0 such that for every density v ∈ L1(µ) there
exists m = m(v) ∈ Z+ with

µ(A) ≤ ε ⇒
∫
A
Pnv(y)µ(dy) ≤ 1− δ, (46)

for every n ≥ m. We call a propagator uniformly constrictive if there
exists m ∈ Z+ such that (46) holds for n ≥ m uniformly in L1(µ).

For arbitrary v ∈ L1(µ), uniform constrictiveness can be restated as
µ(A) ≤ ε ⇒ ‖1A ◦ Pn‖1 ≤ 1 − δ for every n ≥ m. Moreover, it is sufficient
to assume that the condition holds for n = m only, since due to ‖P k‖1 =
1 for k ∈ Z+ this already implies (46) for all n ≥ m. In view of the
characterization of ∆(P ) in (44), uniform constrictiveness seems to be closely
related to ∆(P ) < 1 and thus to some bound on the essential spectral
radius; this is indeed the case, as we will see below. Furthermore, there
should exist a similar condition involving the backward transfer operator
T . This, in turn, is closely related to the Doeblin–condition, which is well–
known in the theory of Markov processes [18, 52, 60]. It states that there
exists a probability measure ν, constants ε, δ > 0 and m ∈ Z+ such that
ν(A) ≤ ε ⇒ supx∈X pm(x,A) ≤ 1 − δ. To suit our context, we slightly
adapt the Doeblin–condition in the way that we require ν = µ and that the
implication holds for µ–a.e. points only:

Definition 4.12 The stochastic transition function p is said to fulfill the
µ-a.e. Doeblin–condition if there exist constants ε, δ > 0 and m ∈ Z+

such that

µ(A) ≤ ε ⇒ pm(x,A) ≤ 1− δ (47)

for µ–a.e. x ∈ X and every A ∈ B(X).

Using the backward transfer operator, we deduce that (47) is equivalent
to µ(A) < ε ⇒ ‖Tm1A‖∞ = ess supx∈X pm(x,A) ≤ 1 − δ. In fact, the
condition is true for all n ≥ m, since ‖Tm+k1A‖∞ ≤ ‖T k‖∞‖Tm1A‖∞ and
‖T k‖∞ = 1 holds for k ≥ 1. The next theorem states the main result of this
section. It relates the functional–analytical, the Markov operator theoretical
and the Markov process theoretical point of view.

Theorem 4.13 Let P : L1(µ)→ L1(µ) denote the propagator corresponding
to a stochastic transition function p : X×B(X)→ [0, 1]. Then, the following
statements are equivalent:

(i) The essential spectral radius of P is less than one: ress(P ) < 1.

(ii) The propagator P is uniformly constrictive.
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(iii) The stochastic transition functions fulfills the µ-a.e. Doeblin–condition.

If conditions (ii) or (iii) are satisfied for some ε, δ > 0 and m ∈ Z+, then
condition (i) holds with ress(P ) ≤ (1− δ)1/m.

Proof: Assume (i) holds, i.e., ress(P ) < 1. Due to Eqs. (43) and (44), there
exists m ∈ Z+ such that ∆(Pm) < 1, which implies the µ-a.e. Doeblin–
condition (4.12) due to ‖1A ◦Pn‖1 = ‖Tn1A‖∞ (see Lemma 4.1 in [34]). As
just stated, (iii) is equivalent to (ii). Using the note following Def. 4.11, it is
obvious that (ii) and (i) are equivalent. The bound on ress(P ) follows from
(43) and (44). �

In view of the established equivalence, the essential spectral radius is
related to the possibility of the system to eventually concentrate on a set
of small or vanishing measure. In other words, the more the dynamics is
smeared over the entire state space, the less is the essential spectral radius,
while irregular or singular behavior may give rise to a large essential spectral
radius.

4.3 Peripherical Spectrum and Properties in L1(µ)

This section analyzes the peripherical spectrum and its relation to properties
of propagators P acting on L1(µ). Due to our particular interest—cf. con-
dition (C1)—we restrict the analysis to uniformly constrictive propagators,
i.e., we assume that ress(P ) < 1. We will see that under this assumption the
peripherical spectrum completely characterizes the asymptotic properties of
P , as it is known from the finite dimensional case.

Recall that we require throughout this thesis that the probability mea-
sure µ is invariant w.r.t. the Markov process. This is equivalent to the
condition P1X = 1X. A subset E ⊂ X is called non–null if µ(E) > 0.
A non–null subset E ⊂ X is called invariant if P1E = 1E . Parts of the
following two theorems are scattered over the literature see, e.g., [19, 46, 85].

Theorem 4.14 (Invariant Decomposition) Let P : L1(µ) → L1(µ) de-
note a uniformly constrictive propagator. Then

(i) there are only finitely many eigenvalues λ ∈ σdiscr(P ) with |λ| = 1,
each being a root of unity. The dimension of each eigenspace is finite
and equal to the multiplicity of the corresponding eigenvalue;

(ii) the eigenvalue λ = 1 is of multiplicity d, if and only if there exists a
decomposition of the state space

X = E1 ∪ · · · ∪ Ed ∪ F

into d mutually disjoint invariant subsets Ej and a set F = X \
⋃
j Ej

of µ–measure zero.
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Proof: Direct application of Thm. 4.13 of this thesis and Thm. 3 of [19,
VIII.8] proves the first part. For the second statement, we exploit the fact
that Pv = v implies Pv+ = v+ and Pv− = v−, where v+/− denotes the pos-
itive or negative part of v, respectively [46]. Assume that the multiplicity
of λ = 1 is d. Then, as a consequence of the first part, there exist d linear
independent eigenfunctions v1, . . . , vd. Due to the decomposition result for
v, we can also choose d linear independent densities, which we again denote
by v1, . . . , vd. We now show that the densities can be chosen in such a way
that their supports Ej = supp(vj) are mutually disjoint, i.e., µ(Ej ∩Ek) = 0
for j 6= k. If for some choice of linear independent densities v1, . . . , vd
there exist vj , vk such that µ(Ej ∩ Ek) > 0, we simply substitute vj , vk by
(vj − vk)+, (vj − vk)−. This is possible, since span{(vj − vk)+, (vj − vk)−} =
span{vj , vk} and span{(vj − vk)+, (vj − vk)−, vj , vk} > 2 would be in con-
tradiction to the fact that the multiplicity of λ = 1 is d. Due to P1X = 1X,
we have vj = 1Ej/µ(Ej) and

∑
j µ(Ej) = 1. Finally, define F = X \

⋃
j Ej .

Since any decomposition into d mutually disjoint invariant subsets results
in a multiplicity of λ = 1 of at least d, the second statement is proved. �

The decomposition of the state space given by the theorem is unique
up to µ–equivalence. There is an analogous decomposition result for the
stochastic transition function p, since for every invariant subset E the iden-
tity

µ(E) =
∫
E

1E(y)µ(dy) =
∫
E
P1E(y)µ(dy) =

∫
E
p(x,E)µ(dx)

implies p(x,E) = 1 for µ–a.e. x ∈ E. Thus, the decomposition of The-
orem 4.14 induces a decomposition of the stochastic transition function,
which again is unique up to µ–equivalence. For a “strong” decomposition
holding everywhere see, e.g., [85]. For some root of unity ω = exp(2πi/m)
with m ∈ Z+, we call σcycle(ω) = {ω, ω2, . . . , ωm} an eigenvalue cycle
associated with ω. A further subdecomposition of an invariant subset E
into m mutually disjoint, non–null subsets {E1, . . . , Em} is called a subset
cycle of length m if P1Ej = 1Ej+1 for j = 1, . . . ,m with the convention
Em+1 = E1. For the next theorem, an eigenvalue of multiplicity ν is inter-
preted as ν equal eigenvalues λ1, . . . , λν of multiplicity 1.

Theorem 4.15 (Cycle Decomposition) Let P : L1(µ)→ L1(µ) denote a
uniformly constrictive propagator. Then

(i) each discrete eigenvalue λ ∈ σdiscr(P ) of unit modulus is part of some
eigenvalue cycle, i.e., there exists m ∈ Z+ such that λ ∈ σcycle(ω) with
ω = exp(2πi/m);

(ii) there is a one–to–one correspondence between eigenvalue cycles and
subset cycles. More precisely, let d denote the multiplicity of λ = 1.
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Then the set of all eigenvalues of unit modulus can be decomposed into
d eigenvalue cycles σcycle(ωj) with ωj = exp(2πi/mj), mj ∈ Z+ and
j = 1, . . . , d, if and only if the state space X can be decomposed into
d subset cycles {Ej 1, . . . , Ej mj} of length mj for j = 1, . . . , d.

Proof: Use Theorem 4.14 of this thesis and Theorem 11 in [85], which also
holds in our case, to show that each invariant subset E can be decomposed
into a subset cycles {E1, . . . , Em} of length m. Consider the restricted prop-
agator PE = 1E ◦P ◦1E , which is well–defined by Theorem 4.14. Then, the
length m is equal to the multiplicity of λ = 1 of PEm. Thus, it remains to
show that σ(PE) ∩ {|λ| = 1} = σcycle(ω) with ω = exp(2πi/m). But every
subset cycle {E1, . . . , Em} of P is also a subset cycle of PE and allows us to
define m linear independent eigenfunctions vk+1 =

∑m−1
j=0 ω−kjP jE1E1 , see

e.g. [13], which correspond to the eigenvalues ωk for k = 1, . . . ,m. This
completes the proof. �

From a functional analytical point of view, the decomposition results
are related to a partial spectral decomposition of P , as we will see in the
next result due to Dunford and Schwartz [19, Chapter VIII]. It exploits the
fact that uniform constrictiveness is equivalent to quasi–compactness of the
propagator (Thm. 4.13 and Cor. 4.3).

Theorem 4.16 (Spectral Decomposition) Let P : L1(µ) → L1(µ) de-
note a uniformly constrictive propagator and let Πλ denote the spectral pro-
jection corresponding to the discrete eigenvalue λ. Then, for every n ∈ Z+,

Pn =
∑

λ∈σ(P ),|λ|=1

λnΠλ +Dn

with some strict contraction D : L1(µ)→ L1(µ) satisfying ‖Dn‖1 ≤Mqn for
some M > 0 and 0 < q < 1. Furthermore, the projections fulfill

Πλ = lim
n→∞

1
n

n∑
k=1

1
λn
Pn, (48)

where the limit is understood to be uniform.

Now, we exploit the above results to analyze properties of the propaga-
tor P and the underlying Markov process given by its stochastic transition
function p.

Definition 4.17 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator.

(i) P is said to be ergodic if every invariant subset E is of µ–measure 1.
Equivalently, P1E = 1E implies µ(E) = 0 or µ(E) = 1.
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Figure 4: Top: idealized spectra of uniformly constrictive propagators. All eigenvalues are
assumed to be simple except for λ = 1 in the left graphic, which must be at least two
fold. Outer disc of radius r = 1 containing the entire spectrum and inner disc with radius
ress < 1 containing the essential spectrum. Bottom: decomposition of the state space
(rectangle) into invariant sets (separated by solid lines) and subset cycles (separated by
dashed lines) corresponding to the spectra above. Left: two eigenvalues cycles with m = 3
and m = 2, respectively resulting in a decomposition of the state space into two invariant
subsets that can be further decomposed into subset cycles of length m = 3 and m = 2,
respectively. Middle: one eigenvalue cycle with m = 3 resulting in a decomposition of the
state space into a subset cycle of length m = 3. Right: The eigenvalue 1 is simple and
dominant. Hence, there neither exists a decomposition of the state space into invariant
subsets nor subset cylcles.

(ii) P is called periodic with period p if it is ergodic and p is the largest
integer for which a subset cycle of length p occurs. If p = 1, then P is
called aperiodic.

According to [46], a Markov operator P : L1(µ) → L1(µ) satisfying
P1X = 1X is said to be ergodic if Pnv converges in the sense of Cesàro
for every density v ∈ L1(µ) weakly to 1X. Anticipating the results of the
next corollary and using Thm. 5.5.1 from [46, Sec. 5.5], it can easily be shown
that for uniformly constrictive propagators this definition is equivalent to
Def. 4.17 (i). In the theory of Markov processes, the term ergodicity is used
slightly different, since it requires aperiodicity. Corollary 4.18 may be used
to establish the relation. The next corollary states how these properties are
related to the decomposition results previously obtained.

Corollary 4.18 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator. Then

(i) P is ergodic if and only if the eigenvalue λ = 1 is simple.

(ii) P is aperiodic if and only if the eigenvalue λ = 1 is simple and domi-
nant, i.e., η ∈ σ(P ) satisfying |η| = 1 implies η = 1.
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Ergodicity is related to the fact that it is impossible to decompose the
state space into independent parts. The analogue in the theory of Markov
processes is irreducibility expressing that it is possible to move from (almost)
every state to every “relevant” subset within a finite time:

Definition 4.19 ([52, 60]) A stochastic transition function p is said to be
µ-a.e. irreducible if

µ(A) > 0 ⇒ pm(x,A) > 0 (49)

for µ–a.e. x ∈ X, every A ∈ B(X) and some m = m(x,A) ∈ Z+. If (49)
holds for every x ∈ X then p is called µ–irreducible.

The next theorem relates the two statements about indecomposability:

Theorem 4.20 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator corresponding to the stochastic transition function p. Then P
is ergodic if and only if p is µ-a.e. irreducible.

Proof: Due to the remark following Def. 4.17, P is ergodic if and only if
P (1B/µ(B)) converges to 1X in the sense of Cesàro for every B ∈ B(X)
with µ(B) > 0. For arbitrary A ∈ B(X) with µ(A) > 0 this is equivalent to

lim
n→∞

1
n

n∑
k=1

∫
X
P k1B(y)1A(y) µ(dy) = µ(A) µ(B)

⇔ lim
n→∞

∫
B

1
n

n∑
k=1

pk(y,A)µ(dy) =
∫
B
µ(A)µ(dy)

⇔ lim
n→∞

1
n

n∑
k=1

pk(y,A) = µ(A); µ–a.e.,

where we used Lebesgue’s dominated convergence theorem. Since by as-
sumption µ(A) > 0, this is equivalent to µ-a.e. irreducibility according to
Def. 4.19. �

Often, we are interested in dynamical systems—deterministic or stocha-
stic—that exhibit a unique invariant density and guarantee that for every
initial density v the iterates Pnv converge to the invariant density. In view
of Corollary 4.18, these systems are necessarily connected to ergodic propa-
gators, but due to possible cyclic behavior, ergodicity is not sufficient.

Definition 4.21 ([46, Chap. 5.6]) A propagator P : L1(µ) → L1(µ) is
called asymptotically stable if

lim
n→∞

‖Pnv − 1X‖1 = 0 (50)

for every density v ∈ L1(µ).
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Define the limit propagator P∞ : L1(µ)→ L1(µ) by

P∞v(y) ≡
∫

X
v(x)µ(dx) (51)

for arbitrary v ∈ L1(µ), which corresponds to the projection onto the eigen-
space spanned by 1X. In terms of P∞ we can restate (50) in the equivalent
form: limn→∞ ‖Pnv − P∞v‖1 = 0 for v ∈ L1(µ). Finally, we get [34]

Corollary 4.22 Let P : L1(µ) → L1(µ) denote a uniformly constrictive
propagator. Then P is asymptotically stable if and only if P is ergodic and
aperiodic. In either case,

‖Pn − P∞‖1 ≤ Mqn n ∈ Z+

for some constants q < 1 and M <∞.

An analogous result to Cor. 4.22 for the backward transfer operator is
well established in the theory of Markov chains. It is related to a property
of the stochastic transition function called uniform ergodicity [52]. To state
it, we introduce the total variation norm on measures:

‖ν‖TV = sup
|u|≤1

∫
X
u(y)ν(dy).

Definition 4.23 A stochastic transition function p is said to be µ-a.e. uni-
formly ergodic if

‖pn(x, ·)− µ‖TV ≤ Mqn n ∈ Z+ (52)

for µ–a.e. x ∈ X and some constants q < 1 and M < ∞. If (52) holds for
every x ∈ X then p is called uniformly ergodic.

In terms of the backward transfer operator and its limit backward
transfer operator T∞ : L∞(µ)→ L∞(µ) defined by

T∞u(x) ≡
∫

X
u(y)µ(dy),

we can restate (52) in the equivalent form limn→∞ ‖Tn−T∞‖∞ = 0. Exploit-
ing the duality P ∗∞ = T∞, we can relate asymptotically stable propagators
and µ-a.e. uniformly ergodic stochastic transition functions as follows:

Theorem 4.24 Let P : L1(µ) → L1(µ) denote some propagator. Then P
is uniformly constrictive and asymptotically stable if and only if its corre-
sponding stochastic transition function p is µ-a.e. uniformly ergodic.
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Proof : The result follows from the fact that µ-a.e. uniform ergodicity is
equivalent to limn→∞ ‖Tn − T∞‖∞ = 0, which due to duality is equivalent
to uniform constrictiveness and asymptotic stability due to Cor. 4.22. �

As a result, we can reformulate the two conditions (C1) and (C2) imposed
on the propagator Pτ regarded to act on L1(µ) in the equivalent form:

(C1) The propagator Pτ is uniformly constrictive. Equivalently, the stochas-
tic transition function p(x,A) = p(τ, x,A) fulfills the µ–a.e. Doeblin–
condition.

(C2) Condition (C1) holds and Pτ is asymptotically stable.

Moreover, the propagator Pτ satisfies conditions (C1) and (C2) if the stochas-
tic transition function is µ–a.e. uniformly ergodic. Since the reformulated
conditions are stated in the language of Markov operators and Markov pro-
cesses, we can exploit the rich literature on these topics (see [46, 52] and
cited reference therein) to verify the conditions (C1) and (C2) for different
model systems in Section 6.

4.4 Reversibility and Properties in L2(µ)

The basic idea in analyzing reversible propagators on L2(µ) will be to fol-
low along the lines of the L1(µ) approach. In doing so, compact operators
will replace the role previously played by weakly compact operators. Both
cases are special situations of a much more general ∆–calculus introduced
by Schechter [67] in 1972. His aim was to study strictly singular opera-
tors9, which play an important role as admissible perturbations of Fred-
holm operators10 [39, 79]. These, moreover, are closely related to essential
spectra and in particular to the essential spectral radius [83]. Schechter
introduced his quantity for an arbitrary bounded linear operator on some
Banach space. For the L1(µ) case, Weis proved in [81] the very useful iden-
tity ∆(P ) = lim supµ(A)→∞ ‖1A ◦ P‖1, which played the key role for the
subsequent analysis in Section 4.2. As we will see, this characterization of
∆ does unfortunately not carry over to L2(µ) in general—but it remains true
for integral operators [80].

Before we start studying propagators on L2(µ), we want to recall that
due to Hölder’s inequality we have ‖v‖1 ≤ ‖v‖2 for every v ∈ L2(µ). Hence,

9A closed bounded linear operator P : E → E on some Banach space E is called strictly
singular, if it does not possess a bounded inverses on any infinite dimensional subspace
M of E [32]. Equivalently, the existence of some constant γ > 0 such that ‖Px‖ ≥ γ‖x‖
for every x ∈M ⊂ E implies that M is finite dimensional [39, Chapter 4.5].

10For a definition see footnote on page 31.
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any convergence rate obtained in L2(µ) will imply the same rate in the
L1(µ) norm, when restricted to square integrable functions, i.e., whenever
‖Pnv − P∞v‖2 ≤Mqn holds, then also

‖Pnv − P∞v‖1 ≤ Mqn

for every v ∈ L2(µ). This way we obtain probabilistic interpretations of
results established in L2(µ).

Theorem 4.25 ([83]) Let P : L2(µ) → L2(µ) denote a bounded linear op-
erator. Define the semi–norm ∆(P ) according to

∆(P ) = min {‖P − S‖2 : S is compact} .

Then the essential spectral radius of P is characterized by

ress(P ) = lim
n→∞

∆(Pn)1/n. (53)

In particular, ress(P ) ≤ ∆(P ). If additionally P is positive11 and self–
adjoint, then ress(P ) = ∆(P ).

Note that Corollary 4.3 applies to our situation, hence ress(P ) < 1 if and
only if P is quasi–compact. This was the path followed in [68] by Schütte
to prove that the essential spectral radius is less than 1. Our aim in the
following is to relate the property of quasi–compactness and hence ress(P ) <
1 to properties of the stochastic transition function and the corresponding
Markov process. We start by giving a characterization of compact operators
comparable to Theorem 4.7. To do so, we have to introduce the notion of
compactness in measure.

Definition 4.26 ([43, Chapter 1.3.3]) Let S : L2(µ) → L2(µ) denote a
bounded linear operator. Then S is called compact in measure if it maps
weakly convergent sequences to sequences converging in measure. More pre-
cisely, if {fn}n∈Z+ ⊂ L2(µ) is weakly convergent, then for every ε > 0 there
is n0 ∈ Z+ such that µ({|Sfn − Sfm| ≥ ε}) < ε for every n,m > n0.

An important class of operators being compact in measure are positive
integral operators [43], and hence all propagators corresponding to abso-
lutely continuous transition functions. We are now able to give a character-
ization of compact operators in terms of the probability measure µ.

11Here, positivity is understood in the Markov operator sense: Pv ≥ 0 if v ≥ 0 as stated
on page 10. This is different from positivity of self–adjoint operators on a Hilbert space:
〈v, Ptv〉µ ≥ 0 for every v.
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Lemma 4.27 ([43, Thm. 3.1]) Let S : L2(µ) → L2(µ) denote a bounded
linear operator. Then S is compact, if and only if it is compact in measure
and satisfies

lim sup
µ(A)→0

‖1A ◦ P‖2 = 0, (54)

where the limit is understood to be taken over all sequences of subsets whose
µ–measure converges to zero and 1A is interpreted as a multiplication oper-
ator: (1Av)(x) = 1A(x)v(x).

Weis proved that for an arbitrary integral operators, the expression of
the left hand side of (54) is identical to the ∆ semi–norm and therefore
allows to bound the essential spectral radius.

Theorem 4.28 ([80]) Let P : L2(µ) → L2(µ) denote a bounded linear in-
tegral operator. Then

∆(P ) = lim sup
µ(A)→0

‖1A ◦ P‖2. (55)

In particular,

lim sup
µ(A)→0

‖1A ◦ P‖2 = 0,

if and only if P is compact.

As in the L1(µ) case, we now want to link the results concerning the ∆
semi–norm to properties of the stochastic transition function, in terms of
which the propagator is defined. The next lemma is comparable to Cor. 4.8.

Lemma 4.29 Consider the reversible propagator S : L2(µ)→ L2(µ) defined
by

Sv(y) =
∫

X
v(x)p(x, y)µ(dx) (56)

associated with some absolutely continuous stochastic transition function
p(x,dy) = p(x, y)µ(dy), and assume that p is jointly measurable in x and
y. Then, S is compact, if the stochastic transition function satisfies the
Kontorovic condition:

there exist 1 ≤ r, s ≤ ∞ with 1/r+1/s = 1 such that ‖p(x, ·)‖s ∈
Lr(µ) as a function of x, i.e.,∫

X

∫
X
p(x, y)sµ(dy)r/sµ(dx) < ∞. (57)
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In addition, S is compact if the stochastic transition function satisfies the
condition p(·, ·) ∈ Lr(µ× µ) for some 2 ≤ r ≤ ∞.

Proof: The first statement is due to Theorem 7.2 of Krasnoseslkii et al. [43,
Chapter 2], where we have to choose τ = (1/2− 1/r)/(1/s− 1/r) for r 6= s
and τ = 1/2 for r = s. The second statement is a consequence of the first
and Hölder’s inequality, since Lr(µ× µ) ⊂ L2(µ× µ) for 2 ≤ r ≤ ∞. �

For s = r = 2 the Kontorovic condition is equivalent to the statement
that S is a Hilbert–Schmidt operator, which is known to be compact [6].

Due to investigations initiated by Roberts and Rosenthal [62], quasi–
compactness of P is related to certain stability properties of Markov pro-
cesses. To state them, let M : X→ R+ denote an integrable function, i.e.,
M ∈ L1(µ) and define the induced M–norm on measures by

‖ν‖M = sup
|v|≤M

|
∫

X
v(x)ν(dx)|,

where |v| ≤ M is understood to hold pointwise for every x ∈ X. For the
special case M ≡ 1, the M–norm coincides with the total variation norm.

Definition 4.30 Let p denote some stochastic transition function. Then

(i) p is called µ-a.e. geometrically ergodic if

‖pn(x, ·)− µ‖TV ≤ M(x)qn; n ∈ Z+ (58)

for µ–a.e. x ∈ X, some constant q < 1, and some function M : X→ R
satisfying M <∞ pointwise.

If inequality (58) holds for every x ∈ X and some function M ∈ L1(µ),
then p is called geometrically ergodic.

(ii) p is called V –uniformly ergodic12 if

‖pn(x, ·)− µ‖M ≤ CM(x)qn; n ∈ Z+

for every x ∈ X, constants q < 1 and C ≤ ∞, and some function
M ∈ L1(µ) satisfying 1 ≤M pointwise.

The relation between the stability properties defined above is as follows:
By definition, V –uniform ergodicity implies geometric ergodicity, which in
turn implies µ-a.e. geometric ergodicity. On the other hand, for irreducible
and aperiodic stochastic transition functions µ-a.e. geometric ergodicity im-
plies V –uniform ergodicity according to [62, Prop. 2.1]. We now get the
following important result:

12The notion V –uniform ergodicity is due to the fact that the function M involved in
its definition is usually called V . However, in this thesis we already used V to denote the
potential energy function.
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Theorem 4.31 Let P : L2(µ) → L2(µ) denote a reversible propagator.
Then P satisfies conditions (C1) and (C2) in L2(µ), if and only if its stochas-
tic transition function is µ–irreducible and µ-a.e. geometrically ergodic. The
latter two conditions on the stochastic transition function p are particularly
satisfied, if p is geometrically or V –uniformly ergodic.

Proof: If P satisfies the two conditions (C1) and (C2), then p is µ-a.e. ge-
ometrically ergodic due to Theorem 1 of [63]. On the other hand if p is
reversible, µ–irreducible and µ-a.e. geometrically ergodic, then P satisfies
the conditions (C1) and (C2) as an immediate result of Theorem 2 of [63]
and Theorem 2.1 of [62]. The second statement follows directly from the
remark preceding the theorem. �

The assumption of µ–irreducibility of the stochastic transition function
in Theorem 4.31 seems to be artificial. One would rather expect µ–a.e.
irreducibility, which furthermore would be a consequence of µ-a.e. geometric
ergodicity. Hence, we expect Theorem 4.31 to hold without the assumption
of µ–irreducibility. For reversible propagators we finally get the following
relation between the conditions (C1) and (C2) in L1(µ) and those in L2(µ):

Theorem 4.32 Let P : L1(µ) → L1(µ) denote some propagator satisfying
conditions (C1) and (C2) in L1(µ). If P is reversible and its stochastic
transition function is µ–irreducible then P : L2(µ) ⊂ L1(µ) → L2(µ) also
satisfies the conditions (C1) and (C2) in L2(µ).

Proof: In L1(µ) the conditions (C1) and (C2) are equivalent to µ–a.e. uniform
ergodicity of the associated Markov process (see Theorem 4.24). Since µ–
a.e. uniform ergodicity implies µ–a.e. geometric ergodicity, P satisfies (C1)
and (C2) in L2(µ) due to Theorem 4.31. �

We finally obtain the useful

Corollary 4.33 If P : Lr(µ) → Lr(µ) with r = 1, 2 is reversible and its
stochastic transition function p is uniformly ergodic, then P satisfies the
conditions (C1) and (C2) both in L1(µ) and L2(µ).

As a result of this section, we can state the conditions (C1) and (C2)
in a more probabilistic language. Particularly, Theorem 4.31 will be very
useful when verifying conditions (C1) and (C2) for new model systems.
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5 Discretization of Transfer Operators

If we want to identify metastable subsets we have to compute certain eigen-
functions of the propagator Pτ . In the following we describe the discretiza-
tion procedure of the eigenvalue problem Pτv = λv. Throughout this sec-
tion we assume that Pτ satisfies the conditions (C1) and (C2) defined in
Section 3.2. Part of this section follows from [68, 69].

5.1 Galerkin Discretization

Let D = {D1, . . . , Dn} denote a decomposition of the state space and define
the associated finite dimensional ansatz space by Vn = span{1D1 , . . . ,1Dn}.
Then, the Galerkin projection Πn : L1(µ) → Vn of v ∈ L1(µ) is defined
by

Πnv =
n∑
k=1

〈v,1Dk〉µ
〈1Dk ,1Dk〉µ

1Dk ,

where 〈·, ·〉µ is the duality bracket between L1(µ) and L∞(µ). The resulting
discretized propagator ΠnPτΠn induces an approximate eigenvalue problem
ΠnPτΠnv = λΠnv in Vn. Using v =

∑n
k=1 νk1Dk , the discretized eigenvalue

problems reads in coordinate representation

n∑
l=1

〈1Dl , Pτ1Dk〉µ νl = λ 〈1Dk ,1Dk〉µ νk (59)

for k = 1, . . . , n. After division of (59) by 〈1Dk ,1Dk〉µ = µ(Dk) > 0, we
obtain the convenient form

Sν = λν

with ν = (ν1, . . . , νn) ∈ Cn and n×n stochastic transition matrix S = (Skl),
whose entries are given by the one–step transition probabilities from Dk to
Dl within the time τ :

Skl =
〈Pτ1Dk ,1Dl〉µ
〈1Dk ,1Dk〉µ

= p(τ,Dk, Dl). (60)

Since Pτ is a Markov operator, its Galerkin discretization S is a (row)
stochastic matrix, i.e., Skl ≥ 0 and

∑n
l=1 Skl = 1 for every k = 1, . . . , n.

Hence, all its eigenvalues λ satisfy |λ| ≤ 1. Moreover, we have the following
three important properties [68, 69]:

(i) The row vector π = (π1, . . . , πn) with πk = µ(Dk) represents the
discretized invariant probability measure µ. It is a left eigenvector
corresponding to the eigenvalue λ = 1, i.e., πS = π.
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(ii) S is irreducible and aperiodic. As a consequence, the eigenvalue λ = 1
is simple and dominant. In particular, the discretized invariant density
π is the unique invariant density of S.

(iii) If Pτ is reversible then S is self–adjoint w.r.t. the discrete scalar prod-
uct 〈u, v〉π =

∑
uiv̄iπi. Equivalently, S satisfies the detailed balance

condition πk Skl = πl Slk for every k, l ∈ {1, . . . , n}. Consequently, all
eigenvalues of S are real–valued and contained in the interval [−1, 1].

The discretization of the propagator can be interpreted as a coarse grain-
ing procedure: Coarse graining the state space {x ∈ X} → {D1, . . . , Dn}
results in a coarse graining of the propagator Pτ → S corresponding to
a coarse graining of the Markov process p(τ, x, C) → p(τ,Dk, Dl) with in-
variant measures µ → π. In doing so, the discretization inherits the most
important properties of the propagator.

In numerical experiments, it is desirable to estimate the essential spectral
radius ress(Pτ ). Since ress(Pτ ) ≤ ∆(Pτ ), we suggest the following heuristics
to define an indicator [∆(Pτ )] for some upper bound on ress(Pτ ). The basic
idea is to use a decomposition D = {D1, . . . , Dn} of the state space and a
“discretized” version of

∆(Pτ ) = lim sup
µ(A)→0

sup
0 6=v∈L1(µ)

1
‖v‖1

‖1A ◦ Pτv‖1.

Hence, replacing suprema by maxima w.r.t. the decomposition D we get

[∆(Pτ )] = max
D∈D

max
06=v∈Vn

1
‖v‖1

‖1D ◦ Pτv‖1

= max
j,k

1
µ(Dk)

∥∥1Dj ◦ Pτ1Dk∥∥1

= max
j,k

Sjk.

Therefore, the maximal entry of the stochastic transition matrix S, ob-
tained from discretizing the propagator Pτ , can be used as an indicator
for ress(Pτ ). In order to better capture the nature of the limit process
µ(A)→ 0, we suggest to use a sequence of decompositions D1, . . . ,Dm that
get finer and finer, and consider the corresponding sequence of indicators
[∆(Pτ )]D1 , . . . , [∆(Pτ )]Dm . A proof about the reliability of the indicator
seem to be possible under additional regularity conditions on the stochastic
transition function. However, it should be clear that these regularity condi-
tions conflict the fact that a non–vanishing essential spectral radius is related
to singular and therefore irregular behavior of the underlying dynamics (see
Theorem 4.9 and Lemma 4.29).

For a fixed decomposition, the indicator may still advantageous be ex-
ploited in a hierarchical context to indicate regions of further refinement: If
[∆(Pτ )] = Sjk ≈ 1 for some pair (j, k), then we may suggests
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(i) a refinement of the sampling corresponding to the jth box, since the
approximation quality for the jth box was too bad, or

(ii) a further subdivision of the kth box, since the statistical weight µ(Dk)
was too big.

If neither of the two strategies decreases the value of [∆(Pτ )], then the
essential spectral radius may indeed be close to 1. The indicator works quite
well for Markovian systems, as we are going to demonstrate it in Section 6; it
has also already been successfully applied to biomolecular systems [7]. As it
was pointed out by G. Froyland [24], it might be less useful for deterministic
systems, in particular for hyperbolic deterministic systems, where we would
expect the maximal entry of S to be approximately 0.5 due to expansion
and contraction of the dynamics.

5.2 Convergence of Discrete Eigenvalues

We restrict our considerations to the important class of reversible propa-
gators Pτ : L2(µ) → L2(µ) satisfying the conditions (C1) and (C2). Under
these assumptions, convergence results have been proved (see [68] for de-
tails).

Denote by σ(Pτ ) the spectrum of Pτ in L2(µ) and by σdiscr(Pτ ) ⊂ σ(Pτ )
the discrete spectrum. We are interested in approximating a cluster of (real–
valued) discrete eigenvalues λc, . . . , λ1 ∈ σdiscr(Pτ ) close to 1 and “outside”
the disc with radius ress(Pτ ). Assume that the eigenvalues are repeated
according to their multiplicity with

ress(Pτ ) < λc ≤ · · · ≤ λ2 < λ1 = 1.

and corresponding eigenfunctions vc, · · · , v1, orthogonal w.r.t. 〈·, ·〉µ. Fur-
thermore, we require that the sequence of the Galerkin ansatz spaces V1 ⊂
V2 ⊂ . . . is dense in L2(µ) and the corresponding decompositions D1,D2, . . .
are getting finer and finer, i.e., maxD∈Dn diam(D) → 0 as n → ∞. De-
note by S(Vn) the stochastic transition matrix obtained from discretizing
the propagator Pτ w.r.t. the ansatz space Vn. Furthermore, denote the
eigenvalues and corresponding eigenvectors of S(Vn) by λi(Vn) and ui(Vn),
respectively (ordered in decreasing magnitude and taken into account mul-
tiplicity). Under these assumptions the dominant eigenvalues of S(Vn) are
good approximations of the dominant eigenvalues of Pτ , whenever the dis-
cretization is fine enough. In this case S(Vn) also has a cluster of eigenvalues
λc(Vn) ≤ . . . ≤ λ2(Vn) < λ1(Vn) = 1 close to 1. More precisely, for every
j = 1, . . . , c, we get

λj(Vn) −→ λj and uj(Vn) −→ uj

in modulus and in the L2(µ)–norm, respectively, as n→∞ [68].



5.3 Evaluating the Stochastic Transition Matrix 53

5.3 Evaluating the Stochastic Transition Matrix

We consider the evaluation of the stochastic transition matrix S obtained
from discretizing Pτ .

Consider two elements B,C of some decomposition of the state space.
Combining p(τ, x, C) = Ex[1c(Xτ )] with Eq. (32) we get

p(τ,B,C) =
1

µ(B)

∫
B

Ex[1c(Xτ )]µ(dx), (61)

which can be approximated within two steps:

(A1) approximation of the integral∫
B
g(x)µ(dx) ≈

N∑
k=1

αk g(xk)

by some deterministic or stochastic integration scheme with parti-
tion points or random variables x1, . . . , xN , respectively, and weights
α1, . . . , αN [16, 29];

(A2) approximation of the expectation value

Ex[1c(Xτ )] ≈
1
M

M∑
j=1

1C (Xτ (ωj , x))

by relative frequencies, where Xτ (ωk, x) denotes a realization of the
Markov process at time τ with initial distribution X0 ∼ x [52, Chap-
ter 17].

A combination of the two steps (A1) and (A2) with g(x) = Ex[1c(Xτ )]
results in

p(τ,B,C) ≈ 1
M

N∑
k=1

M∑
j=1

αk 1C (Xτ (ωkj , xk)) ;

hence, for each initial point xk, the Markov process Xτ is realized M times.
This allows us to approximate the entries of the stochastic transition matrix
S due to Sjk = p(τ,Dj , Dk). The approximation quality of p(τ,B,C) de-
pends on the interplay between the two approximation steps (A1) and (A2).
Numerical experiments in low dimensions show that it is even possible to
take M = 1, if the number of partition points N is chosen in such a way that
the number of points per subset of the decomposition D is reasonable large.
For high–dimensional problems, we in general will be forced to use stochas-
tic integration schemes, such as Monte Carlo methods, to approximate the
integral in (A1); for further details see Section 7.1. For low–dimensional
problems, we may also use deterministic integration schemes:
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Example 5.1 Assume that X = [a, b] ⊂ R and the invariant measure is
absolutely continuous w.r.t. the Lebesgue measure, i.e., µ(dx) = f(x)dx for
some density f . For N ∈ Z+ define the partition points xk = a + kh with
k = 1, . . . , N and h = (b− a)/N . Using the Trapezoid rule in (A1), and M
realization of the Markov process in (A2) we get

p(τ,B,C) ≈ 1
M #[xk ∈ B]

∑
j, k

1B(xk) 1C
(
(Xτ (ωj , xk)

)
f(xk),

where #[xk ∈ B] denotes the total number of partition points xk in B.

Already in moderately low dimensions the strategy presented in Exam-
ple 5.1 may cause serious memory problems and unacceptable numerical
effort. Here the adaptive discretization technique by Dellnitz and Junge
[12, 13] can be of significant use. Developed to study in particular hyperbolic
dynamical systems, its successful application to a small molecular system is
described in [14]. For the analysis of biomolecules, e.g, small peptides, a dif-
ferent approach has to be chosen, as will be outlined in Section 7. Performing
a realization of the discrete time Markov process Xn = {Xn}n∈Z+ , we may
also combine the two approximation steps (A1) and (A2). Recall that we de-
fined for some fixed τ > 0 the time–reversed Markov process Yn = {Yn}n∈Z+

with stochastic transition function qτ and the time–symmetrized Markov
process Zn = {Zn}n∈Z+ with stochastic transition function rτ , see Sec-
tion 3.3 .

Example 5.2 Let x0, . . . , xN denote a sequence of sampling points obtained
from a realization of the discrete time Markov process Xn. Then

p(τ,B,C) ≈ #[xk ∈ B and xk+1 ∈ C]
#[xk ∈ B]

, (62)

where convergence is guaranteed for µ–a.e. initial points x0 by conditions
(C1) and (C2) and the law of large numbers [52]. Since the reversed sam-
pling xN , . . . , x0 is a realization of the time–reversed Markov process Yn with
stochastic transition function qτ , we have

qτ (1, B, C) ≈ #[xk ∈ B and xk−1 ∈ C]
#[xk ∈ B]

.

Hence, we can approximate the stochastic transition function rτ correspond-
ing to the time–symmetrized Markov process Zn by

rτ (1, B, C) ≈ #[xk ∈ B and xk+1 ∈ C] + #[xk ∈ B and xk−1 ∈ C]
2 #[xk ∈ B]

.

For a reversible Markov process the identity qτ (1, B,C) = pτ (1, B, C) and
consequently rτ (1, B, C) = pτ (1, B, C) holds. Thus, for reversible Markov
processes we may “double” the information by considering both the original
as well as the reversed sampling.
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Intuitively, it should be clear that the technique described in Example 5.2
becomes less efficient, if the Markov process admits a decomposition of the
state space into very metastable subsets. Then, convergence to equilibrium
is very slow so that we have to use a different approach (see Section 7).

5.4 The Numerical Identification Algorithm

We briefly outline the identification algorithm, a detailed description can be
found in Deuflhard et al. [17].

The aim is to completely decompose the state space X into metastable
subsets. Hence, given a decomposition D = {D1, . . . , Dn} of X, we have to
determine a clustering {C1, . . . , Cc} into c metastable clusters by assigning
each Dj with j = 1, . . . , n to some cluster Ck with k = 1, . . . , c. This
is done by exploiting the almost constant level structure of the dominant
eigenvectors, which shows up in Theorem 3.1. Denote by v1, . . . , vc the
eigenvectors corresponding to a cluster of c eigenvalues close to 1. Then,
they are almost constant on each metastable subset, i.e., if Di and Dj belong
to the same metastable subset, then vk(Di) ≈ vk(Dj) for k = 1, . . . , c.
Associate to each subset Dj the c–tuple of eigenvector components

Dj 7−→ (v1(Dj), . . . , vc(Dj))

and define a clustering {C1, . . . , Cc} by collecting subsets Dj with almost
identical c–tuples into the same cluster. Then, as it is shown in [17], this is
sufficient to define a clustering into metastable clusters in the case of weak
coupling. The identification of metastable clusters is reduced to cluster c–
tuples w.r.t. geometrical similarity. We have implemented an algorithm,
which also copes with larger perturbations in the eigenvector components
due to stronger coupling between metastable subsets; for details see [17].
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6 Theoretical and Numerical Investigations

Based on the results of the last two sections, we want to theoretically and
numerically analyze our four model systems. We will see that under suit-
able conditions on the potential energy function all model systems but the
deterministic Hamiltonian system satisfy the two basic conditions (C1) and
(C2). The application to a three–well potential show significant similarities
for the model systems on a mesoscopic level.

−5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

q

V
(q

)

−5 0 5

−2

0

2

0

0.05

0.1

0.15

0.2

q

p

ca
n.

 d
en

si
ty

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

q

ca
n.

 d
en

si
ty

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

p

ca
n.

 d
en

si
ty

Figure 5: Three well potential (top left) and corresponding canonical density fcan for
β = 2 (top right). The positional canonical density Q (bottom left) and canonical density
of momenta P (bottom right).

In the following we consider the three well potential V : Ω→ R with

V (q) =
1

400
(q6 − 30q4 + 238q2 + 56q + 100) (63)

as our test system. We choose Ω = [−5, 5] as the position space with periodic
boundary conditions, and modify the potential function at the boundary ±5
in such a way that it is smooth (cf. Remark below). Its graph, the canonical
distribution fcan corresponding to β = 2 and its two marginal distributions
Q and P are shown in Figure 5. We choose τ = 1 as the observation time
span. Intuitively, we would expect to exist three metastable subsets around
the (local) minima of the potential function for moderate temperature.

Remark. The positional canonical density Q already indicates that it
is very unlike to stay near the periodic boundary at ±5; this can also be
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observed from the realization shown in Figure 6. Hence, numerically it might
be difficult to resolve the difference between an unbounded position space
and one with periodic boundary conditions. Yet, in special situations this
is possible, as we are going to exemplify for the Hamiltonian system with
randomized momenta in application to a harmonic potential test system (see
end of Section 6.2).

6.1 Deterministic Hamiltonian System

Denote by Pτ the propagator corresponding to the deterministic Hamilto-
nian system.

Proposition 6.1 For both bounded systems and periodic systems, the prop-
agator Pτ : Lr(µcan) → Lr(µcan) neither satisfies condition (C1) nor condi-
tion (C2) in Lr(µcan) with r = 1, 2.

Proof: For the statement on r = 1, we observe that the stochastic tran-
sition function pτ (x, dy) = δΦτx(dy) is singular w.r.t. the invariant mea-
sure µcan(dy) = fcan(y)dy implying ∆(Pτ ) = 1 by Theorem 4.9. Since
pnτ (x, dy) = δΦnτx(dy), we more generally have ∆(Pnτ ) = 1 for every n ∈ Z+

and hence ress(Pτ ) = 1 by Theorem 4.6. This violates condition (C1).
Now, define for an arbitrary smooth function F : R → R+ the density
f : X → R by f(x) = F(H(x)) and the thereby induced measure µf by
µf (dy) = f(y)dy. Since the Hamiltonian flow is energy–preserving, µf is a
finite invariant measure for every f ∈ L1(µcan). This way we may construct
arbitrarily many invariant probability measures, which violates condition
(C2). The statement for r = 2 follows from the fact that Pτ is unitary in
L2(µcan), as stated in Section 2.1. �

Within the proof of Proposition 6.1 we have shown that the deterministic
Hamiltonian system admits infinitely many invariant probability measures.
Due to this ambiguity, in our context pure Hamiltonian dynamics seems
not to be appropriate for modeling internal fluctuations within one specific
stationary ensemble, in our case the canonical ensemble.

6.2 Hamiltonian System with Randomized Momenta

Denote by Pτ the propagator corresponding to the Hamiltonian system with
randomized momenta. We first state under which conditions on the poten-
tial function the two requirements (C1) and (C2) on Pτ hold. Then, we
numerically analyze the induced essential statistical behavior w.r.t. the po-
sitional canonical ensemble.

Proposition 6.2 For periodic systems with position space Ω ⊂ Rd, some
fixed observation time span τ > 0 and smooth periodic potential function
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V : Ω → R, the propagator Pτ : Lr(µQ) → Lr(µQ) satisfies the conditions
(C1) and (C2) in Lr(µQ) with r = 1, 2.

Proof : The statement for r = 1 is based on results in [68]. Due to [68,
Lem. 4.51 and Prop. 4.18] the Lebesgue decomposition of the stochastic
transition function pτ (q,dy) = pa(q, y)µQ(dy) + ps(q,dy) has the following
two properties:

(i) the absolutely continuous part satisfies: ess sup
(q,y)∈Ω

pa(q, y) <∞.

(ii) the singular part satisfies: ess sup
q∈Ω

pa(q,Ω) < 1.

Application of Theorem 4.9 proves that condition (C1) holds. Since Pτ is
asymptotically stable according to [68, Lem. 4.51], condition (C2) is a conse-
quence of Corollary 4.22. In order to prove the statement for r = 2 we note
that due to [68, Lem. 4.31] the Markov process corresponding to the Hamil-
tonian system with randomized momenta is µQ–irreducible. Therefore, the
statement is a consequence of Theorem 4.32. Using a different approach,
the statement for r = 2 was already proved by Schütte in [68]. �

−5 0 5
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5000

q

st
ep

s

Figure 6: Typical realization of the Hamiltonian system with randomized momenta for
β = 2, observation time span τ = 1 and initial distribution Q0 ∼ 1.

By Proposition 6.2 the application of our algorithmic approach to the
test systems is theoretically justified. In order to discretize the propagator,
we proceed according to Example 5.1 using the Trapezoid rule with N =
300000, M = 1 and the Leapfrog discretization [65] of the Hamiltonian flow
with internal step size ∆t = 0.02. A typical realization is shown in Figure 6.
We observe that the Markov process stays for some time close to one of the
three (local) minima, then suddenly jumps close to another minimum, stays
there for a while, jumps again and so on. Hence, by looking at the realization
we visually identify three metastable subsets. Discretizing the state space
Ω = [−5, 5] with periodic boundary conditions into 30 equal–sized intervals,
we obtain a 30 × 30 stochastic transition matrix S. Solving the eigenvalue
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problem for S yields:

λ1 λ2 λ3 λ4 λ5 λ6 . . . λ30

1.000 0.975 0.958 0.599 0.490 0.369 . . . −0.435

Evaluating the indicator for ress(Pτ ) we get [∆(Pτ )] = 0.557—for a further
analysis of the indicator within a hierarchical context see below. Looking at
the spectrum of S, we identify a cluster of three eigenvalues {λ1, λ2, λ3} close
to 1 that is well separated from the remaining part of the spectrum by a gap.
Hence, in view of our algorithmic strategy we look for a decomposition into
three metastable subsets. The eigenfunctions corresponding to the largest
eigenvalues are shown in Figure 7 (left). We observe almost constant levels
around the three minima for the first three eigenfunctions, while the fourth
eigenfunction does not show this particular structure. This almost constant
level structure is exploited by the identification algorithm outlined in Sec-
tion 5.4. Application to our example yields a clustering {C1, C2, C3} with
C1 = {q ≤ −2.1}, C2 = {−2.1 < q ≤ 1.8} and C3 = {1.8 < q}. The statisti-
cal weights µ(Ck) within the canonical ensemble µQ and the metastabilities
p(τ, Ck, Ck) are given by the following table:

metastable subset C1 C2 C3

statistical weight 0.324 0.616 0.060
metastability 0.966 0.973 0.908

The essential statistical behavior, i.e., the probability of transitions between
the metastable subsets, is described by the coupling matrix C = (cjk)j,k=1,2,3

with cjk = p(τ, Cj , Ck). For our example, we obtain

C =

 0.966 0.034 0
0.018 0.973 0.009

0 0.092 0.908

 .

Analyzing only the coupling matrix C and the metastability of the clusters,
we would predict that a typical realization of the Markov process would
stay most of the time in C2, sometimes moving to C1, stay there for some
time, then moving back and so on. Rarely, there will be transitions to C3,
where in addition the Markov process is unlikely to stay for a while. This
is what we observed for the realization shown in Figure 6. In this sense the
clustering, its metastabilities and the corresponding coupling matrix allow
to describe the essential statistical behavior of the model system.
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Figure 7: The four dominant eigenfunctions of the propagator Pτ for different model sys-
tems. Left: Hamiltonian system with randomized momenta corresponding to the eigenval-
ues 1.000, 0.975, 0.958, 0.599 (from top to bottom). Middle: Langevin equation for γ = 1.0
corresponding to the eigenvalues 1.000, 0.969, 0.949, 0.430; eigenfunctions projected on the
position space. Right: Smoluchowski equation for γ = 1.0 corresponding to the eigenvalues
1.000, 0.950, 0.915, 0.387.
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Let us have a closer look at the indicator [∆(Pτ )]. As suggested in
Section 5.1, the indicator should be used within some hierarchy of decompo-
sitions. The following table shows the indicator for our test system evaluated
in a hierarchy of decompositions into m equal–sized intervals:

m 30 50 100 200 500 1000
[∆(Pτ )] 0.557 0.423 0.315 0.207 0.152 0.117

We deduce that the essential spectral radius is likely to be much less than
the initially value of [∆(Pτ )] = 0.557 indicated. Moreover, while [∆(Pτ )]
drastically decays for finer decompositions of the state space, the dominant
eigenvalues of Pτ are quite insensitive w.r.t. refinements. This was already
illustrated for a small molecule in [69]. However, we do not know the exact
value of ress(Pτ ) in order to validate the results.

This is possible for the systems presented in Example 4.10 (ii), where
we considered a harmonic potential on the position space Ω = [−1, 1] with
periodic boundary conditions. Let us choose β = 2 and consider the cor-
responding propagator Pτ . Analytically, we have ∆(Pτ ) = 0.841 according
to Example 4.10. The following table shows the indicator [∆(Pτ )] based on
different decompositions of the state space into m equal–sized intervals:

m 30 50 100 200
[∆(Pτ )] 0.846 0.849 0.850 0.859

We observe that a finer decomposition of the state space does not signifi-
cantly change the value of [∆(Pτ )]; the results are in good agreement with
the analytical value. For the unbounded state space Ω = R described in
Example 4.10 (i) we have Pτ = Id and hence ress(Pτ ) = 1. This perfectly
illustrates the influence of periodic boundary conditions and also demon-
strates that it is possible to resolve the difference to the unbounded state
space numerically.

6.3 Langevin Equation

Let Pτ denote the propagator corresponding to the Langevin Markov process
and pτ its stochastic transition function. Up to now, the stability proper-
ties of the Langevin Markov process are only partially understood. While
(µ–a.e.) geometric or V –uniform ergodicity can be proved for both bounded
systems and periodic systems under reasonable conditions on the potential
function [51, 76], little is known about (µ–a.e.) uniform ergodicity. It is be-
lieved that the Markov process is not (µ–a.e.) uniformly ergodic for bounded
systems, while the periodic case is even less understood [33]. These topics
are subject to current investigations. Since the Langevin Markov process
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is not reversible, it is an ideal test system to demonstrate the effects of
time–symmetrization. Hence, we analyze both the “original” as well as the
time–symmetrized Markov process.

Proposition 6.3 The following holds for the Langevin equation:

(i) Fix some observation time space τ > 0 and consider a periodic system
with position space Ω ⊂ Rd and smooth potential function V : Ω→ R.
Then, µcan is the unique invariant probability measure of the Langevin
Markov process Xn = {Xnτ}n∈Z+ and its stochastic transition function
pτ is (µcan–a.e.) geometrically and V –uniformly ergodic.

(ii) Fix some observation time space τ > 0 and consider a bounded system
with position space Ω = Rd and smooth potential function V : Ω→ R
satisfying V (q) ≥ 0 for q ∈ Ω and growing at infinity like ‖q‖2l for
some positive integer l. Then, µcan is the unique invariant probability
measure of the Langevin Markov process Xn = {Xnτ}n∈Z+ and its
stochastic transition function pτ is (µcan–a.e.) geometrically and V –
uniformly ergodic.

Proof: Statement (i) is an immediate result of Theorem 3.1 by Stuart [76],
while statement (ii) immediately follows from Theorem 3.2 by Mattingly et
al. [51]. �

We remark that according to Mattingly et al. [51] the condition on the
growth rate of the potential function in the case of bounded systems can
be further weakened (see cond. 3.1 in [51]). While we are able to prove
(µcan–a.e.) geometric and V –uniform ergodicity for the Langevin equation,
reversibility fails to hold, since the infinitesimal generator L and therefore
the propagator Pτ is not self–adjoint in L2(µcan). In this case, Theorem 4.31
states nothing about the validity of the conditions (C1) and (C2) in L2(µcan).
Although the application of our algorithmic approach is not (yet) theoreti-
cally justified, the numerical results presented below are very promising.

In order to discretize the propagator in application to our test system,
we proceed according to Example 5.2, hence exploit a realization of the
discrete time Markov process Xn. We use the Leapfrog discretization for the
deterministic part with internal step size ∆t = 0.02 and random variables
Nn ∼ σ

√
∆tN (0, 1) for a realization of the white noise (within each internal

step). We discretize the state space X = Ω×R with Ω = [−5, 5] and periodic
boundary conditions into m = 900 subsets as follows: discretize the position
space Ω = [−5, 5] into 30 equal–sized intervals and the momenta space R
by partitioning [−3,+3] into 28 equal–sized intervals and adding the two
infinite intervals (−∞,−3] and [3,∞). Note that in view of the momenta
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Figure 8: Spectrum of Pτ for the Langevin equation for γ = 0.01 (upper left), γ = 0.16
(upper right), γ = 1.0 (lower left) and γ = 4.0 (lower right).

distribution shown in Figure 5, the statistical weight of the infinite intervals
is negligible. This way, we obtain a 900 × 900 non self–adjoint stochastic
transition matrix S. Solving the eigenvalue problem for S yields

λ1 λ2 λ3 λ4 λ5/6 . . .

1.000 0.969 0.949 0.430 0.369± 0.372i . . .

with [∆(Pτ )] = 0.750 for m = 400 discretization subsets and [∆(Pτ )] =
0.667 for m = 900. Hence, [∆(Pτ )] indicates that the first three dominant
eigenvalues belong to the discrete spectrum and are separated by a spectral
gap from the remaining part of the spectrum. This is in agreement with
the fact that the dominant eigenvalues are rather insensitive w.r.t. further
refinements of the decomposition. The next table show the eigenvalues of
maximal modulus for different decompositions into m subsets:

m λ1 λ2 λ3 λ4

400 1.000 0.968 0.947 0.412
900 1.000 0.969 0.949 0.430
1600 1.000 0.969 0.949 0.436
2500 1.000 0.969 0.950 0.440

We deduce from this results that numerically the two conditions (C1) and
(C2) are satisfied and proceed with the case m = 900. The eigenfunctions
corresponding to the largest eigenvalues are shown in Figure 10 (middle),
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Figure 9: First four dominant eigenvalues (maximal real part) of Pτ for the Langevin equa-
tion (top left) and Smoluchowski equation (top right) for different values of γ. Metasta-
bilities of the three subsets for the Langevin equation (bottom left) and Smoluchowski
equation (bottom right) for different values of γ.

their projections onto the position space are depicted in Figure 7 (middle).
We remark that, since the first three eigenvalues are real, the correspond-
ing eigenfunctions can be chosen real–valued. Moreover, because the largest
scalar product between either two different normalized eigenfunctions is of
order 10−3, the first three eigenfunctions are almost orthogonal, although
the propagator is not reversible. The same holds for the projected eigenfunc-
tions. Hence, the dominant part of Pτ is nearly self–adjoint and we would
identify metastable subsets by application of the identification algorithm.
However, we proceed in a slightly different way, since our aim is to identify
conformations induced by the Langevin equation.

Recall from Section 1.1 that conformations are thought to be objects in
the position space. For reduced models acting only on the position space Ω
like, e.g., the Hamiltonian system with randomized momenta, the notions of
conformations and metastable subsets coincide (see end of Sec. 1.1). This
is different for models acting on the phase space Γ = Ω×R (positions and
momenta) like, e.g., the Langevin equation. In this case we characterized
conformations as special metastable subsets of the form C = Ĉ×R ⊂ Γ with
Ĉ ⊂ Ω. Hence, for every position q ∈ Ĉ, the conformation C contains all
states of the form (q, p) with p ∈ R. Our strategy to identify conformations
induced by the Langevin equation is therefore as follows: In the position
space Ω, run the identification algorithm based on the first three projected
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eigenfunctions and extend the identified metastable subsets Ĉj ⊂ Ω to the
“cylindrical” subsets Cj = Ĉj ×R ⊂ X. Finally check for metastability of
the Cj w.r.t. the Langevin Markov process in Γ.

Applying this strategy13, we end up with a clustering {C1, C2, C3} with
C1 = [q ≤ −2.0] ×R, C2 = [−2.0 < q ≤ 1.7] ×R and C3 = [1.7 < q] ×R.
The statistical weights µ(Ck) within the canonical ensemble µcan and the
metastabilities p(τ, Ck, Ck) are given by the following table:

metastable subset C1 C2 C3

statistical weight 0.350 0.594 0.055
metastability 0.963 0.966 0.884

(64)

Calculating the coupling matrix yields

C =

 0.963 0.037 0
0.023 0.966 0.011

0 0.116 0.884

 . (65)

So far we have analyzed the Langevin equation for the specific choice
of friction constant γ = 1 and stochastic excitation σ = 1, resulting in the
inverse temperature β = 2. Recalling that β = 2γ/σ2, we find that there
is a one–parameter family of Langevin equations corresponding to the same
inverse temperature: choose σ =

√
2γ/β for arbitrary γ > 0. Figure 8 il-

lustrates the dependence of the spectrum on γ. It shows the spectrum of
the stochastic transition matrix S obtained from discretizing the propagator
Pτ corresponding to β = 2 and different values of γ. We observe that for
small values of γ the spectrum of S is spread all over the unit disc, while it
concentrates more and more on the interval [0, 1] for larger values of γ. This
reflects the fact that the Langevin equation is similar to the deterministic
Hamiltonian system for γ ≈ 0 [23], while it is similar to the Smoluchowski
equation for γ � 1. Hence, the Langevin equation exhibits different be-
havior depending on the friction constant γ. This might also explain the
dependence of the dominant eigenvalues on γ, as shown in Figure 9 (top).
The eigenvalues accumulate in λ = 1 for γ ≈ 0 as well as for γ � 1. The
former effect reflects the fact that the deterministic Hamiltonian system ad-
mits infinitely many invariant probability distributions (see Sec. 6.1), while
the latter effect is due to the behavior of the Smoluchowski equation for
large γ.

13We could think of different strategies like, e.g., projecting the Langevin Markov process
onto the position space Ω and considering the corresponding propagator. Alternatively,
we could modify the Langevin model similar to the Hamiltonian system with randomized
momenta in order to obtain a Langevin system with randomized momenta in the position
space only. Our strategy is motivated by the fact that it fits best our context, as we are
going to see below and in Section 6.5.
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Figure 10: Left and middle: Dominant eigenfunctions for the Langevin equation for
γ = 1.0. Eigenfunctions of the time–symmetrized discretization of Pτ corresponding
to the eigenvalues 1.000, 0.984, 0.974, 0.701 (left) and eigenfunctions corresponding to the
discretization of Pτ corresponding to 1.000, 0.969, 0.949, 0.430 (middle). Right: Second
eigenfunction of Pτ for γ = 0.16, 1.0, 4.0, 16.0 (top to bottom).
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Seemingly in contrast to the behavior of the eigenvalues is the decay of
metastability of the corresponding clusterings, as shown in Figure 9 (bot-
tom). This effect is due to our definition of conformations as cylindrical
metastable subsets (see Sec. 1.1). Due to energy conservation in the de-
terministic Hamiltonian case, we would expect that subsets of the state
space X = Γ corresponding to a certain energy range get more and more
metastable for small γ. Since these subsets follow contour lines of H or,
equivalently, of fcan (see Figure 5), every “cylindrical” subset will necessar-
ily only partially intersect with these energy range subsets. This causes loss
of metastability and explains the decay of metastability for small values of
γ. Nevertheless, we would expect to find metastable subsets—subject to no
restriction—for small γ, since the energy fluctuation of the Langevin equa-
tion decay for γ tending to zero. The mentioned structure due to nearly
energy conservation is already visible in Figure 10 for the top left eigenfunc-
tion (see also [49]).

In the last part of this section we want to study the effects of time–
symmetrization. Since the Langevin equation is not reversible, it is an ideal
test model. In order to facilitate a comparison of the original and the time–
symmetrized approach, we use the same realization of the Langevin Markov
process Xn for the subsequent numerical discretization as above. The next
proposition is a direct application of Theorem 4.31.

Proposition 6.4 Fix some observation time span τ > 0 and assume that
the stochastic transition function rτ corresponding to the time–symmetrized
Langevin Markov process Zn = {Zn}n∈Z+ is geometrically ergodic. Then the
propagator Pτ : L2(µcan)→ L2(µcan) corresponding to the time–symmetrized
Markov process satisfies the conditions (C1) and (C2) in L2(µcan).

The assumption in Proposition 6.4 is in particular satisfied, if the stochas-
tic transition function corresponding to the original Langevin Markov pro-
cess can proved to be uniformly ergodic. We now discretize the propagator
Pτ corresponding to the time–symmetrized Langevin Markov process ac-
cording to Example 5.2. Proceeding as in the first part, we end up with a
self–adjoint 900×900 stochastic transition matrix S. Solving the eigenvalue
problem for S yields:

λ1 λ2 λ3 λ4 λ5 λ6 . . .

1.000 0.984 0.974 0.701 0.649 0.539 . . .

In view of our algorithmic strategy, we are looking for a decomposition into
three metastable subsets. The eigenfunctions corresponding to the largest
eigenvalues are shown in Figure 10 (left). Application of our identification
strategy yields a clustering {C1, C2, C3} with C1 = [q ≤ −1.9] × R, C2 =
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[−1.9 < q ≤ 1.8]×R and C3 = [1.8 < q]×R. The statistical weights µ(Ck)
within the canonical ensemble µcan and the metastabilities p(τ, Ck, Ck) are
given by the following table:

metastable subset C1 C2 C3

statistical weight 0.358 0.585 0.057
metastability 0.975 0.977 0.921

(66)

The coupling matrix based on the realization of the original Langevin Markov
process Xn w.r.t. the clusters based on the time–symmetrized Markov pro-
cess is given by

C =

 0.975 0.025 0
0.015 0.977 0.008

0 0.079 0.921

 . (67)

As predicted by Theorem 3.2 the metastability w.r.t. the time–symmetrized
Markov process Zn (see table (66)) and the metastability w.r.t. the origi-
nal Markov process Xn (see table (64)) are identical. However, comparing
the two coupling matrices (65) and (67), we see that a clustering based on
the time–symmetrized process might differ from results based on the origi-
nal process. This a consequence of the different resulting propagotors and
corresponding (projected) eigenfunctions.

6.4 Smoluchowski Equation

Denote by Pτ the propagator corresponding to the Smoluchowski Markov
process. We first state under which conditions on the potential function the
two requirements (C1) and (C2) on Pτ hold. Then, we numerically analyze
the induced essential statistical behavior w.r.t. the positional canonical en-
semble µQ.

Proposition 6.5 The following holds for the Smoluchowski equation:

(i) For periodic systems with position space Ω ⊂ Rd, some fixed obser-
vation time space τ > 0 and smooth potential function V : Ω → R,
the propagator Pτ : L1(µQ) → L1(µQ) satisfies ress(Pτ ) = 0 and is
asymptotically stable, hence conditions (C1) and (C2) are fulfilled in
L1(µQ).

(ii) For bounded systems with position space Ω = Rd, some fixed obser-
vation time space τ > 0 and smooth potential function V : Ω → R
satisfying for some integer α > 0 the growth conditions V (q) ∼ ‖q‖2α,
∇V (q) ∼ ‖q‖2α−1 and ∂2V (q) ∼ ‖q‖2α−2 as ‖q‖ → ∞, the propaga-
tor Pτ : L2(µQ) → L2(µQ) satisfies the conditions (C1) and (C2) in
L2(µQ).
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Proof: For periodic systems, application of Theorem 3 of Ichihara and Ku-
nita [36] yields that the stochastic transition function p(t, q,dy) is absolutely
continuous w.r.t. µQ admitting a C∞ density. Hence, the density is bounded,
since Ω is compact, and therefore ress(Pτ ) = 0 by Theorem 4.9. Further-
more, we get asymptotic stability of Pτ according to [46], hence conditions
(C1) and (C2) hold in L1(µQ). For bounded systems, the statement follows
by Theorem 4.31, if we can prove that the stochastic transition function is
V –uniformly ergodic. But this is an immediate result of Theorem 5.3 by
Mattingly et al. [51]. �

Due to Mattingly et al. [51], the condition on the growth rate of the
potential function in the case of bounded systems can be weakened (see
cond. 5.1 in [51]). For an analysis of the Smoluchowski equation from a
symmetric Markov semigroup point of view see Davies [8].

By Proposition 6.5 the application of the algorithmic approach to our test
systems is theoretically justified. In order to discretize the propagator, we
proceed according to Example 5.1 using the Trapzoid rule with N = 300000,
M = 1 and the forward Euler or Euler–Maruyama scheme [41] with internal
step size ∆t = 0.02. A realization looks comparable to Figure 6. Discretizing
the state space Ω = [−5, 5] with periodic boundary conditions into 30 equal–
sized intervals, we obtain a 30× 30 stochastic transition matrix S. Solving
the eigenvalue problem for S yields:

λ1 λ2 λ3 λ4 λ5 λ6 . . .

1.000 0.950 0.915 0.387 0.227 0.125 . . .

Evaluating the indicator for ress(Pτ ) we get [∆(Pτ )] = 0.361—for a further
analysis of the indicator within a hierarchical context see below. As for the
preceding model systems, we look for a decomposition into three metastable
subsets. The eigenfunctions corresponding to the largest eigenvalues are
shown in Figure 7 (right). Applying the identification algorithm, we end up
with a clustering {C1, C2, C3} with C1 = {q ≤ −2.1}, C2 = {−2.1 < q ≤
1.7} and C3 = {1.7 < q}. The statistical weights µ(Ck) within the positional
canonical ensemble µQ and the metastabilities p(τ, Ck, Ck) are given by the
following table:

metastable subset C1 C2 C3

statistical weight 0.353 0.589 0.058
metastability 0.948 0.956 0.867

The essential statistical behavior is given by the coupling matrix

C =

 0.950 0.050 0
0.030 0.957 0.013

0 0.138 0.862

 .
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From a theoretical point of view we know that ress(Pτ ) = ∆(Pτ ) = 0
holds for periodic systems due to Prop. 6.5. Does the indicator [∆(Pτ )]
reproduce this result? The following table shows the indicator based on
different decompositions of the state space into m equal–sized intervals:

m 30 50 100 200
[∆(Pτ )] 0.361 0.224 0.116 0.070

(68)

The values are in good agreement with the theoretical value ress(Pτ ) = 0.
The previous results are based on a discretization of the propagator ac-
cording to Example 5.1. This was possible, since the state space is very
low–dimensional. In higher dimensions, we will have to use a discretiza-
tion procedure according to Example 5.2 that is based on a realization of
the Markov process Xn = {Xnτ} for some fixed time τ > 0. Exploiting a
realization of Xn we see that the dominant eigenvalues, the resulting cluster-
ings, their statistical weights and their metastabilities are almost indistin-
guishable from the results previously obtained, while the indicator [∆(Pτ )]
behaves quite differently:

m 30 50 100 200
[∆(Pτ )] 0.409 0.389 0.500 0.500

The values for [∆(Pτ )] decrease first and then stay constant for a decom-
position into more than 100 subsets. This seems to contradict the theo-
retical results, but can be understood in the context mentioned at the end
of Section 5.1: Since the Smoluchowski process is reversible, we used the
original as well as the reversed sampling to discretize the propagator. An-
alyzing the stochastic transition matrix S for, e.g., m = 100 we see that
[∆(P )] = S2,13 = S2,16 = 0.5. Since the statistical weight of the 2nd subset
is 3e−6, it implies that only one sampling point hit the second subset. Tak-
ing into account also the reversed sampling, we see that the second subset
was exactly hit two times, which after normalization results in the value
S2,13 = S2,16 = 0.5. In this case, [∆(Pτ )] indicates an insufficient sampling
of the 2nd subset rather than an upper bound of the essential spectral ra-
dius, as was already discussed at the end of Section 5.1. A refinement of
the sampling would decrease the value of [∆(Pτ )], as we already know from
table (68).

As in the Langevin case, for a fixed inverse temperature β there is a
one–parameter family of Smoluchowski equations parameterized by γ (or
σ). The corresponding family of infinitesimal generators {Lγ}γ>0 has a very
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simple form, since for fixed β and arbitrary γ > 0

Lγ =
1
γ

 1
β

∆q −∇qV (q) · ∇q︸ ︷︷ ︸
Lβ

 . (69)

Hence, each generator Lγ is simply a multiple of Lβ and we get the following
relationship for the eigenvalues and -functions:

Lβ v = λv ⇔ Lγ v =
λ

γ
v.

We deduce that the eigenfunctions of Lγ are independent of γ. For the
corresponding propagator Ptv = exp(tLγ)v we deduce

Lγ v =
λ

γ
v ⇒ Ptv = exp

(
λ

γ
t

)
v. (70)

Figure 9 (top right) shows the eigenvalues of Pτ = exp(τLγ) for different
values of γ. From (70) we would expect a logarithmic decay with 1/γ,
which can be observed in a semi–logarithmic plot (not shown). Since the
eigenvalues decay with decreasing γ, we expect that the metastabilities of
the resulting decompositions also decay with decreasing γ due to the upper
bound in Thm. 3.1. This phenomenon can be observed in Figure 9 (bottom
right).

6.5 Comparison of Model Systems

In broad terms the Hamiltonian system with randomized momenta, the
Langevin equation and the Smoluchowski equation behave quite similar (for
the chosen model parameters). The numerical investigations show com-
parable results for the clusterings into metastable subsets, their statistical
weights and the corresponding coupling matrices reflecting the essential sta-
tistical behavior. Qualitative different behavior is displayed by the fourth
eigenfunctions (bottom line of Figure 7). But since for each model dynamics
the fourth eigenvalue is well separated from the three dominant ones by a
spectral gap, the influence on the dynamical behavior is expected to be less
important.

The Hamiltonian system with randomized momenta is uniquely deter-
mined by specifying a potential function and some inverse temperature,
hence specifying the canonical ensemble. In contrast to that, for fixed β,
the Langevin and the Smoluchowski equation still depend on the friction
constant γ, which can be related to the viscosity of the surrounding. As
a consequence, the results the dynamical behavior depends on γ. Com-
paring the Langevin and the Smoluchowski model, we observe increasing
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agreement of eigenvalues and metastabilities for increasing values of γ (see
Figure 9). This is what we should expect, since the Smoluchowski equation
was derived as a high–friction approximation of the Langevin equation (Sec-
tion 2.4). This can also be understood from a dominant eigenfunction point
of view: Figure 10 (right) shows the second dominant eigenfunctions for dif-
ferent values of γ; the not depicted third eigenfunctions behaves similarly.
For small friction the eigenfunctions still display features of the determin-
istic Hamiltonian system, while for larger values of γ the eigenfunctions
convert more and more to a special product form, namely the product of
a function acting on positions times a constant function in the momenta.
Since the “loss of information” by projecting such a function to the position
space is negligible, this might explain the good approximation quality of the
Langevin by the Smoluchowski equation in the case of high friction. This is
also reflected by the observation that the spectrum of the Langevin propaga-
tor becomes more and more “real–valued” (see Figure 8), as this is the case
for the Smoluchowski equation. However, for small γ, the Langevin and the
Smoluchowski equation exhibit different behavior. While in the Langevin
case some eigenvalues accumulate in λ = 1 for γ � 1, this is not the case
for the Smoluchowski equation, where all eigenvalues but λ = 1 tend to zero
due to relation (70).

So far, we have presented an analysis of metastability for some fixed
observation time span τ > 0. How do the results depend on τ? For
the Hamiltonian system with randomized momenta, first investigations are
documented in [68]. Exemplified for a small molecule, the dependence of
the eigenvalues on τ is analyzed14. It looks almost exponential. For the
Langevin and Smoluchowski equation the exponential dependence of the
eigenvalues on τ is theoretically deducible on the basis of the semigroup
property Pτ = exp(τL). We further conclude that in this case the corre-
sponding eigenfunctions and hence the thereon based metastable subsets are
independent of any observation time span.

14Actually, Schütte analyzed in [68] the dependence of the eigenvalues on the inverse
temperature β, which in combination with Section 3.7.2 of [68], where an (inverse) tem-
perature scaling is related to a rescaling of the observation time span τ , gives the stated
result.
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7 Application to Large Systems

In this section we want to demonstrate that the algorithmic strategy pre-
sented in Section 3.2 can be applied to identify biomolecular conformations
even for large systems as, for instance, small biomolecules with hundreds of
atoms. For large systems, we have to face two particular problems:

1. How to approximate the stationary distribution in a high–dimensional
space?

2. How to decompose the high–dimensional state space in order to dis-
cretize the propagator?

We will address these problems in the following.

7.1 Monte Carlo methods

The typical approach to sample the canonical distribution in a high–dimen-
sional space is via Monte Carlo techniques. There is an extremely rich and
varied literature on Monte Carlo methods (see, e.g., [44, 75]) and every
converging method would allow to realize the problem of sampling the in-
variant distribution. In addition, we may also apply molecular dynamics
based techniques, e.g., constant temperature sampling of the canonical dis-
tribution [54, 2]. It is widely known, that Monte Carlo simulations may
suffer from possible “trapping problems” [48]. This kind of problem occurs
when the Monte Carlo Markov process gets trapped near a local potential
energy minimum due to high energy barriers so that a proper sampling of
the entire state space within reasonable computing times is impossible. As
illustrated in [68], this phenomenon is related to the existence of metastable
subsets for the Monte Carlo Markov process.

There exists various strategies addressing the trapping problem. Espe-
cially the so–called extended ensemble methods, which are based on reweight-
ing techniques, are gaining significant popularity. Recently, Fischer pre-
sented a promissing alternative approach, the uncoupling–coupling Monte
Carlo (UCMC) technique [20]. It links Monte Carlo sampling methods with
the algorithmic strategy to the identification of metastable subsets, as de-
scribed in this thesis. Loosely speaking, it exploits a clustering of the state
space, when metastability starts to become “visible” but is far from causing
trapping problems. As outline in [22] this may allow to sample the canonical
distribution with reasonable computational effort.

7.2 Adaptive Discretization Techniques

There are different ways of facing the second problem, the decomposition
of the state space. We assume that the canonical distribution has properly
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been sampled by some Monte Carlo method. Then the following possibilities
arise.

Essential Degrees of Freedom. Typical biomolecular systems contain
hundreds or thousands of atoms. If we would generate a decomposition of
the state space by simply decomposing every degree of freedom, the number
of subsets within the decomposition and thus the dimension of the stochastic
transition matrix would grow exponentially with the size of the molecular
system. Chemical insight into biomolecular systems allows to circumvent
this “curse of dimensionality”. Conformations of biomolecules are mostly
described in terms of a few essential degrees of freedom. In the subspace of
essential degrees of freedom most of the positional fluctuations occur, while
in the remaining degrees of freedom the motion can be considered as “phys-
ically constrained”. Based on the sampling of the canonical distribution, we
may determine essential degrees of freedom either in the position space ac-
cording to Amadei et al. [1] or in the space of internal degrees of freedom,
e.g., dihedral angles [35], by statistical analysis of circular data. Either case
is based on a principal component analysis of the sampling via analyzing a
covariance matrix. As shown in [35], this procedure may results in a tremen-
dous reduction of the number of degrees of freedom and, consequently, in
a moderate number of subsets within the decomposition when discretizing
the essential variables only. The principal component analysis is a linear
approach to essential degrees of freedom. A characterization and identifi-
cation of more general nonlinear essential degrees of freedom is subject to
investigations within a current research project [70] and part of a current
diploma thesis [78].

Self–Organizing Maps. An alternative approach is to discretize the prop-
agator by means of self–organizing maps, a special kind of neural networks.
Self–organizing maps allow to cluster the Monte Carlo sampling data by
assigning each sampling point to the nearest neurons, each of them repre-
senting a subset of the decomposition. We have demonstrated its successful
application to sampling data of biomolecular systems in [28]. More advanced
extensions, such as “box–neurons” and a hierarchical embedding, have re-
cently be designed [26, 27].

Clustering Algorithms. A third approach of decomposing the state space
is based on clustering the sampling data by means of clustering algorithms
(see, e.g., [37] and cited references). These methods cluster according to
structural similarity: The set of sampling points is partitioned into disjoint
subsets with the property that two states belonging to the same subset are
in some sense structural closer to each other than two states belonging to
different subsets. A crucial question is the design of appropriate measures
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of structural similarity. In the biomolecular application context, these mea-
sures can either be based on the Cartesian coordinates of the molecules or
on the internal degrees of freedom. In contrast to the former the latter ap-
proach is invariant under rotations and translations of the entire molecule.
For an application to biomolecular systems see [35].

Solving the Eigenvalue Problem. Finally, we want to remark that al-
though the stochastic transition matrix resulting from the discretization
may be quite large, it turns out to be sparse in our application context.
Furthermore, since the algorithmic strategy is based solely on the dominant
eigenvalues and corresponding eigenfunctions, we can apply subspace ori-
ented iterative techniques (see, e.g., [64]) to solve the eigenvalue problem.
It is important to notice that the convergence rate of those methods de-
pends only on the spectral gap between the cluster of dominant eigenvalues
and the remaining part of the spectrum and is independent of the size of
the stochastic transition matrix and hence of the number of discretization
subsets.

However, it should be clear that any refinement process of the discretiza-
tion is limited by the quality of the underlying sampling data, since the ap-
proximation quality of the stochastic transition matrix is based on the inter-
play between sampling data and fineness of the discretization (see Sec. 5.3).

7.3 Analyzing a Small Biomolecule

This section illustrates the performance of the algorithmic approach to the
triribonucleotide adenylyl(3’-5’)cytidylyl(3’-5’)cytidin (r(ACC)) model sys-
tem in vacuum, see Figure 11. Its physical representation is based on the
GROMOS96 extended atom force field [77], resulting in N = 70 atoms,
hence Ω = R210 and Γ = R420. The internal fluctuations are modeled w.r.t.
the Hamiltonian system with randomized momenta. For details see [35].

The sampling of the canonical distribution was generated using an adap-
tive temperature hybrid Monte Carlo15 (ATHMC) method [21] at T = 300K
resulting in the sampling sequence q1, . . . , q32000 ∈ Ω. The dynamical fluc-
tuations within the canonical ensemble were approximated by integrating
M = 4 short trajectories of length τ = 80fs starting from each sampling
point. To facilitate transitions, analogous to the ATHMC sampling, the mo-
menta were chosen according to the momenta distribution P(p) correspond-
ing to four different temperatures between 300K − 400K and reweighted
afterwards. This resulted in a total of 4×32.000 = 128.000 transitions.

The configurational space was discretized using all four essential degrees
of freedom, which were identified by means of a statistical analysis of the
sampling data (see Sec. 7.2), resulting in d = 36 discretization subsets.

15ATHMC is part of the earlier mentioned UCMC method (see Section 7.1).
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ζαβ
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P

Figure 11: Two representatives of different conformations of r(ACC). Left: The χ angle
around the first glycosidic bond is in anti position (-175 degrees) and the terminal ribose
pucker P is in C(3’)endo C(2’)exo conformation. Right: The χ angle is in syn position
(19 degrees) and the terminal ribose in C(2’)endo C(3’)exo conformation. Visualization
by amira [42].

Then the 36×36 stochastic transition matrix S was computed based on the
128.000 transitions taking the different weighting factors into account. The
computation of the eigenvalues of S close to 1 yielded a cluster of eight
eigenvalues with a significant gap to the remaining part of the spectrum, as
shown in the following table:

k 1 2 3 4 5 6 7 8 9 . . .

λk 1.00 0.99 0.98 0.97 0.96 0.95 0.93 0.90 0.81 . . .

Finally, we computed conformations based on the corresponding eight eigen-
vectors of S via the identification algorithm presented in Section 5.4. We
identified eight conformations; their statistical weights and metastabilities
are shown in the following table:

conformations C1 C2 C3 C4 C5 C6 C7 C8

statistical weight 0.11 0.01 0.12 0.03 0.32 0.04 0.29 0.10
metastability 0.99 0.94 0.96 0.89 0.99 0.95 0.98 0.96

The transition probabilities between the different conformations are visu-
alized schematically in Figure 12. The matrix allows to define a hierarchy
between the clusters, which is inherent to the algorithm. On the top level,
there are two clusters, one consisting of the conformations C1, . . . , C4 and
the other consisting of the conformations C5, . . . , C8. This structure cor-
responds to the two 4×4 blocks on the diagonal. On the next level, each
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of these clusters splits up into two subclusters yielding four conformations
{C1, C2}, {C3, C4}, {C5, C6}, {C7, C8}. On the bottom level, each cluster is
further divided resulting in eight conformations.

C8C7C6C5C4C3C2C1

C1

C2

C3

C4

C5

C6

C7

C8

Figure 12: Schematical visualization of the transition probabilities p(τ, Ci, Cj) between
the conformation Ci (row) and Cj (column). The colors are chosen according to the
logarithm of the corresponding entries: from p ≈ 0 (light) to p ≈ 1 (dark).
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Summary

Algorithmic approaches for the identification of essential statistical behav-
ior have successfully been applied to study deterministic dynamical systems
and molecular systems in a Hamiltonian context.

This thesis unifies and extends theory and algorithmic concepts from the
formerly considered special classes of dynamical systems to the broader class
of Markovian systems. We provide a detailed analysis of metastability and
a new theoretical justification of the transfer operator based approach to
metastability (Sec. 3). It is based on an instructive theorem (Theorem 3.1)
specifying the relation between eigenvalues close to 1 and the existence of a
decomposition into metastable subsets. This thesis contributes new links be-
tween spectral properties of transfer operators and well established Doeblin
and ergodicity conditions for Markov processes and operators (Thms. 4.13,
4.24, 4.31).

We obtain a rather complete understanding in the L1(µ) setting for gen-
eral Markov processes (Secs. 4.2, 4.3), and for the L2(µ) setting in the case of
reversible Markov processes (Sec. 4.4). This allows us to successfully extend
the concepts to new model systems, and we investigated for the first time the
essential statistical behavior of the Langevin and the Smoluchowski equa-
tion in comparison with the Hamiltonian system with randomized momenta.
We furthermore suggested an algorithmic indicator for the essential spectral
radius (Sec. 5.1), which proved to be useful in application to our test system.

We outlined the strategies for studying larger molecular systems and
successfully demonstrate its application to the study of the triribonucleotide
r(ACC) (Sec. 7).
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