
 

3. DISCUSSION 

3.1. The controversial role of granulocytes in the generation of inflammatory pain 

Leukocytes contain mediators that have properties to cause or to ameliorate pain. Several previous 

studies have examined whether granulocytes cause pain. In these studies granulocytes were recruited 

using local injections of fMLP, leukotriene B4, complement C5a, and nerve growth factor. All of these 

induced pain in response to mechanical or thermal stimuli that was attenuated by systemic granulocyte 

depletion (Levine et al., 1984; Levine et al., 1985; Levine et al., 1986; Bennett et al., 1998). However, 

the results are controversial for three reasons: First, the corresponding receptors of those mediators 

(FPR for fMLP, C5a receptor, BLT1 for leukotriene B4, trkA for NGF) are not selectively expressed 

on granulocytes but also on other leukocyte subpopulations such as macrophages as well as on periph-

eral neurons (Susaki et al., 1996; Yang et al., 2000; Goodarzi et al., 2003). Second, the agents used for 

granulocyte depletion were nonselective and depleted other leukocyte subpopulations (e.g. macro-

phages) at the same time (Bennett et al., 1998; Foster et al., 2002). Third, significant differences in 

nociceptive thresholds were only detected at a time point when both granulocytes and mono-

cytes/macrophages were both significantly depleted (Bennett et al., 1998; Foster et al., 2002). Taken 

together, a central role for granulocytes in the generation of inflammatory pain has not been conclu-

sively demonstrated in those studies. 

In contrast, local injection of CXCR2 ligands resulted in selective recruitment of granulocytes in our 

studies (Rittner et al., 2006b). CXCR2 ligand inoculation did not induce pain or expression of c-fos in 

the spinal cord. In contrast, CFA-induced inflammation resulted in pain while the same number of 

infiltrating granulocytes was recruited. A similar activation state of recruited granulocytes was seen in 

CFA inflammation and after intraplantar injection of CXCR2 ligands. In other experimental models of 

peritoneal pain (acid-induced writhing) glycogen-induced granulocyte recruitment even reduced vis-

ceral pain (Giorgi et al., 1998). Glycogen-induced granulocyte recruitment is mediated by enhanced 

local production of CXCR2 ligands (CXCL2/3 and CXCL1) and it could be blocked by anti-CXCR2 

ligand antibodies (Mulligan et al., 1993; Remick et al., 2001). Pain in this model was mediated by 

mast cells and resident macrophages (Ribeiro et al., 2000). In CFA-induced local inflammation, nei-

ther granulocyte depletion nor enhancement of granulocyte recruitment altered the intensity of in-

flammatory pain (Brack et al., 2004a; Brack et al., 2004c; Rittner et al., 2006a; Rittner et al., 2006b). 

In support of our results, local injection of glycogen was shown to selectively recruit granulocytes 

without causing pain (Levine et al., 1985). Granulocytes, therefore, seem not to contribute to the gen-

eration of pain. 

Other groups examined whether chemokines by themselves could induce pain. Different groups of 

chemokines directly activate nociceptors (Oh et al., 2001; Oh et al., 2002; White et al., 2005). Most of 

these studies employed other chemokines. However, direct local injection of CXCR2 ligands into non-

inflamed paws resulted in pain but the doses used were several orders of magnitude lower than ours 

and selective granulocyte recruitment was not demonstrated (Cunha et al., 1991; Lorenzetti et al., 



 

2002; Sachs et al., 2002; Cunha et al., 2005). In support of our results, heat-induced neuropeptide re-

lease in a skin nerve preparation was augmented by cytokines (i.e. tumor necrosis factor-α, IL-1β and 

-6) but not by CXCL8 (Opree and Kress, 2000).  

In summary, we provide evidence that granulocytes do not cause pain, if selectively recruited into 

tissue by chemokines. Further studies will be needed to examine the role of other leukocyte subpopu-

lations in the generation of pain. Chemokines selective for certain leukocyte subpopulations might be 

a useful tool for this purpose.  

3.2. Opioid receptors in inflammation  

One of the factors increasing the analgesic efficacy of opioids in inflammation is the increased expres-

sion of opioid receptors on peripheral nerve terminals. Besides increased anterograde transport of 

opioid receptors to the periphery increases in mRNA and protein expression were postulated. Indeed, 

during CFA-induced paw inflammation we observed an upregulation in κ-opioid receptor mRNA in 

DRG of the inflamed side 12 hr after CFA injection (Puehler et al., 2006), while previously a biphasic 

upregulation of µ-opioid receptor mRNA and no change in δ-opioid receptor mRNA content was 

shown (Puehler et al., 2004). These findings indicate that the three opioid receptors are differentially 

regulated, as has been postulated before (Zhang et al., 1998). Several mechanisms account for this 

regulation: κ-opioid receptor mRNA expression in DRG seems to be dependent on the local produc-

tion of IL-1β in the inflamed hindpaw because an IL-1 receptor antagonist reduces the increased ex-

pression of κ-opioid receptor mRNA and protein (Jeanjean et al., 1994; Jeanjean et al., 1995; Puehler 

et al., 2006). In contrast, the early peak of µ-opioid receptor mRNA upregulation in DRG appears to 

be regulated by electrical conduction because nerve blockade by local anesthetics inhibits this upregu-

lation (Puehler et al., 2004). In DRG µ-opioid receptor expression at later stages of the inflammation is 

regulated by nerve growth factor (Zwick et al., 2003; Molliver et al., 2005; Mousa et al., 2007b). Local 

injection of nerve growth factor alone mimics the increased binding of opioid receptor agonists in 

DRG seen in CFA inflammation. Supporting this mechanism, Mousa et al. showed that local injection 

of anti-nerve growth factor antibodies reduces CFA-induced upregulation of opioid receptor agonist 

binding in the DRG. This anti-nerve growth factor treatment also abolished the augmentation of opioid 

receptor expression on peripheral nerve terminals and of opioid induced analgesia in CFA inflamma-

tion. The exact mechanisms of nerve growth factor and IL-1β induced upregulation of opioid receptors 

remain to be elucidated. In summary, three factors were so far identified to regulate opioid receptor 

expression IL-1β, nerve growth factor, and electrical conduction.  

3.3. Opioid peptides in inflammation  

Inflammatory mediators not only regulate opioid receptor expression but also the synthesis of opioid 

peptides. Full length proopiomelanocortin mRNA as the precursor of β-endorphin is essential because 

it contains the signal sequence ensuring processing to and secretion of the authentic peptide (Clark et 



 

al., 1990). In the past, several studies detected truncated proopiomelanocortin transcripts in naïve lym-

phocytes (Lacaze-Masmonteil et al., 1987; Cabot et al., 1997). Only one study showed full-length 

proopiomelanocortin mRNA containing the signal sequence in human leukocytes (Stephanou et al., 

1991). However, under pathological conditions or after mitogen treatment of lymphocytes in vitro full-

length proopiomelanocortin mRNA can be detected (Lyons and Blalock, 1997). Here we provide evi-

dence that signal sequence-encoding proopiomelanocortin mRNA is expressed under control condi-

tions and is upregulated after paw inflammation in B- and T-lymphocytes from the draining lymph 

node using higher sensitive nested PCR (Sitte et al., 2007). In accordance with other studies the num-

ber of copies was low compared to the pituitary (van Woudenberg et al., 1993). In view of the fact that 

immunoreactive β-endorphin can be easily detected by radioimmunoassay, immunohistochemistry and 

flow cytometry, other factors such as the mRNA’s half-life and translation efficiency might also be 

important for enhancing protein/peptide production.  

In the inflamed paw itself we quantified the leukocyte subpopulations producing opioid peptides after 

we developed a method to analyze the number of opioid containing leukocytes by flow cytometry 

(Rittner et al., 2001). The number of opioid containing leukocytes as well as the β-endorphin content 

in the paw increased during the course of inflammation. At early time points, opioid peptides were 

produced by granulocytes while later they were produced by macrophages. Only a low percentage of 

T-lymphocytes were seen in the inflamed paw. Both subpopulations, granulocytes and macrophages, 

are part of the innate immune reaction as seen in other models of inflammation (Singer and Clark, 

1999; Abbadie et al., 2003; Radhakrishnan et al., 2003). Our selective depletion studies confirmed the 

functional role in vivo of granulocytes (Brack et al., 2004a) and macrophages (Brack et al., 2004b) in 

the generation of analgesia. Interestingly, local transfer of allogenic granulocytes reconstituted analge-

sia in rat depleted of granulocytes (Rittner et al., 2006c) pointing towards a prominent role of these 

cells for peripherally mediated opioid endogenous analgesia in the early phase of inflammation. 

Under other conditions lymphocytes seem to be important for release of opioid peptides and analgesia. 

When rats with CFA paw inflammation were immunosuppressed using cyclosporine A, local intra-

plantar injection of T-lymphocytes reconstitutes opioid mediated analgesia (Hermanussen et al., 2004). 

In mice with severe combined immunodeficiency lacking T- and B-lymphocytes visceral pain was 

enhanced compared to wild type mice (Verma-Gandhu et al., 2006). The transfer of T-lymphocytes 

reduced pain to the level of the wild type mice. The effect was blocked using the peripheral selective 

opioid receptor antagonist naloxone-methiodide (Verma-Gandhu et al., 2006).  

Similar to the previously known opioid peptides (β-endorphin, met-enkephalin and dynorphin), endo-

morphin-1 and endomorphin-2 are expressed in all leukocyte subpopulations (macrophage/monocytes, 

granulocytes and lymphocytes) and are increased in inflamed lymph nodes and inflamed subcutaneous 

paw tissue (Mousa et al., 2002). To test their functional role we found that exogenous endomorphin-1 

and endomorphin-2 injected into the inflamed hindpaw were as effective as β-endorphin, but less so 

than morphine (Labuz et al., 2006). In addition, endogenously produced endomorphin-1 and endomor-



 

phin-2 seem to contribute to peripherally mediated opioid analgesia elicited by stress or local injection 

of CRF. However, effects of either single or combined injections of antibodies against endomorphin-1 

and endomorphin-2 were weaker than that of anti-β-endorphin antibody. Thus, it appears that leuko-

cyte-derived endomorphins contribute less than leukocyte-derived β-endorphin to attenuation of in-

flammatory pain.   

In conclusion, we and others found that opioid peptides are expressed in several leukocyte subpopula-

tions and upregulated under inflammatory conditions. In vivo these peptides seem to play a functional 

role in the generation of analgesia.  

3.4. Chemokines regulating migration of opioid containing granulocytes 

Three CXCR2 ligands are produced in the inflamed hindpaw in early stages of CFA inflammation 

(Brack et al., 2004a; Brack et al., 2004c). They control the migration of opioid containing leukocytes. 

In our model one CXCR2 ligand can substitute the function of another CXCR2 ligand because the 

single blockade of one CXCR2 ligand did not impair migration of opioid containing leukocytes. Even 

double CXCR2 ligand blockade could not completely abolish the migration of opioid containing leu-

kocytes. Therefore, other CXCR2 ligands like CXCL5 (Chandrasekar et al., 2001) or other chemokine 

receptor systems (Domachowske et al., 2000) or unrelated pathways including formyl peptides 

(Levine et al., 1985) or complement (Gerard and Gerard, 1994) might be involved. These will be stud-

ied in future projects. 

Some chemokines are known for their pain causing properties. In some models, injection of CXCR2 

ligands caused pain and blockade of CXCR2 receptors reduced inflammatory pain (Cunha et al., 1991; 

Cunha et al., 1992; Cunha et al., 2000; Lorenzetti et al., 2002; Cunha et al., 2005). Several factors 

might contribute to these contradictory results: different agents for inflammation (CFA versus carra-

geenan), different chemokine doses and different methods to evaluate pain behavior (pain threshold 

versus pain tolerance). Taken together further studies in other models of inflammation are needed to 

evaluate the biological role of CXCR2 ligands in the generation and control of inflammatory pain.  

3.5. Signal transduction leading to opioid peptide release from granulocytes 

Granulocytes contain four types of granules that are produced in sequence during maturation and con-

tain characteristic proteins. Our double immunofluorescence confocal microscopy studies of granulo-

cytes revealed that β-endorphin and met-enkephalin are expressed in MPO- and CD63-expressing, but 

absent in lactoferrin-, metalloproteinase-9 (MMP-9)- or albumin-positive granules indicating the pres-

ence of opioid peptides mainly within primary granules (Rittner et al., 2007). Primary granules are 

formed early during granulocyte maturation (Borregaard and Cowland, 1997; Cieutat et al., 1998). 

They also harbor bactericidal contents. Thus, our study suggests that β-endorphin and met-enkephalin 

are expressed early during granulocyte maturation.  



 

Primary granules are released in response to strong stimuli. In vitro, granulocytes have to be treated 

with cytochalasin B disrupting the actin cytoskeleton to allow for secretion of primary granules (Jog et 

al., 2007; Rittner et al., 2007). The function of the actin cytoskeleton is to limit the rate and extent of 

granule exocytosis. This seems to be a protective mechanism that prevents release of destructive en-

zymes unless neutrophils are appropriately primed. In vivo, granulocytes are primed by cytokines like 

tumor necrosis factor-α or IL-1β in the inflamed tissue.  

Granulocytes have to be stimulated with a high concentration of a strong stimulus (e.g. fMLP, CXCL8 

or leukotriene B4) in order to achieve release from primary granules (Rittner et al., 2007). They re-

quire high intracellular Ca2+ concentration for exocytosis, while secondary and tertiary granules are 

mobilized already by weaker stimulation (Sengelov et al., 1993). We found that opioid peptide release 

from granulocytes was dependent on release of calcium from intracellular stores, but not from calcium 

influx into the cell from extracellular sources (Rittner et al., 2006c). Upstream of calcium the Gi/Gβγ 

protein cascade seems to be activated because release can be inhibited by an inhibitor of the IP3 recep-

tor. This receptor is activated by IP3 produced by phospholipase C upon Gβγ activation. A second 

independent pathway regulating opioid peptide release in vitro is the activation of PI3K. PI3K regu-

lates degranulation by CXCL8 or other mediators (Knall et al., 1997; Vocks et al., 2003). Regarding 

the subclass of PI3K involved other groups provided evidence that leukotriene-induced secretion of 

primary granules is inhibited in PI3Kγ KO mice (Ito et al., 2002; Laffargue et al., 2002). Selective 

PI3Kδ inhibitors blocked fMLP- and tumor necrosis factor-α-induced release of primary granules 

(Sadhu et al., 2003). The PI3K class and subclass engaged in CXCL8-induced opioid peptide release 

still remains to be elucidated.  

Thirdly, p38 MAPK activation is necessary for primary granule release (Mocsai et al., 2000). Accord-

ingly, opioid peptide release was dependent on p38 MAPK but not p42 MAPK in our studies (Rittner 

et al., 2007). MAPK phosphorylate transcription factors regulating gene expression and other proteins 

to stimulate NADPH oxidase activity, adhesion, degranulation and chemotaxis (Mocsai et al., 2000; 

Ward et al., 2000; Kasper et al., 2004; Tuluc et al., 2004). Exocytosis of granules is preceded by a 

number of steps including disruption of the cytoskeleton, migration to the plasma membrane and fu-

sion with the plasma membrane (Logan et al., 2003). Many details of this process are not completely 

understood in granulocytes and the steps regulated by p38 MAPK remain to be determined. However, 

differences in membrane fusion protein composure in different granule subpopulations (Mollinedo et 

al., 2006) might explain that primary granule exocytosis is regulated by p38 MAPK whereas tertiary 

granules are unaffected. In summary, subcellular localization of opioid peptides and intracellular sig-

naling pathways for opioid peptide release follow the known pathways of CXCL8 induced degranula-

tion (Knall et al., 1997; Schorr et al., 1999; Hirsch et al., 2000; McNeill et al., 2007).  

To evaluate the in vivo relevance of our in vitro findings chemokines were tested in CFA inflamma-

tion. Injection of CXCL2/3, but not CXCL12, into inflamed paw tissue resulted in local mechanical 

and thermal analgeia dependent on µ- and δ-opioid receptors (Rittner et al., 2006c) and β-endorphin as 



 

well as met-enkephalin (Rittner et al., 2007). In order to confirm the relevance of intracellular Ca2+ for 

opioid peptide release in vivo we employed an approach to avoid impairment of sensory nerve func-

tioning by signal cascade inhibitors (Ji et al., 2007). To this end we established a model of ex vivo 

treatment and subsequent adoptive cell transfer. Rats were depleted of granulocytes and local adoptive 

transfer of granulocytes from allogenic rats was performed. Transfer of granulocytes reconstituted 

CXCL2/3-induced analgesia. Granulocytes can be transferred to another rat (Briones et al., 2003). 

Another group has recently shown that transfer of lymphocytes also restores peripherally mediated 

opioid analgesia in immunosuppressed rats (Hermanussen et al., 2004). We next used this model to 

study signaling requirements for opioid peptide release in vivo. When we treated these allogenic 

granulocytes ex vivo with an intracellular calcium chelator no reconstitution of CXCL2/3-induced 

analgesia was achieved. This approach necessitates the use of irreversible inhibitors of the signaling 

cascade, because competitive inhibitors would be washed away before transfer of allogenic cells. This 

method was therefore not applicable to study the effect of p38 MAPK inhibition in vivo, because 

SB203580 inhibits the catalytic activity of p38 MAPK by competitive binding in the ATP pocket (Lee 

et al., 1999). Instead, we directly injected SB203580 intraplantarly, which impaired CXCL2/3-induced 

analgesia by interfering with release of opioid peptides. Presumably because inflammation induces 

p38 MAPK activation in the soma of C fiber nociceptors responsible for maintenance of inflammatory 

heat hypersensitivity (Ji et al., 2002), p38 MAPK blockade caused a small analgesic effect.  

In summary, we have characterized the subcellular localization of opioid peptides, the signaling path-

ways of chemokine triggered opioid peptide release from granulocytes and shown their relevance in 

vivo.  

3.6. Clinical implications 

Peripherally mediated endogenous opioid analgesia is observed in clinical settings: opioid receptors 

are expressed on peripheral terminals of sensory nerves in human synovia (Stein et al., 1996; Mousa et 

al., 2007a). They mediate analgesia in patients with various types of pain including chronic rheuma-

toid arthritis and osteoarthritis, bone pain, after dental, laparoscopic, urinary bladder and knee surgery 

(Likar et al., 1997; Likar et al., 1998; Likar et al., 1999; Likar et al., 2001; Stein et al., 2003). Opioid 

peptides are found in human synovial lining cells, mast cells, lymphocytes and macrophages. The 

prevailing peptides are β-endorphin and met-enkephalin, while only minor amounts of dynorphin are 

detectable (Stein et al., 1993; Stein et al., 1996; Likar et al., 2007; Mousa et al., 2007a). The interac-

tion of endogenous synovial opioid peptides with peripheral opioid receptors was examined in two 

studies in patients undergoing knee surgery. (i) Blocking intraarticular opioid receptors by the local 

administration of naloxone resulted in significantly increased postoperative pain (Stein et al., 1993). 

These findings suggest that in a stressful (e.g. postoperative) situation, opioids are tonically released 

within inflamed tissue and activate peripheral opioid receptors to attenuate clinical pain. (ii) Stimulat-

ing opioid peptide release by intraarticular CRF application resulted in a significant but short lasting 

reduction of postoperative pain under both resting and exercise conditions (Likar et al., 2007). Local 



 

injection of naloxone together with CRF reversed this pain reduction under resting conditions. In con-

trast to the central nervous system, it appears that immune cell-derived opioids do not readily produce 

cross-tolerance to morphine at peripheral opioid receptors since intraarticular morphine is an equally po-

tent analgesic in patients with and without opioid-producing inflammatory synovial cells (Stein et al., 

1996). Thus, it may be interesting to explore the opioid production/release and the migration of opioid-

containing leukocytes as possible treatment options (e.g. acupuncture (Sekido et al., 2004)).  

The important role of chemokines in the trafficking of opioid-containing cells to injured tissues as well 

as release of opioid peptides in inflamed tissue indicates that anti-chemokine strategies for the treat-

ment of inflammatory diseases may in fact carry a significant risk to exacerbate pain. Chemokine re-

ceptor antagonists are currently under investigation: For example, CCR1 is responsible for leukocyte 

recruitment into inflamed tissue and expressed in the synovia in patients with rheumatoid arthritis and 

on monocytes in active lesions in multiple sclerosis. Several companies have CCR1 antagonists cur-

rently in clinical trials for treatment of these diseases (White et al., 2005). Antagonists against CCR3 

could potentially help in the treatment of allergy and asthma, because CCR3 is involved in the re-

cruitment of eosinophils, basophils, mast cells macrophages, airway epithelial cells and Th2 cells (Erin 

et al., 2002). Antagonists against CCR5 reduce viral load in AIDS patients (Barber, 2004).  

MAPK inhibitors are presently under investigation for the treatment of rheumatoid arthritis, allergy or 

cancer (Dambach, 2005; Goldstein and Gabriel, 2005). Findings in neuropathic and inflammatory pain 

in animals have lead to the concept that these inhibitors might also be useful in the treatment of pain in 

patients (Ji, 2004; Ji et al., 2007). In our study in inflammatory pain we observed an impaired release 

of opioid peptides with p38 MAPK inhibition. Therefore, interference with this system using MAPK 

inhibitors in patients should be carefully evaluated regarding their effect on pain. 

Because opioid analgesia resulting from neuro-immune interactions occurs in peripheral tissues, it is 

devoid of central opioid side effects (such as depression of breathing, nausea, sedation, addiction and 

tolerance). It is also lacking typical side effects produced by cyclooxygenase inhibitors such as gastric 

erosions, ulcers, bleeding, diarrhea, thromboembolic events and renal toxicity. In the future it would 

be highly desirable to identify stimulating factors and strategies that selectively attract opioid-

producing cells and increase peripheral opioid receptor numbers in damaged tissue. Augmenting the 

synthesis and/or secretion of opioid peptides and opioid receptor numbers within injured tissue may be 

accomplished by gene therapy: delivery of proenkephalin, proopiomelanocortin and of μ-opioid recep-

tor cDNAs have been shown to decrease chronic pain and inflammation (Braz et al., 2001; Lu et al., 

2002; Xu et al., 2003).  



 

4. SUMMARY 

Inflammatory pain is modulated by hyperalgesic and analgesic mediators. Hyperalgesic mediators 

include protons, cytokines, chemokines, and bradykinin. Some of these are produced by leukocytes at 

the site of inflammation. Simultaneously, leukocytes are known to produce analgesic mediators. Of 

these, opioid peptides including β-endorphin, met-enkephalin and endomorphins have been most ex-

tensively studied. Opioid peptides are secreted locally following exposure to stress or by local injec-

tion of releasing agents. Following release, they bind to opioid receptors on sensory nerve terminals 

and confer peripherally mediated opioid analgesia. 

In this thesis we examined four aims in inflammatory pain induced by complete Freund’s adjuvant 

(CFA) in rats: i) role of granulocytes in the generation of inflammatory pain, ii) impact of inflamma-

tion on transcription of opioid receptor genes in the dorsal root ganglion (DRG), iii) peripherally me-

diated opioid analgesia by endomorphins, and iv) signaling pathways of opioid peptide release from 

granulocytes.  

Granulocytes and pain: Granulocytes can be selectively recruited into peripheral tissue by intraplantar 

injection of specific chemokines such as CXCL1 or CXCL2/3. This recruitment does not alter thermal 

or mechanical nociceptive thresholds. Likewise selective depletion of granulocytes in rats with CFA 

inflammation does not reduce the intensity of inflammatory pain. Granulocytes therefore do not seem 

to confer pain.  

Inflammation and opioid receptor expression: Previous studies demonstrated that inflammation en-

hances translation, axonal transport and peripheral expression of opioid receptors. To explore possible 

mechanisms we demonstrated that injection of IL-1β into noninflamed tissue increases expression of 

κ-opioid receptor mRNA as well as protein in the DRG similar to CFA-induced inflammation. Fur-

thermore, CFA-induced upregulation of opioid receptor transcription was blocked by pretreatment 

with IL-1 receptor antagonist.  

Novel opioid peptides in peripheral analgesia: Not only opioid peptides such as β-endorphin, met-

enkephalin and dynorphin but also the newly discovered endomorphin-1 and -2 can elicit potent anal-

gesia in inflammation. Stress- as well as CRF-induced peripherally mediated analgesia was dependent 

on the release of classic opioid peptides but also on the release of endomorphin-1 and -2.  

Signaling pathways of opioid peptide release in vitro and in vivo: In the early phase of CFA inflamma-

tion granulocytes are the major opioid producing infiltrating leukocytes. Opioid peptides are localized 

in primary granules in granulocytes and released upon stimulation by e.g. chemokines like CXCR1/2 

ligands. CXCR1/2 ligands are known to induce granular release from granulocytes activating a cas-

cade involving Gβγ subunits, phospholipase C and inositol 1,4,5-trisphosphate. In parallel, CXCR1/2 

ligands activate phosphoinositol-3-kinase (PI3K) and p38 mitogen activated kinase (MAPK). We 

demonstrate that opioid peptide release is dependent on these pathways. It requires mobilization of 

Ca2+ from intracellular stores, but is independent of extracellular Ca2+. It can be blocked by specific 

PI3K and p38 MAPK antagonists in vitro. In vivo, intraplantar injection of CXCR2 ligands elicits 



 

analgesia. This requires intracellular Ca2+ mobilization and opioid peptide release in vitro and in vivo 

as shown by adoptive transfer experiments.  

Taken together, granulocytes contribute to peripherally mediated opioid analgesia in early inflamma-

tion while their role in the generation of inflammatory pain seems to be limited. Interference with 

granulocyte function using e.g. anti-inflammatory treatments like chemokine receptor antagonists or 

inhibitors of intracellular signaling pathways might inadvertently impair endogenous peripherally me-

diated opioid analgesia.  
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