Appendix A

Methodes of Sample Characterisation

A.1 Mineral assemblage

The modal analysis of the mineral phases of the serpentinite was performed by X-ray diffraction. In case of Chephren amphibolite, besides the two major phases plagioclase and hornblende, the amphibolite contains minor mineral phases of less than 2 vol%, which are relevant for the interpretation of the ultrasonic data. As the analytic uncertainty of X-ray diffraction is on the order of 3 - 4 %, the modal composition of the amphibolite was also quantified by point counting. Furthermore, the ore content of the serpentinite was obtained by point counting. Per analysis 600 to 1000 points were counted in several thinsections. In dependence of the grain size an increment of 1 mm (amphibolite) and 0.15 mm (serpentinite) was chosen. The modal composition, average density, and grain size of both rock samples is summarised in Tab. A.1.

rock	modal analysis [vol%]	$ ho~[{ m g~cm^{-3}}]$	porosity [%]	grain size [mm]
Amphibolite	61.1 plg, 30.7 hbl, 3.6 ac,	2.82	0.06	0.2-2
	2.6 epi, 1.2 pump, 0.4 chl,			
	ms, ore			
Serpentinite	39.1 ant, 42.9 ol, 12.6 di,	2.88	0.18	< 0.25
	3.1 hed, 1.4 chl, 0.9 ore			

Abbreviations: ac = actinolite, ant = antigorite, chl = chlorite, di = diopside, epi = epidote, hbl = hornblende, hed = hedenbergit, ms = muscovite, ol = olivine, plg = plagioclase, pump = pumpellyite

Table A.1: Modal composition on the basis of point counting (amphibolite) and X-ray diffraction (serpentinite), average density, and grain size of the samples.

The mineral assemblages were characterised by electron microprobing. The analyses are presented in Tabs. A.2 to A.10.

Table A.2: Chephren amphibolite - Plagioclase analyses of the starting material (before the experiment) and quenched samples (*nE).

		2	8	4	v	9	7	∞	6	10	11
sample	CHA	CHA	CHA	CHA	CHA	CHA	CHA	CHC	CHC	CHC	CHC
comment	102-5	109	135-4	137-3	147	172-d	120	09	70	72	92
SiO ₂	47.91	48.91	47.72	48.69	48.54	47.71	48.85	49.54	50.34	48.87	42.85
Al_2O_3	33.78	32.89	33.16	32.89	33.29	33.44	32.77	32.48	32.07	32.38	28.34
$\mathrm{Fe}_2\mathrm{O}_3$	0.18	0.20	0.19	0.21	0.15	0.22	0.23	0.23	0.17	0.22	6.01
FeO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MnO	0.02	0.00	0.00	0.00	0.00	0.03	0.02	0.00	0.00	0.00	0.10
MgO	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
CaO	16.78	16.02	16.81	15.97	16.48	16.45	15.78	15.48	14.88	15.34	20.89
Na_2O	2.06	2.77	2.30	2.54	2.41	2.57	2.82	2.98	3.25	3.09	1.51
K_2O	0.03	0.05	0.04	0.08	0.04	0.04	0.05	90.0	60.0	0.05	0.00
BaO	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00
		1	-			1	1		-	1	-
Total	100.76	100.85	100.22	100.38	100.92	100.46	100.52	100.77	100.80	99.95	99.72
	====== Numbors of ion	=====	 Numbers of jons: valvulation based on 5 cations and 8 over	=====							
į	or for growing the		200000000000000000000000000000000000000	magan a man an							
Si	_	2.21	2.18	2.22	2.20	2.17	2.22	_	_	_	_
Al	1.81 \ 4.00		1.79	~	$3.99 ext{ 1.78 } $ 3.	3.98 1.79 3.97	$1.75 \ 3.98$	$1.73 \left\{ 3.98 \right.$	$1.71 \begin{cases} 3.99 \end{cases}$	$1.74 \ 3.97$	$\frac{1.57}{0.00}$ 3.80
Fe	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01)	0.01	0.01	0.21
Fe^{2+}	0.00	0.00	0.00	0.00	0.00	00.00	00.0	0.00	0.00	0.00	0.00
Mn	00.0	0.00	00.0	00.00	0.00	00.00	00.0	0.00	0.00	00.0	0.00
Mg	_	00.0	0.00	0.00	00.00	0.00	_	_	_	_	_
Ca	$0.82 \ \ 1.00$	0.78	~	~	1.01 $0.80 \ 1.$	1.02 0.80 1.03	$0.77 \ \ \ \ 1.02$	$0.75 \ 1.02$	$0.72 \ 1.01$	$0.75 \ \ 1.03$	$1.05 \ \ 1.20$
Na	0.18	0.24	0.20	0.22	0.21	0.23	0.25	0.26	0.28	0.27	0.14
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
Ba	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 /	0.00 /	0.00 /
ENDMEMBERS	ERS										
[-Or-]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00
[-Ab-]	0.18	0.24	0.20	0.22	0.21	0.22	0.24	0.26	0.28	0.27	0.12
[-An-]	0.82	0.76	0.80	0.77	0.79	0.78	0.75	0.74	0.71	0.73	0.88

Table A.2 continued: Chephren amphibolite - Plagioclase analyses.

	12	13	14	15		16	17	18	19		20	21	
sample	CHAnE	CHAnE	CHAnE	CHAnE		CHAnE	CHAnE	CHAnE	CHAnE	O	CHAnE	CHAnE	CHAnE
comment	32	114	119	124		142	143	144	145		146	147	148
SiO ₂	48.65	47.39	47.05	48.79		48.40	49.50	49.81	48.95	·	47.62	47.35	48.04
Al_2O_3	32.58	33.35	33.51	32.76		33.00	31.92	31.87	32.42		32.77	33.02	33.22
Fe_2O_3	0.25	0.10	0.15	0.18		0.17	0.18	0.18	0.20		0.17	0.18	0.21
FeO	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00
MnO	0.00	0.00	0.00	0.00		0.01	0.00	0.00	0.03		0.03	0.00	0.00
MgO	0.01	0.00	0.00	0.00		0.01	0.00	0.00	0.00		0.00	0.00	0.00
CaO	15.98	16.83	16.95	16.12		16.47	15.12	14.90	15.86		16.33	16.63	16.52
Na_2O	2.56	2.01	1.99	2.46		2.28	2.99	3.15	2.61		2.29	2.13	2.19
K_2O	90.0	0.05	0.03	90.0		90.0	0.07	0.08	0.07		0.04	90.0	0.04
BaO	0.02	0.00	0.00	0.03		0.00	0.01	0.00	0.05		0.00	0.00	0.00
	1	-					1		-		-	-	-
Total	100.11	99.73	89.66	100.4		100.4	62.66	66.66	100.19		99.25	99.37	100.22
	===== Numbers of ions	Numbers of ions: calculation based on 5 cations and 8 oxygens	===== ased on 5 cation	==== s and 8 oxyg	ens					11			
Si	2.22)	2.18)	2.16)	2.22	_	2.21	2.26	2.27)	2.24)		2.20)	2.18)	2.20)
Al	$1.75 \ \ 3.99$	1.81 3.99	1.82	3.99 1.76	3.99	1.77 3.9	3.99 1.72 3.	3.99 1.71 3	3.99 1.74	3.99	1.78 3.98	$1.79 \ 3.98$	$1.79 \ 3.99$
Fe^{3+}	0.01	0.00	0.01	0.01	_	0.01	0.01	0.01	0.01		0.01	0.01	0.01
Fe^{2+}	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00		0.00 \	0.00 \	0.00
Mn	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00
Mg	_	_	0.00			_	0.00	0.00			_	_	_
Ca	0.78 \ 1.01	$0.83 \ \ 1.01$	0.84	1.01 0.79	1.01	0.81 \ 1.01	0.74	~	1.01 0.78	1.01	0.81 \ 1.02	$0.82 \ \ 1.02$	$0.81 \ \ 1.01$
Na	0.23	0.18	0.18	0.22		0.20	0.26	0.28	0.23		0.20	0.19	0.19
К	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00		0.00	0.00	0.00
Ba	0.00	0.00 /	0.00	0.00		0.00	0.00	0.00	00.00		0.00	0.00	00.00
ENDMEMBERS	FRS												
[-Or-]	0.00	0.00	0.00	0.00		0.00	0.00	0.01	0.00		0.00	0.00	0.00
[-4b-]	0.22	0.18	0.18	0.22		0.20	0.26	0.28	0.23		0.20	0.19	0.19
[-An-]	0.77	0.82	0.82	0.78		0.80	0.73	0.72	0.77		0.80	0.81	0.81

Plagioclase analyses.
1
- 1
amphibolite
nə.
14C
Che
continued
2
√ i
1
=
ð
Ta

	73	2		30		36	7.0		9,0		20		30	15		3.2	33	
sample	CHAnE	CHAnE		CHAnE	CH	20 CHAnE	Z/ CHAnE	F=1	25 CHAnE	O	CHAnE	CH	CHAnE	CHAnE	O	CHAnE	CHAnE	
comment	149	150		156	1	157	161		162		174	1	175	176		178	117	
SiO ₂	47.60	47.57		48.39	 _{&}	3.98	49.77		48.64		47.53	 4	3.72	49.37		49.23	47.87	
Al_2O_3	32.59	33.59		32.73	37	32.16	32.15		32.50		33.37	3,	79.7	32.39		32.32	32.32	
Fe_2O_3	0.16	0.00		0.17	•).25	0.23		0.18		0.18	_).18	0.20		0.15	0.19	
FeO	0.00	0.00		0.00	•	00.0	0.00		0.00		0.00	_	00.0	0.00		0.00	0.00	
MnO	0.00	0.00		0.00	_	0.00	0.00		0.01		0.00	_	0.05	0.00		0.02	0.00	
MgO	0.00	0.00		0.00	•	0.00	0.00		0.02		0.00	_	0.02	0.00		0.00	0.00	
CaO	16.34	17.09		15.01	1.	15.55	15.35		15.86		16.97	Η	5.78	15.54		15.79	16.16	
Na_2O	2.29	1.95		2.89	. 4	2.71	2.91		2.51		1.96	. 1	2.55	2.82		2.68	2.48	
K_2O	0.09	0.03		0.05	_	0.05	0.07		0.05		0.04	_).07	80.0		90.0	90.0	
BaO	0.00	0.00		0.02	•	0.00	0.00		0.00		0.02	_	0.01	90.0		0.00	0.00	
				-		-	-		-		-		-	-			-	
Total	20.66	100.32		99.26	56	99.70	100.48		77.66	1	100.00	10	100.05	100.46	_	100.25	80.66	
	Numbers of		tion basea	d on 5 cation	= us and 8	==== oxygens		п							,,			
Si	2.20	2.18		2.22	2	.25)	2.26	_	2.23		2.18)	2	.23)	2.25		2.24)	2.21	
Al	_	3.98 1.81	3.99	1.77 \ 4.	4.00	1.74 3.99		3.99	1.76	3.99	_	3.99	.76 3.99		3.99	1.74 3.99		3.98
Fe^{3+}	0.01	0.00		0.01	0	0.01	0.01		0.01		0.01	9	0.01)	0.01		0.01	0.01	
Fe^{2+}	0.00	0.00		0.00	0	0.00	0.00	_	0.00		0.00	9	(00)	0.00		0.00	0.00	
Mn	00.00	0.00		0.00	0	00.00	0.00		0.00		0.00	0	00.	0.00		0.00	0.00	
Mg	0.00	0.00		_		00.00	0.00		0.00		0.00	0	00.	0.00		0.00	0.00	
Ca	~	1.02 0.84	1.01	~	1.00 0	$0.76 \ \ 1.01$		1.01	0.78	1.01	~	1.01 0	.77 \ 1.01	0.76	1.01	0.77 \ 1.01	0.80	7 1.02
Na	0.20	0.17		0.26	0	0.24	0.26		0.22		0.17	0	.23	0.25		0.24	0.22	
К	0.01	0.00		0.00	0	00.00	0.00		0.00		0.00	0	00.	0.00		0.00	0.00	
Ba	0.00	0.00		0.00	0	0.00	0.00	_	0.00		0.00	0	/ 00.	0.00		0.00	0.00	
FNDMFMRFRS	FRS																	
[0, 1	100	000		000	0	000	000		000		000	9	00	000		000	000	
$[-0]_{-1}$	0.00	0.00		0.00		27	0.00		000		0.00	0	0.00	00.0		0.00	0.00	
[-00-]	0.20	0.00		0.20		77.0	0.4.0		4 6		77.0	۰ د	67:	0.43		0.23	0.22	
[-An-]	0.79	0.83		0.74	9	.76	0.74		0.78		0.83	9	.77	0.75		0.76	0.78	

Table A.2 continued: Chephren amphibolite - Plagioclase analyses.

	34	35		36		37		38	39		40		41		42	
sample	CHAnE	CHBnE	[*)	CHBnE	Ü	CHBnE	IJ	CHBnE	CHCnE	'nE	CHCnE	, , ,	CHCnE	O	CHCnE	
comment	141	29		121		171		175	70		78		98		88	
SiO ₂	26.67	49.27		49.75	4	96.71	4	9.70	49.0	80	50.62		47.01		8.15	
AI_2O_3	23.71	32.68		32.17	ε0	33.23	3	1.29	32.6	4	31.55		33.73	(4)	2.64	
Fe_2O_3	2.15	0.14		0.19		0.19		0.17	0.2	0;	0.21		0.24		0.17	
FeO	0.00	0.00		0.01		0.00		0.00	0.0	0(0.00		0.00		0.00	
MnO	0.04	0.00		0.00		0.01		0.00	0.0	3	0.00		90.0		0.00	
MgO	1.62	0.00		0.00		0.00		0.00	0.0	0(0.00		0.00		0.00	
CaO	8.79	16.06		15.49	1	16.39	-	4.80	15.8	35	14.63		17.18	1	6.16	
Na_2O	6.22	2.62		2.83		2.31		3.27	2.71	71	3.29		1.91		2.57	
K_2O	0.15	0.05		0.07		90.0		80.0	0.0)5	0.08		0.04		0.07	
BaO	0.00	0.00		0.00		0.04		0.01	0.0	00	0.00		0.00		0.02	
	-					-			-		-		-		-	
Total	99.35	100.82		100.51	1,	100.19	6	99.32	100.56	99	100.38		100.17	5	82.66	
					II		11							II		
	Numbers of i	Numbers of ions: calculation based on 5 cations and 8 oxygens	ttion basec	l on 5 cat	ions and 8	soxygens										
Si	2.57	2.23		2.26)		2.19	. 4	2.28	2.2	3)	2.30	_	2.15		2.21	
Al	$1.27 \ 3.91$	91 1.75	3.99	1.72	3.99	~	3.99	$1.69 \ \ 3.$	3.98 1.75	5 3.99	1.69	3.99	1.82	3.98	1.76	3.97
Fe^{3+}	0.07	0.00	_	0.01		0.01	•	0.01	0.0	1)	0.01		0.01		0.01	
Fe^{2+}	0.00	0.00	_	0.00		0.00	•	0.00	0.0	/ 0	0.00	_	0.00		0.00	
Mn	0.00	0.00		0.00		00.0	_	00.0	0.0	0	0.00		0.00		00.0	
Mg	_			0.00		_		_		_	0.00		0.00		00.0	
Ca	~	1.09 0.78	7 1.01	0.75	1.01	$0.80 \downarrow 1$	1.01	0.73 $1.$	1.02 0.7	7 \ 1.01	0.71	71.01	0.84	1.02	62.0	1.03
Na	0.55	0.23		0.25		0.20	_	0.29	0.2	4	0.29		0.17		0.23	
К	0.01	0.00		0.00		00.0	_	00.00	0.0		0.00		0.00		00.0	
Ba	0.00	0.00	_	0.00		0.00	-	00.00	0.0	/ 0	0.00	_	0.00		00.00	
	200															
ENDIMEMBERS	EKS															
[-Or-]	0.01	0.00		0.00		0.00	_	0.00	0.0	0	0.01		0.00		0.00	
[-4b-]	0.56	0.23		0.25		0.20	_	0.28	0.24	4	0.29		0.17		0.22	
[-An-]	0.44	0.77		0.75		0.79	-	0.71	0.7.	9	0.71		0.83		0.77	

	_		2	3	4		5	9		7	8		6	10	
sample	CHA	IJ	CHA	CHA	CHA	0	CHA	CHA	Ü	CHA	CHA		CHA	CHB	
comment	86	•	66	100	101		116	117	1	21	124		125	5	
SiO ₂	52.04	45	45.72	52.53	53.48		4.83	47.46	 4	1.26	44.42		44.40	45.6	1
TiO_2	0.22	1	.40	0.14	0.12		1.36	1.01	7	1.34	1.75		1.61	1.6	5
Al_2O_3	5.04	10	.38	3.69	3.07	1	1.09	10.15	11	1.54	11.39		11.59	10.5	1
09	12.24	12	91	14.88	14.60	1	3.16	11.94	11	3.55	13.67		13.24	13.6	0
MnO	0.22	9	0.16	0.33	0.39	_	0.17	0.13)).18	0.17		0.17	0.1	4
MgO	16.10	13	89.	14.31	14.66	1	3.30	14.18	11	3.10	13.21		12.80	13.5	3
CaO	12.76	12	12.49	12.75	12.66	1	2.45	12.32	12	2.37	12.29		12.33	12.4	7
a_2O	0.48	1	.39	0.30	0.31		1.68	1.18	7	1.76	1.82		1.99	1.4	6
20	0.32	9	.79	0.16	0.18	-	0.84	0.70)).84	0.85		0.88	0.8	4
	0.19	9	0.27	0.04	0.00	-	0.21	0.23)	0.30	0.27		0.23	0.2	1
Cl	0.00	9	00.0	0.01	0.01	-	0.02	0.02)	00.0	0.02		0.01	0.0	0
20	0.40	9	0.40	0.40	0.40	_	0.40	0.40)	0.40	0.40		0.40	0.4	0
	-	•	-	-	-			-	•	-	-		-	-	
	100.02	99	99.58	99.53	88.66	6	9.50	12.66	36	9.63	100.24		99.64	100.4	4
-O = F	0.08	9	111	0.02	0.00	_	60.0	0.10)	0.12	0.11		0.10	0.0	6
) = Cl	0.00)	0.00	0.00	0.00		0.00	0.00	_	0.00	0.00		0.00	0.00	0
Total	99 94	56	47	99 51	88 66	Ó	9.41	99 61	96	3.51	100 12		90 54	100.36	9
						`	:		S)
	Numbers o	fions: calc	ulation based	Numbers of ions: calculation based on 24 oxygens											
Si	7.66		6.87	_	7.97		_	_		~		9	_		_
Al(IV)	~	8.00	1.13 \$ 8.00	0.13 \$ 8.00	0.03	8.00	.22 \$ 8.00	_	3.00	.31 \$ 8.00		9.00	_	8.00 1.1	7 ∫ 8.00
Al(VI)	0.54	0	0.71 \	0.53	0.52)	75 /	0.83	0	.74)	0.70		0.77	0.6	_
	0.02	0	0.16	0.02	0.01)	1.15	0.11	0	.15	0.20		0.18	0.19	_
Fe ³⁺	_	5.63	0.13 5.57	$\begin{array}{c} 0.02 \\ 0.02 \end{array}$ 5.65	0.00	5.66).11 5.59		5.58	1.14 5.58		5.60	_~	5.54 0.10	561
M	0.03	1 0	0.02	0.04	0.05		0.02	0.02		75.1	0.02		0.02	0.02	
<u> </u>	3.53	, ri	3.06	3.20	3.26	(n)	00.	3.14	. 2	95	2.96		2.88	3.03	_ ;
Ca '	2.01	2	2.01	2.05	2.02	(1	2.02	1.96	2	00.	1.98		2.00	2.00	_
Na	0.14		_	_	0.09		_	_		_			_		_
	0.06	0.20	0.15) 0.30	0.03 \$ 0.12	0.03	0.12	0.16 (0.05		0.47	0.16) 0.08		0.09	_ ~	0.10	6 0.59
HO	_		_	_	00.0		0.20	_		_		0,00	_	0.20	_
	0.09	0.27	0.13 (0.38	0.02 / 0.00	~ 00.0	0.00	1.10 / 01.1	~	0.33	1.14 / 0.45		0.38	_		000/

Amphibole analyses.
1
Chephren amphibolite
continued:
Table A.3 o

Table A	Table A.3 continued: Chephren amphibolite	: Chephren i	umphibolite	1	Amphibole analyses.	lyses.										
	11	12	13		14	15		16	17		18		19		20	
sample comment	CHB 6	CHB 7	CHB 12	_	CHB 13	CHB 14	-	CHB 15	CHB 16		CHB 17	<u> </u>	CHC2 18	0	CHC2 22	
SiO ₂	49.16	44.18	45.12		14.78	44.46	'	14.66	44.14		44.16	 	51.24	 4	6.36	
TiO_2	0.17	1.88	1.79		1.90	1.93		1.81	1.95		2.00		0.14		1.02	
Al_2O_3	7.20	11.43	10.64	1	11.10	11.24		10.74	11.44		11.63		5.90	1	0.28	
FeO	14.56	13.76	13.80	1	13.83	13.82	. •	13.69	13.95		14.08	Ţ	14.61	1	2.75	
MnO	0.17	0.16	0.21		0.18	0.14		0.15	0.20		0.18		0.22		0.18	
$_{\rm MgO}$	13.63	12.88	13.35	1	13.21	12.98		13.06	12.84		12.85	Ţ	12.72	1	4.05	
CaO	12.93	12.34	12.63	1	12.63	12.38		12.58	12.47		12.31		13.07	1	2.50	
Na_2O	29.0	1.83	1.56		1.68	1.76		1.72	1.94		1.96		0.46		1.64	
K_2O	0.22	0.84	0.86		0.85	0.83		0.83	0.87		0.82		0.20		92.0	
Н	80.0	0.22	0.26		0.22	0.25		0.30	0.21		0.18		0.02		0.29	
CI	0.02	0.02	0.01		0.00	0.02		0.02	0.00		0.00		0.02		0.01	
H_2O	0.40	0.40	0.40		0.40	0.40		0.40	0.40		0.40		0.40		0.40	
	1 6	0		•				1 0			-			į		
	99.22	99.93	100.63	I	00.77	100.19	-,	99.95	100.40		100.56	5	88.98	10	0.23	
-0 = F	0.03	0.09	0.11		60.0	0.11		0.12	0.09		0.02		0.01		0.12	
-0 = Cl	0.00	0.00	0.00		0.00	0.00		0.00	0.00		0.00		0.00		0.00	
Total	99.18	99.83	100.51	Ī	29.00	100.08	31	99.82	100.31		100.48	5	76.86	10	100.10	
				II			11					II		ii		
	Numbers of ions	Numbers of ions: calculation based on 24 oxygens	ed on 24 oxyge	sue												
:5	1 42)	1 033	()1.)		(11)	(03)		(22)	(30 0		(23)		7 72 ,		10	
Al(TV)	0.58 8.00	$\frac{0.00}{1.32}$ \ \\ 8.00	0.70	8.00	$\frac{0.71}{1.29}$ \ \} 8.00	$\frac{0.09}{1.31}$ 8.	8.00	$\frac{0.75}{1.27}$ \ \} 8.00	$\begin{bmatrix} 0.05 \\ 1.35 \end{bmatrix}$	8.00	$\left\{\begin{array}{c} 0.05\\ 1.35 \end{array}\right\}$	8.00	0.27	8.00		8.00
Al(VI)	0.70 \	0.71	0.64	-	1 29.0	0.69		0.64 \	0.69		0.71	-	0.78	•	0.72	
Ţ	0.02	0.21	0.20	~	0.21	0.22		0.21	0.22		0.23		0.02	J).11	
Fe ³⁺	$\begin{array}{c c} 0.04 & 5.65 \\ 0.04 & 5.65 \end{array}$	$\begin{array}{c c} 0.11 & 5.59 \\ 0.11 & 5.59 \end{array}$	0.13	5.58	$\begin{vmatrix} 0.11 \\ 1.62 \end{vmatrix}$ 5.59		5.58	$0.15 \ \rangle 5.53$	0.10	5.58		5.62	0.01	5.52	_	5.56
M	0.02	0.02	0.03		0.02	0.02		0.02	0.03		0.02	_	0.03		20.0	
Mg	3.07	2.90	2.98	. •	2.95	2.91		2.94	2.88		2.88	. ,	2.86	,	3.12	
Ca	2.09	2.00	2.03	. •	2.03	2.00		2.03	2.01		1.99	. ,	2.11		5.00	
Na	$\begin{pmatrix} 0.19 \\ 0.24 \end{pmatrix} = 0.24$	0.54 0.70	0.45	0.62	0.49 \ 0.65	0.51 0.51 0.0	0.67	0.50 \ 0.66	0.57	0.73		0.73	0.13	0.17	0.47	0.62
N HO	0.04	0.16)	0.10)	_					0.17				0.04			
ч	0.04 0.12	$0.11 \ 0.32$	0.12	0.38	$0.21 \ 0.32$	_~	0.36	0.14 0.43	0.10	0.30		0.25	0.01	0.03		0.41
CI	_	_	0.00		_	0.00		_	0.00		_		0.00		_	

analyses.
Amphibole analyses.
- V
amphibolite
phren
Che
nued:
conti
& A.3
<u> </u>
able

sample comment	21 CHC2 24	22 CHC2 25	23 CHAnE 10		24 CHAnE 31	25 CHAnE 116		26 CHAnE 120	27 CHAnE 132		28 CHAnE 134	Ð	29 CHBnE 94	30 CHBnE 95	E
SiO ₂	44.66	51.09	44.40		44.62	42.92		44.46	43.88	 	42.18	 4	4.33	——————————————————————————————————————	\ \
TiO_2	0.91	4.40	1.35		1.37	1.35		1.43	1.41		1.02		1.97	2.0	_
Al_2O_3	12.57	3.33	11.55		12.01	12.73		10.51	12.62		15.22	1	1.30	11.2	~
FeO	13.11	11.11	13.99		12.54	12.71		13.34	12.48		11.02	1	3.94	13.9	2
MnO	0.14	0.22	0.15		0.22	0.10		0.20	0.16		0.13	_	0.15	0.1	~
MgO	12.03	13.96	12.44		12.46	11.76		13.14	12.03		96.6	1	2.72	12.8	6
CaO	13.68	15.24	12.49		13.17	12.92		12.44	13.19		14.95	1.	2.39	12.3	6
Na_2O	1.23	0.23	1.74		1.53	1.39		1.42	1.35		1.09		1.81	1.8	3
K_2O	0.64	0.10	06.0		0.83	0.94		0.85	0.76		0.61	_	0.83	0.8	5
F	0.24	0.28	0.25		0.25	0.24		0.28	0.26		0.23		0.24	0.2	4
CI	0.01	0.00	0.01		0.02	0.01		0.01	0.02		0.01		0.01	0.0	_
H_2O	0.40	0.40	0.29		0.29	0.29		0.29	0.29		0.29		0.29	0.29	6
								7, 00			08 80	C	20 0	0 001	7
ţ	99.39	100.33	99.57		99.31	97.37		98.30	98.45		90.09	^ -	7.7/	100.0	
-O = F	0.10	0.12	0.11		0.10	0.10		0.12	0.11		0.10		0.10	1.0	
-0 = Cl	0.00	0.00	0.00		0.00	0.00		0.00	0.00		0.00		0.00	0.0	
Total	99.49	100.23	99.46		99.21	97.26		98.24	98.34		96.59	6	28.66	76.66	7
	Nithous of items and and attended on 34 overcomes	======	====== 0 1/2 no possy	300						"		il			II
	Numbers of ton	s. calculation	oasea on 24 c	xygens											
Si	6.73 8.00	7.53	8.00 6.72	8.00	$6.73 \}$ 8.00	6.62	8.00	6.79 8.00	6.67	8.00		8.00		8.00 6.66	8.00
AI(VI)	0.96	0.10	0.79	. –	0.87	0.94		0.68	0.93		1.28		70)	9.0	_
Ţ	0.10	0.49	0.15		0.16	0.16		0.16	0.16		0.12)	0.22	0.2	_
Fe ³⁺	0.11 5.43	0.13	5.05 0.13	5.54	0.12 5.44		5.45	0.14 5.57	0.13	5.43		5.12	_	5.56 0.12	5.58
Fe²⁻	1.54	1.24	1.65					_			_		_		
Μσ	2.70	3.07	2.02		2.80	2.70		2.99	2.73		20.0		20.0	0.0.	_
Ca	2.21	2.41	2.03		2.13	2.14		2.04	2.15		2.47	. (1	. 00	2.00	
Na	0.36)	0.06			_			_		(_		_		_
Ж	0.12 } 0.48	0.02	0.08 0.17	69.0	0.16 } 0.61		09.0	0.16 \$ 0.59		50.0	0.12 }	0.45	~	0.69 0.17	0.70
НО	_	0.26			_			_			_		_		_
ш	$0.11 \ \ 0.34$	0.13	0.39 0.12	0.37	$0.12 \ \ 0.35$		0.36	0.13 \ 0.41		0.38	0.11 \	0.34 0	$0.11 \ \ 0.34$	34 0.11	0.34
C	0.00	000	00.0		000	000		000	000	_	000	•	0		

Table A.4: *Chephren amphibolite - Epidote analyses of the starting material (CHA, CHB, CHC) and of quenched samples (CHAnE, CHBnE, CHCnE, CHDnE).*

	1	2	3	4	5	6	7
sample	CHA	CHA	CHA	CHA	CHA	CHA	CHB
comment	144-2	146-3	155-a	156-b	159-с	131-4	8
SiO ₂	38.53	38.66	42.57	38.57	37.76	38.98	38.41
TiO ₂	0.00	0.07	0.04	0.00	0.02	0.06	0.01
Al_2O_3	26.19	25.17	28.24	25.05	21.95	25.43	22.68
Fe_2O_3	9.44	10.38	5.94	11.28	15.02	11.21	14.33
MgO	0.29	0.07	0.03	0.03	0.01	0.03	0.00
MnO	0.00	0.10	0.08	0.13	0.05	0.29	0.06
CaO	23.84	24.10	20.65	23.85	23.64	23.62	24.07
Total	98.29	98.55	97.55	98.91	98.45	99.62	99.56
				=====			=====
	calculation base	d on 25 oxygens:	all Fe=3+, all Mn	=2+			
Si	6.02	6.05	6.49	6.03	6.02	6.04)	6.04
$Al^{(IV)}$	$\left.\begin{array}{c} 0.02 \\ 0.00 \end{array}\right\} 6.02$	$\left. \begin{array}{c} 0.03 \\ 0.00 \end{array} \right\} \ 6.05$	$\begin{pmatrix} 0.49 \\ 0.00 \end{pmatrix} 6.49$	$\left\{\begin{array}{c} 0.03 \\ 0.00 \end{array}\right\} \ 6.03$	$\left. \begin{array}{c} 0.02 \\ 0.00 \end{array} \right\} \ 6.02$	$0.04 \ \ $ 6.04	$\left.\begin{array}{c} 0.04 \\ 0.00 \end{array}\right\} \ 6.04$
$Al^{(VI)}$	4.82	4.65	5.07	4.62	4.13	4.65)	4.20
Fe^{3+}	1.11 \ 5.93	1.22 \ 5.88	0.68 \ 5.76	1.33 \ 5.94	1.80 \ 5.93	1.31 \ 5.96	1.70 \ 5.90
Ti	0.00	0.01	0.00	0.00	0.00	0.01	0.00
Mg	0.07	0.02	0.01	0.01)	0.00	0.01)	0.00
Mn^{2+}	$0.00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.01 \ 4.07	0.01 3.39	0.02 \ 4.02	0.01 \ 4.05	0.04 3.97	0.01 \ 4.06
Ca	3.99	4.04	3.37	4.00	4.04	3.92	4.06

Table A.4 continued: *Chephren amphibolite - Epidote analyses*.

sample	8 CHC	9 CHC	10 CHC	11 CHAnE	12 CHAnE	13 CHAnE	14 CHAnE
comment	143	145	154	111	125	2	3
SiO_2	38.56	38.40	43.67	41.13	38.06	37.35	38.78
TiO ₂	0.01	0.15	0.00	0.01	0.04	0.15	0.02
Al_2O_3	26.57	25.55	27.86	26.85	25.96	22.98	25.18
Fe_2O_3	9.23	11.35	7.73	7.56	10.24	12.79	11.43
MgO	0.61	0.08	0.03	0.01	0.05	0	0
MnO	0.02	0.32	0.03	0.06	0.04	0.11	0.13
CaO	23.52	22.99	18.23	20.24	23.6	22.96	24.04
Total	98.52	98.84	97.55	95.86	97.99	96.34	99.58
					====		
	calculation based	d on 25 oxygens:	all Fe=3+, all M	n=2+			
Si	6.00)	6.00)	6.62)	6.43)	5.98)	6.04)	6.03)
$Al^{(IV)}$	0.00 } 6.00	0.00 6.00	$0.00 \} 6.62$	0 6.43	0.02 6	0 } 6.04	0 6.03
$Al^{(VI)}$	4.87	4.70	4.98	0)	0)	0.02)	0)
Fe^{3+}	1.08 \ 5.96	1.33 6.05	0.88 \ 5.86	4.94 \ 5.83	4.79 6.01	4.38 \ 5.95	4.61 \ 5.95
Ti	0.00	0.02	0.00	0.89	1.21	1.56	1.34
Mg	0.14)	0.02	0.01	0)	0.01)	0)	0)
Mn^{2+}	0.00 \ 4.07	0.04 3.91	$0.00 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.01 3.4	0.01 3.99	0.02 3.99	0.02 \ 4.02
Ca	3.92	3.85	2.96	3.39)	3.98	3.98)	4)

Table A.4 continued: *Chephren amphibolite - Epidote analyses*.

sample comment	15	16	17	18	19	20	21
	CHBnE	CHBnE	CHBnE	CHCnE	CHCnE	CHCnE	CHCnE
	12	192	197	79	108	75	109
SiO ₂	38.18	41.19	39.26	37.82	38.06	38.93	37.44
TiO ₂	0.02	0.05	0.06	0.13	0.04	0.06	0.13
$\begin{array}{c} Al_2O_3 \\ Fe_2O_3 \\ MgO \\ MnO \\ CaO \\ \end{array}$	23.32 13.65 0.00 0.00 23.95 99.12	24.61 10.63 0.61 0.03 22.59 99.71	24.42 11.29 0.64 0.09 23.90 99.66	25.20 11.58 0.02 0.26 23.71 98.72	24.33 11.15 0.00 0.15 22.23 95.96	25.65 10.36 0.02 0.07 23.54 98.63	24.09 12.40 0.03 0.22 23.67 97.98
Si $Al^{(IV)}$ $Al^{(VI)}$ Fe^{3+} Ti Mg Mn^{2+} Ca	6.02 6.02 0.00 6.02 0.00 4.33 1.62 5.95 0.00 4.04 4.04 4.04	$ \begin{array}{c} & \text{od on 25 oxygens:} \\ & 6.31 \\ & 0.00 \\ & 1.23 \\ & 1.23 \\ & 0.14 \\ & 0.00 \\ & 3.71 \\ \end{array} \right\} 5.68$	$ \begin{array}{c} all \ Fe=3+, \ all \ Mn \\ \hline 6.09 \\ 0.00 \\ 0.01 \\ 4.46 \\ 1.32 \\ 0.15 \\ 0.01 \\ 3.97 \end{array} \right\} 5.79$ $ \begin{array}{c} 0.15 \\ 0.01 \\ 3.97 \end{array} \right\} 4.13$	$ \begin{array}{c} $	$ \begin{array}{c} 6.11 \\ 0.00 \\ 0.00 \\ 4.60 \\ 1.35 \end{array} $ $ \begin{array}{c} 5.96 \\ 0.00 \\ 0.02 \\ 3.82 \end{array} $ $ 3.84$	$ \begin{array}{c} 6.07 \\ 0.00 \\ 0.01 \\ 4.71 \\ 1.22 \end{array} $ $ \begin{array}{c} 5.94 \\ 0.00 \\ 0.01 \\ 3.93 \end{array} $ $ \begin{array}{c} 3.95 \\ 3.95 \end{array} $	$ \begin{array}{c} 5.95 \\ 0.05 \\ 0.02 \\ 4.47 \\ 1.48 \\ 0.01 \\ 0.03 \\ 4.03 \end{array} $ $ \begin{array}{c} 5.97 \\ 1.48 \\ 0.01 \\ 0.03 \\ 4.07 \end{array} $

Table A.4 continued: *Chephren amphibolite - Epidote analyses*.

sample comment	22 CHCnE 100	23 CHCnE 113	24 CHCnE 153	25 CHDnE 62	26 CHDnE 65	27 CHDnE 154
SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ MgO MnO CaO	37.75 0.24 24.53 12.32 0.00 0.35 23.29 98.48	37.39 0.09 22.93 14.40 0.00 0.08 23.36 98.25	37.89 0.09 25.51 11.21 0.03 0.06 23.55	37.76 0.08 22.59 14.66 0.01 0.13 23.30 98.53	37.73 0.04 22.23 15.23 0.01 0.17 23.32	38.33 0.06 25.72 11.14 0.03 0.12 23.77 99.17
Si Al ^(IV) Al ^(VI) Fe ³⁺ Ti Mg Mn ²⁺ Ca	$ \begin{array}{c} 5.96 \\ 0.04 \\ 0.03 \\ 4.52 \\ 1.46 \\ 0.00 \\ 0.05 \\ 3.94 \end{array} \right\} 6.00 $	$ \begin{array}{c} 5.96 \\ 0.04 \\ 0.01 \\ 4.27 \\ 1.73 \\ 0.00 \\ 0.01 \\ 3.99 \end{array} \right\} 6.00 $	$ \begin{array}{c} 5.96 \\ 0.04 \\ 0.01 \\ 4.69 \\ 1.33 \\ 0.01 \\ 0.01 \\ 0.01 \\ 3.98 \\ 3.97 \end{array} $	$ \begin{array}{c} 6.00 \\ 0.00 \\ 0.01 \\ 4.23 \\ 1.75 \\ 0.00 \\ 0.02 \\ 3.97 \end{array} \right\} 6.00 $	$ \begin{array}{c} 6.00 \\ 0.00 \\ 0.01 \\ 4.17 \\ 1.82 \\ 0.00 \\ 0.02 \\ 3.97 \end{array} \right\} 6.00 $	$ \begin{array}{c} 5.97 \\ 0.03 \\ 0.01 \\ 4.70 \\ 1.31 \\ 0.01 \\ 0.02 \\ 3.97 \end{array} \right\} 6.00 $

Table A.5: Chephren amphibolite - Pumpellyite analyses of the starting material.

Sample CHB CHC CHC CHC CHC CHC CHC CHC CHC CHC CHB CHB CHC CHC CHC CHC CHC CHC CHC CHC CHB CHB COMP 156 167 165 107 193 SiO 37.37 3.34 24.36 24.36 25.32 25.83 24.03 39.81 39.81 39.81 39.81 39.81 39.81 39.82 39.83 39.81 39.82 39.81 39.81 39.82 39.83 39.81 39.83 39.81 39.83 39.81 39.82 39.83 39.83 39.81 39.83 39.83 39.83 39.83 39.83 39.83 39.83 39.83		1	2	3		4	5		9	7		∞		6	
105 106 69 136 167 165 107 193 37.97 38.87 39.81 38.15 37.88 39.51 39.26 39.78 37.99 38.87 39.81 38.15 37.88 39.51 39.26 39.78 37.90 0.02 0.03 0.04 0.00 0.00 0.00 0.00 0.00 37.90 0.02 0.03 0.05 0.00 0.01 0.00 0.00 0.00 0.00 37.91 38.87 39.81 38.15 38.15 37.88 39.51 39.26 39.78 37.92 3.34 24.36 24.36 2.426 2.532 2.583 2.403 2.376 37.91 0.012 0.05 0.07 0.05 0.02 0.02 0.02 0.08 0.04 37.91 0.012 0.041 0.041 0.07 0.05 0.02 0.05 0.00 0.00 4.00 0.02 0.04 0.00 0.02 0.02 0.03 0.05 0.00 5.00 0.014 0.015 0.00 0.02 0.02 0.00 0.00 0.00 5.00 0.014 0.015 0.00 0.00 0.00 0.00 0.00 0.00 7.00 0.014 0.015 0.00 0.00 0.00 0.00 0.00 0.00 8.00 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9.00 0.	sample	CHB	CHB	CHC		CHC	CHC		CHC	CH	C	CHB		CHB	
37.97 38.87 39.81 38.15 37.88 39.51 39.26 39.78 9.002 0.002 0.003 0.004 0.004 0.001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.01 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.03 0.03 0.04	comment	105	106	69		136	167		165	10,	7	193		103	
b, 0.02 0.03 0.03 0.04 0.01 0.04 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.01 0.04 0.01 0.02 0.02 0.02 0.02 0.02 0.03 0.04 0.03 0.04	SiO ₂	37.97	38.87	39.81		38.15	37.88		39.51	39.2	97	39.78		38.04	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Al_2O_3	0.02	0.03	0.00		0.01	0.00		0.04	0.0	1	0.01		0.00	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Fe_2O_3	25.40	23.34	24.36		24.26	25.32		25.83	24.0	13	23.76		24.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	FeO	4.79	4.19	90.9		5.27	4.90		4.30	4.2	1	6.87		4.71	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnO	0.12	0.05	0.07		0.05	0.02		0.02	0.0	8	0.04		0.05	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	MgO	2.23	3.04	1.04		2.59	2.19		2.06	2.9	8	1.54		2.74	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CaO	23.14	24.16	22.40		22.94	22.76		21.67	22.1	6	22.36		23.97	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Na_2O	0.12	0.19	0.41		0.07	0.05		0.02	0.1	9	0.04		0.16	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	K_2O	0.01	0.02	0.05		0.02	0.02		0.03	0.0	2	0.00		0.01	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H_2O	00.9	00.9	00.9		00.9	00.9		00.9	0.9	0	00.9		00.9	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H	0.30	0.24	0.00		0.29	0.22		0.00	0.1	. 3	0.00		0.23	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100.14	100.15	100.18	80	29.66	99.35		99.48	.66	_	100.41	1	00.45	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0 \equiv F$	0.13	0.10	0.00		0.12	0.00		0.00	0.0	9	0.00		0.10	
Numbers of ions: calculation based on 14(O,OH) 3.06 0.00 0.027 0.000 0.000 0.22 0.000 0.22 0.000 0.24 0.000 0.25 0.000 0.25 0.000 0.27 0.000 0.000 0.27 0.000 0.000 0.27 0.000 0.000 0.000 0.27 0.000		-	-	-		1	-		1	-		-		-	
Numbers of ions: calculation based on $14(O,OH)$ 3.09 3.07 3.17 3.17 3.21 3.22 3.06 3.13 3.21 3.09 3.07 3.17 3.17 3.21 2.41 2.22 2.31 2.32 2.42 2.44 2.29 2.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 3.01 0.28 2.87 0.41 2.85 0.36 2.99 0.33 3.02 0.29 2.98 0.28 2.94 0.46 9.00 0.01 0.00	Total	100.01	100.04	100.13	8	99.54	99.26		99.48	0.66	13	100.41	1	00.35	
Numbers of ions: calculation based on 14(O,OH) 3.06 3.13 3.21 3.09 3.07 3.17 3.17 3.21 2.41 2.22 2.31 2.32 2.42 2.44 2.29 2.29 0.00 <					II			11					"		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Numbers of ic	ns: calculation	on based on 14	t(O,OH)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Si	3.06	3.13	3.21		3.09	3.07		3.17	3.1	7	3.21		3.07	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Al	2.41	2.22	2.31	_	2.32 \	2.42		2.44	2.2	16	2.26		2.33 \	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ti	0.00	0.00	0.00		0.00	0.00		0.00	0.0		0.00		0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\mathrm{Fe^{2^+}}$	$0.32 \ \ 3.0$	1 0.28		~			3.02				~	2.91	0.32	2.98
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mn	0.01	0.00	0.00		0.00	0.00		0.00	0.0		0.00		0.00	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mg	0.27	0.37	0.12	_	0.31 /	0.26		0.25	0.3	(9	0.19		0.33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ca	2.00	2.09	1.93	_	1.99	1.98	_	1.86	1.9	_	1.93		2.07	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Na	~			~	~		(1.96	~		~	0.01	1.94	0.02	2.10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	K	0.00	0.00	0.01	_	0.00	0.00		0.00	0.0	0)	0.00		0.00	
3.31 0.06 3.29 0.00 3.22 0.07 3.32 0.06 3.30 0.00 3.21 0.03 3.27 0.00	НО	3.22 }	3.23 \	3.22	~	~			~		~	~		~	
	ч		_		$\overline{}$	_		3.30	_		_	$\overline{}$	3.23		3.29

Table A.6: Chephren amphibolite - Chlorite analyses of the starting material and of quenched samples (*nE).

	1	2	3	4	5	6	7
sample	CHA	CHC	CHC	CHC	CHC	CHC	CHBnE
comment	111	51	85	86	87	112	226
SiO ₂	28.45	27.46	26.93	27.02	28.85	32.71	26.21
TiO 2	0.00	0.01	0.04	0.01	0.00	0.03	0.00
Al_2O_3	21.19	21.65	20.87	21.01	22.49	23.74	20.76
FeO	19.79	21.40	22.96	22.86	18.99	16.33	24.07
MgO	16.94	16.76	17.70	17.62	14.90	13.11	16.49
MnO	0.25	0.27	0.27	0.24	0.21	0.19	0.21
CaO	1.03	0.86	0.08	0.17	2.18	3.69	0.00
Na ₂ O	0.21	0.31	0.09	0.13	0.72	0.97	0.01
K_2O	0.05	0.02	0.04	0.03	0.02	0.02	0.01
-							
Total	87.91	88.74	88.98	89.09	88.36	90.79	87.76
	calculation based	on 28 oxygens: all	Fe=2+				
Si	5.78	5.59	5.51	5.52	5.82	6.29	5.47
$Al^{(IV)}$	2.22 } 8.00	2.41 \ 8.00	2.49 \ 8.00	$\{2.48\}$ 8.00	2.18 \ 8.00	1.71 8.00	$\{2.53\}$ 8.00
Ti	0.00	0.00	0.01	0.00 \	0.00	0.00	0.00
$Al^{(VI)}$	2.86	2.78	2.54	2.58	3.17	3.66	2.59
Fe^{2+}	3.37	3.64	3.93	3.90	3.20	2.62	4.21
Mg	5.13	5.08	5.40 \ 11.99	5.36	4.48 \ 11.65	3.76	5.14 \ 11.97
Mn	0.04	0.05	0.05	0.04	0.04	0.03	0.04
Ca	0.22	0.19	0.02	0.04	0.47	0.76	0.00
Na	0.08	0.12	0.04	0.05	0.28	0.36	0.01
K	0.01	0.00	0.01	0.01	0.01	0.00	0.00

Table A.7: Chephren amphibolite - Muscovite analyses.

	1	2		calculation based 11 oxygens and 2	
sample comment	CHC 122	CHC 123		1	2
SiO ₂ TiO ₂ Al ₂ O ₃	46.73 0.00 37.24	46.81 0.01 36.55	Si Al ^(IV) Ti	$ \begin{array}{c} 3.08 \\ 0.92 \end{array} $ 4.00	$\begin{pmatrix} 3.09 \\ 0.91 \end{pmatrix} 4.00 \\ 0.00 \end{pmatrix}$
Fe ₂ O ₃ FeO MgO MnO	0.11 0.00 0.01 0.34	0.20 0.00 0.02 0.58	AI ^(VI) Fe ³⁺ Fe ²⁺ Mn	$ \begin{array}{c c} 1.98 \\ 0.01 \\ 0.00 \\ 0.00 \end{array} $ $ 2.02$	1.93 0.01 0.00 0.00 2.00
CaO Na_2O K_2O F	0.04 0.19 10.98 0.02	0.06 0.24 10.85 0.02	Mg Ca Na K	$ \begin{array}{c} 0.03 \\ 0.00 \\ 0.02 \\ 0.92 \end{array} \right\} 0.95$	$ \begin{array}{c} 0.06 \\ 0.00 \\ 0.03 \\ 0.91 \end{array} \right\} 0.95 $
Cl H ₂ O	0.01 4.24 99.91	0.01 4.53 99.88	F Cl OH	$ \begin{vmatrix} 0.00 \\ 0.00 \\ 1.87 \end{vmatrix} $ 1.87	$ \begin{vmatrix} 0.00 \\ 0.00 \\ 2.00 \end{vmatrix} $ 2.00
-O = F $-O = Cl$ Total	0.01 0.00 99.90	0.01 0.00 99.87			

analyses.
- Antigorite
ntinite
Malenco serpe
Fable A.8:

Table A	.8: Malenc	Table A.8: Malenco serpentinite - Antigorite analyses.	- Antigorite	analyses.													
,	1	2	3	4		S	9		7		∞ ;	6		10		11	
sample	Ma20	Ma20	Ma20 -	Ma20 — ———		Ma20	Ma20 — ———	ĺ	Ma20	₩ 	Ma20	Ma20	j	Ma20		Ma20	
SiO_2	44.36	43.44	43.76	43.86		44.25	43.00		43.15	42.	42.90	44.06		44.16		44.57	
TiO_2	0.03	0.00	90.0	0.00		0.03	0.00		0.00	0	.05	0.00		0.03		0.00	
AI_2O_3	0.50	0.50	0.51	0.48		0.51	0.56		0.59	0	.42	0.50		0.33		0.33	
FeO	2.22	2.15	2.13	2.04		2.17	3.39		3.22	33	.65	2.07		1.61		1.51	
MnO	80.0	90.0	0.10	0.11		0.05	0.08		0.10	0	90.	0.08		0.11		0.05	
MgO	40.37	41.02	40.53	40.77		40.25	40.95		41.25	41.	29	39.95		39.45		39.91	
CaO	0.02	0.02	0.03	0.01		0.02	0.05		0.03	0	90	0.02		0.02		0.01	
Na_2O	0.00	0.02	0.00	0.01		0.01	0.00		0.00	0	00	0.01		0.03		0.01	
K_2O	0.01	0.01	0.00	0.00		0.01	0.00		0.00	0	00	0.01		0.00		0.02	
Cr_2O_3	0.05	0.09	0.07	0.10		0.10	0.11		0.11	0	90.	0.02		0.07		0.02	
NiO	0.17	0.20	0.21	0.25		0.25	0.29		0.26	0	.15	0.21		0.26		0.19	
H_2O	12.00	12.00	12.00	12.00		12.00	12.00		12.00	12.	00	12.00		12.00		12.00	
	-	-	-	-		-			-	!		-		-			
Total	08.66	99.50	99.38	99.64		99.64	100.43		100.72	100	100.61	98.92		98.07		98.61	
								11									
	1	3															
	calculation ba	calculation based on 9 oxygens: all Fe=2+	: all Fe=2+														1
Si	2.08	2.05	2.06	2.06		2.08	2.02		2.02	2.0	02	2.08		2.10		2.10	
Al	0.03 \	0.03 \	0.03 \	0.03	_	0.03 \	0.03	_	0.03	0.0	0.02 \	0.03		0.02		0.02	
Ti	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.0	00	0.00		0.00		0.00	
$\mathrm{F}\mathbf{e}^{3+}$	-					1				ı							
$F\mathbf{e}^{2+}$	60.0	80.0	80.0	0.08		60.0	0.13		0.13	0.	14	0.08		90.0		90.0	
Mg		0.00				_	0.00		0.00		0.00	0.00		0.00		0.00	
Mn	2.82 2.95		2.84 \ 2.97	97 2.86	> 2.98	2.82 \ 2.95		3.06	~	3.06 2.	89 3.07	2.81	2.94	2.79	2.89	2.81	2.90
Na	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.0	00	0.00		0.00		0.00	
K	0.00	0.00	0.00	0.00		0.00	0.00		00.00	0.0	00	0.00		0.00		0.00	
Cr	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.0	00	0.00		0.00		0.00	
Ca	0.00	0.00	0.00	0.00		00.00	0.00		0.00	0.0	00	0.00		0.00		0.00	
ïZ	0.01	0.01	0.01	0.01	_	0.01	0.01	_	0.01	0.0	01 /	0.01		0.01		0.01	
НО	3.75	3.77	3.77	3.76		3.76	3.77		3.75	3,	3.76	3.78		3.80		3.78	

.;
yse
anal
rite
tigo
- An
iite
entir
erpe
s os
alen
Z
ed:
tinu
con
∞.
le A
Tabl

	12	12	41	15		16	171		18	10		000	15		ς .	
sample	Ma20	Ma20	Ma20	Ma20		Ma20	Ma20		Ma20	Ma20		<u></u>		0:	<u></u> Ma20	
SiO ₂	43.99	43.75	44.05	44.57		44.14	43.83		43.86	43.37		43.21	43.41	1	43.94	
TiO_2	0.02	0.02	0.00	0.02		0.00	0.01		0.03	0.00		0.00	0.0	1	0.01	
Al_2O_3	0.47	0.54	0.46	0.32	-	0.38	0.47		0.46	0.57		0.53	0.5	0	0.45	
FeO	2.00	2.40	2.16	1.61		1.61	2.12		2.21	2.97		3.29	2.8	1	2.23	
MnO	90.0	0.10	90.0	0.07		80.0	0.01		0.04	0.11		0.10	0.0	6	0.02	
MgO	40.18	39.87	40.59	39.30	-	39.63	40.42		40.45	40.35		41.61	40.3	2	40.16	
CaO	0.03	0.03	0.03	0.04		0.04	0.01		0.01	0.05		0.03	0.0	4	0.03	
Na_2O	0.01	0.03	0.01	0.01		0.01	0.00		0.02	0.01		0.01	0.0	0	0.01	
K_2O	0.00	0.00	0.00	0.00		0.01	0.00		0.00	0.00		0.00	0.0	0	0.01	
Cr_2O_3	0.03	90.0	0.00	0.00		0.00	0.00		0.02	0.00		0.00	0.0	1	0.00	
NiO	0.20	0.19	0.26	0.21		0.26	0.23		0.27	0.22		0.23	0.2	5	0.27	
H_2O	12.00	12.00	12.00	12.00		12.00	12.00		12.00	12.00		12.00	12.0	0	12.00	
	-	-	-	-		1	-		-	-		-	-		-	
Total	66.86	86.86	09.66	98.15		98.15	80.66		98.36	99.65		101.01	99.4	3	99.13	
					II			II								
	calculation l	valculation based on 9 oxygens: all Fe=2+	ns: all Fe=2+													
Si	2.08	2.07	2.07	2.11		2.09	2.07		2.07	2.05		2.02	2.05	2	2.07	
Al	0.03	0.03 \	0.03	0.02	_	0.02 \	0.03	_	0.03 \	0.03	_	0.03 \	0.0	3 /	0.03 \	
Ţ	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.0	_	0.00	
Fe^{3+}	1	1				1	1		ı]			1	
$\mathrm{Fe^{2+}}$	80.0	0.09	0.09	90.0		90.0	0.08		60.0	0.12		0.13	0.1	_	0.09	
Mg	0.00	0.00	0.00	0.00		00.00	0.00		0.00	0.00		0.00	0.0	_	0.00	
Mn	2.83 \ 2.9	<u></u>	_	2.97 2.77	2.87	_	2.90 2.84	> 2.96	2.84 \ 2.97	_	3.00	2.90 3.07	_	4 2.99	2.82	2.95
Ca	0.00	00.00	0.00	0.00		00.00	0.00		0.00	0.00		0.00	0.0	_	0.00	
Na	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.0	_	0.00	
K	0.00	00.00	0.00	0.00		00.00	0.00		0.00	0.00		0.00	0.0	_	0.00	
Cr	0.00	0.00	0.00	0.00		0.00	0.00		0.00	0.00		0.00	0.0	_	0.00	
Ni	0.01	0.01	0.01	0.01	_	0.01	0.01	_	0.01	0.01		0.01	0.01		0.01	
НО	3.78	3.79	3.76	3.80		3.80	3.78		3.77	3.78		3.75	3.78	~	3.78	

Table A.8 continued: Malenco serpentinite - Antigorite analyses.

	23	24	25	26	27	28	29	30	31	32	33
sample	Ma20	Ma20	Ma20	Ma20	Ma20	Ma20	Ma20	Ma20	Ma20	Ma20	Ma20
SiO ₂	43.51	44.27	43.26	43.04	43.30	43.58	42.74	44.57	43.09	43.34	43.58
TiO_2	0.00	80.0	0.02	0.03	0.00	0.04	0.02	0.02	0.07	0.02	0.03
Al_2O_3	0.36	0.31	0.47	0.55	0.45	0.51	0.44	0.46	0.50	1.96	2.16
FeO	3.09	1.67	3.11	2.82	2.84	2.21	3.64	1.74	3.31	3.33	3.28
MnO	0.12	0.11	0.07	0.02	0.09	0.15	0.08	0.11	0.07	90.0	0.02
MgO	40.74	38.23	41.16	41.19	41.65	39.95	41.08	40.71	41.02	39.44	38.82
CaO	0.01	0.02	0.02	0.04	0.01	0.04	0.03	0.03	0.04	0.00	0.03
Na_2O	0.00	0.02	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.00	0.00
K_2O	0.00	0.01	0.00	0.00	0.01	0.02	0.00	0.00	0.01	0.01	0.00
Cr_2O_3	0.02	0.00	0.05	0.03	0.07	0.25	0.00	0.14	0.03	0.46	0.80
NiO	0.24	0.30	0.31	0.23	0.30	0.30	0.17	0.22	0.26	0.13	0.25
H_2O	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00	12.00
	-	-	-	-	-	-	-	-	-	-	-
Total	100.10	97.02	100.48	96.66	100.74	99.05	100.20	100.00	100.39	100.74	100.97
	calculation ba	calculation based on 9 oxygens: all $Fe=2+$: all Fe=2+								
Si	2.05	2.12	2.03	2.03	2.03	2.06	2.02	2.08	2.03	2.03	2.03
Al	0.02 \	0.02 \	0.03	0.03 \	0.02 \	0.03 \	0.02 \	0.03 \	0.03 \	0.11 \	0.12 \
Τi	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe^{3+}		[1	ı		Ţ	[Ī	1	ſ	1
$\mathrm{Fe^{2^+}}$	0.12	0.07	0.12	0.11	0.11	0.09	0.14	0.07	0.13	0.13	0.13
Mg	0.00	00.0	_		_		00.00	0.00	_	00.00	0.00
Mn	2.86 3.01		2.88 3.05	2.89 \ 3.0	_	$3.06 2.82 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		2.83 \ 2.95	2.87 3.05	2.75 3.01	2.70 \ 2.99
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
K	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cr	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.00	0.02	0.03
Z	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01
НО	3.77	3.83	3.76	3.77	3.75	3.79	3.78	3.74	3.77	3.75	3.74

Antigorite analyses.
ì
serpentinite
Malenco
continued:
∞
Ą
G
19
a

Table A	Table A.8 continued: Malenco serpentinite - Antigorite analyses.	Malenco serpe	e ntinite - Antig	gorite analyses.	Table A.9	: Malenco	Table A.9: Malenco serpentinite - Pyroxene analyses.	- Pyroxene ar	ıalyses.
	34	35	36	37		1	2	3	4
sample	Ma20	Ma20	Ma20	Ma20	sample	Ma20	Ma20	Ma20	Ma20
SiO ₂	42.80	44.32	43.64	42.99	SiO ₂	55.89	56.00	54.67	54.92
TiO_2	90.0	0.02	0.01	0.02	TiO_2	0.03	0.01	0.01	90.0
AI_2O_3	2.47	1.68	1.94	2.82	Al_2O_3	0.01	0.00	0.93	0.73
FeO	3.93	3.05	3.45	4.57	FeO	1.31	1.29	1.89	1.72
MnO	0.05	0.05	0.04	0.03	MgO	0.03	0.05	0.05	90.0
MgO	38.42	39.31	39.17	38.44	MnO	17.88	17.81	17.47	17.53
CaO	0.00	0.00	0.00	0.00	CaO	26.64	26.51	25.26	25.72
Na_2O	0.00	0.00	0.00	0.00	Na_2O	0.01	0.02	0.28	0.16
K_2O	0.00	0.00	0.02	0.01	K_2O	0.01	0.00	0.00	0.00
Cr_2O_3	98.0	0.21	0.56	0.38	Cr_2O_3	0.03	0.01	0.54	0.38
NiO	0.12	0.12	0.17	0.18	NiO	0.05	0.04	0.05	0.05
H_2O	12.00	12.00	12.00	12.00		-	-	-	
	1	1	1		Total	101.88	101.74	101.15	101.33
Total	100.71	100.76	100.99	101.43					
					- 1	calculation base	calculation based on 12 oxygens		

	_		2	m		4		S	
sample	le Ma20	Ma	Ma20	Ma20		Ma20		Ma20	
SiO_2	ı		00.	54.67		54.92		54.04	
TiO_2			.01	0.01		90.0		0.00	
AI_2O_3			00.	0.93		0.73		1.45	
FeO			.29	1.89		1.72		2.09	
MgO			.05	0.05		90.0		0.04	
MnO			.81	17.47		17.53		17.37	
CaO			.51	25.26		25.72		24.78	
Na_2O			.02	0.28		0.16		0.49	
K_2O			.00	0.00		0.00		0.00	
Cr_2O_3			.01	0.54		0.38		92.0	
NiO	0.05		0.04	0.05		0.05		0.00	
	-		!						
Total	101.88		1.74	101.15		101.33		101.03	
	calculat	calculation based on 12 oxygens	12 oxygen:	50					
Si	3.99	4	00	3.94		3.95		3.90	
Al	0.00	0.	1 00	0.08		0.06		0.12	
Ξ	0.00	0.	00	0.00		0.00		0.00	
Fe^{3+}	0.00	0.	00	0.00		0.00		0.00	
Fe^{2+}	0.08	0.	80	0.11		0.10		0.13	
Mg	00.00	0.	00	0.00		0.00		0.00	
Mn	1.90) 4.03 1.	89 \ 4.01	1.87	4.09	1.88	4.08	1.87	4.15
Ca	2.04	2.	03	1.95		1.98		1.92	
Na	0.00	0.	00	0.04		0.02		0.07	
K	0.00	0.	00.00	0.00		0.00		0.00	
Cr	0.00	0.	0.00	0.03		0.02		0.04	
N	0.00	0.	00	0.00		0.00		0.00	

0.18 0.00 2.67 0.00 0.00 0.00 0.01 0.01 2.04 0.11 0.00 --0.13 0.00 2.72 0.00 0.00 0.00 0.00 0.00 3.74 calculation based on 9 oxygens: all Fe=2+ 2.95 0.12 0.00 2.73 0.00 0.00 0.00 0.01 0.00 3.73 0.15 0.00 2.69 0.00 0.00 0.00 0.03 3.76 2.01 0.14 0.00 $\begin{array}{c} Si \\ Al \\ Al \\ Ii \\ KK \\ OH \\ \end{array}$

40.49 0.07 0.00 0.32 45.81 0.05 0.01 0.00 0.00 0.35 -0.28 0.01 1.69 0.00 0.00 0.00 1.99 41.14 0.02 0.00 114.40 0.33 46.06 0.00 0.00 0.03 0.35 1.01 0.29 0.01 1.68 0.00 0.00 0.00 0.00 40.59 0.00 0.00 114.06 0.29 45.54 0.00 0.01 0.00 0.39 1.01 0.00 0.00 0.29 0.01 1.68 0.00 0.00 0.00 1.98 40.90 0.00 0.00 14.08 0.28 45.78 0.00 0.00 0.01 0.01 101.43 1.01 0.00 0.00 0.29 0.01 1.68 0.00 0.00 0.00 1.98 41.54 0.02 0.05 11.56 0.39 47.92 0.01 0.00 0.00 -0.23 0.01 1.73 0.00 0.00 0.00 0.00 1.01 0.00 0.00 40.61 0.00 0.00 13.90 0.24 45.85 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.29 0.01 1.69 0.00 0.00 0.00 1.97 40.95 0.03 0.00 0.28 45.18 0.00 0.01 0.00 0.37 1.01 0.00 0.00 -0.29 0.01 1.67 0.00 0.00 0.00 1.99
 Table A.10: Malenco serpentinite - Olivine analyses.
 40.96 0.00 0.01 14.14 15.88 0.02 0.00 0.00 0.00 0.29 0.01 0.00 0.00 0.00 0.00 1.01 0.00 0.00 40.79 0.01 0.00 114.07 0.26 45.53 0.01 0.00 0.00 0.02 1.01 0.00 0.00 0.00 0.01 1.68 0.00 0.00 0.00 0.00 calculation based on 4 oxygens 40.73 0.00 0.00 14.28 0.26 45.83 0.01 0.00 0.00 01.51 -0.29 0.01 1.68 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.99 40.77 0.00 0.00 14.07 0.29 45.71 0.00 0.00 0.00 1.01 0.29 0.01 1.68 0.00 0.00 0.00 0.00 sample SiO₂
TiO₂
Al₂O₃
FeO
MnO
MgO
CaO
Na₂O
Na₂O
Ct₂O
NiO Total Si All Ti Ti Mn Mn Mg Ca Ca Cr Cr Ni Ni

vine analyses.
ii
,
serpentinite
Malenco s
continued:
eA.10
Cable

			٠												
sample	12	13	14		15		16	17		18		19		20	
	Ma	Ma	Ma		Ma		Ma	Ma		Ma		Ma		Ma	
SiO ₂	38.83	34.25	41.06		40.65	4	40.95	40.75		41.30		36.67		36.54	
TiO_2	0.07	0.01	0.00		0.00)	00.0	0.00		0.01		5.00		4.87	
AI_2O_3	0.07	0.08	0.01		0.01)	00.0	0.01		0.00		0.00		0.00	
FeO	6.78	11.02	14.09		14.01	1.	4.12	14.34		13.30		13.82		13.64	
MnO	0.39	0.35	0.28		0.30)	0.30	0.26		0.47		0.29		0.30	
MgO	37.03	34.27	45.49		45.35	4.	5.44	45.50		46.25		43.12		43.06	
CaO	0.39	0.22	0.00		0.00)	0.01	0.00		0.00		0.00		0.00	
Na_2O	0.00	0.03	0.00		0.01)	00.0	0.00		0.01		0.00		0.00	
K_2O	0.00	0.04	0.00		0.00)	00.00	0.00		0.01		0.00		0.00	
Cr_2O_3	0.07	0.02	0.00		0.00)	00.00	0.01		0.00		0.04		0.00	
NiO	0.00	0.33	0.36		0.42)	.44	0.39		0.34		0.30		0.30	
	-	-	-		1		-	-		-		-			
Total	83.62	80.61	101.28	~	100.75	10	1.27	101.26		101.68		99.26		98.72	
				ı.		ii			IJ						
-1	calculation based on 4 oxygens	ed on 4 oxyg	ens												
Si	1.11	1.06	1.01		1.01	1	1.01	1.01		1.01		0.93		0.93	
Al	0.00 \	0.00	0.00	_	0.00)	1.00.0	0.00	_	0.00		0.00		0.00	
Ti	0.00	0.00	0.00		0.00)	00.0	0.00		0.00		0.10		60.0	
Fe^{3+}	,	1.	1		,		,	1		1		,		,	
Fe^{2+}	0.16	0.28	0.29		0.29)	0.29	0.30		0.27		0.29		0.29	
Mn	0.01	0.01	0.01		0.01)	0.01	0.01		0.01		0.01		0.01	
Mg	1.58 \ 1.77	_	1.89 1.67) 1.98	_	1.98	1.67 \ 1.98		(1.99	1.69	1.98	1.64	2.04	1.64	2.04
Ca	0.01	0.01	0.00		0.00)	00.0	0.00		0.00		0.00		0.00	
Na	0.00	0.00	0.00		0.00)	00.0	0.00		0.00		0.00		0.00	
K	0.00	0.00	0.00		0.00)	00.00	0.00		0.00		0.00		0.00	
Cr	0.00	0.00	0.00		0.00)	00.0	0.00		0.00		0.00		0.00	
N.	0.00	0.01	0.01	_	0.01)	0.01	0.01		0.01		0.01		0.01	

A.2 Determination of density and porosity

The density and porosity of the samples were determined by applying the Archimedean principle. Rock cores were vacuum-dried in the oven at 60 °C and weighed (m_{dry}). Subsequently, the cores were saturated with distilled water in an evacuated exxicator. After about 14 days the saturated samples were weighed again (m_{sat}). Additionally, their buoyancy was determined by hanging them into a cup of destilled water (m_{buoy}). The volume of the sample (V_{solid}) and of pores (V_{pore}), the density of the sample (ρ_s), and the porosity (ϕ_s) respectively, are derived from:

$$V_{solid} = \frac{m_{dry} - m_{buoy}}{\rho_{H_2O}},\tag{A.1}$$

$$V_{pore} = \frac{m_{sat} - m_{dry}}{\rho_{H_2O}},\tag{A.2}$$

$$\rho_{solid} = \frac{m_{dry}}{V_{solid}},\tag{A.3}$$

$$\phi_{solid}[\%] = \frac{V_{pore}}{V_{solid}} \cdot 100. \tag{A.4}$$

The density of water was determined with a glass body of a defined volume $(10 cm^3)$.

A.3 Determination of the loss of ignition

To estimate the amount of water released during the experiment, both the Chephren amphibolite and the Malenco serpentinite were subjected to the measurement of weight loss due to heat treatment. For this purpose, initially both materials were fine ground and weighed in a porcelain pot (m_i) . Similar to the heat treatment during the ultrasonic experiments, the pots were heated then in 30 min and 60 min intervals in increments of 25 and 50 K, respectively, to a maximum temperature of 1000 °C at room pressure. After reaching the adjusted temperature the pots were weighed again (m_T) :

$$\Delta m = m_T - m_i. \tag{A.5}$$

A.4 IR-spectoscopy

The water content of the amphibole phases was determined with infrared (IR) spectroscopy, which is sensitive especially for the detection of minor amounts of water in minerals and the differentiation between structurally bonded and molecular absorbed water. Infrared spectra were acquired from amphibole single crystals and amphibole single crystal powder, prepared from the starting material as well as of a sample, which was quenched from 870 MPa and 800 °C. The single crystals were prepared with polished coplanar faces parallel to the c-axes by the use of cleavage planes (Fig. A.1). The powder preparation was measured as a mixture of amphibole with KBr powder pressed to a tablet.

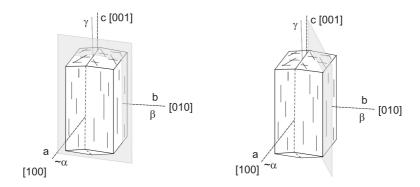


Figure A.1: A hornblende crystal and its optical α, β, γ and crystallographic **a, b, c** axes. Single crystal preparations were oriented parallel to the c-axis and perpendicular to the a-axis by use of the predefined cleavage planes.

The spectra were acquired with a Bruker FT-IR spectrometer (IFS66V) at a 2 cm⁻¹ resolution using a globar light source and a KBr – beam-splitter. Spectra from single crystals were recorded with a MCT detector, while the measurements on KBr-tablets were done with a DTGS detector. Because of the arbitrary distribution of crystallites in the KBr-tablet the sample was analysed with non-polarised light. For single crystals additional IR spectra were taken in two or three orthogonal directions using a polarised beam. The spectra were analysed by using the PeakFit program (Jandel Scientific, v4.11).

The amphiboles seem to be extremely hygroscopic, thus displaying a combination of structurally bonded hydroxyl and, at lower energies, broad molecular water bands. To determine the amount of structurally bonded water in the amphiboles the integral peak area was corrected for the area of molecular water (peaks between $3200-3550 \ cm^{-1}$). Following Libowitzky and Rossman [1997] and citations in it, the H concentration in minerals (Tab. A.11) is deduced from

$$c = \frac{A_i \cdot 1.8}{\rho \cdot t \cdot \varepsilon_i},\tag{A.6}$$

A.4. IR-SPECTOSCOPY

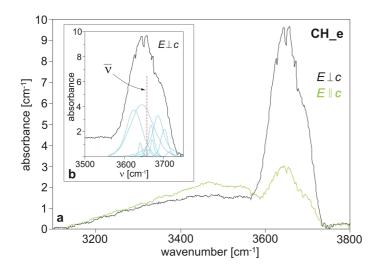


Figure A.2: (a) Comparison of spectra of one single crystal of a fresh amphibole recorded perpendicular (black) and parallel to the c-axis (green). OH-groups are strongly polar and have thus a pronounced intensity perpendicular to the c-direction. (b) Close-up from diagram (a). Shown is the spectrum measured perpendicular to the c-direction. Additionally, the fitted peaks are plotted.

where c is the H_2O content (in wt%), A_i is the integrated area of intensity (peak area), which is corrected for the peak area of molecular water, ρ is the density, t is the sample thickness and ε_i represents the integrated molar absorption coefficient, expressed in cm^{-2} per mol H_2O/I and can be calculated from

$$\varepsilon_i = 246.6 (3753 - \bar{\mathbf{v}}).$$
 (A.7)

The weighted mean wavenumber \bar{v} was determined for each spectra after

$$\bar{\mathbf{v}} = \frac{\sum \mathbf{v}_j \cdot A_{ij}}{\sum A_{ij}}.\tag{A.8}$$

For the starting material \bar{v} was found to be constant with 3657.69 \pm 0.82 cm^{-1} . The quenched sample shows a slightly lower mean wavenumber of 3655.41 \pm 2.26 cm^{-1} (Tab. A.11).

The integrated peak area, A_i , of a spectrum recorded with non-polarised light displays the mean intensity over arbitrarily distributed crystals. Thus, only one spectrum is needed to calculate the H_2O content of the analysed sample. On the other hand, the integrated peak area of a single crystal spectrum, recorded with a polarised beam, reflects only the intensity of the hydroxyl bands in one direction. For this, the single crystal spectra of at least three directions had to be taken into account. As the intensities measured in any orientation parallel to the c-axis were tested to be quite similiar, a good approximation was to measure only one orientation parallel c, and the maximum peak area of the whole sample was calculated from $A_i = (A//c) + (A//c) + (A//c)$.

sample	beam	ρ	$\bar{\nu}$	ϵ_{i}	A_i	H ₂ 0	H ₂ 0
		[g/cm ³]	[cm ⁻¹]	[l mol ⁻¹ cm ⁻²]	[cm ⁻²]	[ppm]	[wt%]
CH_b	pol	2.90	3657.69	23503.45	1423.00	3757.92	0.38
CH_b	non-pol	2.90	3657.69	23503.45	1248.00	3295.77	0.33
CH_c	pol	2.90	3657.69	23503.45	1358.94	3588.75	0.36
CH_d	pol	2.90	3657.69	23503.45	1284.26	3259.50	0.33
CH_e	pol	2.90	3657.69	23503.45	1392.59	3677.62	0.37
CH_e	non-pol	2.90	3657.69	23503.45	1292.72	3413.87	0.34
CH_KBr	non-pol	2.90	3654.00	24413.40	1583.26	4025.31	0.40
			Analyses	of fresh amph	iboles:	mean	0.36 ± 0.03
sample	beam	ρ	\bar{v}	$\epsilon_{\mathbf{i}}$	A _i	H ₂ 0	H ₂ 0
		$[g/cm^3]$	[cm ⁻¹]	[l mol ⁻¹ cm ⁻²]	[cm ⁻²]	[ppm]	[wt%]
CHBnE a		2.00	3655.41	24065 60	1198.92	2050 25	0.21
	non-pol	2.90	3033.41	24065.69	1190.92	3079.25	0.31
CHBnE_a	pol	2.90	3655.41	24065.69	1128.71	3079.25 2898.94	0.31
_							
CHBnE_a	pol	2.90	3655.41	24065.69	1128.71	2898.94	0.29
CHBnE_a CHBnE_b	pol non-pol	2.90 2.90	3655.41 3655.41	24065.69 24065.69	1128.71 1062.00	2898.94 2727.59	0.29 0.27
CHBnE_a CHBnE_b CHBnE_b	pol non-pol pol	2.90 2.90 2.90	3655.41 3655.41 3655.41	24065.69 24065.69 24065.69	1128.71 1062.00 920.24	2898.94 2727.59 2363.51	0.29 0.27 0.24
CHBnE_a CHBnE_b CHBnE_c	pol non-pol pol non-pol	2.90 2.90 2.90 2.90	3655.41 3655.41 3655.41 3655.41	24065.69 24065.69 24065.69 24065.69	1128.71 1062.00 920.24 1326.49	2898.94 2727.59 2363.51 3406.89	0.29 0.27 0.24 0.34
CHBnE_a CHBnE_b CHBnE_c CHBnE_c CHBnE_c	pol non-pol pol non-pol pol	2.90 2.90 2.90 2.90 2.90	3655.41 3655.41 3655.41 3655.41 3655.41	24065.69 24065.69 24065.69 24065.69 24065.69	1128.71 1062.00 920.24 1326.49 1022.29	2898.94 2727.59 2363.51 3406.89 2625.62	0.29 0.27 0.24 0.34 0.26

Table A.11: Water content determined on amphiboles from fresh Chephren amphibolite (CH) and a quenched sample (CHBnE). Samples were measured with polarised (pol) and non-polarised (non-pol) light, respectively. The errors are given in terms of standard deviation.

A.5 Electron Backscatter Diffraction

EBSD is a Scanning Electron Microscopy (SEM) method based on Bragg's law, defining each particle of an atomic layer of a crystal as a scattering centre, thus acting as a point source of secondary spherical wave fronts. A constructive interference of these wave fronts is only accomplished if the retardation of waves, reflected on lattice planes with the distance d_{hkl} and an angle of incidence θ , corresponds to an integer multiple n of the wavelength λ (Fig. A.3).

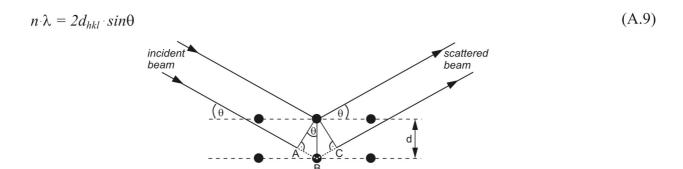


Figure A.3: Schematic illustration of Bragg's law. Two rays of the incident electron beam, in phase and parallel, are scattered by atoms of different lattice planes. The beam, which strikes the lower layer has to travel an extra distance AB-BC. To satisfy Bragg's law this distance must be equal to an integer multiple n of the wavelength λ .

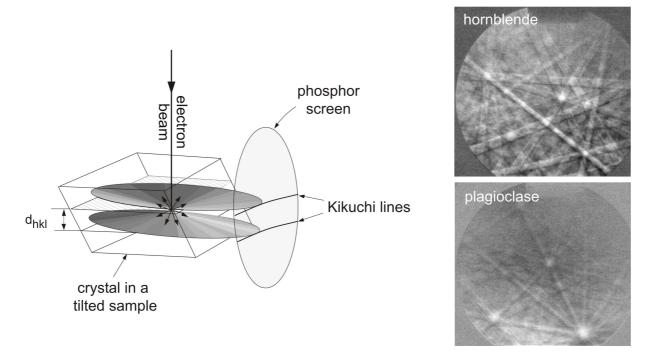


Figure A.4: The generation of a Kikuchi band (schematic). The reflection of an electron beam on lattice planes results in the generation of a number of Kikuchi bands, which overlap and form complex patterns. On the right recorded EBSD patterns of hornblende and plagioclase are shown.

Only few angles θ satisfy Bragg's law and lead to the diffraction of an inelastic scattered electron beam at a given wavelength. Therefore, to obey the Bragg conditions, a highly polished thin-section is inclined about 70° to a vertical incident electron beam with a high aperture and an accelerating voltage of 15 kV. In this case, on either side of the diffraction (reflection) plane, back-scattered electrons emerge along two flat cones of high electron intensity. The edges of these cones are imaged on a phosphor screen and appear as a complex pattern of intersecting Kikuchi bands (Fig. A.4). Every band corresponds to a certain lattice plane crystallographic orientation of the minerals. The EBSD images are collected with a low light CCD camera and automatically indexed by comparing the observed pattern of Kikuchi-bands with those simulated for pre-defined crystallographic structures [Lloyd et al., 1991; Adams et al., 1993; Dingley and Field, 1997]. For indexation the CHANNEL+ software was used [Schmidt & Olesen, 1989], which is based on determination of the Euler angles (φ_1 , φ , φ_2) of the lattice orientation. The relative precision of the determination of the Euler angles is better than 1° [Krieger Lassen, 1996].