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Abstract

Proteogenomics describes the integration of genomic, transcriptomic, and proteo-
mic data. The combination of this multi-omics information offers unprecedented
possibilities for more accurate and sample-specific gene and protein identification.
Further, the advent of high-throughput technologies has led to a wealth of stu-
dies aiming at a deeper understanding of protein function and interaction. Hence,
methods analyzing proteogenomic data, and particularly integrating various data
types, are strongly demanded.

In this thesis, we present new proteogenomic approaches for the integration of
next-generation sequencing and mass spectrometry data in form of DNA and RNA-
Seq and tandem mass spectra. These contributions can be divided into three main
projects: First, we developed the method GIIRA (Gene Identification Incorpora-
ting RNA-Seq data and Ambiguous reads) for the construction of gene models and
transcript prediction based on RNA-Seq data. GIIRA analyzes RNA-Seq mappings
on prokaryotic and eukaryotic reference genomes in order to identify expressed
genes on the reference. Unlike other RNA-Seq analysis methods, it does not ex-
clude ambiguously mapping reads, but rather explicitly includes all mappings to
perform a more comprehensive prediction. It first extracts candidate regions based
on the complete RNA-Seq mapping and represents all connections of reads and
candidates in a network. This network is optimized in a maximum-flow approach
to resolve ambiguous mappings and identify the most likely origin of each read.
The optimization is realized by an integer linear program formulation. In several
experiments we show that GIIRA is well suited for RNA-Seq-based gene identifica-
tion and improves the accuracy of existing methods. For instance, on an Escherichia
coli data set GIIRA showed up to 15% improved identification accuracy in compa-
rison to other prediction methods.

The second main project builds on the output of GIIRA and post-processes gene
prediction results in order to improve prediction accuracy. We developed IPred
(Integrative gene Prediction), a computational approach that explicitly combines
the results of ab initio gene finders and evidence-based methods. Ab initio ap-
proaches employ machine learning techniques and predict genes exclusively based
on a given reference sequence. Hence, their results are accurate for standard gene
structures, but they are not sample-specific. Thus, IPred provides an automated
simplistic framework to integrate the results of varying evidence-based predictions
to ab initio identifications. Thereby, it excludes false positives and allows support
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for sample-specific mutations. Predictions combined by IPred show improved ac-
curacy in comparison to results from single method gene finders and other combi-
nation methods. In particular the specificity of single method results is increased
by up to 30%.

The third project extends the former two methods and combines RNA-Seqg-based
predictions with tandem mass spectrometry. We introduce MSProGene (Mass Spec-
trometry and RNA-Seg-based Protein and Gene Identification), a new proteoge-
nomic method that performs protein identification beyond reference protein data-
bases or six-frame translations. It constructs customized transcript databases (for
instance using GIIRA or IPred) and analyzes peptide spectrum matches with the
help of a network representation. In particular, MSProGene explicitly resolves
shared peptides for protein inference using RNA-Seq information in a linear pro-
gram optimization. Resulting peptide spectrum matches are controlled by an ex-
pectation-maximization-based false discovery rate. We performed an exhaustive
comparison to reference dependent and independent proteogenomic approaches
and demonstrate that MSProGene facilitates a reliable database independent pre-
diction on gene and protein level and additionally identifies novel genes. For in-
stance, on a Litomosoides sigmodontis data set it identified twenty times as many
proteins verified by BLAST search than a standard six-frame analysis.

With these projects we developed new methods for automated and accurate pro-
teogenomic analysis. The introduced approaches successfully integrate genomic
data with RNA-Seq and mass spectrometry experiments to enable a better under-
standing of protein function and interaction.
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Zusammenfassung

Das Feld der Proteogenomik verbindet genomische, transkriptomische, und pro-
teomische Daten und ermdoglicht so die Kombination von Genexpressionsinforma-
tionen fiir akkuratere und experimentspezifische Gen- und Proteinidentifikation.
Zusétzlich hat auch die Entwicklung von Hochdurchsatzverfahren zu einer Viel-
zahl von Studien gefiihrt, mit dem Ziel, ein besseres Verstandnis von Proteinfunk-
tion und -interaktion zu erlangen. Daher ist es sehr wichtig, automatisierte Metho-
den fiir die Analyse von proteogenomischen Daten, insbesondere der Integration
von verschiedenen Datentypen, bereitzustellen.

In dieser Doktorarbeit stellen wir proteogenomische Ansétze fiir die Integration
von Daten aus der DNA- und RNA-Sequenzierung und der Tandemmassenspek-
trometrie vor. Die Beitrdge der Arbeit konnen in drei Hauptprojekte unterteilt wer-
den: Erstens, die Entwicklung der Methode GIIRA (Gene Identification Incorpora-
ting RNA-Seq data and Ambiguous reads) fiir die Erstellung von Genmodellen
und die Vorhersage von Transkripten basierend auf RNA-Sequenzierung. Dazu
analysiert GIIRA die auf prokaryotischen und eukaryotischen Referenzen alignier-
ten RNA-Sequenzen um expremierte Gene auf der Referenz zu identifizieren. Im
Gegensatz zu anderen Methoden zur Analyse von RNA-Sequenzierungsdaten ent-
fernt GIIRA dabei nicht die mehrdeutig alignierten Sequenzen, sondern verwen-
det stattdessen explizit alle Alignments um eine umfassendere Vorhersage treffen
zu konnen. Hierzu werden zundchst Kandidatenregionen extrahiert, basierend auf
dem kompletten RNA-Alignment. Anschlieflend werden alle Verbindungen von
RNA-Sequenzen und Kandidaten in einem Netzwerk reprédsentiert. Dieses Netz-
werk wird mit einem Maximum-Flow Algorithmus optimiert, um fiir jede mehr-
deutige Alignierung die wahrscheinlichste Ursprungsposition zu bestimmen. Da-
bei basiert die Optimierung auf der Formulierung und Losung eines Linearen Pro-
gramms. Wir zeigen in verschiedenen Experimenten, dass GIIRA sehr gut zur Gen-
identifizierung basierend auf RNA-Sequenzierung geeignet ist und die Genauig-
keit bestehender Methoden tibertrifft. Beispielsweise zeigt GIIRA auf einem Esche-
richia coli Datensatz bis zu 15% hohere Vorhersagegenauigkeit als andere Genidenti-
fizierungsmethoden.

Das zweite Hauptprojekt baut auf den Ergebnissen von GIIRA auf und prozessiert
Genvorhersagen, um deren Genauigkeit weiter zu verbessern. Dazu entwickelten
wir IPred (Integrative gene Prediction), eine Methode, die explizit Resultate von
ab initio Genidentifizierungsmethoden und evidenzbasierten Genidentifizierungs-



methoden verbindet. Ab initio Ansdtze benutzen Maschinelles Lernen um Gene
direkt auf gegebenen Referenzsequenzen vorherzusagen. Damit sind sie akkurat
fiir bekannte Genstrukturen, aber nicht experimentspezifisch. Daher bietet IPred
eine automatisierte Methode um die Resultate von evidenzbasierten Identifizie-
rungsmethoden mit ab initio Vorhersagen zu vereinen. Dabei entfernt die Methode
falsche Identifikationen und erlaubt die Detektion von experimentspezifischen Mu-
tationen. Die kombinierten Vorhersagen von IPred zeigen verbesserte Genauigkeit,
sowohl im Vergleich zu Vorhersagen von einzelnen Genidentifizierungsmethoden
als auch anderen Kombinationsmethoden. Insbesondere die Spezifitit konnte um
bis zu 30% verbessert werden.

Das dritte Projekt erweitert die vorherigen zwei Methoden und kombiniert RNA-
Sequenzierung mit Tandemmassenspektrometrie. Wir entwickelten die neue pro-
teogenomische Methode MSProGene (Mass Spectrometry and RNA-Seq-based Pro-
tein and Gene Identification), welche Proteinidentifikation unabhéngig von Refe-
renzproteindatenbanken und six-frame Translationen durchfiihrt. MSProGene ge-
neriert mafigeschneiderte Transkriptdatenbanken (zum Beispiel mit Hilfe von GI-
IRA und IPred) und analysiert Peptididentifikationen mit Hilfe einer Netzwerkdar-
stellung. Insbesondere integriert MSProGene dabei RN A-Sequenzierungsdaten um
mit Hilfe einer linearen Optimierung mehrdeutig zugeordnete Peptide zum kor-
rekten Protein zuzuordnen. Die resultierenden Peptididentifikationen unterliegen
einer Qualitdtskontrolle basierend auf einem Expectation-Maximization Algorith-
mus. In einem umfangreichen Vergleich zu referenzabhéngigen und referenzun-
abhéngigen, proteogenomischen Analysemethoden zeigen wir, dass MSProGene
eine verldssliche datenbankunabhingige Identifikation von Genen und Proteinen
ermoglicht und zusétzlich neue Gene detektiert. Beispielsweise identifiziert MS-
ProGene auf einem Litomosoides sigmodontis Datensatz zwanzig mal so viele BLAST
verifizierte Proteine wie eine standard six-frame Analyse.

Mit diesen Projekten stellen wir neue Methoden fiir die automatisierte und akku-
rate proteogenomische Analyse bereit. Die vorgestellten Methoden integrieren er-
folgreich genomische Daten mit RNA-Sequenzierungs- und Massenspektrometrie-
experimenten und tragen so zu einem besseres Verstindnis von Proteinfunktion
und -interaktion bei.
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Abbreviations

Throughout the thesis we use different abbreviations common in the genomic as
well as in the proteomics field. The following table presents a list with abbrevia-
tions and a short explanation for each term.

List of abbreviations

Abbreviation Explanation
AUC Area Under the Curve
CDS Coding Sequence
DNA Deoxyribonucleic Acid
EMBOSS | European Molecular Biology Open Software Suite
ENCODE Encyclopedia of DNA Elements at UCSC
EST Expressed Sequence Tag
FDR False Discovery Rate
GTF Gene Transfer Format
GUI Graphical User Interface
HMM Hidden Markov Model
MS Mass Spectrometry
MS/MS Tandem Mass Spectrometry
NCBI National Center for Biotechnology Information
NGS Next-Generation Sequencing
ORF Open Reading Frame
PSM Peptide Spectrum Match
PTM Post-translational Modification
RNA Ribonucleic Acid
ROC Receiver Operating Characteristic
rRNA Ribosomal Ribonucleic Acid
SAM Sequence Alignment/Map format
SNP Single Nucleotide Polymorphism
UTR Untranslated Region
VCF Variant Call Format
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1. Introduction

1.1. Proteogenomics

High-throughput technologies in genomics and proteomics have facilitated on-
going advances in the analysis of the mechanisms of gene expression and the func-
tion and interaction of proteins. Next-generation sequencing (NGS) in form of
DNA and RNA sequencing (RNA-Seq) enables the assembly of genomic sequences
(Metzker, 2009) and measures the transcriptome as an intermediate step during
gene expression (Wang et al., 2009). In proteomics, mass spectrometry (MS) allows
the identification and quantification of proteins that were expressed (Nesvizhskii
et al., 2007; Nilsson et al., 2010). These fields are directly connected and allow mu-
tual verification since genes encoded on the genomic sequence are first transcribed
to RNA sequences and then translated to proteins (Crick et al., 1970). Particularly
in the area of genome annotation, which describes the prediction of expressed re-
gions and their regulation system on the genome, this correlation has a high impact
(Ansong et al., 2008). Studies focusing on the analysis of genomic DNA sequences
can predict genes, but only transcriptome analysis can determine if these genes are
actually transcribed under a certain condition. Moreover, only proteomic measure-
ments can validate if a gene is indeed translated to a protein. Thus, in the field
of proteogenomics this multi-omics data is combined to allow a deeper understan-
ding in genome analysis (Ansong et al., 2008; Castellana and Bafna, 2010; Nesvizh-
skii, 2014). In doing so, proteogenomics targets numerous aspects of genome anno-
tation, such as the detection of novel genes, the verification of predicted genes, the
search and validation of correct start and stop positions and exon boundaries, the
analysis of post-translational modifications, and the analysis of splice variants.

However, the analysis and integration of data in proteogenomic studies is chal-
lenging. With decreasing sequencing costs a plethora of proteogenomic data is
generated, which demands efficient methods to analyze and integrate measure-
ments from different instruments. From early on, proteogenomic studies have
been focused on better genome annotation using mass spectrometry in addition to
the standard sequencing-based annotation (Yates III et al., 1995; Link et al., 1997).
Here, genomic sequences are six-frame translated to create an amino acid sequence
database for spectra search. Resulting spectra support for specific regions then
indicates unannotated genes. In addition, also previously predicted gene models
are translated for spectra search to verify and revise existing genes (Kiister et al.,
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2001; Jaffe et al., 2004). Further, expressed sequence tag (EST) databases are used to
include information from expressed genomic regions for improved identification
(Mann, 1996; Choudhary et al., 2001).

The success of proteogenomics to improve the annotation even of well-studied
model organisms has promoted numerous studies using proteomics data for veri-
fication of genomic analysis (Kalume et al., 2005; Fermin et al., 2006; Tanner et al.,
2007; Kelkar et al., 2011; Safavi-Hemami et al., 2014). Efforts are dedicated to
comparative studies of multiple bacterial genomes (Gupta et al., 2008), revising
model organisms (Oshiro et al., 2002; Castellana et al., 2008) or identifying post-
translational modifications (Gupta et al., 2007). Recently, also standardized work-
flows have become available for automated proteogenomic analysis (Kumar et al.,
2013; Jagtap et al., 2014).

The advances in genomic annotation have facilitated the construction of compre-
hensive databases, such as dbSNP (Sherry et al., 2001) including known single nu-
cleotide polymorphisms (SNPs) or ENCODE (Consortium, 2004), a database col-
lecting information on the human genome. Proteogenomic approaches use these
databases, for instance by creating more sophisticated genomic databases for spec-
tra search by including SNPs to existing protein annotations (Ahn et al., 2013; Krug
etal., 2014). Since these efforts are database-dependent and rely on a priori informa-
tion, studies in addition frequently employ transcriptome data. Although also the
integration of EST libraries improves proteogenomic analysis, ongoing advances
in high-throughput sequencing shifted the focus to the integration of RNA-Seq in-
formation. EST sequences are short and do not represent all tissues or cell types
(Kduster et al., 2001; Schurch et al., 2014). In contrast, RNA-Seq measures the com-
plete transcriptome and in addition advanced sequencing techniques provide high
coverage information. Thus, various studies include RNA-Seq evidence in pro-
teogenomic analyses (Ning and Nesvizhskii, 2010; Fanayan et al., 2013; Mohien
et al., 2013; Wang et al., 2014). Recently, also metabolomics and interactome data
are integrated in proteogenomic workflows, further extending the spectrum of pos-
sible sources of evidence (Wang and Zhang, 2014; Meierhofer et al., 2014).

An exemplary overview of the correlation and the measurements of the three prima-
rily integrated research fields genomics, transcriptomics, and proteomics is shown
in Figure 1.1. The figure illustrates that different experiments can be combined, but
that also the analysis within each research field is of importance. This is detailed
in the next sections, where we first introduce concepts for gene prediction, which
is followed by an overview of protein identification. These two tasks are key chal-
lenges in proteogenomic workflows since the basis for all integrative approaches is
the combination of comprehensive genomic annotation with sophisticated protein
identification methods.
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Figure 1.1.: Exemplary illustration of the correlation of different fields and experiments
connected by the central dogma of gene expression and integrated in proteogenomics.
Transcriptomic measurements, in this example in form of RNA-Seq reads, and pro-
teomic measurements in form of tandem mass spectra (MS/MS spectra), benefit the
annotation of genes present on genomic sequences. Simultaneously, genomic and tran-
scriptomic information can be used to identify translated proteins.

1.2. Gene prediction

In proteogenomic studies, gene finding is often a central focus to provide a basis
for the construction of spectra search databases. Even sophisticated proteogenomic
approaches need a comprehensive and meaningful interpretation of genomic se-
quences, either in form of complete gene models, transcribed sequences or simplis-
tic open reading frame (ORF) predictions. However, the annotation of expressed
regions and their structures is a challenging research area (Claverie, 1997; Yu et al.,
2014). As a consequence, numerous studies focus on revealing the structure of
genes and their controlling mechanisms (Schrimpe-Rutledge et al., 2012; Wang et al.,
2012; Wijaya et al., 2013; Fawal et al., 2014).

Often, ORF prediction or genomic six-frame translation is the first step to analyze
unannotated organisms. Widely used programs for ORF prediction are for instance
getorf from the EMBOSS package (Rice et al., 2000) or the ORF finder from NCBI
(Wheeler et al., 2003). However, these simplistic prediction methods are not suited
to predict complex gene structures or regard organism specific characteristics, such
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as splicing events, the presence of pseudo genes, non-standard coding schemes, or
sample-specific variations. As a consequence, much effort is dedicated to more so-
phisticated annotation and the construction of reliable gene models. The resulting
gene prediction methods can be categorized into ab initio as well as evidence-based
and comparative gene finders (Goodswen et al., 2012).

Ab initio gene finders identify genes exclusively based on genomic sequences. They
predict start and stop codons of ORFs and in case of eukaryotes identify intron-
exon structures indicated by known splice sites (Goodswen et al., 2012). Typically,
these approaches are based on statistical or machine learning techniques, such as
Hidden Markov Models (HMMs), and they require training data to evaluate the
probability for each gene and gene structure (Sleator, 2010). The training set is
used to learn general characteristics, such as the distribution and frequency of GC
nucleotides. Then, the learnt features are expressed in a model that is used for pre-
diction on the data set of interest (Brent, 2007). Popular methods include GeneMark
(Lukashin and Borodovsky, 1998; Besemer et al., 2001) and GLIMMERS3 (Delcher
et al., 2007) for prokaryotic gene prediction, and GlimmerHMM (Majoros et al.,
2004), SNAP (Korf, 2004), and GeneMark.hmm (Lomsadze et al., 2005) for eukary-
otic gene prediction.

In contrast to ab initio methods, evidence-based and comparative gene finders make
use of additional information to identify genes and their structures. Sources of evi-
dence include EST libraries, mRNA, or protein sequences. This additional informa-
tion is compared to the genome of interest to identify regions showing similarity to
the given evidence (Wei and Brent, 2006; Savidor et al., 2006; Allen and Salzberg,
2005).

Comparative methods use annotations on closely related species for gene predic-
tion on the sequence of interest, based on the assumption that general structures,
such as introns or coding sequences, are subject to similar evolutionary selective
pressures (van Baren et al., 2007).

Hybrid approaches, such as AUGUSTUS (Stanke et al., 2006) and JIGSAW (Allen
and Salzberg, 2005), combine ab initio predictions with additional evidence. This
strategy allows a more accurate verification of predicted genes (Guigo et al., 2006).
A class of methods related to hybrid approaches are prediction combination pro-
grams. These methods combine the output of different gene prediction strategies to
complement the strengths of single method predictions (Yok and Rosen, 2011; Ed-
erveen et al., 2013). For instance, evidence-based predictions are used to validate
gene models predicted by ab initio approaches to improve the overall prediction
accuracy (Pavlovi¢ et al., 2002; Elsik et al., 2007; Haas et al., 2008).

Independently of the strategy used for gene prediction, the resulting identified
gene models are further processed to provide suitable databases for proteogenomic
analysis. As detailed in the next section, often subsequent proteomic searches
strongly depend on the quality of these databases. Thus, obtaining reliable gene
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predictions is a key challenge in proteogenomics and prediction strategy as well as
used software have to be selected carefully, with regard to the specific data set and
research focus.

1.3. Protein identification

In proteogenomics, genomic data is combined with proteomic information. Thus,
the search of reliable gene models is only one step in a proteogenomic workflow
that is typically followed by the integration of shotgun proteomic data. Here, tan-
dem mass spectrometry (MS/MS) is established as the method of choice for high-
throughput proteogenomic analysis (Nesvizhskii, 2014; Branca et al., 2014). In re-
cent years, instruments for shotgun MS/MS experiments have become more and
more advanced, thereby providing deeper coverage of peptides and proteins. This
resulted in significant progress towards the identification of complete proteomes
(Nesvizhskii, 2010; Wilhelm et al., 2014).

In a typical MS/MS experiment a protein sample is first digested to peptide se-
quences since mass spectrometers are not as sensitive in detecting proteins as they
are in peptide detection. The peptides are then ionized and scanned in the mass
spectrometer that measures their mass to charge (m/z) ratio and signal intensity
(Steen and Mann, 2004). In the end, an MS/MS analysis of a protein sample re-
sults in thousands of tandem mass spectra (MS/MS spectra), where each spectrum
is supposed to represent one peptide sequence. Based on the spectra, first the se-
quence of the corresponding peptide needs to be reconstructed and finally the ori-
ginal proteins that gave rise to the peptides need to be inferred (Nesvizhskii et al.,
2007).

The first objective, referred to as peptide identification, is most commonly rea-
lized by comparing the experimental measured spectra against theoretical spectra
constructed from existing protein reference databases (Nesvizhskii, 2010). Typical-
ly, various criteria, such as the charge state of the peptide and a tolerance mass
window, influence the peptide search and specify possible peptide candidates for a
spectrum. Resulting identified peptide spectrum matches (PSMs) are scored based
on the similarity of experimental and theoretical spectrum (Steen and Mann, 2004).
Numerous methods performing this database-driven peptide search have been de-
veloped, which differ in their search strategies and PSM scoring methods. Popular
search engines include SEQUEST (Eng et al., 1994), X!Tandem (Craig and Beavis,
2004), MASCOT (Perkins et al., 1999), and MSGF+ (Kim and Pevzner, 2014).

Other approaches to peptide identification are spectral library searches or de novo
sequencing (Nesvizhskii, 2010). Spectral libraries include experimental measured
spectra that have been associated to peptide sequences in previous experiments
(Frewen et al., 2006; Lam et al., 2007). Novel unknown spectra are compared to
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those previously identified, using methods such as X!Hunter (Craig et al., 2006) or
SpectraST (Lam et al., 2008). Spectral library searches are usually faster and more
sensitive than standard database searches, but they require peptides and also post-
translational modifications (PTMs) to be measured in previous experiments (Lam
et al., 2007).

In contrast, de novo approaches are independent of a priori derived protein databases
or spectral libraries. These methods assemble the peptide sequence based on the
differences between m/z ratios of the peaks observed in MS/MS spectra. Possible
sequences explaining the observed differences are enumerated and the best ma-
tching series of amino acids is associated to the spectrum (Dancik et al., 1999; Sei-
dler etal., 2010). Although several methods for de novo sequencing are available, for
instance including PEAKS (Ma et al., 2003), PepNovo (Frank and Pevzner, 2005), or
Vonode (Pan et al., 2010), currently results often need to be curated manually. Thus,
current methods are usually not practical for standard shotgun proteomic analysis
(Nesvizhskii, 2010).

Since in general peptide identification is a challenging task and results of different
search engines can vary a lot, several methods aim at post-processing and integra-
ting results of peptide identification engines to improve PSM accuracy (Kaill et al.,
2007; Nahnsen et al., 2011; Shteynberg et al., 2013). The evaluation of PSMs is one
of the key challenges in proteomic experiments since they need to be carefully ana-
lyzed in order to exclude false positive identifications. The accepted standard for
MS/MS quality control is the target-decoy approach to calculate a search-specific
false discovery rate (FDR) (Bradshaw et al., 2006). Here, not only a database con-
taining the protein sequences of interest (target) is provided for spectra search,
but also a database containing artificial sequences (decoy), for instance derived
by reversing or shuffling target proteins. Based on the assumption that a decoy
identification is similarly likely as a false identification, the FDR can be estimated
(Benjamini and Hochberg, 1995) and a predefined FDR threshold can be used as
a quality filter on the original PSMs. The target-decoy approach is easily imple-
mented for peptide identification, but it increases the spectra search time due to
larger search database sizes. Thus, also decoy-free approaches for FDR calculation
have been proposed that estimate the target and decoy distribution among a set of
PSMs (Keller et al., 2002; Renard et al., 2010).

The second objective in typical shotgun proteomic workflows is the inference of the
original proteins present in the sample, based on the identified peptides (Nesvizh-
skii and Aebersold, 2005; Huang et al., 2012). Protein inference is a difficult task,
particularly due to so called shared peptides that not only map exclusively to one
protein, but are present in multiple proteins with homologous subsequences. Thus,
these peptides cannot be assigned in a straightforward way and the choice of pro-
teins that are actually present in a sample is challenging (Huang et al., 2012; Li and
Radivojac, 2012). Further, not all peptides can be measured equally well in the mass
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spectrometer (Sanders et al., 2007) and additionally not all PSMs pass the quality
thresholds in the PSM evaluation. Thus, usually proteins are not homogeneously
covered, but instead their support can be limited. Proteins only supported by one
single peptide hit are often denoted as one-hit wonders, and it is the accepted stan-
dard to exclude these proteins due to lack of reliability (Huang et al., 2012). Ex-
isting approaches for protein inference group proteins based on their shared pep-
tide support and use parsimonious strategies to infer the smallest possible set of
proteins explaining the observed peptides (Nesvizhskii et al., 2003; Serang et al.,
2010). Other methods use additional information for protein inference, for instance
in form of gene function networks and protein interaction networks (Li et al., 2009b;
Ramakrishnan et al., 2009; Gerster et al., 2010).

1.4. Open problems

Although much effort is dedicated to the design of comprehensive proteogenomic
studies, the field remains challenging and several key questions are not yet com-
pletely solved. For instance, the necessity to define and construct suitable databases
for spectra search is one of the key problems in proteogenomics. In particular
for unannotated organisms with unknown reference proteins, standard proteomic
search techniques that require reference databases are not applicable. Even me-
thods for error-tolerant database search cannot overcome this problem entirely (Re-
nard et al., 2012), because variations between organisms might be too large to use
related organisms as references. Once genomic sequences are available, six-frame
translation can be used to create an initial search database that reflects potential
OREF regions. However, a drawback of using complete six-frame translations is
the artificial increase of the database used for spectra search, which introduces a
bias in peptide identification and also increases the search time (Reiter et al., 2009).
Further, simplistic ORF prediction and six-frame translation do not cover complex
gene structures with splicing events, as they often occur in eukaryotic genomes
(Nesvizhskii, 2014; Branca et al., 2014). Thus, methods that go beyond ORF predic-
tion and six-frame translation are desirable.

With new sequencing technologies, such as RNA-Seq, simplistic genomic ORF pre-
diction can be extended by including additional information. For instance, de novo
transcript assembly with methods such as Trinity (Grabherr et al., 2011) can be
used to assemble RNA-Seq reads to longer continuous sequences that serve as a
basis for translation. However, RNA-Seq driven transcript assembly is a challeng-
ing problem in itself, and the resulting transcripts can contain many false contigs
which bias and impede the correct spectra analysis (Schliesky et al., 2012).

Even if reference protein databases are available, sample-specific proteogenomic
analysis is difficult. Mutations or novel proteins present in a data set might not
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be covered by the database and thus search methods can fail to detect these pro-
teins. Methods that make use of existing SNP databases, such as dbSNP (Sherry
et al., 2001), can partly approach this problem. However, also here only variations
known a priori can be integrated. Thus, additional sample-specific mutations are
not available. Moreover, integrating SNPs does not overcome the problem of de-
tecting completely novel proteins.

A more sophisticated way to derive better suited search databases is the application
of gene prediction methods. These methods explicitly aim at the identification of
gene structures on unannotated genomes. Thus, they can predict novel genes and
respect prokaryotic as well as eukaryotic gene characteristics. However, despite
numerous research efforts and the availability of advanced methods, gene iden-
tification still faces significant challenges handling complex gene structures, rare
splice sites or mutations in genes (Goodswen et al., 2012; Ederveen et al., 2013).
For instance, a general problem of ab initio prediction methods is their dependency
on given training sets. The influence of training set choice can be considerable:
Parameters trained on one data set might not be feasible for other data, and thus
predictions might not be correct in case of insufficient training data. Further, ab
initio methods have the disadvantage (i) of providing no information on whether
the genes are indeed expressed under a certain condition or not, and (ii) of mis-
sing or incorrectly predicting genes that differ from the considered standard codon
scheme (Yada et al., 2002; Mathé et al., 2002). However, reduced sequencing costs
and new fields like metagenomics, where even organisms are sequenced that can-
not be cultivated, lead to more and more organisms that employ gene structures
and codon schemes different from the ones we presently know (Woyke and Ru-
bin, 2014; Ivanova et al., 2014). Although evidence-based gene finders can include
experiment-specific information to approach these challenges, they are prone to
noise in the experiments and can be limited by incomplete or contradicting evi-
dence (Mathé et al., 2002). These limitations also apply to hybrid gene finders
because they also rely on evidence. Further, since hybrid gene finders, such as
AUGUSTUS (Stanke et al., 2006), are ab initio in their core prediction strategy, they
are additionally limited in case of insufficient training data.

However, the search and construction of suitable sequence databases is not the
only key problem in proteogenomic studies. Also the accurate search of spectra in
the given database and the evaluation of search results is an important issue. For
instance, the suitability and interpretability of FDRs and target-decoy analyses to
estimate the proportion of incorrect identifications is an ongoing debate (Cooper,
2012; Jeong et al., 2012; Bonzon-Kulichenko et al., 2014; Branca et al., 2014). Here,
a general problem is the choice of target databases: They must be large enough
to include all proteins present in a sample, otherwise the measured peptides can-
not be identified. However, large database sizes can bias the peptide identification
and FDR evaluation (Reiter et al., 2009; Blakeley et al., 2012). This is particularly
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challenging for proteogenomic analyses, where the database is often not a standard
protein reference, but rather based on genomic analysis including six-frame trans-
lation. These databases are often large, which can be difficult for PSM evaluation
(Branca et al., 2014).

Further, not only peptide identification, but also the inference of the original pro-
teins based on the identified peptides is a challenging key problem in proteomics
(Huang et al., 2012). Particularly the allocation of shared peptides to their correct
protein remains an unsolved problem, such that they are often discarded from the
analysis. Approaches including shared peptides parsimoniously select a subset
of proteins explaining all observed peptides or group proteins that share peptides
(Nesvizhskii et al., 2003; Serang et al., 2010). However, this results in a level of un-
certainty in identifications. Further, since not all peptides can be measured equally
well in the mass spectrometer (Sanders et al., 2007), often not all parts of a protein
are fully covered, which additionally complicates a unique identification. Thus, a
method to distinctively select the proteins actually present in the sample is highly
desirable.

1.5. Terminology

Throughout the thesis we often refer to the term gene and its corresponding parts
and structures. Hence, here we introduce the basic terms used to describe genes
encoded in prokaryotic and eukaryotic genomes (refer to Figure 1.2 for an illustra-
tive example).

We denote a region on a genomic sequence as a gene if it contains transcribed and
translated intervals. When a gene is transcribed, the resulting messenger RNA
(mRNA) sequence is called a transcript. Due to splicing events, in eukaryotes these
transcripts are often present on the genome as several exons that are separated by
introns. Introns are spliced out after the initial transcription and are thus not part
of the transcript sequence that is translated to an amino acid sequence. The series
of introns connecting the exons of a transcript is called intron-chain. Contradicting
splicing events lead to alternative transcripts, where each transcript can also be de-
noted as an isoform. All isoforms corresponding to a gene represent the gene locus.
In contrast to eukaryotes, prokaryotic genes are organized in operons. Here, mul-
tiple so called structural genes are simultaneously regulated and also transcribed as
one continuous mRNA. Thus, one transcript can contain multiple, possibly over-
lapping, structural genes encoding for different proteins.
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(1) Eukaryotes:
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Figure 1.2.: Simplified examples of eukaryotic (1) and procaryotic (2) gene structures. Eu-
karyotes organize genes in exon intron structures and only exons are translated to amino
acid sequences, after the introns are spliced out. Itis possible that not only one transcript
sequence is transcribed per gene, but multiple alternative transcripts (here indicated by
an alternative intron illustrated with a dotted line). Note that not the complete exon
sequence is translated: At the beginning and end of a gene we see an untranslated re-
gion (UTR). In contrast to eukaryotes, prokaryotes organize genes in operons, which
can include multiple genes regulated by one promoter.

1.6. Thesis outline

This thesis introduces new computational methods to perform automated and ac-
curate proteogenomic analysis and to overcome limitations described in the former
sections. We integrate genomic and RNA-Seq data to construct reliable gene mo-
dels, which are further refined in a post-processing that integrates evidence from
additional gene predictions. Thereby, we approach accurate sample-specific gene
identification and provide the basis for constructing customized databases for spec-
tra searches. Further, we integrate tandem mass spectrometry and RNA-Seq infor-
mation for tailored spectra search and improved shared peptide protein inference.
This work is based on three publications and was undertaken under the supervi-
sion of Dr. Bernhard Renard, who is Co-author in each project.

Chapter 2 of the thesis describes the database construction with the evidence-based
gene prediction method GIIRA, where Martin Linder participated in the develop-
ment of the graphical model used in the prediction algorithm. The project is based
on the following publication:

10
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Zickmann F, Lindner, MS, and Renard, BY : GIIRA - RNA-Seq driven gene
finding incorporating ambiguous reads. Bioinformatics, 2014, 30(5), 606-613.

GIIRA addresses sample-specific and organism-independent gene identification.
Unlike other gene finders, GIIRA includes the full information contained in RNA-
Seq experiments by explicitly making use of ambiguously mapping reads. We de-
scribe the design and optimization of a read mapping network and evaluate the
method in several experiments with prokaryotic and eukaryotic data.

In Chapter 3 we detail the method IPred that post-processes the output of GIIRA
to combine gene prediction strategies and integrate additional evidence for more
accurate combined predictions. IPred is based on work published in:

Zickmann F and Renard, BY : IPred - Integrating ab initio and evidence-based
predictions for better gene identification. BMC Genomics, 2015, 16(1), 134.

IPred targets the integration of prediction strategies to verify gene identifications.
Since accurate gene models are strongly demanded in proteogenomics, IPred is
designed as an easy-to-use intermediate step in genomic analysis pipelines. We
describe the combination approach and show the superior prediction accuracy of
IPred predictions in several experiments and comparisons to other combination
methods.

In Chapter 4 the previously described approaches for accurate gene predictions
are integrated in a proteogenomic analysis framework. We introduce the method
MSProGene, which makes use of the sample-specific RNA-Seq-based gene model
construction to construct customized databases for tandem mass spectra search.
We address the problem of shared peptide protein inference by designing and op-
timizing a proteogenomic network. In a comprehensive comparison of different
proteogenomic approaches in simulated as well as real data experiments we show
that MSProGene facilitates an accurate proteogenomic analysis. This work is based
on the following publication:

Zickmann F and Renard, BY : MSProGene - Integrative proteogenomics beyond
six-frames and single nucleotide polymorphisms. Bioinformatics, 2015, 31(12),
i106-i115.
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2. Constructing customized transcript
databases - RNA-Seq driven gene
prediction

A main focus in proteogenomic studies is the design and retrieval of tailored data-
bases suitable for spectra search. Protein reference databases are not always avail-
able and are also not suited to identify novel or mutated proteins, whereas six-
frame translations can introduce a bias in peptide identification (Reiter et al., 2009;
Blakeley et al., 2012; Jeong et al., 2012; Branca et al., 2014) . Hence, sample-specific
and reference-independent databases tailored to the experiment are required.

To approach this challenge, we designed the method GIIRA (Gene Identification
Incorporating RNA-Seq and Ambiguous reads), a gene finder exclusively based
on RNA-Seq information. The rationale to use a gene finder for database construc-
tion is (i) the independence of reference-protein databases and (ii) the integration
of more sophisticated algorithms to predict likely expressed regions, in contrast to
a simple ORF prediction or six-frame translation. Further, GIIRA is an evidence-
based gene finder, which allows incorporating sample-specific information to gene
prediction. In contrast to ab initio gene finders, such as GLIMMERS3 (Delcher et al.,
2007) or SNAP (Korf, 2004), this makes GIIRA ideal for predicting genes tailored to
specific experiments and also tailored to detect mutated or novel genes.

RNA-Seq reflects the genes expressed in the current condition of the cell, which
provides valuable information to identify novel genes or to confirm predicted genes.
Although RNA-Seq experiments were included in various annotation studies (Mar-
tin et al., 2010; Palmieri et al., 2012; Tu et al., 2012; Pickrell et al., 2012; Sultan et al.,
2008), so far only few gene finders directly incorporate RNA-Seq in gene predic-
tion. Methods for gene expression analysis, such as iReckon (Mezlini et al., 2013),
Cufflinks (Trapnell et al., 2010), Scripture (Guttman et al., 2010) and Erange (Mor-
tazavi et al., 2008), perform a transcript assembly on RNA-Seq reads and thereby
allow the identification of exons and splice sites, but they do not predict reading
frames and start and stop codon for genes (Garber et al., 2011). The hybrid gene
finder AUGUSTUS (Stanke et al., 2008) allows the integration of RNA-Seq experi-
ments as an additional external source for eukaryotic gene identification, but the
basis for the actual prediction is ab initio and relies on training data sets. The same
holds for GeneMark (Besemer et al., 2001; Martin et al., 2010), a prokaryotic ab ini-

12
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tio gene finder that can be combined with RNA-Seq analysis to identify operons.
The gene finder G-Mo.R-Se (Denoeud et al., 2008) predicts gene models based on
RNA-Seq reads, but does not identify mono-exonic genes and only incorporates
non-ambiguous mappings.

Since for instance repetitive or highly similar regions or homologous genes lead to
a substantial part of non-unique mappings, discarding ambiguously mapped reads
from further analysis may result in a significant loss of prediction accuracy. This is
exemplified in Table 2.1, where we show the proportion of ambiguous mappings
for four different data sets. All RNA-Seq mappings (obtained using TopHat2 (Kim
et al., 2013) with default settings) included a significant proportion of ambiguity.
Thus, current RNA-Seq analysis methods that discard ambiguous reads (due to a
lack of confidence in their mappings) remove a considerable proportion of infor-
mation. In contrast, GIIRA explicitly targets the integration of ambiguity to assist
gene identification with the complete information contained in RNA-Seq experi-
ments: Based on the coverage observed in RNA-Seq read mappings, GIIRA first
identifies candidate genes that are refined in further validating steps. These can-
didates are used to reassign ambiguous reads to their most likely origins using a
maximum-flow approach formulated as a linear program. In addition, the iden-
tified candidates are completed into gene models by a search for start and stop
codons as well as reading frame and strand prediction.

GIIRA is a gene finder that is primarily focused on prokaryotic gene prediction and
in particular resolves genes within the continuously expressed region of an operon
using a linear program optimization. However, GIIRA can also be applied to pre-
dict genes and alternative transcripts for eukaryotes and it leverages information
from spliced reads for intron identification. Hence, it is also a useful addition to
annotation pipelines, such as MAKER (Holt and Yandell, 2011), or a good comple-
ment to other eukaryotic gene finders.

In contrast to other approaches to ambiguous read assignment, such as the expecta-
tion maximization-based strategy introduced in (Chung et al., 2011) or ContextMap

Human S. cerevisiae E. coli B. henselae

NCBI accession SRR032277 | SRX187114 | SRX180743 | GSE44564
reads mapped (million) 29.0 5.8 10.1 51.7
ambiguous reads (%) 18.3 7.5 85.1 12.2
ambiguous hits (%) 53.1 19.0 97.4 35.1

Table 2.1.: Proportion of ambiguous reads for four different data sets, based on mappings
with TopHat2 (Kim et al., 2013). Note that one ambiguous read has more than one
hit on the reference genome. The values for the E. coli data set are based on the raw
mapping without removal of rRNA contamination, which contributed to a particularly
high number of ambiguous reads.

13
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Figure 2.1.: Workflow of GIIRA: Given a genomic sequence and a set of RNA-Seq reads,
reads are mapped to the reference (1) and the resulting alignment is then analyzed by
GIIRA. Candidate genes are extracted (2) and ambiguous reads are reassigned using a
maximum-flow optimization (3). Finally, candidate genes are evaluated based on the
reallocated reads (4).

(Bonfert et al., 2012), our approach can integrate information on the likelihood of
a read alignment not only from a fixed context (interval of specified length) or a
context exclusively based on the mapping. Instead, we directly integrate the infor-
mation gained in the process of identifying gene candidates and further the linear
program ensures a convergence to an optimal solution.

We show the prediction accuracy of GIIRA and the advantage of integrating ambi-
guity in three simulations and on two real data sets. We compare our approach to
the widely used transcript prediction method Cufflinks as well as the gene finders
GeneMark (Besemer et al., 2001), GLIMMER3 (Delcher et al., 2007) and AUGUS-
TUS (Stanke et al., 2008).

Figure 2.1 illustrates the four main steps of the proposed algorithm. The input of
GIIRA is a set of RNA-Seq reads which are aligned to a reference genome using an
external alignment method (Fig. 2.1 (1)). Based on the alignment, GIIRA identi-
fies regions on the genome that are likely to be expressed genes, in the following
called gene candidates (Fig. 2.1 (2)). The identification regards the nucleotide cove-
rage as well as splicing events indicated by the RNA-Seq reads. For prokaryotes,
these candidates are regarded as expressed regions that might contain more than
one gene. Hence, they are refined to determine the correct gene structure using an
additional optimization step. Finally, ambiguously mapped reads are reallocated
to their most likely origin using a maximum-flow optimization approach (Fig. 2.1
(3)). Based on this reassignment, the candidate genes undergo a refinement lea-
ding to the removal of candidate genes and isoforms without a sufficient number
of remaining supporting reads (Fig. 2.1 (4)).

14
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2.1. Candidate search

2.1.1. Alignment analysis

GIIRA is based on an alignment of reads from a RNA-Seq experiment to the DNA
sequence of interest. For eukaryotes it is advisable, although not strictly necessary,
to use a split read mapper for this alignment to obtain support for splicing events.
The software is preconfigured to call either TopHat2 (Kim et al., 2013) or BWA (Li
and Durbin, 2009) for read mapping, but can include the results of any read mapper
with output in SAM format (Li et al., 2009a). GIIRA takes all mappings reported in
the resulting SAM file into account, including ambiguous reads. For performance
reasons, we only store the start positions of reads and their differences to the refe-
rence, as well as read quality and potential splice sites.

Note that during mapping analysis GIIRA additionally identifies mappings that
are likely sequencing artifacts or (particularly for prokaryotic genomes) rRNA con-
tamination. In order to do so, we calculate the average and median nucleotide
coverage of the RNA-Seq mapping. A significant difference of these measures in-
dicates high variation in the mapping coverage. However, although we expect
different expression levels among transcripts, extreme coverage differences are un-
likely because the overall coverage is dependent on the used sequencing protocol
and sample preparation, which should equally affect all transcripts. Thus, regions
with exceptionally high coverage indicate sequencing artifacts or contamination.
These regions are excluded from the mapping with a simplistic iterative filtering:
As long as average and median differ by more than one order of magnitude (i.e. the
average is more than ten times as high as the median), the mappings that lead to the
highest observed coverage are removed (threshold chosen based on the analysis of
various independent experiments, data not shown).

2.1.2. Extraction

As illustrated in Figure 2.1 (2), regions with sufficient support of mapped reads
are extracted to serve as candidate genes. The algorithm poceeds through all start
positions of read alignments and tests if the coverage at these positions exceeds
a minimum coverage threshold. Since the coverage threshold is an important para-
meter in the analysis, it can either be estimated from the given data without any a
priori knowledge or be defined by the user. If the mapping coverage exceeds the
minimum coverage threshold, a new candidate gene is opened and all following
reads are assigned to the currently open region. This process is continued until the
coverage falls below the end coverage, a threshold either user-specified or calculated
from the minimum coverage. The currently open candidate gene is closed and the
so called core region of a candidate is extracted (see Figure 2.2 for an example). The
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Figure 2.2.: An example for a gene candidate extraction with minimum coverage of 4 and
end coverage of 1. The core region of the extracted candidate is marked in red. The
complete extracted candidate after search of start and stop codon is marked in green.

core region defines the initial interval of a candidate gene, which is extended by the
search for suitable start and stop codons.

We distinguish between minimum and end coverage because the mapping cove-
rage observed in RNA-Seq experiments can vary significantly throughout the re-
gion of a gene and also between genes (Schurch et al., 2014; Garber et al., 2011).
Usually, the overall coverage at beginning and end of a gene is smaller than in the
middle and the ends of a gene are not accurately defined. This is also the reason
why we search for start codon and stop codon in an interval exceeding the core
candidate region. If the minimum coverage threshold is too small, the risk for false
positive candidates increases because of possible incorrect read mappings. In con-
trast, if the end coverage is high (i.e. as high as the minimum coverage), we risk to
loose parts of the gene due to low coverage ends and - in particular for genes with
low overall coverage - to split one gene into several parts due to variations within
the overall coverage. Thus, we distinguish minimum and end coverage to account
for the coverage variations and their implications.

Once the core region of a candidate is identified, GIIRA aims at predicting the cor-
rect reading frame and strand of the corresponding gene. We expect reads that
partly overlap with the core region to be also part of the gene and we expect to find
start codon and stop codon not within the core region but in an interval before the
beginning and after the end of the core, respectively (refer to Figure 2.2). We choose
the length of this interval to be one read length to account for all overlapping reads.
Within the specified interval, we search for start and stop codons regarding forward
as a well as reverse strand (because at this point both directions are equally likely).
Note that since not all organisms follow a standard codon usage, GIIRA can be pro-
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vided with a list of alternative start and stop codons to be used for frame detection.
Overall, we distinguish three different cases in frame prediction:

(i) Pairs of start codons and stop codons are found for only one direction, then
we assume this to be the direction of the gene and choose the pair with the
smallest possible interval including the core region. If a gene has no introns, a
pair is suitable if it is in frame (separated by multiple triplets of nucleotides).
In case of introns the pair can appear to be not in frame (but the pair is suitable
after introns are spliced out).

(if) We find pairs of start and stop codons for both directions. If we have in-
formation from the XS tag of the SAM file (that indicates the direction of split
reads that span introns, see SAM format specification in (Li et al., 2009a)), then
we prefer the direction supported by a higher number of reads. Otherwise we
choose the smallest possible interval that explains the core region.

(iii) No pair of start and stop codon is detected. In this case we mark this can-
didate as incomplete, which means that GIIRA tries to merge it with neigh-
bors (details explained below). As in case (ii), if we have XS tag information,
we use it to identify the most likely direction of the candidate.

Note that in case (iii) an incomplete candidate is still reported as a candidate region
as long as it is supported by read mappings after the reassignment of ambiguous
reads and as long as it passes the subsequent filtering steps (similar to all other can-
didates, see Section 2.3). Hence, discrepancies between the RNA-Seq reads and the
reference do not impede the identification of coding regions but are rather reflected
in the resulting prediction, e.g., of partial or novel open reading frames.
Candidate genes without a suitable pair of start and stop codon are likely artifacts
due to a low coverage because depending on the chosen coverage thresholds one
gene with an overall small coverage is likely to be split into several candidate genes.
Hence, we merge neighboring candidate genes in case their extended core regions
overlap or if they are not farther apart than a user specified threshold (default: one
read length).

If two candidate genes are merged, a new gene spanning both former candidate
genes is defined, which inherits all properties as well as assigned reads and introns
of the former candidates. Then we search a reading frame for the new candidate.

2.1.3. Splicing

In case of splicing events the basic extraction procedure is extended: Not only one
continuous core region of a candidate gene is constructed, but depending on splice
sites several regions connected by introns are extracted.
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Figure 2.3.: Schematic representation of the three cases leading to alternative isoforms. In
(A) more than one intron starts at the same position. In (B) a new exon starts within an
ongoing intron and in (C) an intron starts within an ongoing exon.

A splice site is only considered as a non-erroneous site if it has a sufficient support
of reads. By default the threshold for splice site acceptance is set equal to the overall
desired minimum coverage. In case reads overlap an accepted splice site, they are
assigned to their corresponding isoform, e.g., an intron starting at this splice posi-
tion or an ongoing exon. During the initial extraction all isoforms with sufficient
support by reads are taken into account, even if they indicate alternative or contra-
dicting events. The refinement and exclusion of erroneous alternative isoforms is
performed in subsequent steps (see Section 2.3).

An alternative splicing event can be indicated in several ways, which are illustrated
in Figure 2.3: First, one splice start can lead to multiple endings, i.e. corresponds to
multiple introns (Fig. 2.3 (A)). If more than one of these introns has sufficient read
support, the splice start results in multiple alternative transcripts (according to the
number of supported introns).
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Second, an alternative isoform can start within the region spanned by an intron,
indicated by reads mapping to positions within introns (Fig. 2.3 (B)). If the region
exceeds the minimum coverage and if start or stop codon can be identified, we ac-
cept this alternative as a new transcript belonging to the same gene, only with a
start codon downstream of the start codon of the gene.

Third, an intron starts within an ongoing exon, i.e. the position of the intron start
is supported by a sufficient number of reads but other reads do not support any
intron but indicate a normal exon (Fig. 2.3 (C)). This scenario can occur in two
alternative ways: (i) The isoform without a splice site ends with the exon (and in
contrast, the other isoform proceeds with the next exon) (see Fig. 2.3 (C.1)). (ii) The
isoform without a splice site proceeds downstream to an alternative splice site (that
is spanned by the first intron) (Fig. 2.3 (C.2)).

2.1.4. Prokaryotic gene structuring

Prokaryotic candidates undergo an additional extraction step since prokaryotic
operons contain a continuously expressed region that can include several so called
structural genes. For a given operon, we need to identify these genes respecting the
present open reading frames (ORFs). To determine the most likely gene structure,
we iteratively select sets of ORFs based on a linear program optimization.

First, all forward and reverse ORFs of the candidate sequence are enumerated. Sec-
ond, the direction is selected that provides a set of ORFs that covers a large number
of bases in this operon while restricting the overall number of ORFs. To achieve a
trade-off between these two goals we adopt and alter a scoring metric from align-
ment evaluations (Vingron and Waterman, 1994): The set of all possible ORFs in
a candidate sequence with length L is denoted as O. An ORF o; € O contributes
with its length [; to the number of covered bases; hence, it is assigned a positive
("match") score m; = [;. If two ORFs o; and o; overlap, the overlap region is as-
signed a negative score ov;; that equals the negative of the length [, of the overlap.
This ensures that no region is counted twice. To avoid the suboptimal solution of
simply selecting all ORFs present in O, we enforce sparsity by introducing an ORF
open penalty p; for each ORF o;:

o £ lmaz
bi = l; l; )

with [, denoting the length of the longest ORF included in O. This penalty is
smaller for longer ORFs since these are preferable to short ones because they cover
more bases. Further, p; reflects whether o; is comparably short or long in relation
to the ORFs present in O.
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These metrics can be combined in a linear program that maximizes the sum of all

scores:
max Z (m; + p;) + Z ov;;.
i€0 i#j
To integrate the above dependencies as constraints into the linear program, we
introduce a variable y; € {0, 1} for each ORF o;. This variable indicates whether the
corresponding ORF is chosen in the final solution (y; = 1) or not (y; = 0). This way
we can write the different scores as follows:

m; =1; - y;
Pi = — (% . lnlxj—“’ . yz)
OVj; = _(lov “Yi - yj)-

The overlap constraints are quadratic to ensure that the overlap penalty is only
applied if indeed both overlapping ORFs are selected. Note that if three or more
ORFs overlap we also regard all pairwise overlaps of these ORFs. Hence, for more
than two overlapping partners we subtract more than the originally counted re-
gion, thereby additionally penalizing highly overlapping ORF combinations.

We formulate the linear program for the set of all forward and reverse ORFs, re-
spectively; and use an optimization method such as CPLEX (CPLEX, 2011) to ob-
tain the best selection of ORFs for each direction. For each selection, the solution
maxima reported by the optimization method are compared and the direction with
the higher score is selected as the direction of the entire candidate sequence.
However, in cases of nearby or overlapping operons the extracted candidate se-
quence might span more than one operon in different directions. Since microor-
ganisms often have densely packed genomes with many overlapping genes and
operons, we integrate the former described procedure in an iterative process to
ensure that potential overlapping coding sequences are detected and the corres-
ponding genes are identified. This iteration process is illustrated in Figure 2.4.

The first iteration results in a set of ORFs that best explains the given candidate
sequence. In a second iteration, we formulate a linear program similar to the initial
one, with the difference that now we fix the previously selected ORFs and in addi-
tion pass the complete set of ORFs from the other direction. The idea is that now
an ORF from the initially not chosen direction can be additionally selected if it en-
hances the overall alignment score (i.e. if it explains a part of the coding sequence
that has not been explained by the previously chosen ORFs).

If this iteration step selects ORFs from the opposite strand, a final iteration ensures
that if previously selected ORFs are less likely than newly selected ones (e.g., be-
cause they are contained in newly selected ORFs), they are discarded from the final
set of chosen ORFs. Thus, in the third iteration we fix the newly selected ORFs and
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formulate the linear program including all so far selected ORFs.
After this iteration procedure, the former gene candidate is split into several candi-
dates in case two or more operons are identified.

Forward ORFS Reverse ORFS
—_— ——
-] A —

v v

1. Iteration: select first
set and direction

{

A A

Initial selection 2. Iteration: extend
. — 1 adl covered region
Final operon
structure 1
1. % . . . .
3. lteration: revise Extended selectio
5 = = selection and split . o
. ——
% operons —

Figure 2.4.: Illustration of the iteration process of the prokaryotic operon structure op-
timization. Initially, forward and reverse open reading frames (ORFs) are processed
separately and the direction with the highest optimization score is selected as the initial
set of ORFs. In a second optimization, this set is extended with ORFs from the other
direction. In a third iteration the overall selection is revised by excluding ORFs that
became unsuitable because of the selection of the second iteration. Finally, the regions
and structure of the resulting operons are defined.

2.2. Maximum-Flow optimization

Up to this point, all read mappings contributed equally to the extraction of candi-
date regions, even if a read had multiple mappings with similar quality. However,
as each read can only arise from one genomic locus, we aim at reassigning ambigu-
ously mapped reads to their most likely origin. To do so, we perform a maximum-
flow (Ford and Fulkerson, 1956) optimization using the information of extracted
gene candidates.
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Figure 2.5.: Simplified example for a maximum-flow network representation propagating
information from source node s to target node ¢. The source node is connected to the
nodes representing reads (r;), which are connected with all genes they are mapped to
(¢;). The edge labels indicate the capacity for the throughput that is allowed to be passed
from one node to the other (representing the support of the read to the corresponding
candidate gene).

The rationale behind this approach is that if several genes compete for the same
read, their overall read coverage and the presence of support from unique reads
indicates the most likely origin of this read. Both factors do not only enhance the
probability for a candidate to be chosen, but also decrease the chances of the com-
petitors such that the number and quality of the competitors directly affects the
choice for the best origin. Further, also the ambiguity of the read itself is taken into
account by weighting the influence of reads on candidate quality by the number of
their alignment positions. The more alignments a read has, the less it supports each
single gene it is mapped to.

The problem of assigning each read to exactly one gene candidate is formulated as
a graphical model, as illustrated in Figure 2.5. We define a network G = {N, E'}
with edge set I/ and node set N = R U C U s Ut with nodes r € R representing
reads and nodes ¢ € C representing gene candidates, respectively. Source node s
and target node ¢ are defined for technical reasons. Further, all edges are directed
and an edge ¢;; € E between two nodes represents that read r; € R is assigned to
gene ¢; € C. Note that each edge has a capacity, which can be understood as the
maximal input that can pass through this edge. In contrast, nodes have an unlimi-
ted throughput.

The aim of the maximum-flow is to set all capacities y;; (belonging to edges e;;
connecting a read r; to a candidate c;) in a way that the flow passing from source
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to target node is maximized:

Each edge originating from the source has an unlimited capacity. The capacity ¢;;
of the edges connecting reads and their possible corresponding genes is restricted
by the following condition:

0<ij <wyij Ve € F,

where y;; € {0,1} are the binary variables that denote whether the read r; is as-
signed to gene c; (y;; = 1) or not (y;; = 0). In other words, if a read is assigned to a
gene, the corresponding edge connecting both nodes has a capacity with a maximal
value of 1. If the read is not assigned, the capacity is zero.

In addition, we require all ambiguously mapping reads to be assigned to exactly
one candidate, as reflected in the constraint:

Zyij =1 Vz\n € R.
J

Further, each gene has a maximal number of reads that can be assigned, depending
on the support of reads for this gene and the support for its competitors. Since for
each node the input flow has to equal the output flow, this maximum is given by
the capacity w; of the edges connecting gene nodes to the target node:

Z Pij < Wj Vj|Cj € C,
ile;;€E
where w; is calculated as follows:
b,
> by

CkEPj

wj =

Here, b; is the average base coverage of gene c; derived by all its mapping reads,
where in contrast b} is the coverage derived only by reads that map uniquely to
the corresponding gene. The set P; contains all genes that directly compete with ¢;
for ambiguously mapped reads, or in other words, that share reads with gene c;.
For illustration, refer to Figure 2.5: here P, consists of ¢; and c3, whereas P; only
includes ¢y because c¢; only shares reads with c.

Allowing genes to influence their competitors with the help of their own likeliness
ensures that not only genes with an overall high coverage are preferred over genes
with less coverage. Otherwise genes with no or only few unique reads could be
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preferred over genes with a high unique coverage, as long as they have enough
multiple hits.

The maximum-flow problem is formulated as an integer linear program including
the constraints described above. This program is solved using for instance the IBM
CPLEX academic version V12.4 (CPLEX, 2011) or, as a slower alternative, the open
source GLPK solver (GLPK, 2006).

2.3. Candidate refinement and scoring

The maximum-flow optimization identifies a unique position for each read such
that the previously extracted gene candidates have to be refined according to the
new assignment of reads. If a gene candidate or an alternative isoform lost all of
its supporting reads, it is regarded as an artifact of ambiguous read mappings and
is thus erased. All remaining genes are evaluated in a scoring process according to
their exon length [, their read coverage and the quality of their assigned reads. Itis
also of relevance whether the corresponding reads are mapped ambiguously since
ambiguity implies more uncertainty for the gene and thus leads to a smaller score.
The final gene score s; for gene c; is calculated as:

1 l; - q;
8§ = L Z M’
J i‘ei]'EE v

where ¢; denotes the quality of read r;, [; its length and M/ its total number of map-
pings. GIIRA reports the identified genes and transcripts in GTF annotation format,
including additional information on coverage and ambiguous read support. This
allows an easy post-processing to verify genes for follow-up analyses. GIIRA also
provides a filter script that can be used to perform the post-processing.

2.4. Implementation

GIIRA is implemented as a Java program (http://www.java.com). Further, it uses
helper scripts written in Python (http:/ /www.python.org/), including the python
packages SciPy, NumPy, and PySam. For optimization, GIIRA relies on the CPLEX
Optimizer (CPLEX, 2011) (free for academic use) or the open source alternative
GLPK (GLPK, 2006). Note that GLPK cannot be applied to quadratically con-
strained linear programs; hence, only CPLEX can be used as the solver for prokary-
otic gene structuring. However, to perform a gene prediction on prokaryotes with-
out installed CPLEX, the gene structuring can be turned off by not setting the pa-
rameter "-prokaryote”. Then the prokaryotic genome is treated as a eukaryotic
genome and the coding sequences are interpreted as exons instead of resolved
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into structural genes (hence, no quadratically constrained linear program is for-
mulated). GIIRA is open source and the source code or a precompiled version can
be downloaded from http:/ /sourceforge.net/projects/giira/.

2.5. Experiments

GIIRA was evaluated on three simulated and two real data sets, on prokaryotic as
well as eukaryotic organisms. The details of the different experiments and compa-
risons to other methods are presented in the following. Note that for all data sets
the RNA-Seq reads used as evidence for gene prediction were mapped to the re-
spective reference sequences, using TopHat2 (Kim et al., 2013) (version 2.0.8) with
default settings. The resulting alignment served as the starting point for all com-
pared methods. We also analyzed the mapping with regard to the proportion of
ambiguous reads and the number of resulting ambiguous hits to investigate the
influence of ambiguity in our data sets.

2.5.1. Simulations

To evaluate GIIRA given a known ground truth, we use three different simulated
data sets. We generated a prokaryotic simulated data set based on Escherichia coli
(NCBI-Accession: NC_000913.3) and two eukaryotic simulations based on chromo-
some 15 of the human genome (NC_000015.9) and chromosome 4 of Saccharomyces
cerevisiae (NC_001136.10), respectively (the simulation setup is explained below).
Based on this data, we compare GIIRA to Cufflinks (Trapnell et al., 2010), GLIM-
MERS3 (Delcher et al., 2007), and GeneMark (Besemer et al., 2001) in the prokaryotic
simulation and to Cufflinks and AUGUSTUS (Stanke et al., 2008) in the eukaryotic
simulations.

As GeneMark is originally an ab initio gene prediction method that does not include
RNA-Seq information, we used the framework proposed by Martin et al. (2010) that
combines GeneMarkS (Besemer et al., 2001) ab initio predictions with the program
ParseRnaSeq to include RNA-Seq evidence. Then, we generated a pile-up count file
based on the read mappings to indicate the number of reads covering each position
of the genome. This information is combined with standard GeneMarkS (version
4.6b) gene predictions (GeneMarkS was applied with default settings). Note that
in this framework the resulting predictions cover operons rather than structural
genes. GLIMMERS3 (version 3.02) and Culfflinks (version 2.0.2) were applied with
default settings. GLIMMERS3 predicted genes directly on the unannotated refe-
rence sequences, whereas Cufflinks was applied on the mapping file obtained with
TopHat2. AUGUSTUS (version 2.7) can incorporate information from RNA-Seq
experiments in form of "external hints". We followed the pipeline recommended
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on the AUGUSTUS website! for RNA-Seq integration and filtered the RNA-Seq
mapping to only contain uniquely mapped reads. GIIRA was applied with default
settings on the RNA-Seq mapping in SAM format, sorted by read names. CPLEX
was used to solve the maximum-flow optimization, and for prokaryotic data sets
we specified the parameter "-prokaryote". In addition, to demonstrate the influence
of ambiguous mappings on the prediction accuracy we configured and compared
a second version of GIIRA that excludes ambiguous mappings from the analysis.
To ensure a fair comparison between methods, we masked all direction information
in our evaluation since Cufflinks does not report any strand information in case no
splicing events occur.

Simulation setup

The simulation uses the read simulator Mason (Holtgrewe, 2010) applied to the
NCBI reference annotation for each organism of interest. In this annotation the
coding sequence of each known isoform appears as a consecutive sequence. Hence,
the simulated reads show similar characteristics as real RNA-Seq reads since they
cover alternative isoforms, span introns (if existing in the data set), and show a
coverage profile typical for gene expression. The simulation setup is illustrated in
Figure 2.6 and information on the simulated data sets is summarized in Table 2.2.
We illustrate the process on the example of the human data: As an overall sequen-
cing depth we intended to achieve a coverage of 20. To obtain different gene ex-
pression levels, before applying Mason the set of annotated coding sequences for
human chromosome 15 was divided into three parts with almost equal overall exon
lengths. For each part, reads were simulated with different coverages of 10, 20 and
30, respectively. After the simulation we merged the reads from all parts and ob-
tained expression levels ranging from below 10 to over 30 of coverage depth.

Reference
genome AR TN T T

N '4
ISR NCB transcript

Simulated reads {

Figure 2.6.: Idea of the simulation study: The NCBI annotation contains the coding se-
quences of each transcript as consecutive sequences without introns. Hence, we simu-
late reads directly from these sequences and obtain reads spanning introns and reflec-
ting different isoforms.

1 http:/ /bioinf.uni-greifswald.de/bioinf/wiki/pmwiki.php?n=Incorporating
RNAseq.Tophat
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E. coli S. cerevisinze | Human chromosome 15
number reads 1,500,000 570,000 500,000
read length 36 50 50
simulated cov. 15 25 20
experimental average cov. 14.0 28.5 18.7

Table 2.2.: Statistics on the three simulated data sets. For each simulation the simulated
coverage (simulated cov.) and the average coverage observed in the actual mapping
(experimental average cov.) are presented.

2.5.2. Real data sets

We applied GIIRA, Cufflinks, GLIMMERS3, and GeneMark on a real data set of 11
million reads (NCBI accession: SRX180743) from E. coli. This data set contains a
large proportion of ambiguous mappings as well as high coverages in the areas
coding for ribosomal RNA, posing a challenge to distinguish false from correct
gene loci. Since GIIRA is also applicable to eukaryotic organisms, an experiment
with a real S. cerevisiae data set comprising 6 million reads (SRX187114) was per-
formed comparing GIIRA and Cufflinks. The settings and versions of all compared
methods are equal to the specification used in the simulation experiments.

In contrast to the simulations, where we can compare predictions to a specific
ground truth, for the real data experiments a known ground truth is not avail-
able. Thus, we evaluated the compared methods against the complete annotation
of E. coli and S. cerevisiae, respectively. However, this evaluation can only be re-
garded as a relative comparison between methods.

Since not all genes of an organism are necessarily expressed at the same time, we
performed an additional evaluation for the real E. coli data set, based on the ob-
served RNA-Seq evidence for this experiment. The evaluation is based on the com-
parison against a reference subset including likely expressed genes. To obtain the
subset, we analyzed the TopHat2 mapping of the RNA-Seq reads to the reference
genome. We counted all reads mapping to each annotated region and then sam-
pled a subset of reference genes comprising all annotations with a minimum over-
all mapping coverage greater than one. This resulted in a sample of 2,002 reference
genes instead of the original 4,146 annotations.

2.5.3. Evaluation

To evaluate the compared methods following accepted standards, gene predictions
were analyzed using the Cuffcompare framework (Trapnell et al., 2012), providing
the annotated coding sequences of NCBI as a reference transcript set. Cuffcom-
pare follows the guidelines presented in (Burset and Guigo, 1996). Here the gene
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predictions are evaluated on several levels, namely the base, exon, intron, intron-
chain, transcript, and locus level. The base level reflects the per-base accuracy by
distinguishing the following four categories for each base prediction. Each predic-
tion can be a correct prediction as part of a coding sequence ("True positive", or
TP) or as non-coding ("True negative", or TN), or vice versa a false prediction as
coding ("False positive", or FP) or non-coding ("False negative", or FN). Based on
these definitions, prediction sensitivity (Sn) and specificity (Sp) can be obtained by
calculating the proportion of true predictions on the set of all possible coding bases
and the set of all predicted bases, respectively:

¢ _ TP

"TTPIFN
TP

P =T Fp

Similarly, the other levels are separated into the four different categories (TP, TN,
FP, EN) and the corresponding Sn and Sp can be calculated. In contrast to the base
level, on exon level an exact overlap of predicted and ground truth exon is required
to be counted as a true positive. Further, for a correct intron-chain (which is the se-
ries of introns explaining a transcript) all introns belonging to this chain have to be
reported (where an intron is defined by the interval between two connected exons).
The transcript level directly corresponds to the intron-chain level, which means that
a transcript is considered to be identified if the corresponding intron-chain is cor-
rect and if no additional exon has been assigned to this transcript. Finally, a locus
is considered as correctly identified if at least one of its transcripts is found.

The conditions for an exact match are very strict, because in particular gene an-
notations depend on the exact prediction of start and stop codons to preserve the
correct reading frame. However, to also account for exons and introns (and the cor-
responding other levels) that only slightly differ from the exact match, Cuffcompare
introduces the "fuzzy" match. This fuzzy measure counts exons as a match even if
they show a very small variation to the correct exon boundaries.

This way, the fuzzy measure indicates whether correct identifications were found
in proximity even though the precise location might have been missed. This is par-
ticularly important for RN A-Seq-based gene predictions since RNA-Seq mappings
show lower coverage at beginning and end of genes, which is challenging for cor-
rect start and stop codon prediction.

As an overall measure of prediction accuracy, for each compared level we combined
Sn and Sp in the well-known F-measure F' (van Rijsbergen, 1979):

_ Sp-Sn
Sp+ Sn’
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In addition, we generated receiver operating characteristic (ROC) curves that il-
lustrate the base level accuracy of the compared methods. The ROC curves are
generated by sorting all predicted exons according to their assigned score. Then
for each exon we calculate the sum of correctly predicted exonic bases and the sum
of all incorrectly predicted bases (false positives and false negatives). To not only
include the nucleotide level in the ROC analysis but also the exon level accuracy,
we only take nucleotides of exons with at least partial overlap to reference exons
into account (i.e. they cover a reference exon, or one reference exon covers a pre-
dicted exon, or they share an interval larger than one read length). If a predicted
exon does not fall into this category, it counts as a false positive.

In addition, for the two real data sets and the human simulation we performed an
alternative evaluation study based on sampling a fixed number of predictions for
all compared methods. This way the measure of accuracy is independent of the
overall number of predictions of each tool. To sample a fixed number of gene pre-
dictions, first all predictions were sorted according to their score. Note that GIIRA,
GLIMMERS3 and GeneMark yield such a score for each predicted gene, whereas for
Cufflinks we used the provided coverage score associated to each transcript as the
quality measure closest to the GIIRA score. For AUGUSTUS we utilized the score
associated to "% of transcript supported by hints (any source)” (from the AUGUSTUS
output file) as the reported measure closest to prediction reliability.

2.6. Results

2.6.1. Mapping and ambiguity

In our study we intend to demonstrate the applicability of GIIRA on different
organism types and the effect of including ambiguous mappings in the analysis.
Thus, a crucial point is the proportion of ambiguously mapped reads in the align-
ment. The details of the mappings resulting from TopHat2 are listed in Table 2.3.
For all data sets except the real E. coli experiment we see that the main proportion
of ambiguous mappings has its source in a comparably small number of actual am-
biguous reads. The reason for this observation is that most of the ambiguous reads
do not only map two times, but rather several times to the reference sequence.

All mappings showed ambiguity, although in varying levels: with 6.6% the E. coli
simulation has the lowest proportion of ambiguous mappings, while the real E. coli
experiment shows the highest proportion with 97%. The human simulation shows
22.8% and the yeast data sets 19% ambiguous hits, respectively. Note that high am-
biguity in the real E. coli data is due to a high level of rRNA contamination within
the sample, as is often observed in prokaryotic RNA-Seq experiments (Sorek and
Cossart, 2010). Without contamination, the ambiguity is approximately 5%, simi-
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lar to the mapping proportion of the simulated E. coli data set that did not include
contaminants.

E. coli Sim | S. cer Sim [Human Sim| E. coli Real | S. cer Real
reads mapped 1,448,779 551,596 472,969 10,052,045 | 5,754,018
ambiguous reads(#) 20,395 30,967 31,769 8,555,561 430,389

ambiguous reads(%) 1.7 5.6 6.7 85.1 7.5
hits total 1,529,558 | 638,869 571,815 | 57,769,265 | 6,569,842
ambiguous hits(#) 101,174 118,240 130,615 | 56,272,781 | 1,246,213

ambiguous hits(%) 6.6 18.5 22.8 97.4 19.0

Table 2.3.: Mapping results and the proportion (in percent) of ambiguous reads and am-
biguous hits for the TopHat2 mapping of the three simulated and two real data sets with
E. coli and S. cerevisiae (S. cer), respectively.

2.6.2. Simulations - E. coli data set

Table 2.4 shows the Cuffcompare comparison between Cufflinks, GIIRA, Gene-
Mark, and GLIMMERS for the E. coli simulation. The reads were simulated directly
from the complete set of annotated genes. Thus, in this simulation no operon re-
solution was necessary, but rather the identification of expressed regions and the
resolution of overlaps between genes. Overall, GIIRA shows the best prediction
accuracy for all evaluated categories. For instance, the accuracy on the exact mea-
sure on the locus level is increased by 9% compared to GLIMMERS3, the second
best method. Only on the exact base level, the sensitivity of GLIMMERS3 (96.7) is
slightly higher than the sensitivity of GIIRA (96.5). But due to the better specificity
of GIIRA, also on this level its overall accuracy is still higher compared to all other
methods. This is also illustrated in Figure 2.7: Cufflinks, GLIMMER3, and GIIRA
show a high accuracy on the base level, with GIIRA being more specific than Cuf-
flinks and GLIMMER3, whereas GLIMMER3 is slightly more sensitive than GIIRA.
Compared to GeneMark, all methods show a sensitivity and specificity increased
by more than 20%.

Since only GIIRA and GLIMMERS3 focus on extracting structural genes rather than
operons or expressed areas, it is as expected that on exon and locus level both me-
thods show significantly better accuracy than the competing methods. We note that
for Cufflinks only the fuzzy exon and locus level are of relevance since Cufflinks
does not predict start and stop codons and thus regularly misses bases at the start
and end of genes. The fuzzy category covers these bases because here not only a
perfect match, but also a match in a range around the correct result is accepted.
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E. coli simulation

exact measure
Base Exon Locus
Sn | Sp F Sn | Sp F Sn | Sp F
GIIRA 96.5|97.7 | 97.1 || 76.5 | 69.9 | 73.1 || 78.3 | 81.1 | 79.7
Cufflinks 91.1 1925|918 | 0.1 0.2 | 0.1 02 | 02 | 02
GeneMark | 69.2 | 66.5| 678 | 0.0 | 0.0 | 0.0 00 | 0.0 | 0.0
GLIMMERS3 || 96.7 | 946 | 95.6 || 71.9 | 67.8 | 69.8 || 72.3 | 69.4 | 70.8

fuzzy measure

Base Exon Locus
Sn | Sp F Sn | Sp F Sn | Sp F
GIIRA - - - 77.6 | 70.9 | 74.1 || 79.3 | 82.1 | 80.7
Cufflinks - - - 27.6 | 47.1 | 34.8 || 32.3 | 47.1 | 38.3
GeneMark - - - 58 | 21.8 | 9.2 6.8 | 21.8 | 104
GLIMMER3 - - - 73.1 | 68.9 | 709 || 735 | 70.5 | 72.0

Table 2.4.: Cuffcompare analysis for the simulated E. coli data set. The highlighted numbers
indicate the best results for each criterion for measures of sensitivity (Sn), specificity
(Sp), and F-measure (F), respectively for GIIRA, Cufflinks, GeneMark, and GLIMMERS3.

— GeneMark

80| — Cufflinks

— GIIRA
GLIMMER3

60|

401

covered exon length (%)

20

10 103 1072 10! 10° 10! 10° 10° 10*
incorrect exon bases (%)

Figure 2.7.: ROC curve comparing the proportion of correctly and incorrectly predicted
exonic bases for GeneMark, Cufflinks, GIIRA, and GLIMMERS3 for the E. coli simulation.
Dashes indicate the number of bases missed due to not identifying a reference exon.
Note that the proportion of false predictions is reported on a logarithmic scale.
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For GIIRA the fuzzy sensitivity and specificity are only slightly increased compared
to the perfect level measures, indicating a high accuracy in predicting the correct
frame for an expressed region. Also in the fuzzy categories GIIRA shows signifi-
cantly improved results compared to the other prediction methods, in particular to
Cufflinks and GeneMark.

2.6.3. Simulations - Human data set

In the human simulation, we compared GIIRA to Cufflinks as well as AUGUSTUS
as an example of a hybrid gene prediction approach. Table 2.5 (1) shows the over-
all accuracy of predictions, the detailed sensitivity and specificity of all compared
categories are presented in Table A.1 in the appendix.

As illustrated in the tables and in Figure 2.8, GIIRA yields the most sensitive pre-
dictions on the base level as well as on the fuzzy exon and transcript level, while
Cufflinks is more sensitive in predicting introns, in particular exact intron-chains.
Further, on the exact exon and intron level GIIRA yields a sensitivity comparable to
the best values (obtained by AUGUSTUS) while it is clearly more specific with an

— Cufflinks | g7 777
GIIRA_w/o_ambiguous

sol| — GIIRA_w/_ambiguous

— AUGUSTUS

60|

401

covered exon length (%)

20

107 107 10 10°
incorrect exon bases (%)

Figure 2.8.: Comparison for the human data set, showing correctly and incorrectly pre-
dicted exonic bases for Cufflinks and AUGUSTUS, and for GIIRA excluding ("GI-
IRA_w/o_ambiguous") and including ("GIIRA_w/_ambiguous") ambiguous reads, re-
spectively. Dashes indicate the number of bases missed due to not identifying a refe-
rence exon. The proportion of false predictions is reported on a logarithmic scale.
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increase of more than 7% and 11%, respectively. Thus, for the exact measure GIIRA
shows the highest accuracy on base, exon, and intron level. In the fuzzy evaluation,
it additionally achieves the highest transcript level accuracy.

(1) Human Simulation - complete set of predictions

Z 2
4 | %
Methods %&0 QFOO Oé’o ) Qsc%o’)\ O&Q} ) {OQ,&
o
F-measure - exact
GIIRA_w/_ambiguous | 97.6 | 87.4 | 93.8 43.9 36.6 50.4
GIIRA_w/o_ambiguous | 95.9 | 84.0 | 91.6 43.9 35.9 46.9
Cufflinks 954 | 748 | 91.7 50.2 0.5 49.4
AUGUSTUS 875 | 84.8 | 88.5 47.2 38.7 51.2
F-measure - fuzzy
GIIRA_w/_ambiguous - 91.6 | 94.5 57.1 42.6 54.1
GIIRA_w/o_ambiguous | - 883 | 921 54.1 40.7 49.2
Cufflinks - 88.9 | 922 65.0 35.7 53.0
AUGUSTUS - 85.6 | 88.9 72.9 40.0 63.1
(2) Human Simulation - sampled set of predictions
< A
Methods '9&@ +o{> % % ’5@%’?\ &(}fé, Q,&
F-measure - exact
GIIRA_w/_ambiguous | 92.6 | 83.2 | 88.3 45.5 38.8 54.4
GIIRA_w/o_ambiguous | 91.1 | 81.7 | 86.9 459 39.2 53.1
Culfflinks 749 | 58.0 | 73.2 443 0.3 44.0
AUGUSTUS 90.4 | 869 | 90.1 49.5 40.7 55.7
F-measure - fuzzy
GIIRA_w/_ambiguous - 86.9 | 89.1 59.4 45.4 58.1
GIIRA_w/o_ambiguous | - 85.1 | 87.5 56.9 445 55.8
Cufflinks - 71.7 | 734 56.7 31.0 474
AUGUSTUS - 87.7 | 90.5 76.5 422 69.4

Table 2.5.: Excerpt of the Cuffcompare analysis for the simulated human data set showing
the F-measures for GIIRA including ambiguous reads (GIIRA_w/_ambiguous), GIIRA
excluding ambiguous reads (GIIRA_w/o_ambiguous), Cufflinks, and AUGUSTUS. Ta-
ble (1) shows the evaluation on the complete set of predictions. In Table (2), a sample of
600 predictions for each compared method is evaluated against the 992 reference tran-
scripts. The best result of each category is marked in bold.
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AUGUSTUS predicted a high number of incorrect exons (data not shown), which
is reflected in the low specificity of AUGUSTUS observed in Figure 2.8 and in the
reduced exon and intron level specificity compared to other methods. On the locus
level, AUGUSTUS shows higher accuracy than GIIRA and Cufflinks. However, in
the exact evaluation the improvement is comparably small, while in the fuzzy eval-
uation GIIRA and Cufflinks are outperformed by approximately 10% in sensitivity
and 7% in specificity.

The direct comparison between GIIRA including and excluding ambiguous reads
shows that the prediction sensitivity is increased for all levels when ambiguous
mappings are included (refer to Table A.1 in the appendix). The effect is particu-
larly pronounced on the exon and intron level, where including ambiguous reads
reduces the lack of sensitivity by up to one third. This leads to an overall improved
prediction accuracy.

Table 2.5 (2) shows the evaluation for the simulated human data set based on pre-
dictions sampled to size 600. Details on sensitivity and specificity are presented in
Table A.2 in the appendix. We see changes in terms of which method is marked best
for a certain category (e.g., for the exon level, where GIIRA is best on the complete
set of predictions and AUGUSTUS on the sampled set). Compared to the evalua-
tion on the complete set of predictions, overall the sensitivity is decreased and the
specificity is improved. Particularly AUGUSTUS shows an improved overall accu-
racy on the sampled set due to higher specificity values. Cufflinks shows decreased
accuracy on all compared levels. GIIRA displays reduced accuracy on base, exon,
and intron level, but increased accuracy in the other categories.

2.6.4. Simulations - S. cerevisiae data set

Table 2.6 shows the F-measure analysis and Figure 2.9 illustrates the correspond-
ing ROC curves of the gene predictions for the simulated yeast data set. Details on
sensitivity and specificity are presented in Table A.3 in the appendix.

Overall, on all levels except intron-chain GIIRA shows higher prediction accuracy
than Cufflinks. On the intron-chain level it shows comparable results since it is less
sensitive but more specific than Cufflinks.

In regard to the comparison between the two GIIRA configurations including and
excluding ambiguous reads, we see that including ambiguous read mappings re-
sults in a higher sensitivity and specificity in gene predictions, although overall
both configurations show comparable results.
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Z 2
¢ XA %
Methods %&0 QFOO 05‘% %@(5’)\ 0&% y {OOQ&
F-measure - exact
GIIRA_w/_ambiguous | 99.2 | 85.7 | 75.9 73.7 86.1 86.7
GIIRA_w/o_ambiguous | 98.3 | 849 | 75.9 73.7 85.2 85.9
Cufflinks 956 | 19 | 754 74.6 0.6 3.6
F-measure - fuzzy
GIIRA_w/_ambiguous - 86.6 | 75.9 73.7 86.9 87.1
GIIRA_w/o_ambiguous | - 85.9 | 759 73.7 86.1 86.5
Cufflinks - 746 | 754 74.6 73.8 74.7

Table 2.6.: Excerpt of the Cuffcompare analysis for the simulated yeast data set.
The F-measure accuracy is shown for GIIRA including ambiguous reads (GI-
IRA_w/_ambiguous), GIIRA excluding ambiguous reads (GIIRA_w/o_ambiguous),
and Cufflinks. The best result for each category is marked in bold.
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Figure 2.9.: ROC curve comparing the proportion of correctly and incorrectly predicted ex-
onic bases for the yeast simulation. GIIRA was applied in two configurations: including
("GIIRA_w/_ambiguous_reads") and excluding ("GIIRA_w/o_ambiguous_reads") am-
biguous reads. Dashed lines indicate the number of bases missed due to not identifying
a reference exon. The proportion of false predictions is reported on a logarithmic scale.
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2.6.5. Real data sets - E. coli

Table 2.7 shows the overall prediction accuracy expressed by the F-measure for the
real E. coli experiment. Details on sensitivity and specificity are presented in Table
A4 in the appendix. For this data set the prediction accuracies are only relative
measurements to compare the four methods, but cannot be regarded as absolute
numbers since not all of the genes in E. coli are necessarily expressed at the same
time. Thus, we included an additional alternative evaluation based on comparison
against a reference subset including likely expressed genes (Table 2.7 (2)). We note
that this subset does not necessarily reflect an exact ground truth since it is based
on the RNA-Seq mapping for this specific experiment. Hence, we also show the
evaluation against the complete reference.

As shown in Table 2.7 (1), as expected GLIMMERS3 as the only compared method
that exclusively predicts ab initio has the highest prediction accuracy in all com-
pared categories on the complete reference. In comparison, the sensitivities of the
RNA-Seg-based methods are significantly decreased. However, this changes in
Tables 2.7 (2) and A.4 (2) for the comparison against the reference subset. Now,
GIIRA shows a sensitivity comparable to GLIMMERS3, which is accompanied by
higher specificity. Thus, on base und locus level GIIRA achieves the best overall ac-
curacy. Cufflinks and GeneMark both show low exon and locus level accuracy on

(1) E. coli real - complete reference
exact measure fuzzy measure
Base | Exon | Locus || Exon | Locus
GIIRA 741 | 423 | 473 | 429 47.9
Culfflinks 521 | 0.0 0.0 0.0 0.1
GeneMark | 51.7 | 0.0 0.0 0.0 0.0
GLIMMERS3 | 95.6 | 69.8 70.8 70.9 72.0

(2) E. coli real - reference subset
exact measure fuzzy measure
Base | Exon | Locus || Exon | Locus
GIIRA 77.6 | 43.3 49.0 43.9 49.6
Cufflinks 62.1 0.0 0.0 0.0 0.1
GeneMark || 33.5 0.0 0.0 0.0 0.0
GLIMMERS3 || 59.5 | 44.5 | 47.1 45.3 47.8

Table 2.7.: Excerpt of the Cuffcompare analysis showing the F-measure accuracy for the
real E. coli data set compared against the complete annotated reference (1) and a subset
of reference genes (2). The best result for each category is marked in bold.
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Figure 2.10.: ROC curve comparing the accuracy of predicted exonic bases of the four
evaluated methods for the real E. coli data set, compared against the reference subset.
Dashed lines indicate the number of bases missed due to not identifying a reference
exon. The proportion of false predictions is reported on a logarithmic scale.

this data set, as illustrated in both Table 2.7 and Figure 2.10. They show compara-
ble results on the base level, but fail to resolve the structural genes in the identified
expressed regions.

GeneMark and GIIRA yield comparable results on the exact base sensitivity level
compared against the complete reference. However, GIIRA is more specific since
GeneMark covers large parts of the E. coli genome with operons without indica-
ting the correct locus of the included genes. This is also reflected when compar-
ing against the reference subset, where GeneMark showed reduced sensitivity and
specificity (see Table A.4 (2)). Hence, overall the accuracy of GIIRA predictions is
higher, it shows F-measures of 74.1 and 77.6 in contrast to 51.7 and 33.5 for Gene-
Mark (for the complete reference and the subset, respectively).

As also illustrated in Figure 2.11, GIIRA outperforms Cufflinks and GeneMark on
exon and locus level. GIIRA achieves a good prediction accuracy of the reference
genes, while Cufflinks only predicts the expressed regions without indicating the
included genes. GeneMark predicts operons, although these predicted regions also
cover not expressed areas and can also span more than one operon (indicated by
reference genes in different directions). GLIMMERS performs well for actually ex-
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Figure 2.11.: Exemplary excerpt of the gene predictions of GIIRA, Cufflinks, GLIMMERS3, and GeneMark for the gene region
starting at position 87,000 of the E. coli genome, illustrated in Geneious (Kearse et al., 2012). GIIRA (transcripts in red and
genes in orange) achieves a good prediction accuracy of the grey reference genes (which overlap when shown in different
rows), while Cufflinks (blue) only predicts expressed regions without distinguishing genes. GLIMMERS (yellow) achieves
a good prediction accuracy for actually expressed genes, although it also predicts not expressed genes (e.g., on the right-
hand side) since it does not consider RNA-Seq information. GeneMark (green) predicts operons, although these predicted
regions also cover non-expressed areas.
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pressed genes, but since it is exclusively ab initio-based, it incorrectly predicts not
expressed genes as well.

Table 2.8 shows an additional evaluation for the real E. coli data set for a sample
size of 500 predictions for each compared method. Details on sensitivity and speci-
ficity are presented in Table A.4 (3) in the appendix. Note that the small sample size
results from a low number of predictions from GeneMark (569) compared to pre-
diction numbers above 1500 for the other methods. As expected, for all compared
methods the overall sensitivity is smaller for the sampled subset than for the com-
plete set of predictions. In contrast, the specificity increases, which also follows the
expectation (because we sampled predictions according to their reliability). How-
ever, the overall accuracy is decreased compared to the accuracy observed for the
complete set of predictions.

E. coli real - sampled set of predictions
exact measure fuzzy measure
Base | Exon | Locus || Exon | Locus
GIIRA 29.1 | 20.1 21.5 20.6 21.9
Cufflinks 276 | 0.0 0.0 0.0 0.0
GeneMark || 47.7 | 0.0 0.0 0.0 0.0
GLIMMERS3 || 26.5 | 17.8 194 17.9 194

Table 2.8.: Excerpt of the Cuffcompare analysis showing the F-measure accuracy for the
real E. coli data set compared against the complete annotated reference of 4,146 genes.
The comparison is based on a sample of 500 predictions for each method. The high-
lighted numbers indicate the best results for each category.

Filtered and non-filtered analysis

Included in the files provided for the download of GIIRA is a script for filtering
the predicted genes according to the information on coverage and ambiguous read
support provided in the GTF result file. There are several filtering options avail-
able, which can be applied in different combinations, depending on the intended
follow-up analysis. For instance, this allows to filter predictions that are exclusively
or mainly supported by ambiguously mapping reads. In Table 2.9 the filtered and
non-filtered results are compared for the real E. coli data set. Note that here "fil-
tered" denotes that we applied the strictest possible filter.

Overall, for exon and locus level we see a significant improvement in specificity
with applied filtering. In contrast, the sensitivity is reduced only slightly, for in-
stance by 1.6% on the locus level. The differences in sensitivity are more pro-
nounced on the base level, but also here the specificity is improved by filtering.
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Sensitivity Specificity fuzzy Sensitivity | fuzzy Specificity
not filt | filt || notfilt | filt | not filt filt not filt filt
Base 70.8 61.4 92.7 | 93.3 - - - -
Exon 43.7 | 42.3 246 | 42.3 44.3 429 249 42.9
Locus 46.3 | 44.7 29.4 | 50.2 46.9 45.3 29.8 50.8

Table 2.9.: Cuffcompare analysis of the filtered (filt) and not filtered (not filt) gene pre-
dictions of GIIRA for the real E. coli data set. The highlighted numbers indicate the
best results for each criterion (and for sensitivity and specificity, respectively) compared
between both filtering options.

2.6.6. Real data sets - S. cerevisiae

Table 2.10 shows the F-measure analysis for the gene predictions of Cufflinks and
the two configurations of GIIRA on the complete S. cerevisize genome, compared
to the NCBI reference annotation. Detailed values of sensitivity and specificity are
presented in Table A.5 in the appendix.

GIIRA is the most sensitive of the three compared methods. However, on the locus
level Cufflinks is more specific and shows higher overall accuracy. Overall, the two
configurations of GIIRA show the best accuracy in all categories except locus level.
As also shown in Figure 2.12, a loss in identifications can be observed when am-
biguously mapped reads are disregarded, in particular the sensitivity in correctly
predicting exonic bases is reduced by 8%. Interestingly, excluding ambiguous reads
results in an improved specificity in intron predictions at the cost of slightly de-
creased sensitivity. With more than 80% correctly predicted exonic bases GIIRA
shows the highest sensitivity, while both Cufflinks and GIIRA are comparable in
specificity. Although overall the compared methods obtain a very low prediction
accuracy on exon, transcript, and locus level, Table 2.10 (2) shows that the actual
number of missed reference annotations is only 10% for GIIRA on exon and locus
level compared to 20% for Cufflinks. Hence, most exons have been predicted at
least partially. However, we observe a higher proportion of missed reference anno-
tations on the intron level (=~ 42%).

Table 2.11 shows the analysis for the real yeast data set with a sample size of 4,200
(a more comprehensive analysis is shown in Table A.6). As expected, the sensitivity
of predictions is decreased compared to the complete prediction set. Since overall
the prediction accuracy is comparably low, the effect of prediction sampling is not
pronounced. The overall trends are similar as for the evaluation on the complete
gene set. On the locus level the accuracy is slightly improved, while it is decreased
on the base level.
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(1) Accuracy

|
& & % G, | <
Methods %o +OO %, % (5«9,(-) A O&(}{bf OO%
F-measure - exact
GIIRA_w/_ambiguous| 81.0 0.3 59.0 | 579 0.1 2.0
GIIRA_w/o_ambiguous 79.1 0.2 62.4 61.2 0.1 2.0
Culfflinks 762 | 0.0 583 | 57.8 0.0 2.5
F-measure - fuzzy
GIIRA_w/_ambiguous| - 0.3 59.8 | 59.0 0.1 2.0
GIIRA_w/o_ambiguous - 0.3 63.1 | 623 0.1 21
Culfflinks - 0.0 59.6 0.0 0.0 0.0
(2) Missed and novel exons (in percent)
/%' z'/%& z'/l/o %, 0
Methods @+Of§;°(y QFO?)?’/ O&O;\OQ’ 0,}‘0 ;@/ /o(}f%b; /O(}-L &
GIIRA_w/_ambiguous| 10.6 11.5 41.7 35.7 9.7 11.3
GIIRA_w/o_ambiguous 12.6 | 10.5 | 42.1 27.1 11.5 10.4
Cufflinks 20 55 | 431 | 355 18.7 4.6

Table 2.10.: Cuffcompare analysis for the real yeast data for GIIRA including am-

biguous reads (GIIRA_w/_ambiguous), GIIRA excluding ambiguous reads (GI-
IRA_w/o_ambiguous), and Cufflinks. Table (2) shows the proportions of completely
missed and completely novel predictions. Best values for each category are marked in

bold.
< A
4 | %
Methods %&G qoo 0'5‘0(> Qs%-?’?\ O&(;} ) , {OQ,&
F-measure -exact
GIIRA_w/_ambiguous | 64.8 | 0.2 | 59.1 57.9 0.1 3.1
GIIRA_w/o_ambiguous | 64.0 | 0.2 | 61.0 59.7 0.1 3.1
Cufflinks 63.0 | 0.0 | 59.0 58.3 0.0 29
F-measure - fuzzy level
GIIRA_w/_ambiguous - 03 | 59.8 59.1 0.1 3.2
GIIRA_w/o_ambiguous - 0.3 61.7 60.9 0.1 3.2
Cufflinks - 0.0 | 60.1 60.2 0.0 3.0

Table 2.11.: Overall prediction accuracy for the real yeast data set on a sample of

4,200 predictions for each compared method, evaluated against 5,905 reference tran-
scripts.  GIIRA was applied in two configurations: including ambiguous reads (GI-
IRA_w/_ambiguous), and excluding ambiguous reads (GIIRA_w/o_ambiguous). The
best values for each category are marked in bold.
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reported on a logarithmic scale.

2.6.7. System requirements

Table 2.12 shows the run time and peak memory required by GIIRA to predict the
genes on the different data sets. The software was tested on a linux system with
48 threads and 256GB of available memory. We see that the run time and also the
required memory increases with higher numbers of RNA-Seq reads (for exact read
numbers see Table 2.3). Overall, due to the necessity to resolve operons, the system
requirements are higher for prokaryotic data sets than for eukaryotic experiments.

10!

incorrect exon bases (%)

102

ROC curve comparing the proportion of correctly and incor-
with GIIRA

E. coli Sim | S. cer Sim | Human Sim | E.coli Real | S.cer Real
time 240sec 70sec 60sec 2.2h 3h
threads 1 1 1 5 15
RAM (GB) 6.4 2.6 1.8 62.0 20.0

Table 2.12.: Table representing the time and memory requirement of GIIRA for the three
simulated data sets and for the two real data sets with E. coli and S. cerevisiae (S. cer),

respectively.
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2.7. Discussion

We introduced GIIRA as a gene finder that identifies potential coding regions exclu-
sively based on mappings of reads from RNA-Seq experiments. Unlike other gene
prediction methods, GIIRA also includes ambiguously mapped reads in the analy-
sis, which improves on the prediction accuracy as demonstrated for various data
sets with different levels of ambiguity. As shown in Section 2.6 in Table 2.3, already
a comparably small number of ambiguous reads can substantially contribute to the
ambiguity of a mapping. Disregarding this information leads to a loss in sensitivity,
e.g., for genes sharing homologous regions or present in high copy numbers (refer
to Section 2.6.3, Tables 2.5 and A.1, where including ambiguous reads increased
the sensitivity of exon predictions by up to one third). We observe two interesting
facts when comparing the results derived including and excluding regarding am-
biguous reads: First, the intron predictions become more specific when ambiguous
mappings are excluded, indicating that a number of erroneous introns is due to
ambiguous split reads (refer to Tables A.1 and A.5). Second, as shown in Figure
2.8, the difference between prediction accuracy of the two configurations of GIIRA
is more pronounced for lower scored genes. GIIRA calculates the prediction score
according to the overall coverage, where each read contributes to the likeliness of
the gene. Since ambiguous reads have less weight than unique reads (the number
of ambiguous mappings determines the weight of read, the more mappings, the
less weight is associated), exons with a high score are likely to have a high support
of unique reads instead of ambiguous reads. This explains the almost identical
results for the two configurations of GIIRA, including and excluding ambiguous
reads, respectively. In contrast, exons with low scores are likely to be supported by
a high number of ambiguous mappings. Thus excluding these mappings leads to
incorrect identifications of only parts of genes or the loss of complete genes, such
that in the lower score range we see decreased sensitivity when excluding ambi-
guous mappings.

GIIRA accurately predicts the correct structural genes for prokaryotic transcripts,
as demonstrated in the two prokaryotic experiments. It identifies the most likely
set of genes explaining the expressed region using an alignment scoring adapta-
tion coupled with a linear program formulation. Thus, in comparison with existing
approaches facilitating RNA-Seq integration, GIIRA has two major benefits: (i) it
shows an overall increased prediction accuracy and (ii) it predicts structural genes
themselves rather than focusing on operons such as GeneMark or transcripts with-
out indicating start and stop codons such as Cufflinks.

Although GIIRA was primarily designed for prokaryotic gene prediction, it can
also be applied to eukaryotic gene prediction as an addition to existing annotation
pipelines or a complement to other gene finders. Eukaryotic data poses challenges
different from prokaryotic data; instead of distinguishing operons and determining
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gene structures, here many genes have alternative splice sites and various alter-
native isoforms are present. The complexity of alternative splicing events poses
a critical challenge because GIIRA does not work with splice graphs to combine
exons, but evaluates each splice site independently from others. As illustrated in
Section 2.6.3, compared to the other methods GIIRA is very sensitive in predicting
exons and transcripts. It also yields a high accuracy in predicting introns, but is
less accurate in combining them to the correct intron-chain. For instance, a chal-
lenge arises for GIIRA if two alternative isoforms share an exon where one isoform
ends with this exon and the other isoform proceeds with other exons. For GIIRA
both isoforms appear to be continued with other exons and it assigns an incorrect
intron-chain. Since Cufflinks uses a graphical approach to evaluate splice sites, it is
less affected by this phenomenon. Hence, on the intron-chain level it shows higher
prediction accuracy than GIIRA. AUGUSTUS, as a hybrid gene prediction method
using non-ambiguous RNA-Seq mappings as external evidence, is less specific than
the compared methods in regard to exon prediction but is superior in locus predic-
tion.

Since GIIRA is exclusively based on RNA-Seq information, it predicts genes cur-
rently expressed in the organism of interest and thus does not necessarily provide
a complete annotation of all encoded genes. Thus, unlike ab initio gene finders, it
facilitates a sample-specific analysis. This is particularly shown in the real E. coli
experiment (refer to Table 2.7). Here the reference gene set used for comparison re-
sulted in a significant difference in prediction accuracy of the compared methods.
Hence, when comparing to the complete reference, RNA-Seq-based gene finders
are never as sensitive as ab initio gene finders. However, since not necessarily all
genes are expressed at the same time, only evidence-based gene finders, such as
GIIRA, are suitable to predict genes in a sample-specific way. Thus, when compa-
ring predictions to a subset of likely expressed genes, GIIRA performed favorably
to the other prediction methods, including the ab initio gene finder GLIMMERS3.
This demonstrates that GIIRA is particularly suitable for proteogenomic analyses
since it provides a sample-specific and accurate gene model prediction.

GIIRA provides two frameworks to control the number of false positive predic-
tions: (i) to filter contaminants and sequencing artifacts and (ii) to verify the re-
ported gene predictions. It can identify regions with an extremely large coverage
compared to the average coverage to be sequencing artifacts or other errors such as
contaminants. In case of the real E. coli data set, this outlier identification filtered
out most of the rRNA contaminants. Further, GIIRA reports additional informa-
tion on coverage and ambiguous read support for each prediction. This enables an
easy post-processing of the output allowing a trade-off of sensitivity and specificity
adjusted to the intended follow-up analysis.

As reflected in the filtering experiment, a conservative filtering helps to control the
number of false predictions and therefore increases the specificity. However, the
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sensitivity might be reduced by the filtering approach, such that users interested
in a highly sensitive prediction should rather prefer the non-filtered result over the
filtered one. For the example shown in Section 2.6.5, the decrease in sensitivity
is small in comparison with the increase in specificity, showing the high accuracy
of the filters to select false predictions. However, users should carefully decide
whether they want to prefer sensitivity over specificity or vice versa. Depending
on the desired follow-up analysis it can be helpful to first select as many predicted
genes as possible and then refine the result with other methods.

Note that although GIIRA is independent from any a priori information, it is possi-
ble to utilize such information (if present) to improve the prediction accuracy. For
instance, if a reference annotation is already available, different runs of GIIRA can
be compared using the Cuffcompare framework to identify an optimal parameter
setting.
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3. Postprocessing of gene predictions -
towards more accurate
identifications

Numerous efforts are dedicated to perform comprehensive gene model predic-
tion, which is one of the basic steps in most genomic and proteogenomic analysis
pipelines. The more accurate and tailored the underlying gene structures used for
the construction of a spectra search database, the better the peptide and protein
identification. However, despite sophisticated prediction methods gene identifica-
tion still faces significant challenges handling complex gene structures, rare splice
sites or mutations in genes (Goodswen et al., 2012; Ederveen et al., 2013). Thus, no
single method exclusively provides a perfect and comprehensive prediction and
each approach has advantages and disadvantages, making it suitable for certain
analyses, but insufficient for other questions (Guig¢ et al., 2006; Goodswen et al.,
2012).

For instance, sensitive ab initio methods are strongly dependent on training data
and disregard experiment-specific mutations or expression levels. In contrast, sam-
ple-specific evidence-based methods are often limited by inaccurate and noisy mea-
sures (Mathé et al., 2002). Thus, combining predictions offers a possibility to com-
plement the strengths of different strategies and balance their weaknesses. Hy-
brid approaches, such as AUGUSTUS (Stanke et al., 2006) and JIGSAW (Allen and
Salzberg, 2005), therefore perform ab initio-based gene prediction assisted by em-
pirical evidence. Types of evidence for instance include junction information from
RNA-Seq experiments or protein alignments. However, the nature of prediction is
still ab initio and adding raw evidence as information can only assist prediction but
cannot count as a complete and meaningful prediction itself.

Hence, several methods have been developed that focus on the combination of gene
models previously predicted by other gene identification software. This allows
complementing the strengths of single method predictions to obtain the sensitivity
of ab initio approaches, while incorporating other evidence to complete and verify
identifications, as for example shown in Yok and Rosen (2011) and Ederveen et al.
(2013). Amongst others, these approaches include methods by Allen et al. (2004),
Elsik et al. (2007), Liu et al. (2008), and Haas et al. (2008).

Prior to this work, to the best of our knowledge, approaches combining predic-
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Ab initio Evidence-based leading
Glimmer + —_— GIIRA > evidencel
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Figure 3.1.: The overall idea of the IPred method: Two lists of gene predictions are com-
bined that include the output of ab initio and evidence-based gene finders, respectively.
With default settings, the ab initio predictions are the leading predictions, which are
complemented and evaluated based on the output of evidence-based gene finders.

tions treat all identifications independently of their prediction strategy and pre-
dominantly introduce weighting schemes to score different predictions. Hence, the
full complementary potential of the combination of different prediction strategies is
not fully tapped. Further, previous methods often focus on the integration of a spe-
cific set of gene finders (Shah et al., 2003). In addition, not all of the older methods
facilitate the explicit integration of gene predictions based on all types of input data
existing today, such as RNA-Seq. In recent years particularly RNA-Seq has become
very popular since it offers new possibilities for the verification and revision of
predictions with high coverage transcriptome information. Software that allows
the integration of RNA-Seq information and that explicitly incorporates characte-
ristics of RNA-Seq data (e.g., coverage variation at the ends of genes) is therefore
highly desirable. To the best of our knowledge, other methods for prediction com-
bination were developed before the main advent of RNA-Seq. Hence, they do not
offer the explicit integration of RNA-Seg-based gene predictions and cannot take
full advantage of its benefits (Murakami and Takagi, 1998; Pavlovi¢ et al., 2002;
Yada et al., 2002).

Thus, we developed IPred (Integrative gene Prediction), a method to integrate ab
initio and evidence-based gene identifications to complement the advantages of dif-
ferent prediction strategies. As illustrated in Figure 3.1, IPred builds on the output
of gene finders and generates a new combined set of gene identifications, repre-
senting the integrated evidence of the single method predictions.

In particular, IPred is independent of the evidence used to assist gene predictions. It
incorporates prediction outputs based on the full plethora of evidence sources, for
instance from EST libraries, protein alignments, sequence comparison, or from in-
creasingly popular RNA-Seq runs. True positive identifications, for instance highly
conserved genes, are likely to be present throughout different types of evidence,
whereas false positive identifications are expected to only have weak support (only
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by individual methods) and can thus be filtered out. IPred is a flexible and robust
method that, in contrast to other methods, works independently from weighting
schemes and does not require any a priori knowledge. Further, if a reference anno-
tation is available, all predictions can be automatically evaluated using the frame-
work provided by Cuffcompare (Trapnell et al., 2012).

3.1. Prediction combination

IPred accepts prediction output files in the commonly used GTF annotation format
and provides converter scripts for a range of further file formats, for example the
AUGUSTUS GFF format or the GLIMMERS3 Predict format. The interpretation of
GTF format styles can differ among methods. We decided to use the format sup-
ported by the Cufflinks/Cuffcompare suite (Trapnell et al., 2012) because we use
Cuffcompare in the IPred pipeline.

When providing the output of gene finders, the user needs to categorize the diffe-
rent outputs into either ab initio or evidence-based (including comparative-based)
predictions since IPred was particularly designed for combining complementary
strategies. Also hybrid prediction methods and the results of annotation pipelines
can be incorporated into IPred. For instance, if a hybrid method is ab initio in its
nature, it should be specified as ab initio. When evidence has been integrated in the
annotation pipeline, the result can be specified as evidence-based.

Note that it is not recommended to combine ab initio with ab initio methods since
the underlying information, i.e. training sets or employed statistical models, might
be very similar and thus could bias the combination of predictions. However, if an
integration of two ab initio predictions is desired, one method can be classified as
evidence-based. Here, it is necessary to keep in mind that potentially novel genes
that are predicted by the ab initio method (that is classified as evidence-based) are
genes that are not verified by external evidence.

Based on the categorization of each method, IPred first processes the loci of the pre-
dicted genes separately and then combines the loci of ab initio and evidence-based
methods. IPred proceeds through the predicted ab initio loci (also called "leading"
loci) and tests if an evidence-based prediction supports this identification. Per de-
fault, ab initio gene models are regarded as leading predictions, but it is also possible
to instead use the evidence-based predictions as leading.

As illustrated in Figure 3.2, IPred distinguishes different types of prediction over-
laps. Supported ab initio predictions are categorized into genes that perfectly over-
lap with at least one evidence-based prediction (Fig. 3.2 (1)) and weaker supported
predictions that only show partial overlap (Fig. 3.2 (2)). Note that IPred per default
accepts an overlap as a supporting overlap only if it is greater than a threshold
of 80% of the length of the original ab initio prediction (calculated as the sum of
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leading |
evidence 1 ‘ ' I
evidence 2 — ——
(1) perfect (2) sufficient (3) insufficient (4) sufficient, (5) sufficient,
potentially novel change leading

Figure 3.2.: IPred distinguishes different types for prediction combination: (1) a perfect
overlap between ab initio and evidence-based predictions, (2) partial overlaps that are
sufficiently verified depending on the specified overlap threshold, (3) partial overlaps
that lack sufficient support, (4) novel annotations present in more than one evidence-
based prediction, and (5) in case the evidence disagrees with the leading prediction, but
is validated by other evidence, the combined gene model is changed according to the
stronger support.

the number of nucleotides of its exons). The rationale for allowing also partially
overlapping genes is that evidence-based methods might only incompletely pre-
dict a gene, e.g., due to low coverage in RNA-Seq experiments. Hence, requiring a
perfect overlap could result in missed predictions. The threshold for overlap accep-
tance can be set by the user and is also adjustable to only accept perfect overlaps.
In Section 3.6.5 we show that IPred is robust to different threshold settings.

If at least two evidence-based prediction outputs are available, the previously de-
scribed merging process can be extended by also reporting genes that are not pre-
dicted ab initio, but instead have support from different evidence-based gene fin-
ders (Fig. 3.2 (4)). This way, potentially novel genes can be identified with greater
confidence and also with respect to different approaches and sources for including
external information (e.g., RNA-Seq evidence vs. EST evidence).

IPred scores the reported gene predictions depending on the quality of the over-
lap with other predictions. For each prediction g; the score s; is calculated as the
number of overlapping bases [{” divided by the total length of the prediction /;:

ov
&

l;

S; =

Thus, a gene prediction with perfect overlap receives the highest score of 1. Genes
that are only predicted by one of the compared methods, i.e. potentially novel
genes, are written to additional output files corresponding to their prediction stra-
tegy and receive the lowest score of 0.
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Figure 3.3.: Figure exemplifying the importance of similar exon chains for transcript combi-
nation. All exons of the leading transcript are covered by the evidence-based prediction.
However, both transcripts differ in their exon chain due to additional exons in the se-
cond transcript (indicated by blue circles). Hence, both are likely alternative isoforms
and do not support each other.

3.2. Alternative isoforms

IPred distinguishes between combinations of prokaryotic predictions and eukaryo-
tic predictions since the structure of gene loci can differ significantly depending on
the organism type. In contrast to prokaryotes, eukaryotes show splicing events
and also alternative splicing resulting in alternative isoforms. This needs to be re-
spected when merging eukaryotic gene predictions. Hence, for each gene locus
all corresponding transcripts are processed separately. In addition, it is not only
important that individual exons of a predicted transcript are supported by other
methods, but that also the exon chain - all neighboring exons - is similar for com-
pared transcripts (because differences indicate an alternative isoform).

Hence, IPred only considers a given exon as supported if the overlapping exon is
part of a similar exon chain from a second prediction method (see Figure 3.3 for an
example). Thus, a transcript is classified as perfectly supported only if all exons are
matched perfectly by a different transcript. If all exons of a transcript are matched,
but with minor differences (specified by the overlap threshold), the transcript is
still regarded as supported, but it receives a lower score to indicate less agreement.
If only a part of the exons of a transcript is matched, IPred analyzes if the over-
lapping transcripts predicted by other methods have stronger support (i.e. they
differ from the leading transcript, but agree with each other). If this is the case, the
leading transcript is regarded as incorrect and instead the overlapping transcripts
with stronger support are taken into account. If the overlapping transcripts also
disagree, the leading transcript is accepted only if the chosen overlap threshold
is met by the number of matched exons (for the leading transcript as well as the
overlapping other prediction). Since the original overlap threshold is defined as a
percentage of nucleotides that need to be covered, the definition of the transcript
overlap threshold ¢ is adapted: The number of overlapping exons k£ must exceed
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the fraction ¢ of the total number of exons n that are part of the current transcript:

k> [t -n].

3.3. Output

IPred outputs a prediction file in GTF format that includes all genes supported
by both prediction strategies, categorized by the reliability of each prediction. In
addition, a tracking file reports the original gene predictions that generated each
combined IPred prediction. Further, additional files reporting genes that were only
supported by one strategy are provided, e.g., to allow the analysis of potentially
novel or not expressed genes. In case a reference annotation is available, all predic-
tions can be automatically evaluated using the framework provided by Cuffcom-
pare (Trapnell et al., 2012) to allow for an easy comparison of different combinations
of gene finders.

Currently, IPred returns predictions following the GTF format as interpreted in the
Culfflinks suite, e.g., it does not specify untranslated regions (UTRs) or coding se-
quences (CDS). This is because currently the output formats of individual gene
finders differ substantially, and often no UTRs or CDS are reported. Thus, to en-
sure a broad applicability, we decided to disregard these features and concentrated
on gene loci and their corresponding transcripts and exons.

3.4. Implementation

IPred is implemented in Python (http://www.python.org/) and is an open source
software that can be downloaded from http://sourceforge.net/projects/ipred/.
For easy usability, IPred is available as a precompiled executable for Linux, Win-
dows, and Macintosh.

In addition, we developed a GUI written in Java (http://www.java.com) to make
IPred available to users that are not experienced in the use of command line soft-
ware. A screenshot of the GUI is shown in Figure 3.4. The user can directly choose
the directory of the input prediction files and log messages corresponding to each
IPred run are directly visible in the GUI screen.

Since currently the GTF file format can differ significantly between gene finders
(see above), the IPred suite also offers various converter scripts (also written in
Python). These scripts convert the output of frequently used gene finders, such as
GLIMMERS3, GeneMark, or AUGUSTUS, to a GTF file format readable by IPred.
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. | £ 1Pred E=n =R <"
Console Settings
Output Name ’7 Qutput Directory ’7
Ab Initio Predictions ’7 Evidence Based Predictions ’7
Reference annotations ’7 Overlap Threshold 0.8
Perform cuffcompare evaluation? O
Is the organism a prokaryote? O

Perform additional evidence based combination? []

Figure 3.4.: Screenshot of the IPred GUI Output directory and input files can be chosen
with the help of drop-down menues, and log messages of IPred runs are printed directly
to the GUI screen.

3.5. Experiments

We evaluated IPred in four experiments on E. coli (NCBI accession: NC_000913.3)
and human data (NCBI accession: GRCh37). To compare the different methods
on well-defined ground truth data, we not only used real but also simulated data
sets in our evaluation. In the two experiments based on E. coli we combined pre-
dictions of the widely used ab initio gene finders GeneMark (Besemer et al., 2001)
and GLIMMERS3 (Delcher et al., 2007) and the evidence-based gene finders GIIRA
(Zickmann et al., 2014) and Cufflinks (Trapnell et al., 2010).

In the first experiment we simulated RNA-Seq reads based on the NCBI reference
annotation of E. coli as evidence information (for details see Section 3.5.1). In the
second experiment we used real E. coli RNA-Seq reads (SRA accession: SRR546811)
as evidence. The reads were mapped to the E. coli reference genome using the map-
per TopHat2 (Kim et al., 2013) (for details see Section 3.5.2).

The eukaryotic experiments were also analyzed with Cufflinks and GIIRA, and ad-
ditionally with AUGUSTUS (Stanke et al., 2006), a hybrid gene finder that facilitates
the integration of evidence into its ab initio predictions. In the eukaryotic simula-
tion we again used simulated RNA-Seq reads as additional evidence. Further, real
RNA-Seq reads (SRA accession: SRR1654792) served as evidence for the human
real data experiment.

GeneMark and GLIMMER3 were applied directly on the genomic sequence. To

52



3. Postprocessing of gene predictions

generate GeneMark (GeneMark.hmm PROKARYOTIC, version 2.10f) predictions,
we first applied the script "gmsn.pl" provided in the GeneMark installation and
converted the resulting ab initio gene predictions to GTF format using the script
"convertGeneMark.py" that is part of the IPred suite. To obtain GLIMMERS3 (ver-
sion 3.02) predictions, we used the script "g3-from-scratch.csh”" provided in the
GLIMMERS3 installation that automatically defines a set of training genes that is
used for prediction. The resulting .predict file was converted to GTF format using
the IPred script "convertGlimmer.py". Both Cufflinks (version 2.0.2) and GIIRA
were applied directly on the mapped RNA-Seq reads, using default settings. For
the prokaryotic data sets, the prokaryotic mode of GIIRA was specified. To obtain
hybrid gene predictions of AUGUSTUS (version 2.7), we followed the workflow
recommended on the AUGUSTUS website! for integrating RNA-Seq evidence to
AUGUSTUS, with specified "human" species model. Note that the use of pre-
trained models might introduce a bias favoring the ab initio-based gene finders,
due to possible similarities between training data and the data used in this study.
However, the comparison of prediction combination methods is unaffected since
all combinations are based on the same set of individual predictions.

The resulting single method predictions were combined by IPred and by the two
state-of-the-art prediction combination methods Cuffmerge (Trapnell et al., 2012)
(version 1.0.0) and EVidenceModeler (Haas et al., 2008) (version as of 25th June
2012). EVidenceModeler is an extension of the Combiner (Allen et al., 2004) idea
and was shown to have superior performance to other existing combiners, such as
GLEAN (Elsik et al., 2007) and JIGSAW (Allen and Salzberg, 2005).

In the prokaryotic simulation the predictions of GeneMark, GIIRA, and Cufflinks
and additionally also GLIMMERS3, GIIRA, and Cufflinks were combined. In the
eukaryotic experiments AUGUSTUS was combined with GIIRA and Cufflinks. For
the real E. coli data set, GLIMMERS3 was combined with GIIRA and Cufflinks.

We applied IPred with default settings, specifying the prokaryotic configuration for
the E. coli data sets. For the human real data set we specified an overlap threshold
of 0.3 to balance variances of start and stop predictions between single methods.
Cuffmerge was applied with default settings on an input file specifying the paths
to the respective gene predictions.

Following the workflow recommended on the EVidenceModeler webpage?, we
created an evidence weights file to indicate the input predictions and their associ-
ated weights (with all weights set to be equal). The type of GeneMark and AUGUS-
TUS was specified as "ABINITIO_PREDICTION" and Cufflinks and GIIRA predic-
tions were designated as "OTHER_PREDICTION" (because EVidenceModeler pro-
vides no explicit type for evidence-based predictions but instead recommends to

]http: / /bioinf.uni-greifswald.de/bioinf/wiki/pmwiki.php?n=IncorporatingRNAseq.Tophat
*http:/ /evidencemodeler.sourceforge.net/
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use "OTHER_PREDICTION" for complete gene predictions other than ab initio).
We additionally evaluated the influence of different weight settings for EVidence-
Modeler: For each simulation experiment we performed two runs with EVidence-
Modeler, one with equal weights (= 1) for each of the methods, and one with higher
weights for the evidence-based predictions (5 for the prokaryotic simulation, 3 for
the eukaryotic simulation because AUGUSTUS also received RNA-Seq hints) to
consider their presumably higher reliability due to the use of RNA-Seq informa-
tion.

3.5.1. Simulation Setup

As evidence information for the E. coli data set we simulated Illumina RNA-Seq
reads with a length of 36bp based on the NCBI reference annotation. In this an-
notation the coding sequence of each known isoform appears as a consecutive se-
quence. Thus, the simulated reads also cover alternative isoforms and span introns
(if existing in the data set). For an illustrative example, see Figure 2.6 in Section
25.1.

Note that only 70% of the annotated genes were used for evidence generation, si-
mulating that not all genes are expressed at the same time. Therefore, we ran-
domly picked 2,902 out of the present 4,146 annotations and used the chosen fasta
sequences as input for the next-generation sequencing read simulator Mason (Holt-
grewe, 2010). Before applying Mason, the set of annotated coding sequences was
divided into 3 parts with 1,016, 1,451, and 435 genes, respectively. These three sub-
sets were separately simulated with different coverages (5, 20, and 25, respectively),
to obtain different gene expression levels in the subsequently combined set of si-
mulated RNA-Seq reads.

Similar to the prokaryotic simulation, we simulated Illumina RNA-Seq reads with
a length of 50bp based on the NCBI reference annotation for GRCh37 chromosomes
1, 2 and 3 (NCBI accessions: NC_000001.10, NC_000002.11, NC_000003.11). Also
here we only simulated approximately 70% of the genes as expressed and genera-
ted varying coverage levels ranging from nucleotide coverage 5 to 20. This resulted
in 5,318 genes that received RNA-Seq evidence (2,482, 1,488 and 1,348 for chromo-
some 1, 2 and 3, respectively), out of 7596 annotated reference genes (3,545, 2,126
and 1,925 for chromosome 1, 2 and 3, respectively).

Originally we intended to use the same read length for both simulated experiments,
but due to few very short exons in the E. coli data set it was not possible to simu-
late 50bp reads for E. coli (the read simulator Mason resulted in an error when the
read length exceeded the length of the gene). However, 50bp is a better reflection
of current RNA-Seq read lengths than 36bp, so we decided to not reduce the length
of reads in the human simulation.
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3.5.2. Read mapping

We applied the read mapper TopHat2 (Kim et al., 2013) (version 2.0.8) to obtain a
mapping of the RNA-Seq reads on the E. coli genome and the human chromosomes,
respectively. We first indexed the reference sequence with Bowtie2 (Langmead and
Salzberg, 2012) (version 2.2.1) and then called TopHat2 with default settings on the
reference and the corresponding RNA-Seq reads in fastq format. The details of the
resulting mappings are shown in Table 3.1.

The RNA-Seq mappings were then analyzed by GIIRA and Cufflinks to obtain the
evidence-based gene predictions. Further, the mapping for the human simulation
was used to generate hints for AUGUSTUS gene predictions.

data set reads mapped | ambiguous reads | hits total | average cov,
E. coli simulation 1,187,830 16,019 1,253,150 16.6
E. coli real 10,052,045 8,555,561 57,769,265 17.0
human simulation, 3,122,322 140,749 3,497,908 22.14
human real 126,914,607 9,340,757 142,753,401 293.0

Table 3.1.: Table showing the general properties of the TopHat2 mapping of the simulated
and real data reads to the E. coli genome and to the human data sets. The column
"average cov." specifies the average mapping coverage obtained with TopHat2.

3.5.3. Ground truth and evaluation

In both the prokaryotic and eukaryotic simulation the sample of genes selected as
expressed serves as the ground truth annotation. All genes that are predicted and
do not match this ground truth are regarded as false positives (also called "novel
exons" in the Cuffcompare analysis), independent of the fact that the predicted
gene locus might be present in the remaining NCBI reference genes (that are unex-
pressed in our simulation). This way we simulate condition-specific experiments,
where mainly the fraction of genes that is indeed expressed is of interest.

Since not all genes of E. coli and H. sapiens are necessarily expressed at the same
time, for the real data experiments we performed the evaluation by comparing
against a subset of likely expressed reference genes. We note that this subset does
not necessarily reflect an exact ground truth, but is only intended as an approxi-
mation of the real ground truth and serves as a basis to evaluate the performance
of the compared methods. To obtain the subset, we mapped the RNA-Seq reads
against the NCBI reference transcripts, using Bowtie2 (Langmead and Salzberg,
2012) (version 2.2.1) with default parameters (it was not necessary to use TopHat2
because the reference transcripts contain no introns and thus no split read map-
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ping is required). Then we counted all reads mapping to each annotated gene and
sampled a subset of reference genes comprising all annotations with a minimum
overall mapping coverage of one. For E. coli this resulted in a ground truth sample
of 2,680 reference genes instead of the original 4,146 annotations. For the human
data set this resulted in 19,124 instead of 34,074 genes.

For all experiments we used Cuffcompare (Trapnell et al., 2012) to evaluate all sin-
gle method predictions and combinations against the ground truth reference anno-
tations. Details on the Cuffcompare metrics are explained in Section 2.5.3.

3.6. Results

3.6.1. E. coli simulation

Figure 3.5 and Table 3.2 (1) show sensitivity, specificity and F-measure (represen-
ting the overall prediction accuracy) for the single method gene predictions and
different combinations generated by IPred. Note that for better visibility we in-
cluded the Cuffmerge results only in the table, but not in the accompanying figure.
Overall, IPred combinations show a significant improvement in specificity (e.g.,
from 63.8% to 98.1% for GeneMark only and GeneMark combined with Cufflinks),
while also resulting in improved or comparable sensitivity. Also the number of
missed and novel (not annotated in ground truth, hence false positive) genes is re-
duced when combining methods. GeneMark and GIIRA originally resulted in a
high number of non-annotated predictions. However, when integrating both me-
thods, the merged result shows a considerably reduced number.

Further, we see different effects on prediction accuracy depending on the evidence-
based method combined with GeneMark predictions. For instance, the combina-
tion with Cufflinks shows a higher sensitivity and fewer missed exons than Gene-
Mark combined with GIIRA. Although the combination of two gene finders already
results in improved accuracy, the combination of all three methods produced even
more accurate results. Further, when also genes missed by GeneMark but sup-
ported by both of the evidence-based methods are taken into account, we note an
additional increase in sensitivity while showing comparable specificity. Overall,
this IPred setup performs best of all compared methods (F-measure=97.4).
Independently of the chosen combination IPred outperforms EVidenceModeler and
Cuffmerge with considerable increased sensitivity and specificity. Cuffmerge and
in some cases also EVidenceModeler even results in smaller sensitivity and speci-
ficity compared to the single method predictions.
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Figure 3.5.: Overview of Cuffcompare metrics for the predictions of single methods, EVi-
denceModeler and IPred combinations for the E. coli simulation based on GeneMark.
Note that "IPred_all+nov" reports overall supported genes as well as genes missed by
GeneMark, but supported by the evidence-based methods.

Table 3.2 (2) and Figure 3.6 show the combination of gene predictions based on
the ab initio gene finder GLIMMER3. Note that for better visibility we included
the Cuffmerge results only in Table 3.2 but not in the accompanying figure. Over-
all, this experiment shows the same trends as the GeneMark combinations, we see
an improved prediction accuracy when combining different prediction strategies.
We also note that combining three methods leads to more accurate results than
combining two methods. Further, the compared methods EVidenceModeler and
Cuffmerge are again outperformed by all IPred combinations. The sensitivity and
specificity and thus also the F-measure are significantly higher for IPred predic-
tions.

Compared to GeneMark, GLIMMER3 shows a slightly reduced prediction accu-
racy. This is also reflected in combinations with GLIMMER3, which have slightly
lower F-measures than combinations based on GeneMark.
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(1) GeneMark combinations

method missed | novel | sensitivity | specificity | F-measure
GeneMark 51 1,286 96.2 63.8 76.7
Cufflinks 190 0 52.1 73.1 60.8
GIIRA 68 594 90.4 74.6 81.7
IPred_Cufflinks 113 8 94.6 98.1 96.3
IPred_Cufflinks+nov 76 8 96.3 98.0 97.1
IPred_GIIRA 133 21 92.9 97.2 95.0
IPred_GIIRA+nov 89 117 95.2 93.0 94.1
IPred_all 58 20 96.1 97.3 96.7
IPred_all+nov 22 27 98.0 96.9 97.4
EVidenceModeler 118 1,039 81.7 65.3 72.6
Cuffmerge 3 1,185 33.2 30.4 31.7

(2) GLIMMERS3 combinations

method missed | novel | sensitivity | specificity | Fmeasure
GLIMMER3 78 1,336 94.0 62.0 74.7
Cufflinks 190 0 52.1 73.1 60.8
GIIRA 68 594 90.4 74.6 81.7
IPred_Cufflinks 142 12 92.2 96.5 94.3
IPred_Cufflinks+nov 72 12 95.3 96.2 95.7
IPred_GIIRA 163 20 90.8 96.0 93.3
IPred_GIIRA+nov 87 119 95.0 91.8 93.4
IPred_all 88 20 93.9 96.1 95.0
IPred_all+nov 23 35 97.6 95.2 96.4
EVidenceModeler 127 944 81.4 66.9 734
Cuffmerge 2 1,218 32.6 29.6 31.0

Table 3.2.: Absolute numbers and percentages of the Cuffcompare evaluation of the exon
level in the E. coli simulation. Note that all IPred combinations include either Gene-
Mark (1) or GLIMMERS3 (2). "IPred_all" denotes combinations with both Cufflinks and
GIIRA. Note that combinations indicated with the tag "+nov" include genes exclusively
predicted by the evidence-based methods. The best values for each category are marked
in bold.
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Figure 3.6.: Overview of Cuffcompare metrics for the predictions of single methods, EVi-
denceModeler and IPred combinations for the E. coli simulation based on GLIMMERS3.
Note that "[Pred_all+nov" reports overall supported genes as well as genes missed by
GLIMMERS, but supported by the evidence-based methods.

3.6.2. Human simulation

IPred was also evaluated on a simulation of a eukaryotic human data set. Figure 3.7
and Table 3.3 show the exon and transcript level comparison of the single method
predictions and IPred, EVidenceModeler and Cuffmerge combinations. Overall,
the performance on exon and transcript level significantly differs between me-
thods. On the exon level, the sensitivity of IPred combinations strongly depends on
the integration of novel predictions. If only predictions present in both AUGUSTUS
and one or two of the evidence-based methods are taken into account, the sensiti-
vity is considerably reduced compared to all other combinations. At the same time
the specificity is on a comparable or higher level compared to other IPred combi-
nations, and significantly higher than for EVidenceModeler and Cuffmerge. This
results in an accuracy comparable to EVidenceModeler, but decreased in compari-
son to other IPred combinations and the single method predictions.
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Figure 3.7.: Overview of Cuffcompare metrics for prediction accuracy on the simulated
human data set. The upper figure shows the exon level comparsion, the lower figure the
comparison on the transcript level. Note that "+nov" reports overall supported genes as
well as genes missed by AUGUSTUS, but indicated by an evidence-based method.
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Human simulation

Exon Transcript
method missed | novel | Sn | Sp | F Sn | Sp F
AUGUSTUS 1,401 | 10,458 || 90.9 | 74.0 | 81.6 || 38.3 | 32.7 | 35.3
GIIRA 1,320 | 1,551 | 87.1|88.1|87.6 | 439|319 | 37.0
Cufflinks 2,026 344 | 871|924 89.7| 06 | 0.6 | 0.6

[Pred_Cufflinks 13,921 600 60.5 | 95.1 | 74.0 || 33.1 | 61.0 | 42.9
IPred_Cufflinks+nov || 1,965 890 88.3 | 90.6 | 89.4 || 33.3 | 30.5 | 31.8

[Pred_GIIRA 13,977 640 60.3 | 949 | 73.7 || 33.4 | 61.1 | 43.2
[Pred_GIIRA+nov 1,208 | 2,101 || 88.8 | 86.9 | 87.8 | 444 | 32.3 | 374
[Pred_all 13,792 275 61.3 1969 | 75.1 || 37.8 | 64.6 | 47.7
[Pred_all+nov 2,736 430 85.7 1924 | 889 || 44.0 | 42.4 | 43.2
EVidenceModeler 6,274 | 8,753 || 79.5|76.0 |77.7 || 33.3 | 27.2 | 299
Cuffmerge 965 11,375 || 93.5 | 72.3 | 81.5 || 48.4 | 30.6 | 37.5

Table 3.3.: Cuffcompare evaluation of the exon and transcript level for the simulated hu-
man data set. Note that only missed and novel exons are reported by Cuffcompare, but
not the numbers for the transcript level. Combinations indicated with the tag "+nov"
include genes exclusively predicted by the evidence-based methods. All IPred com-
binations are based on AUGUSTUS predictions. "IPred_all" denotes the combination
of AUGUSTUS with both Cufflinks and GIIRA. The best values for each category are
marked in bold. Abbreviations: Sn = sensitivity, Sp = specificity, F = F-measure.

If predictions are included that do not overlap with AUGUSTUS identifications (in-
dicated with the tag "+nov"), the sensitivity significantly increases, together with
only slight decrease in specificity. Hence, these IPred combinations clearly outper-
form the result of EVidenceModeler. Also the Cuffmerge combinations are outper-
formed since the high sensitivity of Cuffmerge is accompanied with significantly
lower specificity. Although including novel genes significantly increases the sensi-
tivity, IPred shows a sensitivity only comparable to Cufflinks and GIIRA and thus
performs comparable in regard to the overall accuracy.

On the exon level, IPred (including genes not fully supported by AUGUSTUS) pro-
vides more accurate results than EVidenceModeler and Cuffmerge and compara-
ble results to the best single methods. On the transcript level, Cufflinks as the best
performing method on the exon level shows almost no perfectly predicted tran-
scripts. In comparison, IPred predictions show a significant increase in sensitivity
and specificity. IPred again provides more accurate predictions than EVidenceMo-
deler and Cuffmerge. Further, it also increases the accuracy of the single method
predictions.
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As an additional evaluation we compared the performance of the three gene pre-
diction combination methods with regard to memory requirements and running
time (tested on a linux system with 48 cores and 256GB of available memory). Ta-
ble 3.4 shows the peak memory and overall time necessary to analyze and combine
the single method predictions. IPred has the smallest memory and running time
requirements of the three compared gene prediction combination methods.

Performance evaluation

combination method | overall time (s) | peak memory (MB)
EVidenceModeler 23,037 3,100
Cuffmerge 132 624
IPred 59 215

Table 3.4.: Overall running time (in seconds) and peak memory (in megabytes) for the
compared gene prediction combination methods to analyze the simulated human data
set.

3.6.3. E. coli real data set

We also evaluated IPred in an E. coli experiment based on real RNA-Seq evidence.
Figure 3.8 and Table 3.5 show the results of the Cuffcompare evaluation against the
subset of likely expressed reference annotations. Note that we excluded the Cuff-
merge results from the figure to allow for better visibility.

Overall, IPred combinations show a pronounced increase in specificity and re-
sult in significantly improved prediction accuracy compared to all other methods.
GLIMMERS3 shows the highest sensitivity of all compared methods, which is ac-
companied by less specificity than IPred combinations. The single method predic-
tions of Cufflinks and also the combinations of Cuffmerge show very low accu-
racy. We see that including predictions only indicated by one or more evidence-
based gene finders results in an increase in sensitivity but also with a loss in speci-
ficity. Particularly the "Glimmer3+GIIRA+nov" combination shows significantly
more novel exons than the combination excluding novel GIIRA predictions. How-
ever, although including novel evidence-based predictions reduces the specificity,
also these IPred combinations are still more specific than all other prediction me-
thods, including EVidenceModeler and Cuffmerge. Further, also the overall accu-
racy of IPred combinations is improved compared to other combination methods
and the single method predictions.
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Figure 3.8.: Overview of Cuffcompare metrics for predictions on the E. coli real data
set. Combinations indicated with "+nov" include genes exclusively predicted by the
evidence-based methods.

E. coli real data set

method missed | novel | sensitivity | specificity | F-measure
GLIMMER3 59 1,692 93.9 57.2 71.1
Cufflinks 704 188 5.2 7.9 6.3
GIIRA 190 4,679 79.2 28.7 42.1
IPred_Cufflinks 796 97 65.8 90.5 76.2
IPred_Cufflinks+nov| 709 154 66.4 78.4 71.9
IPred_GIIRA 279 338 84.7 83.0 83.8
IPred_GIIRA+nov 227 1,189 88.3 62.8 73.4
IPred_all 197 362 87.9 82.6 85.2
IPred_all+nov 151 556 90.4 72.6 80.5
EVidenceModeler 123 1,554 77.6 52.9 62.9
Cuffmerge 11 2,808 10.4 6.7 8.1

Table 3.5.: Cuffcompare evaluation for the E. coli real data set. Combinations indicated with
"+nov" include genes exclusively predicted by the evidence-based methods. "IPred_all"
denotes the combination of GLIMMER3 with both Cufflinks and GIIRA. The best values
for each category are marked in bold.
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3.6.4. Human real data set

The results of the evaluation on a complete human data set with real RNA-Seq
reads are shown in Figure 3.9 and Table 3.6. On exon as well as transcript level AU-
GUSTUS shows the highest prediction sensitivity, while the IPred combinations
(without including potentially novel genes) show the highest specificity. However,
on the exon level the overall accuracy of AUGUSTUS predictions (79.9) is slightly
higher than the accuracy of combinations by IPred based on Cufflinks or Cufflinks
and GIIRA (79.6 and 77.2, respectively). On the transcript level the difference in
sensitivity is not as pronounced as on the exon level. Hence, here the overall ac-
curacy of IPred predictions (without potentially novel genes) is higher than for
AUGUSTUES, due to the improved specificity of IPred.

Also on this data set including potentially novel genes resulted in higher sensitivi-
ty (on the exon level more pronounced than on the transcript level). However, at
the cost of reduced specificity and overall reduced accuracy. In comparison with
Cuffmerge and EVidenceModeler, IPred shows improved prediction accuracy, in
particular on the transcript level. On the exon level, combinations by EVidence-
Modeler are comparable to IPred. Cuffmerge shows the highest exon level sensi-
tivity of all combination methods, but at the cost of the lowest specificity.

Human real data set

Exon Transcript
method missed | novel | Sn | Sp F Sn | Sp F
AUGUSTUS 13,212 | 44,753 | 86.3 | 74.3 | 79.9 | 29.0 | 25.0 | 26.9
GIIRA 52,160 | 78,092 | 43.6 | 38.1 | 40.7 | 0.0 | 0.0 | 0.0
Cufflinks 36,061 | 49,702 | 634 | 58.7 | 61.0 | 0.0 | 0.0 | 0.0

IPred_Cufflinks 38,053 | 15,255 | 74.3 | 85.7 | 79.6 | 25.6 | 40.2 | 31.3
IPred_Cufflinks+nov| 33,159 | 53,719 | 759 | 65.3 | 70.2 | 25.6 | 11.9 | 16.2
[Pred_GIIRA 69,753 | 14,800 | 58.4 | 83.7 | 68.8 | 22.4 | 38.4 | 28.3
[Pred_GIIRA+nov | 35,019 | 86,664 | 68.7 | 47.8 | 56.4 | 224 | 44 | 74
[Pred_all 41,384 | 18,308 | 72.1 | 83.0 | 77.2 | 245 | 33.8 | 28.4
IPred_all+nov 39,733 | 29,112 | 725 | 77.1 | 74.7 | 245 | 21.1 | 22.7
EVidenceModeler | 36,134 | 37,725 | 742 | 75.1 | 74.6 | 17.8 | 16.4 | 17.1
Cuffmerge 10,896 | 114,470 | 789 | 452 | 575 | 1.2 | 03 | 05

Table 3.6.: Cuffcompare evaluation of the exon and transcript level for the human real data
set. Note that only missed and novel exons are reported by Cuffcompare, but not the
numbers for the transcript level. "IPred_all" denotes the combination of AUGUSTUS
with both Cufflinks and GIIRA. Combinations indicated with "+nov" include genes ex-
clusively predicted by the evidence-based methods. The best values for each category
are marked in bold. Abbreviations: Sn = sensitivity, Sp = specificity, F = F-measure.
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Figure 3.9.: Overview of Cuffcompare metrics for predictions on the human real data set.
The upper figure shows the exon level evaluation, the lower figure the comparison on
the transcript level. Note that "+nov" reports overall supported genes as well as genes
missed by AUGUSTUS, but supported by the evidence-based methods.
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3.6.5. Robustness to different overlap thresholds

Based on the simulated experiments with known ground truth, we analyzed the
effect of different overlap thresholds on the performance of IPred. Tables 3.7 and
3.8 show the comparison between the default overlap threshold (80%) and an over-
lap threshold of 50%. Particularly for the E. coli data set we see that the differen-
ces between results obtained with the two overlap thresholds are only small and
that the overall prediction accuracies of combinations are similar. As expected,
with a smaller threshold the sensitivity for the combinations is slightly improved,
while the specificity is slightly reduced. Combined, this results in very similar F-
measures for both thresholds.

For the human simulation, the influence of the overlap threshold is more pro-
nounced. Again, we observe an increase in sensitivity and a decrease in specificity
when reducing the threshold. On the exon level the impact on the sensitivity in-
crease is significantly more pronounced than in the prokaryotic simulation. We see
considerable increases in sensitivity of up to 20% on the exon level. However, this
effect does not carry on to the transcript level, where the increase in sensitivity is
much smaller and also coupled with a significant loss in specificity (in range of
6.5% to 9.3%).

(1) E. coli simulation - GeneMark-based

threshold method missed | novel | sensitivity | specificity | F-measure
D meocum] 02| 0 8|7
s | PeAGMRA L Gy | |95 | s | sso
o | Pedal | o | sen | s | ser
(2) E. coli simulation - GLIMMER3-based
threshold method missed | novel | sensitivity | specificity | F-measure
s | PredCuffinks (b | b |9 | ses | oas
s | PeLGIRA | 0 | o | sos | seo | 995
s | Pl g |0 | e | ose1 | sa

Table 3.7.: Comparison between an overlap threshold of 80% and 50% for the E. coli simu-
lation. "IPred_all" denotes combinations with both Cufflinks and GIIRA. The best value
for each category is marked in bold.
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Human simulation

Exon Transcript
threshold ~ method missed | novel | Sn | Sp | F Sn | Sp | F
50 . 5619 | 1,428 | 80.7 | 92.0 | 86.0 || 36.3 | 52.8 | 43.0
go [PredCufflinkgl 13901 | 600 | 605 | 95.1 | 740 | 33.1 | 610 | 429
50 5256 | 1,641 | 81.4 | 91.4 | 86.1 | 36.7 | 51.6 | 42.9
go | Pred-CIRA T 13077 | 640 | 603 | 949 | 737 | 33.4 | 611 | 43.2
50 Pred all 9,963 542 | 70.4 | 95.2 | 80.9 || 40.6 | 58.1 | 47.8
80 - 13,792 | 275 | 61.3 |96.9 | 75.1 || 37.8 | 64.6 | 47.7

Table 3.8.: Comparison between an overlap threshold of 80% and 50% for the human si-
mulation. All IPred combinations are based on AUGUSTUS predictions. "IPred_all"
denotes the combination with both Cufflinks and GIIRA. The best value for each cate-
gory is marked in bold. Abbreviations: Sn = sensitivity, Sp = specificity, F = F-measure.

3.6.6. EVidenceModeler - evaluation of different weight settings

On each simulated data set we performed two runs with EVidenceModeler: One
with equal weights for all methods, and one with higher weights assigned to me-
thods based on evidence, as recommended on the EVidenceModeler webpage. Ta-
bles 3.9 and 3.10 present the Cuffcompare metrics for the two runs of each experi-
ment, compared against the known ground truth.

As shown in the tables, the EVidenceModeler predictions using equal weights have
a slightly better accuracy than using unequal weights. For all data sets, sensitivity
and specificity are improved with equal weights, and the number of missed and
novel exons is reduced. Thus, the configuration based on equal weights is used for
comparison with IPred combinations.

(1) E. coli simulation - GeneMark-based

weights | missed | novel | sensitivity | specificity | F-measure
equal 118 1,039 81.7 65.3 72.6
unequal 155 1,088 81.0 64.7 71.9
(2) E. coli simulation - GLIMMER3-based
weights | missed | novel | sensitivity | specificity | F-measure
equal 127 944 814 66.9 734
unequal 156 994 81.0 66.4 72.9

Table 3.9.: Absolute numbers and percentages of the Cuffcompare evaluation of the exon
level for the different weight settings of EVidenceModeler on the simulated E. coli data
sets. Best values for each category are marked in bold.
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Human simulation

Exon
weights | missed | novel | sensitivity | specificity | F-measure
equal 6,274 | 8,753 79.5 76.0 77.7
unequal | 6,498 | 8,923 78.6 75.1 76.8
Transcript
weights | missed | novel | sensitivity | specificity | F-measure
equal - - 33.3 27.2 29.9
unequal - - 30.0 25.0 27.3

Table 3.10.: Cuffcompare evaluation of the exon and transcript level for the different weight
settings of EVidenceModeler on the human data set. Best values for each category are
marked in bold. Note that only missed and novel exons are reported by Cuffcompare,
but not the numbers for the transcript level.

3.7. Discussion

Despite the availability of sophisticated gene prediction methods, they all have dif-
ferent biases. Thus, we developed IPred to combine results of different prediction
strategies and thereby improve the accuracy of single method predictions. This
makes IPred a valuable addition to proteogenomic workflows because it can be
used as a post-processing method to provide more accurate gene prediction-based
databases. We stress that IPred is not intended as a novel gene finder but rather
as an easy-to-use post-processing software to verify predictions and filter out false
positives. Therefore, it strongly depends on the quality and performance of the in-
put gene finders, but is independent of the underlying data sets or the nature of the
information used for evidence-based prediction. Thus, IPred in general facilitates
the detection of rare or hard-to-predict events, for instance genes following a non-
standard coding scheme, as long as at least some of the input gene finders predict
those events.

The dependency on input gene predictions is particularly shown in the human
simulation experiment (refer to Section 3.6.2.). Here the evaluation shows con-
siderable differences in sensitivity between combinations including and excluding
"novel" predictions. The reason for the observed differences is that AUGUSTUS
often reports a transcript with an incorrect first or last exon (i.e. it reports an ad-
ditional exon, data not shown). This is also reflected in the high number of novel
exons predicted by AUGUSTUS and in its low specificity. Though a detailed analy-
sis of this phenomenon is beyond the scope of this work, a likely explanation is that
the additional exons might be an artifact of the ab initio-based prediction employed
by AUGUSTUS (that also predicts genes that are not expressed in our simulation).
Hence, in combinations with Cufflinks and GIIRA the exon chains of the compared
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methods disagree and none of the predictions appears to be sufficiently supported.
Although including novel genes significantly increases the sensitivity, IPred is still
affected by the discrepancies between AUGUSTUS and evidence-based predictions
because it shows a sensitivity only comparable to Cufflinks and GIIRA and there-
fore is only comparable in the overall accuracy.

However, as shown for all compared data sets, [IPred succeeds in improving single
method predictions with its combination approach. Although every improvement
is eventually limited by the performance of the input gene finders, the overall ac-
curacy is almost always increased. Also the number of false predictions (in the
simulations true and false positives are known) is reduced by IPred, as for instance
reflected in the E. coli simulation in the reduced numbers of "novel" predictions of
IPred combinations compared to the results of GIIRA, GLIMMERS3, and GeneMark.
This indicates that erroneous predictions are filtered out during the merging pro-
cess because an erroneous prediction by one of the methods is almost always not
present in the other method.

Naturally, IPred combinations that include predictions of evidence-based methods
that received no ab initio support do not benefit from this filtering process, as re-
flected in their reduced specificity (compared to the combination not including
novel genes). However, when including more than one evidence-based method,
this effect is outweighed: The increase in sensitivity is still accompanied by a de-
crease in specificity, but the reduction is not as pronounced as in the combinations
including novel predictions predicted by only one evidence-based method. This in-
dicates that combining two or more evidence-based methods is a suitable strategy
to further verify predictions and to avoid a loss in specificity that accompanies a
simple integration of all novel predictions. An exception is the two-methods com-
bination based on Cufflinks in the E. coli simulation. Here the loss in specificity is
only minor for the combined predictions. This reason for the effect is that for this
data set Cufflinks predicted no completely novel exons, and thus no genes that are
regarded as false positives are added in the "IPred_Cufflinks+nov" combination.
Additional erroneous predictions only arise if Cufflinks predicts an exon that does
not perfectly match the reference annotation.

Another example for the benefit of IPred is the performance of Cufflinks and the
different Cufflinks combinations in the human simulation. Culfflinks as a single
method is the most accurate method on the exon level, but the least accurate method
on the transcript level. This is due to the fact that Cufflinks is very accurate at pre-
dicting intermediate exons but does not predict start and stop codons. Thus, begin-
ning and end of a transcript almost never match the reference annotation, leading to
reduced performance in the evaluation. Here, IPred is very useful because it com-
plements the overall exon accuracy of Cufflinks with the start and stop prediction
accuracy of other methods. This is reflected in the considerable increase in tran-
script level sensitivity and specificity of Cufflinks-based combinations compared
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to Cufflinks alone (together with only slightly decreased exon level accuracy).
Also in the prokaryotic experiments IPred significantly improves the accuracy of
Cufflinks predictions. As shown in Section 3.6.1, IPred combinations achieve over
30% higher F-measures than Cufflinks alone. Cufflinks does not predict structural
genes but only the expressed transcript, which is insufficient for the operon organi-
zation in prokaryotes. Hence, its original sensitivity and specificity are comparably
low, but are significantly increased when combined with other methods predic-
ting structural genes. On this data set we also see different effects on prediction
accuracy depending on the evidence-based method combined with ab initio predic-
tions. For instance, Cufflinks appears to provide a set of predictions that is more
complementary to GeneMark than GIIRA predictions because the combination of
GeneMark and Cufflinks shows a higher sensitivity and fewer missed exons than
GeneMark combined with GIIRA.

On the E. coli real data set, interestingly the ab initio method GLIMMERS shows a
significantly higher sensitivity compared to all other methods, including the com-
binations (refer to Section 3.6.3). Since none of the approaches that include RNA-
Seq evidence show a comparable sensitivity, this is likely due to the choice of the
ground truth annotation set that might still contain genes that are not expressed
but are rather mapping artifacts. Here, including other evidence, such as protein
alignments, might further increase the accuracy of combined predictions. In addi-
tion, on this data set Cufflinks and also Cuffmerge show very low accuracy, which
indicates that they are more suitable for application on eukaryotes than on proka-
ryotes.

In the experiment based on human real data, interestingly the combination with
both Cufflinks and GIIRA (including novel genes predicted by both methods) re-
sulted in similar levels of specificity reduction as the combinations with only one
evidence-based method (including novel evidence-based genes). This indicates
that although Cufflinks and GIIRA agree on certain expressed regions, these pre-
dictions still require further analysis to ensure that they are not mapping artifacts.
However, these regions might also hint to novel genes, but additional evidence, for
instance from ESTs or protein libraries, would be necessary for further verification.
We also show that IPred is robust regarding the choice of the overlap threshold
(see Section 3.6.5). The overall accuracy of IPred combinations remained similar
regardless of overlap choice, in particular for the prokaryotic simulation. In the hu-
man simulation the influence is more pronounced, although only on the exon level.
The stronger effect on the exon level can be explained by the additional exons pre-
dicted by AUGUSTUS. Here, the exon chains of Cufflinks and GIIRA predictions
do not match the prediction of AUGUSTUS. Reducing the overlap threshold results
in more matches since unequal exon chains are more readily accepted.

70



4. Integrative proteogenomics beyond
six-frames and single nucleotide
polymorphisms

Ongoing advances in high-throughput technologies have facilitated accurate pro-
teomic measurements and provide a wealth of information on genomic and tran-
script level. In proteogenomics, this multi-omics data is combined to analyze unan-
notated organisms and to allow more accurate sample-specific predictions. (Castel-
lana and Bafna, 2010; Nesvizhskii, 2014).

In recent years, proteogenomic studies have become more and more popular, fo-
cusing on deeper understanding of model organisms or exploring currently unan-
notated genomes (Castellana et al., 2008; Fanayan et al., 2013; Ahn et al., 2013;
Kelkar et al., 2014). Despite this popularity, methods that are jointly focusing on
genomics, transcriptomics, and proteomics so far mainly rely on six-frame trans-
lations (Kelkar et al., 2011; Krug et al., 2013) or extensions of existing reference
protein databases (Li et al., 2010; Ahn et al., 2013). Six-frame translation has the
advantage of being independent from any a priori annotation of the nucleotide se-
quence. However, it introduces an artificial six-fold increase of the (unknown) tar-
get database, which can result in a bias in peptide identification (Reiter et al., 2009;
Blakeley et al., 2012; Jeong et al., 2012; Branca et al., 2014).

In contrast, reference protein databases, for instance extended by known single
nucleotide polymorphisms (SNPs) from databases such as dbSNP (Sherry et al.,
2001), are not as prone to this bias. But these approaches depend on existing an-
notations and thus cannot be applied to unannotated organisms without reference
proteomes. Further, they might not contain all information necessary to identify
mutated or novel genes, and even error-tolerant search approaches (Renard et al.,
2012) may not be sufficient to recover these unannotated genes.

Thus, recent studies also rely on transcriptome information to provide better suited
databases (Ning and Nesvizhskii, 2010; Wang and Zhang, 2014; Krug et al., 2014;
Safavi-Hemami et al., 2014). They focus on a more specific choice of six-frame trans-
lated open reading frames and on enhancing databases in a data-driven fashion,
for instance by only integrating variations or splicing information to the database
(Wang et al., 2011; Woo et al., 2013; Wang and Zhang, 2013). These approaches are
either only suitable for eukaryotes (having splicing events) or are still only seen as
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Figure 4.1.: The overall workflow of MSProGene. (1.): An RNA-Seq read mapping is ana-
lyzed to infer transcript sequences, which (2.): provide the database for spectra search.
(3.): The resulting peptide spectrum matches are represented by a network, which is
analyzed to resolve protein inference and to select the correct frame per transcript. (4.):
Finally, peptide identifications are controlled with regard to their false discovery rate
(FDR).

an extension or refinement of the standard approach that uses protein databases to
identify peptides. Other approaches rely on the de novo assembly of transcript se-
quences, which are then six-frame translated to provide a sample-specific database
(Evans et al., 2012; Mohien et al., 2013).

Further, all of these efforts are targeted on improving peptide identification, but
rely on standard approaches to perform protein inference. Because of shared pep-
tides that are present in more than one protein, often parsimonious approaches are
employed that group proteins instead of selecting one specific match per peptide
(Serang et al., 2010; Claassen, 2012; Huang et al., 2012). However, a possibility to
select the most likely protein per peptide is desirable. Here, RNA-Seq is a valuable
source to assist protein inference, as it provides an additional layer of confidence
for a specific protein.

We overcome current limitations by introducing MSProGene (Mass Spectrometry
and RNA-Seqg-based Protein and Gene Identification) as an integrative proteoge-
nomic method that goes beyond the extension of existing reference databases by
constructing customized transcript databases based on RNA-Seq. These sample-
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specific databases avoid unnecessary enlargement by six-frame translations and
increase the confidence in identified proteins. Further, RNA-Seq information is
used to approach shared peptide protein inference without the need for protein
grouping. To do so, MSProGene represents transcriptomic and peptide evidence
in a network and performs a maximum-flow optimization formulated as an inte-
ger linear program. Figure 4.1 shows the overall workflow of MSProGene: First,
an RNA-Seq read mapping is analyzed to infer transcript sequences, which are
updated by including variations present in the RNA-Seq reads (Fig. 1.1.). These
sequences are translated to amino acid sequences to serve as a database for a pep-
tide search of tandem mass spectra (Fig. 1.2.). The resulting set of peptide spectrum
matches (PSMs) is represented by a network. MSProGene then performs protein in-
ference by reassigning shared peptides using a linear program approach based on
RNA-Seq information (Fig. 1.3.). Finally, peptide identifications are controlled with
regard to their false discovery rate (FDR) and transcripts with a sufficient number
of peptide hits are reported (Fig. 1.4.).

4.1. Transcript database and spectra search

MSProGene uses evidence from RNA-Seq reads to derive a customized transcript
database for the spectra search. This database reflects sample-specific mutations
present in the reads and is independent from any a priori knowledge, in particular
it is independent from known annotations or protein sequences. Per default, the
gene finder GIIRA (Zickmann et al., 2014) is used to extract transcripts based on a
mapping of the RNA-Seq reads. However, also other methods for gene and tran-
script prediction can be used, for instance Cufflinks (Trapnell et al., 2010).

MSProGene analyzes the read mapping and refines the transcript sequence accor-
ding to mutations present in the RNA-Seq reads (refer to Figure 4.2). A variation
(SNP or insertion or deletion) is integrated if (i) it is present in more than one read
(this ensures that regions with low coverage are not biased towards more muta-
tions, threshold can be specified by the user) and (ii) it is supported by the majority

Figure 4.2.: An example for the introduction of SNPs present in an RNA-Seq read mapping
to a transcript sequence (which is the region between the vertical black lines). Only
the orange SNP is integrated in the transcript sequence, the green ones are either only
present in one read or do not have the majority support.
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of the reads. If the user intends to use an a priori defined database for the peptide
spectrum search, MSProGene can also be provided with custom sequences in fasta
format, without the need for RNA-Seq evidence. Note that in this case mutations
already need to be included in the sequences, and the sequence header must con-
tain information on the strand and start and stop position of the gene (an example
file is provided with the MSProGene installation).
To be suitable for spectra search, nucleotide sequences need to be translated into
amino acid sequences. Initially, we rely on a three-frame translation since in RNA-
Seq experiments the ends of genes are often not recovered with high precision.
Hence, the predicted start codon might not be the correct one and translating only
one frame would potentially lead to a loss in peptide identifications. However, (i)
increasing the transcript database with a six-frame translation is only necessary if
no strand information is available (as is for instance the case for unspliced Cufflinks
predictions). Thus, bias resulting from unnecessary extension of the database can
be avoided. Further, (ii) in order to create a tailored transcript database without
artificial increase we perform a second MSProGene iteration based on the analysis
of the first spectra search.
Note that only one out of the initial three frames is correct; hence, the translated
protein sequence of the incorrect frames might contain stop codons. Since an early
stop codon can also be due to an incorrectly inserted mutation, MSProGene does
not stop the entire translation in case of a stop codon but can extract several amino
acid subsequences per transcript frame. The user can specify a minimum peptide
length for spectra search (per default 5 amino acids), and thus subsequences with
smaller length are removed.
Finally, each transcript ¢ with sequence length I* is initially scored based on the
original GIIRA gene score s7 (or score from other prediction methods) and its read
coverage c!. The coverage is calculated by taking the number of reads n' mapping
to the transcript and their corresponding length {" into account:

= nt lT.

lt

The initial transcript score s’ is normalized over the minimum (m’) and maximum
(m®) score of all original gene scores to indicate the relative evidence for a transcript
in comparison to other transcripts:

t
t C

s = Sg .
m*—mt+1
Once the transcript database has been created, the input tandem mass spectra are

searched against the resulting set of amino acid sequences. Per default, MSPro-
Gene uses MSGF+ (Kim and Pevzner, 2014) as the search engine, but can easily be
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Figure 4.3.: Simplified example of a proteogenomic network: peptide nodes p; are con-
nected to the frames f; they map to, and all sister frames are connected to their corres-
ponding transcript node t;. A so called dummy node d ensures that incorrect peptide
identifications can be reassigned. All edges are labeled according to their capacity in-
dicating the support from experimental data for a connection between two neighboring
nodes. The capacities define the overall throughput that can be passed through the
network, starting from source node so towards the sink si.

adapted to also work with other search methods. After the search, the resulting
peptide spectrum matches are extracted by MSProGene, independent of whether
they are unique peptides or shared peptides (i.e. one peptide mapping to more than
one transcript sequence). Further, the peptide spectrum match score provided by
the search engine is extracted, and normalized to the [0, 1] interval.

4.2. Proteogenomic network

After the spectra search, each identified spectrum is assigned to one peptide se-
quence that can be found in one or more transcript sequences. Since each spectrum
can only arise from one peptide and one transcript, we (i) need to assign shared
peptides to their most likely origin. An additional challenge is the presence of po-
tentially multiple supported reading frames per transcript. Since we initially pro-
vide at least three frames (sister frames) per transcript, a peptide can independently
be mapped to each of the frames, although only one of the frames can be correct.
Hence, (ii) we also have to identify the correct frame for each transcript and erase
all incorrectly mapped peptides. Furthermore, not necessarily all peptide spectrum
matches are correct. Thus, (iii) we have to detect and remove incorrect identifica-
tions.
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To meet these three objectives we first represent all peptide spectrum matches a net-
work, which is optimized in order to solve the inference. The network G = {N, E'}
(depicted in Figure 4.3) with edge set F and node set N = PN FNT NsoNsiNdhas
nodes p; € P representing the individual peptides and nodes f; € F representing
the sister frames of each transcript. Further, also the transcript itself is included as
anode t;, € T. For technical purposes, also a source node so and a sink node si are
integrated to the network, as well as a dummy node d.

For each match between peptide p; and frame f;, a directed edge ¢, f, € E is inte-
grated to G that connects the two nodes. Further, all sister frames are connected to
their corresponding transcript. Note that each peptide node is not only connected
to its mapped frames but also to the dummy node. This ensures that whenever
no target frame remains possible for a peptide, this peptide can be assigned to the
dummy without creating inconsistency. The set of connections of a peptide p; can
become infeasible in case p; only maps to frames that were marked as incorrect be-
cause their competing sister frames have more support. In this case, p; is likely to be
an incorrect identification, which is indicated by assigning p; to d. For an example
refer to Figure 4.3: here p; and p3 match to different frames of the same transcript;
hence, only one match can be correct, and the other peptide is assigned to d.

Since we aim at choosing connections between nodes that reflect the most likely
correct identification, each edge is assigned a capacity representing the reliability
of the associated match. Edges starting from the source are connected to peptide
nodes and have an unlimited capacity, whereas edges e, ;; connecting peptides to
frames have a capacity ), 7, that is initially determined by the score calculated by
the peptide search engine. In addition, the capacity is restricted by a binary vari-
able y,, r, € {0, 1} indicating whether this connection is chosen as the most likely
connection (yp, r; = 1) or not (y, 5, = 0):

0< Ppi.fj < Ypi, f; Vepi,fj S

Further, edges e, si € E connecting transcript nodes ¢, € 7' to si have a capacity wy,
that is determined by the initial transcript score calculated in step 1 of the overall
workflow. The capacity 0y, ;, of connections of sister frames to their transcript is
initially set to this transcript score, weighted by the number of peptides originally
associated to the frame.

Since only one of the sister frames can be correct, 0y, ;, is also restricted by a binary
variable my, ;, € {0, 1} that indicates whether a frame is chosen or not:

0< ‘9fj7tk < LLPR vefjﬂfk €E.
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Two additional constraints ensure that only one match per peptide (Eq. 1) and only
one frame per transcript (Eq. 2) is selected, respectively:

(1) Zypzwfj =1 Vilp; € P,
J

2) > mypp, =1 Vkltp €T
J

The capacities define the maximal throughput that is allowed to be passed through
an edge. Given these capacities, we can formulate a maximum-flow problem in
order to optimize the throughput - in this case the reliability of connections - that is
passed from source towards sink node:

max Z Ppif; + Z efjﬂtk + Z Wk + Z Aps.d Yps,ds

€p;.f; €fjty €ty si €p;,d
EE €EE €E €E
where )\, 4 corresponds to a penalty term equivalent to a Lagrange multiplier for
connections to the dummy node: In the maximum-flow description above, all ca-
pacities of chosen edges add to the overall maximal flow. However, an important
difference holds for the dummy node d: since assignments to d are required for pep-
tides that are likely incorrect identifications, a chosen connection to the dummy
results in a penalty on the overall flow. This is realized by a form of Lagrangian
relaxation on constraints describing edges to the dummy node. Whenever such a
connection is chosen (i.e. y,, 4 = 1), a penalty A (i.e. the Lagrange multiplier), which
equals the negative of the confidence score of the peptide spectrum match, is ap-
plied to the overall objective.
Although nodes have an unlimited throughput, a requirement of the maximum-
flow is that for each node the input has to equal the output flow. Hence, the num-
ber of peptides that can be assigned to each frame and transcript is restricted by
the overall evidence for this transcript because the higher wy, the more flow can be
assigned to the transcript. Given the capacities 0y, ;, < wy of the connections of
sister frames to their corresponding transcript, we derive the following constraint:

Z Ppi,f; < ij,tk Vefjatk € L.
i‘ep@,ijE

Note that the dummy node has an unlimited outgoing capacity, such that in theory
an unlimited number of peptides can be assigned to d. However, due to the intro-
duced penalty this connection is only chosen if the penalty is outweighed by the
benefit of supporting the competing frames.
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Finally, the described maximum-flow problem is formulated as an integer linear
program, which can be solved for instance using the CPLEX Optimizing studio
(CPLEX, 2011). As a result, each peptide is either indicated as an incorrect match
or associated to the most likely transcript frame.

4.3. Post-processing

After all PSMs have been reassigned to their most likely frame or are indicated as
likely incorrect predictions, the confidence in each transcript sequence and corres-
ponding frame has to be recalculated.

MSProGene proceeds through the original transcripts and assigns the frame chosen
in the linear program. Note that at this point MSProGene uses the sequences sup-
ported by the spectra search for a second iteration: The supported frames are used
to create a second and more specific amino acid database for a second run with a
peptide spectrum search engine. The initial database was artificially increased by
the three-frame translation, whereas the updated database is tailored to the (un-
known) true database. Also the second PSM results are represented in a network to
resolve shared peptides and identify incorrectly mapped peptides (refer to former
section). Afterwards, the transcripts are finally analyzed for their peptide support
and FDR controlled.

Since decoy protein sequences, which are classically used for FDR computation in
proteomics, are artificial sequences without RNA-Seq evidence, the network repre-
sentation and maximum-flow optimization is not applicable to decoy identifica-
tions. Hence, only target peptide hits are reassigned in the maximum-flow and can
thus be used for FDR calculation. Therefore, the FDR cannot be calculated by a
standard target-decoy approach, but is determined in a decoy-free approach based
on the expectation-maximization (EM) algorithm (Dempster et al., 1977). The aim
is to fit two distributions on the frequencies of overall scores, one that explains the
correct (i.e. target) and one the incorrect (i.e. decoy) identifications, similar to the
approach in (Renard et al., 2010). The observed frequencies of scores are expected
to be a mixture of these two distributions, where we assume an underlying normal
distribution for both target and decoy identifications (assumption confirmed in in-
dependent experiments, data not shown).

Note that since the EM is not guaranteed to find the global maximum, the search
is performed several times with differing initial values to identify the model best
fitting the data. With the resulting target N7 and decoy Np distribution we can
compute a false discovery rate F'DR; at each PSM p; with score sf , using the cumu-
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lative density functions Fr(sh) for Ny and Fp(sh) for Np:

wp - (1 = Fp(s}))

FR = o A= Fr() T wp - (1— Fp(D)’

where wr and wp are the weights of the target and decoy distribution, respectively.

4.4, Output

After the reassigned peptides are FDR controlled and hits below the threshold
are removed, the set of transcripts with spectra support is reported. For post-
processing and visualization, the coordinates as well as the confidence score and
the number of spectrum matches are presented in the well-established GTF format,
accompanied by the actual sequences in fasta format.

The final confidence score s combines the original transcript score s* with its cove-
rage and quality of peptide spectrum matches (set denoted as P'):

1
t
s¢=s ft z: Sflfv

i|p;€P?

where [' is the length of the transcript sequence and ¥ is the length of a peptide
pi € P! with score s?.

Since the combination of RNA-Seq read support and tandem mass spectra support
does not only increase the confidence in protein identifications, but can also be used
to verify variation observed in the read mapping, MSProGene additionally outputs
a VCF file. This file contains all mutations present in the transcripts compared
to the given reference sequence. Further, we indicate whether mutations are also
supported by spectra (as an additional layer of confidence).

4.5. Implementation

MSProGene is implemented in Java (http:/ /www.java.com) and uses helper scripts
that are written in Python (http://www.python.org/) and Gnu R (http://www.r-
project.org/). MSProGene is open source and the software can be downloaded
from http:/ /sourceforge.net/projects/msprogene/. Not only the source code, but
also a precompiled package is available.

To speed up the spectra search and analysis of peptide spectrum matches, MSPro-
Gene is designed to run parallel on several processing units, if available.
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4.6. Experiments

4.6.1. Algorithm evaluation

As a proof-of-principle evaluation of the algorithm for peptide reassignment we
conducted a simulation experiment. We used the NCBI reference annotation of
Escherichia coli (NCBI accession: NC_000913.3) and integrated SNPs simulated with
a mutation-rate of 1% to the gene sequences (to simulate deviances from the refe-
rence sequence as occurring in real data sets). Based on the mutated sequences,
we simulated Illumina RNA-Seq reads with the read simulator Mason (Holtgrewe,
2010) in varying expression levels. Tandem mass spectra were generated with the
spectra simulator MSSimulator (Bielow et al., 2011) (OpenMS Releasel.11) specify-
ing 10 tandem mass spectra per retention time bin, a gradient of 3,000s, an instru-
ment resolution of 200,000, and default settings otherwise. Each of the resulting
spectra is linked to its original peptide and protein, such that we can compare the
peptide assignments of the network optimization integrated in MSProGene against
the ground truth peptides.

4.6.2. Bartonella henseale

MSProGene was also tested on data of B. henselae, a pathogenic bacterium that
causes infections such as the cat scratch disease (Omasits et al., 2013). Tandem
mass spectra and RNA-Seq reads originate from a study by Omasits et al. (2013)
(GEO Series accession number: GSE44564). We pooled data from the two condi-
tions (induced and uninduced) of replicate 1 resulting in 1.16 million tandem mass
spectra and 211 million AB-Solid RNA-Seq reads. Reads were mapped to the B.
henselae reference genome (strain Houston-1, NCBI accession: NC_005956) using
BFAST (Homer et al., 2009) (version: 0.7.0a). For settings we followed the mapping
pipeline and parameters recommended in the BFAST manual. As in the original
study, the resulting mapping was filtered using samtools (Li et al., 2009a) to re-
move contamination with rRNA. Further, all raw spectra were converted to MGF
format using the Trans-Proteomic Pipeline (Deutsch et al., 2010). MSProGene was
applied with default settings, using GIIRA in prokaryote mode for construction of
the transcript database, also with default settings.

To analyze the performance of reference-independent methods, we compared MS-
ProGene to the approach by Evans et al. (2012) (in the following called Assembly)
that is based on de novo assembly with Trinity (Grabherr et al., 2011), as well as a
standard six-frame translation of the B. henselae genome (in the following denoted
as Six-frame). Assembly was applied with default settings in its "genomeguided"
mode (using the BFAST mapping as a guide). The resulting assembly contained
1,907 transcripts, which were six-frame translated to identify open reading frames.
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These frames served as the database for MSGF+ search. Six-frame translation was
performed using the program getorf from the EMBOSS package (Rice et al., 2000)
(version EMBOSS:6.4.0.0), requiring a minimum length of 200bp. These three refe-
rence-independent methods were analyzed regarding the overall number of iden-
tified proteins and the spectra coverage of identifications.

For a general analysis of the robustness of our method we also randomly divided
the original set of 1.16 million spectra into two smaller sets, each including half
of the spectra. The compared methods were applied using the smaller samples of
spectra separately and the resulting predicted protein sequences were compared
between runs. The higher the overlap between two runs on differing input sam-
ples, the more robust the method. As a measure of overlap we counted the number
of proteins coinciding in both runs and divided it by the highest number of proteins
predicted in one run.

Further, we compared our method to a standard database search (in the following
denoted as Standard) on the 1,488 annotated B. henselae proteins available at NCBI.
In addition, we performed a standard search on a database including SNPs indi-
cated by a samtools mpileup (Li et al., 2009a) variant call on the RNA-Seq mapping
(in the following denoted as Mutated).

For all evaluations we chose the set of annotated B. henselae proteins as a ground
truth reference protein set (note that not necessarily all of these proteins are actually
expressed simultaneously). The output of the Standard and Mutated approach was
directly compared to the reference. In contrast, for the reference-free methods we
first compared the coordinates of predicted proteins to the reference coordinates in
order to map predictions to reference proteins.

For the evaluation of method quality we employed the metrics of recall and preci-
sion. Recall is calculated as the number of identified annotated proteins, divided
by the total number of annotations. Precision is calculated as the number of pre-
dicted proteins matching the annotation, divided by the total number of proteins
predicted by the method. Note that by nature of the analysis, the Standard and
Mutated method always have a precision of 100% because they are exclusively
searched against the reference annotation. In general, the comparison against the
complete reference can only be regarded as a relative rather than an absolute com-
parison between methods (since not all genes are necessarily expressed at the same
time). Further, transcripts that do not match the reference are not necessarily false
positives but might be unannotated genes. However, for the evaluation of sen-
sitivity and specificity all transcripts not matching the annotation are regardless
counted as false positives. Hence, the evaluation is slightly biased against MSPro-
Gene.

We also calculated an annotation-based FDR on the protein identifications of refe-
rence-free methods, sorted by identification score. We regard an identified protein
as incorrect in case it did not match the reference annotation. We note that since
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not necessarily all unmatched predictions are false positives, this is a conservative
estimate that likely overestimates the actual rate of incorrect identification.

4.6.3. Litomosoides sigmodontis

We also compared MSProGene to a six-frame based analysis on a L. sigmodontis data
set (assembly nLS.2.1 from www.nematodes.org). L. sigmodontis is a popular model
organism for filarial nematodes, that amongst other diseases cause lymphatic fila-
riasis ("elephantiasis") and are the human-parasitic species with the highest overall
impact on public health (Armstrong et al., 2014). The analyzed tandem mass spec-
tra originate from a study by Armstrong et al. (2014) (PRIDE Project PXD000756, in
total 856,380 spectra).

For this organism only very few proteins are already annotated (a search at NCBI
on January 9, 2015 resulted in 75 protein sequences). Hence, here we only com-
pare methods in regard to their overall identification confidence, the number of
predicted proteins and their spectra coverage.

Transcript prediction methods, such as Cufflinks (Trapnell et al., 2010) and GIIRA,
work best on high coverage RNA-Seq data sets. Hence, since at the time of this
study only low coverage 454 transcriptome data was available for L. sigmodontis,
we chose Illumina RNA-Seq data from Brugia malayi, a close relative of L. sigmodon-
tis. We pooled 14 samples from different life cycle stages of B. malayi (BioProject
accession: PRJEB2709) and mapped the reads to the L. sigmodontis draft genome
using TopHat2 (Kim et al., 2013) (version 2.0.11) with error tolerant parameter
setting (N 5, read-gap-length 5, read-edit-dist 5). Transcript coordinates were ob-
tained using Cufflinks (version 2.2.0) on the resulting mapping. The resulting GTF
file was converted using in-house scripts to generate a fasta file with transcript se-
quences for MSProGene analysis. For the six-frame analysis the L. sigmodontis draft
genome was translated using the program getorf from the EMBOSS package, re-
quiring a minimum length of 200bp.

In addition to the transcripts predicted by either Cufflinks or getorf, we included
protein sequences from the Wolbachia symbiont of L. sigmodontis, obtained from
www.nematodes.org (release wLs 2.0, 1,042 sequences) for spectra search.

For further evaluation, we used BLAST (Altschul et al., 1997) to compare the identi-
fied sequences to B. malayi proteins. Similar to Armstrong et al. (2014), we specified
a BLAST bit score cutoff of 50. Note that although often the BLAST E value is used
for evaluation, we did not use the E value in our analysis to allow a fair compari-
son. An E value threshold may have favored the evaluation towards MSProGene
because it has a smaller query database size than the six-frame translation.
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4.6.4. Peptide search parameters

All spectra searches were conducted using MSGF+ (Kim and Pevzner, 2014) (ver-
sion v9881) with a precursor mass tolerance of 5ppm, a minimum peptide length of
5 amino acids, specifying a high-resolution mass spectrometer, and using default
settings otherwise. All analyses were performed with regard to a 1% FDR cutoff
and excluding proteins with fewer than two spectra hits.

4.7. Results

4.7.1. Algorithm evaluation

We analyzed the peptide spectrum matches before and after the network optimiza-
tion of MSProGene. Details are shown in Figure 4.4. Of 21,715 spectra that MSGF+
matched to the original protein (sometimes among multiple proteins), 21,617 were
assigned correctly by MSProGene (99.5%). Overall, the algorithm correctly reas-
signed over 90% of the spectra that had multiple protein hits (933 of 1,031).
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Figure 4.4.: Figure illustrating the distribution of peptides correctly and incorrectly reas-
signed by MSProGene. 99.5% of the peptides were assigned to their original ground
truth protein.
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4.7.2. B. henselae data
Verification of transcripts with spectra support:

First, we investigated the effect of integrating RNA-Seq evidence and spectra on
the actual identification accuracy. As shown in Table 4.1, the transcript database
constructed for spectra search contains 1,568 sequences. This number is reduced to
1,397 when taking spectra support into account. This leads to a decrease in recall
from 78.2% to 76.5%. In contrast, the precision strongly increases from 79.0% to
85.1% when spectra support is taken into account.

without | with with spectra,
spectra | spectra | without single hits
Predicted 1,568 1,397 1,286
#matches to annotation 1,238 1,189 1,143
#identified annotations 1,164 1,139 1,109
Recall (%) 78.2 76.5 74.5
Precision (%) 79.0 85.1 88.9

Table 4.1.: Prediction results of MSProGene, exclusively based on RNA-Seq, verified by
spectra support, and in addition excluding proteins with only one spectrum hit. Eva-
luation on the B. henselae data set, compared to the reference annotation comprising
1,488 genes. The best value for each accuracy measure is marked in bold.

Comparison to reference-free methods:

For the three compared methods we counted the number of annotations that were
identified and the number of predictions that actually match the annotation. Both
numbers can differ since a single annotated protein might be covered by several
smaller predictions. The results of the analysis are summarized in Table 4.2.

The transcript database constructed for spectra search by MSProGene contains 1,568
sequences. This is significantly smaller than the number of sequences searched in
the Six-frame analysis and Assembly, which shows the suitability of RNA-Seq data
to provide smaller and more tailored search databases.

Overall the Six-frame approach predicts the highest number of spectra-supported
genes and also achieves the highest recall given the peptide level FDR. However,
this is at the cost of specificity: Six-frame has 3.7% higher recall but 8.5% less preci-
sion than MSProGene (also refer to Figure 4.5). Further, if in addition to the peptide
level FDR also an annotation-based FDR is applied on the protein level, the recall
of Six-frame decreases to 1% because of early false positive identifications. In con-
trast, MSProGene still achieves a recall of 51%. The Assembly approach shows low

84



4. Integrative proteogenomics

agreement between predicted transcripts and the annotation, resulting in reduced
precision and recall.

MSProGene | Six-frame | Assembly

Database size 1568 6091 5894

Predicted 1286 1502 1276

# matches to annotation 1143 1207 447

# identified annotations 1109 1163 372

Recall (%) 74.5 78.2 25.0

Precision (%) 88.9 80.4 35.0

Recall 1%-AnnotationFDR (%) 51.5 1.1 0.0
median # spectra per protein 90 77 50

Table 4.2.: Prediction of reference-free methods on the B. henselae data set, compared to
the reference annotation with 1,488 genes. The row indicated as "1%-AnnotationFDR"
shows results for an additional 1% annotation-based FDR on the protein level. The best
value for each accuracy measure is marked in bold.
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Figure 4.5.: Receiver operating curve illustrating recall and precision of MSProGene, Six-
frame and Assembly for the B. henselae data set. MSProGene shows the highest precision
of all three methods. Particularly for highly scored predictions it achieves better sensi-
tivity at the same precision level.

85



4. Integrative proteogenomics

As illustrated in Figure 4.6, MSProGene and the Six-frame approach coincide in
941 of the 1,488 annotations. In contrast, Assembly only shared 304 and 317 an-
notations with MSProGene and Six-frame, respectively. Taken together, the three
methods identified 1,340 of the 1,488 annotated B. henselae proteins. However, all
methods identified proteins that were not predicted by the other methods, such
that no approach shows a complete prediction by itself.

All three methods performed well in the robustness analysis. The overlap of Six-
frame (97.5%) is slightly higher than for MSProGene (96.0%) and Assembly (95.5%).
However, all three approaches only vary little, indicating that they are robust to dif-
fering input data.

MSProGene Six-frame

680
125 166

261
43 56

13

Assembly

Figure 4.6.: Venn diagram illustrating the number of identified annotated proteins of the
B. henselae data set for MSProGene, Six-frame, and Assembly. Together, 1,340 of the
annotated proteins were identified, although no method shows a complete prediction
by itself.

Comparison to reference-based methods:

To generate the mutated database 2,592 variants were called with samtools on the
RNA-Seq read mapping and included in the reference protein sequences. Both
Standard and Mutated method identified 1,274 of the annotated proteins (recall:
85.6%). Interestingly, including mutations observed in the RNA-Seq mapping did
not improve the overall recall, but instead even decreases the median spectra sup-
port for identified proteins from 106 (Standard) to 95 (Mutated) spectra. With 1,109
identified proteins, MSProGene has a lower recall than both Standard and Mutated
method. However, as shown in Figure 4.7, it identifies 84 proteins not detected by
the standard searches.
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MSProGene Standard

84 10
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Figure 4.7.: Venn diagram illustrating the number of identified annotated proteins of the
B. henselae data set for MSProGene, Standard, and Mutated. Together, 1,376 of the an-
notated proteins were identified, although no method shows a complete prediction by
itself.

When compared to the annotated reference database, MSProGene predicted 76
genes with RNA-Seq and spectra support that do not match the annotation. Two of
these genes (located at position 1,357,979 to 1,358,722 and 1,180,052 to 1,180,672, re-
spectively) were chosen for further verification with BLAST (Altschul et al., 1997).
The first protein with length 248 was supported by 94 spectra, the second one of
length 207 received 36 spectra. A protein BLAST search of the two sequences (pre-
dicted by MSProGene on the Houston-1 reference strain) revealed that both pro-
teins are annotated in other B. henselae strains. The first sequence shows high simi-
larity to a peptide ABC transporter substrate-binding protein, for instance present
in strain BM1374165 (BLAST E value: 1e-178, identity: 99%). The second one
shows high similarity to a hemin binding protein E, for instance present in strain
BM1374163 (BLAST E value: 5e-145, identity: 100%). Thus, both genes are likely
candidates for novel genes in the Houston-1 reference strain of the B. henselae taxo-
nomy.

4.7.3. L. sigmodontis data

The results of the evaluation on the L. sigmodontis data set are shown in Table 4.3.
Also for this data set the RNA-Seq-based transcript database used by MSProGene
is significantly smaller than the six-frame translation.

Although the overall number of predicted sequences is higher for the six-frame
approach, MSProGene sequences receive higher spectra support. The greater con-
fidence of MSProGene transcripts is also significantly shown in the BLAST search:
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MSProGene | Six-frame
Database size 28,009 189,512
Predicted 2,146 4,297
Median spectra count 8 6
BLAST hits all 1,462 1,804
Median bit score all 54.5 25.8
BLAST hits above threshold 779 42
Median bit score 89.7 70.1

Table 4.3.: Evaluation for the L. sigmodontis data set, with best values for each category
marked in bold. BLAST hits were reported with a bit score threshold of 50. Although
at first glance the six-frame approach predicted more proteins than MSProGene, less
than half of them can be mapped by BLAST, with less confidence than MSProGene hits.
Further, only a small fraction of six-frame predicted proteins passes the confidence score
threshold.
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Figure 4.8.: The frequency of bit scores for MSProGene and the six-frame approach for
the BLAST search of predicted sequences against a B. malayi reference. The confidence
of MSProGene sequence alignments significantly exceeds the confidence of six-frame
sequence alignments.
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As illustrated in Figure 4.8, the confidence of BLAST hits is considerably improved
for MSProGene sequences. Further, only 42% of the six-frame sequences receive a
BLAST hit at all, while in contrast 68% of MSProGene predictions can be mapped.
With 1,804 hits, the overall number of hits for the six-frame approach is still higher,
but only in case no score cutoff for confidence control for the BLAST search is ap-
plied. When using a bit score cutoff of 50 as in Armstrong et al. (2014), the number
of remaining BLAST hits of MSProGene is an order of magnitude higher than for
the six-frame analysis (779 hits for MSProGene vs. 42 hits for the six-frame analy-
sis). Hence, MSProGene identifies fewer transcripts with more confidence.

We are aware that the comparison against a B. malayi database can only identify
proteins that are L. sigmodontis orthologs and does not determine proteins specific
to L. sigmodontis. However, L. sigmodontis and B. malayi are close relatives. Hence,
the BLAST search against B. malayi is a good indicator of the quality of L. sigmodon-
tis protein identifications.

4.7.4. System requirements

The computational performance of MSProGene is evaluated using the transcripts
predicted by GIIRA (for B. henselae) or Cufflinks (for L. sigmodontis). We tested
MSProGene on a linux system (with 256GB of available memory), using 20 threads.
The main contributors to the run time are the two spectra searches performed by
MSGF+: The search of 1.16 million spectra on the B. henselae data set required 35.7h.
The search of 856,380 spectra on the L. sigmodontis data set required 40.8h. Overall,
MSProGene used 30GB RAM and 36.5h to analyze the B. henselae data set, and 30GB
RAM and 41.6h to analyze the L. sigmodontis data set.

4.8. Discussion

MSProGene facilitates automated and reference independent spectra search by con-
structing customized transcript databases. We demonstrated the accuracy of MS-
ProGene identifications in several experiments on prokaryotic and eukaryotic or-
ganisms. Unlike methods focused on using RNA-Seq information for extension
with splice sites (Woo et al., 2013) or SNPs (Krug et al., 2014), we exploit the full
information of RNA-Seq experiments.

The tailored construction of RNA-Seq based databases leads to significantly re-
duced database size, as we show for the B. henselae and L. sigmodontis data sets.
This size reduction has a positive effect on identification accuracy: The results of
MSProGene are more precise than the results of a standard six-frame translation
(refer to Section 4.7.2). We briefly evaluated the effect of combining RNA-Seq in-
formation with tandem mass spectrometry and show that both measures correlate
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well and lead to significantly increased precision in protein identifications.

The direct comparison of MSProGene to other database-independent approaches
shows that the six-frame translation has a high recall, but at the cost of precision.
On the B. henselae data set MSProGene identifies slightly fewer proteins, but pro-
vides higher confidence in the resulting predictions. The approach based on de novo
transcriptome assembly showed an overall low identification accuracy, also com-
pared to the six-frame translation. This indicates that the two-step integration of
RNA-Seq data (first de novo assembly followed by six-frame translation and later
the independent spectra search) is not as suited for proteogenomic analysis as the
integrative approach employed by MSProGene.

The standard six-frame translation is sensitive, but lacks confidence and precision.
MSProGene is specific, but currently it shows reduced overall recall in comparison
to the six-frame approach. This is due to the dependency of MSProGene on the
quality of predicted transcript sequences. Here, gene identifications exclusively
based on RNA-Seq might not identify all possible transcripts and a more compre-
hensive RNA-Seq based prediction might be more sensitive. As shown in Section
4.7.2, de novo assembly can recover some of the missing transcripts; however, this
approach overall has the least accuracy. Hence, in regard to precision, customized
transcript databases as employed by MSProGene should be preferred.

We also compared MSProGene to reference-based approaches, either using refe-
rence databases or databases extended with sample-specific SNPs. We see that on
the one hand MSProGene has a lower recall than the standard approaches, but
on the other hand it identifies novel unannotated proteins, confirmed by BLAST
search. Further, it also detects annotated proteins not identified by the standard
methods. Interestingly, including sample-specific mutations observed in the RNA-
Seq experiment did not improve the recall of the standard database search. This
indicates that some of the included SNPs are incorrect. Since thresholds for the fil-
tering of incorrect mutations are hard to define (Giese et al., 2014), this is a likely
bias when including sample-specific mutations to reference proteins.

When comparing MSProGene and the approach based on a mutated reference pro-
tein database (i.e. Mutated), 92 proteins are unique to MSProGene, and 257 proteins
are unique to the other approach. The latter are not identified due to missing or in-
correctly constructed transcript sequences. MSProGene not only needs to correctly
identify the correct PSMs for a protein sequence, but also the correct coordinates of
a transcript. Hence, the sensitivity of MSProGene strongly depends on the quality
of the constructed transcript sequences. Since RNA-Seq is challenging as the exclu-
sive source for gene prediction, integrating additional evidence or other methods
for prediction might lead to a more comprehensive set of transcripts and hence im-
proved recall. We believe that the extensive studies dedicated to RNA-Seq analysis
(a search of the term "RNA-Seq" on google scholar resulted in more than 17,300
entries published in year 2014) will also benefit MSProGene. Since our method
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is independent of the method used for transcript construction (except scores and
mutations that need to be provided), better methods for RNA-Seq based gene and
transcript prediction will lead to improved recall by MSProGene.

The proteins exclusively detected by MSProGene often have shared peptide sup-
port and in addition they are supported by peptides that have scores below the
FDR threshold in the Mutated approach. For instance, 51 of the missing 92 pro-
teins of the approach searching an extended database can be identified with an
FDR threshold of 5% (instead of the original 1%). This illustrates the precision of
MSProGene peptide assignments since it identifies these proteins under a more
conservative FDR.

As shown in the B. henselae experiment, reference-dependent approaches fail to de-
tect novel genes and additionally even databases adapted or extended with SNPs
are not always suited to identify mutated proteins. Hence, even for annotated or-
ganisms or fast evolving organisms, such as viruses, it is worth to employ alterna-
tive search strategies that go beyond the identification of annotated genes.

On the L. sigmodontis data set, the benefits of using RNA-Seq based transcript
databases instead of six-frame translations are even more pronounced: Here, MS-
ProGene identified an order of magnitude more sequences verified by BLAST search
than the standard translation. In addition, it identified significantly fewer over-
all proteins than the six-frame translation, which appears disadvantageous at first
glance, but is rather a strength of our method: The proportion of meaningful iden-
tifications is considerably higher for MSProGene than for the standard search.
Further, we also introduced MSProGene as a new method for shared peptide pro-
tein inference. We represent peptide spectrum matches in a network and resolve
shared peptide connections using RNA-Seq evidence. This eliminates the need for
protein grouping and allows a more specific protein identification. As shown in
the simulated E. coli experiment, MSProGene accurately resolves shared peptides
and detects incorrect PSMs, which further stresses the suitability of MSProGene for
accurate proteogenomic analysis.
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Proteogenomics is established as a key research area that integrates data from dif-
ferent high-throughput technologies to facilitate accurate annotation. Typically,
studies are focused on the annotation and revision of genes and the identification of
proteins. Despite varying research efforts and sophisticated analysis methods, pro-
teogenomics remains a challenging field. The choice and construction of databases
tailored to sample-specific tandem mass spectra search is one of the key questions
that still requires further attention. In addition, the quality control of peptide iden-
tifications and the inference of proteins including shared peptides remain difficult
problems.

This thesis describes three new computational methods that facilitate the integra-
tion of genomic, transcriptomic, and proteomic data to approach the current chal-
lenges in proteogenomic analysis. We introduce new methods for improved evi-
dence-based gene model prediction that serve as the basis for customized spectra
search databases beyond six-frame translations and independent from a priori an-
notations. We develop graphical models to approach the correct assignment of
ambiguous reads and ambiguous peptides. Thereby, we perform an RNA-Seq evi-
dence assisted protein inference including shared peptides and estimated the pro-
portion of false identifications with a decoy-free FDR calculation.

In Chapter 2 we describe the new method GIIRA for RNA-Seqg-based gene pre-
diction to obtain sample-specific gene models as a basis for database construction.
RNA-Seq is a particularly suitable source to assist gene model prediction as it re-
flects currently expressed genes and also captures complex structures, such as alter-
native splicing. GIIRA aims at explicitly including ambiguous read mappings for
better identification sensitivity, rather than excluding these reads from the analy-
sis as is performed by most RNA-Seq analysis pipelines. Particularly the detection
of homologous gene regions or genes present in multiple copies can be impeded
by excluding ambiguity. Thus, we integrate ambiguous mappings in a network
that represents candidate gene sequences and their read support. Based on the re-
liability of candidate genes and mappings, reads can be reassigned to their most
likely origin using a maximum-flow network optimization. In several experiments
we show that including ambiguous reads indeed improves the prediction accuracy
and leads to more sensitive results. Further, GIIRA performs favorably in compari-
son to other gene finders on prokaryotic as well as eukaryotic organisms. It demon-
strates superior prediction accuracy for exons and introns on analyzed human and
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S. cerevisiae data sets. Although all compared methods have different strengths and
weaknesses and often show comparable performance on the eukaryotic data sets,
GIIRA overall provides a sensitive prediction associated with high precision. Fur-
ther, unlike other RN A-Seg-based methods, GIIRA particularly resolves structural
genes contained in continuously expressed transcript sequences in prokaryotes. It
uses an iterative alignment-scoring-based optimization that provides an accurate
prediction also for prokaryotic organisms. Thus, GIIRA shows a superior perfor-
mance in sample-specific gene identification in the E. coli experiments.

In Chapter 3 we describe the method IPred, which builds on the output of GI-
IRA and post-processes the results of gene finders to combine their strengths for
improved prediction accuracy. Ab initio methods are not sample-specific, but in
return sensitive in predicting genes following standard coding schemes and struc-
tures. In contrast, evidence-based prediction methods are sample-specific, but limi-
ted in their accuracy by noisy or incomplete evidence. However, particularly with
regard to condition-specific experiments, a tailored gene identification beyond ab
initio predictions is necessary. IPred explicitly combines predictions by ab initio
and evidence-based strategies to benefit from their respective advantages while fil-
tering false positive predictions and ensuring an experiment-specific prediction.
The method analyzes the input predictions and compares the overlap support of
evidence and ab initio-based identifications, thereby controlling variations between
predicted sequences with a specific overlap threshold. Particularly, IPred respects
RNA-Seg-specific challenges, such as varying coverage levels throughout genes,
and balances variation with the introduced overlap threshold. In several experi-
ments on prokaryotes and eukaryotes we demonstrate the superior accuracy of
IPred combinations in comparison to single method predictions and to other com-
bination approaches. We show that IPred detects and filters false positive identifi-
cations. Further, it adapts ab initio predictions based on the input evidence.

The last project, introduced in Chapter 4, uses the previously described methods
to construct customized proteogenomic databases for spectra search. The method
MSProGene goes beyond six-frame translations and reference databases and pro-
vides an RNA-Seqg-based transcript database tailored to specific experiments. We
show that MSProGene achieves significantly smaller database sizes than six-frame
or de novo assembly strategies, thereby reducing peptide identification biases asso-
ciated with large databases. On a B. henselae data set we show that this leads to
an increased precision in peptide identification. Further, MSProGene approaches
shared peptide protein inference by constructing a proteogenomic network based
on the observed peptide spectrum matches. Shared peptides are resolved by op-
timizing the network with a maximum-flow approach based on the peptide hit
quality and RNA-Seq information. We demonstrate that this optimization not only
facilitates the assignment of shared peptides, but also identifies false peptide hits.
On a L. sigmodontis data set, where a reference-based search is not possible due
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to lack of comprehensive annotation, MSProGene identifies twenty times as many
proteins verified by BLAST search as the standard six-frame translation. This illus-
trates the strength of MSProGene to accurately identify proteins and novel genes,
also on organisms that lack annotation.

Together, the three described methods provide an accurate and sample-specific pro-
teogenomic analysis. They overcome current limitations, such as database increase
by six-frame translations, the challenging detection of novel genes, and the assign-
ment of ambiguous RNA-Seq reads and peptide hits. Thereby, they contribute to
more sophisticated and integrative proteogenomic analysis.

5.1. Outlook

The three methods described in this thesis facilitate automated and accurate pro-
teogenomic analysis. However, naturally the methods can be improved or ex-
tended in various aspects, which we detail in the following and which can be ca-
tegorized as computational improvements, conceptual extensions, and additional
applications.

The first aspect is the computational improvement: Currently the described ap-
proaches are individual methods, which are applied independently from each other.
Thus, although the availability of stand-alone software is desirable in general, in
the context of performing experiment-specific proteogenomic analysis a workflow
that automatically combines all three methods would even further increase the usa-
bility. To this regard, the GIIRA software is already integrated in MSProGene for
default gene model prediction. However, a proteogenomic pipeline that allows the
integration of other prediction methods using IPred without the need to call each
program separately would be beneficial for users that are not experienced in the
use of command-line software. In addition, this would lead to more flexibility in
the choice of evidence used for database construction. The network framework
of MSProGene is in general independent of the evidence information that assists
the peptide assignment. Hence, it would be desirable to allow the automated in-
tegration of evidence beyond or in addition to RNA-Seq. Further, currently GIIRA
may require gigabytes of memory and hours of run time, depending on the size
of the input data set. This is mainly due to the ambiguous read reassignment:
With millions of RNA-Seq reads and high proportions of ambiguity, the network
constructed to resolve ambiguous connections can become very large and compu-
tationally expensive. Although the linear program optimization already provides
a fast solution algorithm, further strategies to pre-process the network or construct
the network in a less memory-demanding way would be desirable. For instance,
a possible approach could perform a pre-processing of read mappings to construct
multiple connected components, i.e. sub-networks that include groups of candi-
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date genes that only share reads among another, but not with genes from other
sub-networks. A sequential optimization of the connected components could then
reduce the memory requirements.

Second, also conceptual improvements are possible for the three described me-
thods: In our work we show that RNA-Seq is a valuable source of evidence to
assist database construction. However, the RNA-Seq-based prediction of genes is
challenging and methods are currently far from perfect. In particular, GIIRA some-
times shows difficulties in predicting complex alternative isoforms. One strategy to
overcome this problem can be the integration of splice graph approaches for better
intron-chain prediction. As performed in methods such as Cufflinks (Trapnell et al.,
2012) or Scripture (Guttman et al., 2010), paths through a splice graph, which rep-
resents intron exon connections, help to define the correct series of exons. Another
possibility is the usage of read coverage information to infer alternative isoforms
based on their expression level. Exons can be associated to their respective isoform
based on coverage similarities or dissimilarities to other exons, as for instance per-
formed in (Drewe et al., 2013).

Also the post-processing of predictions with IPred can be further improved. Cur-
rently, due to non-standard outputs of gene finders, IPred exclusively reports tran-
script and exon features for each gene. However, to facilitate in-depth analysis with
comprehensive gene models also the annotation of untranslated regions and coding
sequences is of interest. When more standardized formats become available, IPred
has to be adapted to provide more detailed annotations. Further, currently IPred
only aims at combining prediction outputs, in contrast to performing a prediction
itself given the information from other gene finders. The overlap-threshold-based
comparison of positional similarities is a fast combination approach and showed
superior performance to existing methods. However, the method could be ex-
tended, for instance by searching for new start codons in case of dissimilarities
between evidence-based prediction results. Another example could be the combi-
nation of unsupported alternative isoforms. If each gene finder predicted a diffe-
rent isoform, it is likely that none of them is correct (what IPred currently assumes),
but still the evidence points to at least one present isoform. Thus, a comparison and
combination of different alternatives might benefit the accuracy of alternative iso-
form identification.

With better gene prediction strategies and post-processing also the database used
for spectra search can be improved, which benefits the third method MSProGene.
In our experiments we show that MSProGene is a very precise method, but that
it currently lacks sensitivity compared to other proteogenomic analysis methods.
Since MSProGene strongly depends on the quality of the genes underlying the
database construction, improved gene models predicted by GIIRA and IPred can
help to approach this problem. Furthermore, the use of other evidence in combina-
tion with RNA-Seq, for instance ESTs or protein alignments, should be considered
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to further improve gene predictions and thus the constructed database. This will
enhance the sensitivity of MSProGene identifications and facilitate a more com-
prehensive and yet precise proteogenomic identification. In addition, for better
evaluation of identification accuracy it would be desirable to estimate the protein
level FDR of MSProGene, instead of using an annotation-based FDR. This could
be performed by taking decoy protein hits into account. Currently, the graphical
model of MSProGene only resolves target database hits. However, in theory also
an application to decoy identifications is possible. For instance, characteristics and
scores of target sequences could be transferred to their corresponding reversed de-
coy sequence. Given these transferred qualities, in theory also ambiguous decoy
hits can be reassigned. Then, the resulting supported decoy proteins can then be
used for the calculation of a protein level FDR. However, a careful evaluation of
the applicability of this approach is necessary since the RNA-Seg-based informa-
tion might not be directly applicable to the artificial decoy sequences, which could
bias the reassignment.

As a third aspect, not only improvements of the described methods are possible,
but also their application to questions beyond their current use cases. For instance,
the described proteogenomic workflow is focused on the qualitative identification
of genes and proteins. Read and spectra coverages are provided and also used in
subsequent analysis, but are not the focus of the software. However, an application
to quantitative analyses, such as differential expression or protein quantification, is
a worthwhile topic for future research. To do so, the correlation of read and spectra
coverages needs to be further investigated. Then possible applications of a direct
association between read coverage and spectra coverage are two-fold: (i) Informa-
tion on expression levels of genes and proteins could be applied in the graphical
models of GIIRA and MSProGene to infer the correct origins of ambiguous reads
and shared peptides. (ii) The network approaches can be used not only to identify
genes and proteins, but to analyze and compare expression levels.

An additional possible use case is the application to metaproteomics: In general
it makes no difference for the introduced methods if one genome is analyzed or
several ones (metagenomes can be treated as different chromosomes or contigs of a
single organism). The reassignment of shared peptides and ambiguous reads could
be extended to different genomes in a metagenome, for instance by integrating a
new "metagenome"-layer in the proteogenomic network. Genes and proteins that
are conserved in various organisms are a challenge for the functional annotation
of metagenomic samples. Thus, an approach such as MSProGene, which resolves
shared connections and is independent of existing reference databases, can provide
a framework for a tailored and sample-specific metagenomic and metaproteomic
analysis.

Another possible use case beyond gene and protein identification or quantification
is the application of the described workflow to SNP calling. Currently, as a side
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product, MSProGene outputs a VCF file with variants observed in the RNA-Seq
mappings that are supported by spectra hits. However, there is significant potential
in a combined spectra and transcriptome (or also genome) based SNP calling. Of
course, this approach could only be applied to coding regions. But this limitation
does not impede the potential and use cases of the approach: e.g., for questions re-
lated to disease-associated protein mutations particularly the changes in expressed
regions are of interest. A careful investigation of the correlation of SNPs on the
genome and single amino acid variations would be necessary to design a proteoge-
nomic SNP caller that includes proteomic support in variation verification. Here,
MSProGene can serve as a starting point since it provides information on RNA-
Seqg-based SNPs supported by spectra.

Further, MSProGene could be used for the analysis of diploid (or polyploid) SNPs
and their effect on gene expression. Given a diploid SNP in the RNA-Seq mapping,
the corresponding transcript used for spectra search could be duplicated. MSPro-
Gene can then simultaneously analyze both variants and measure the spectra sup-
port for each alternative. Since shared peptides can be distributed between both
variants, the support for each alternative could be directly measured. This pro-
vides new possibilities for the analysis of allele-specific mutations with regard to
their influence on gene expression.

97



98



A. Appendix

A. Appendix

GIIRA evaluation on the simulated human data set

%

2

4 s, | %
Method %‘% é’\*oo O&o % %@((-)’?\ O&(}% {Oo%
o
Sensitivity
GIIRA_w/_ambiguous | 97.2 | 85.7 | 91.0 44.6 38.5 59.1
GIIRA_w/o_ambiguous | 93.5 | 80.1 | 85.6 43.6 37.9 57.2
Cufflinks 93.0 | 71.6 | 86.7 48.8 0.6 56.2
AUGUSTUS 934 | 88.6 | 91.9 454 39.3 59.7
Specificity
GIIRA_w/_ambiguous | 98.0 | 89.1 | 96.7 43.3 34.9 43.9
GIIRA_w/o_ambiguous | 98.4 | 88.4 | 98.4 443 34.1 39.8
Cufflinks 978 | 782 | 97.3 51.7 0.5 44
AUGUSTUS 823 | 814 | 853 49.1 38.1 44.8
F-measure - exact
GIIRA_w/_ambiguous | 97.6 | 87.4 | 93.8 43.9 36.6 50.4
GIIRA_w/o_ambiguous | 95.9 | 84.0 | 91.6 43.9 35.9 46.9
Cufflinks 954 | 748 | 91.7 50.2 0.5 494
AUGUSTUS 87.5 | 84.8 | 88.5 47.2 38.7 51.2
Fuzzy Sensitivity
GIIRA_w/_ambiguous - 89.8 | 91.7 58.0 449 63.5
GIIRA_w/o_ambiguous | - 842 | 86.1 53.7 43.0 60.0
Cufflinks - 85.2 | 87.2 63.2 36.0 60.3
AUGUSTUS - 89.4 | 92.3 70.2 40.6 74.3
Fuzzy Specificity
GIIRA_w/_ambiguous - 93.4 | 974 56.3 40.6 47.1
GIIRA_w/o_ambiguous | - 929 | 99.0 54.5 38.7 41.7
Cufflinks - 93.0 | 97.8 67.0 35.5 47.2
AUGUSTUS - 82.1 | 85.7 75.9 39.4 54.9
F-measure - fuzzy
GIIRA_w/_ambiguous - 91.6 | 94.5 57.1 42.6 54.1
GIIRA_w/o_ambiguous | - 88.3 | 92.1 54.1 40.7 49.2
Cufflinks - 88.9 | 922 65.0 35.7 53.0
AUGUSTUS - 85.6 | 88.9 72.9 40.0 63.1

Table A.1.: Cuffcompare analysis for the simulated human data. The highlighted numbers
indicate the best results for each category for sensitivity and specificity for GIIRA in-
cluding ambiguous reads (GIIRA_w/_ambiguous), GIIRA excluding ambiguous reads
(GIIRA_w/o_ambiguous), Cufflinks, and AUGUSTUS.
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Sampled GIIRA evaluation on the simulated human data set

% A
4 | %
Method %&0 QFOO Oé’o ) Qsc?((-;& f)&% 3 {Oo%
Sensitivity

GIIRA_w/_ambiguous | 87.2 | 76.3 | 80.7 425 36.6 55.7

GIIRA_w/o_ambiguous | 84.6 | 73.6 | 77.9 419 36.3 54.1

Cufflinks 60.5 | 472 | 584 38.4 0.3 449

AUGUSTUS 91.0 | 88.0 | 91.6 45.4 37.5 56.9

Specificity

GIIRA_w/_ambiguous | 98.7 | 91.5 | 975 48.9 41.2 53.1

GIIRA_w/o_ambiguous | 98.7 | 91.7 | 98.3 50.8 42.6 52.1

Cufflinks 98.4 | 75.3 | 98.0 52.4 0.4 43.2

AUGUSTUS 89.8 | 85.8 | 88.6 54.3 44.6 54.5
F-measure - exact

GIIRA_w/_ambiguous | 92.6 | 83.2 | 88.3 45.5 38.8 54.4

GIIRA_w/o_ambiguous | 91.1 | 81.7 | 86.9 459 39.2 53.1

Culfflinks 749 | 58.0 | 73.2 44.3 0.3 44.0

AUGUSTUS 904 | 86.9 | 90.1 49.5 40.7 55.7
Fuzzy Sensitivity

GIIRA_w/_ambiguous - 79.7 | 81.4 55.5 429 59.5

GIIRA_w/o_ambiguous | - 76.7 | 784 51.9 41.2 56.9

Cufflinks - 583 | 58.6 49.1 27.9 48.3

AUGUSTUS - 88.8 | 92.0 70.2 38.8 71.5
Fuzzy Specificity

GIIRA_w/_ambiguous - 95.5 | 98.3 63.9 48.2 56.8

GIIRA_w/o_ambiguous | - 95.5 | 98.9 62.9 48.4 54.7

Cufflinks - 93 98.3 67.0 34.8 46.5

AUGUSTUS - 86.6 | 89.0 84.0 46.2 67.4
F-measure - fuzzy

GIIRA_w/_ambiguous - 86.9 | 89.1 59.4 45.4 58.1

GIIRA_w/o_ambiguous | - 85.1 | 87.5 56.9 44.5 55.8

Cufflinks - 717 | 734 56.7 31.0 474

AUGUSTUS - 87.7 | 90.5 76.5 42.2 69.4

ambiguous reads (GIIRA_w/o_ambiguous), Cufflinks, and AUGUSTUS.
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Table A.2.: Cuffcompare analysis for the simulated human data on a sample of 600 pre-
dictions for each compared method, evaluated against 992 reference transcripts. The
highlighted numbers indicate the best results for each category for sensitivity and speci-
ficity for GIIRA including ambiguous reads (GIIRA_w/_ambiguous), GIIRA excluding
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GIIRA evaluation on the simulated yeast data set

% 2
4 |
Methods %&0 é’\*oo O&oo %@((-)’?\ O&Q} 3 {OQ,&
Sensitivity
GIIRA_w/_ambiguous | 99.2 | 85.9 | 66.7 65.6 86.8 87.4
GIIRA_w/o_ambiguous | 97.4 | 85.3 | 66.7 65.6 86.1 86.7
Cufflinks 933 | 1.8 | 69.7 68.8 0.5 3.5
Specificity
GIIRA_w/_ambiguous | 99.1 | 85.5 | 88.0 84.0 85.4 86.0
GIIRA_w/o_ambiguous | 99.3 | 84.5 | 88.0 84.0 84.4 85.2
Cufflinks 980 | 19 | 821 81.5 0.6 3.6
F-measure - exact
GIIRA_w/_ambiguous | 99.2 | 85.7 | 75.9 73.7 86.1 86.7
GIIRA_w/o_ambiguous | 98.3 | 84.9 | 75.9 73.7 85.2 85.9
Cufflinks 956 | 19 | 754 74.6 0.6 3.6
Fuzzy Sensitivity
GIIRA_w/_ambiguous - 86.8 | 60.7 65.6 87.6 87.8
GIIRA_w/o_ambiguous | - 86.3 | 66.7 65.6 87.0 87.3
Cufflinks - 73.1 | 69.7 68.8 72.5 73.4
Fuzzy Specificity
GIIRA_w/_ambiguous - 86.4 | 88.0 84.0 86.2 86.4
GIIRA_w/o_ambiguous | - 85.5 | 88.0 84.0 85.3 85.7
Cufflinks - 76.1 | 82.1 81.5 75.1 76.0
F-measure - fuzzy
GIIRA_w/_ambiguous - 86.6 | 75.9 73.7 86.9 87.1
GIIRA_w/o_ambiguous | - 85.9 | 75.9 73.7 86.1 86.5
Cufflinks - 746 | 754 74.6 73.8 74.7

Table A.3.: Cuffcompare analysis for the simulated yeast data set. The high-
lighted numbers indicate the best results for each category for GIIRA including
ambiguous reads (GIIRA_w/_ambiguous), GIIRA excluding ambiguous reads (GI-
IRA_w/o_ambiguous), and Cufflinks.
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(1) E. coli real - complete reference

exact measure fuzzy measure
Base Exon Locus Exon Loci
Sn | Sp F Sn | Sp F Sn | Sp F Sn | Sp F Sn | Sp F
GIIRA 614 1933|741 | 423 | 423 | 423 |44.7 | 502 | 47.3 || 429 | 429 | 429 | 45.3 | 50.8 | 47.9
Cufflinks | 40.7 | 722 [ 521 | 00 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0001|0001 01| 01
GeneMark | 56.1 | 479 | 51.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 00| 00 | 00| 00| 00| 00
GLIMMER3| 96.7 | 94.6 | 95.6 | 71.9 | 67.8 | 69.8 | 72.3 | 69.4 | 70.8 || 73.1 | 68.9 | 70.9 | 73.5 | 70.5 | 72.0
(2) E. coli real - reference subset
exact measure fuzzy measure
Base Exon Locus Exon Loci
Sn | Sp F Sn | Sp F Sn | Sp F Sn | Sp F Sn | Sp F
GIIRA 95.6 | 65.3 | 77.6 | 66.4 | 32.1 | 433 | 67.6 | 38.4 | 49.0 || 67.4 | 32.6 | 43.9 | 68.6 | 38.9 | 49.6
Culfflinks | 70.0 | 55.8 | 621 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 0001|0001 01| 01
GeneMark | 60.3 | 23.2 | 335 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 00| 00 | 00| 00| 00| 00
GLIMMER3| 97.4 | 42.8 | 59.5 | 71.2 | 32.4 | 44.5 | 71.9 | 35.0 | 47.1 || 72.4 | 33.0 | 45.3 | 73.0 | 355 | 47.8
(3) E. coli real - alternative
exact measure fuzzy measure
Base Exon Locus Exon Loci
Sn | Sp | F | Sn | Sp | F | Sn | Sp | F Sn | Sp | F | Sn | Sp | F
GIIRA 172 194.0 | 29.1 | 12.6 | 50.0 | 20.1 | 13.2 | 57.2 | 21.5 || 12.9 | 51.1 | 20.6 | 13.5 | 58.5 | 21.9
Cufflinks | 15.1 | 65.1 | 276 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 00| 02|00 /| 00| 02100
GeneMark | 48.5 | 469 | 47.7 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 00| 00 | 00| 00| 00| 00
GLIMMER3 15.3 | 98.3 | 26.5 | 10.0 | 83.0 | 17.8 | 11.0 | 83.1 | 19.4 || 10.0 | 83.2 | 179 | 11.0 | 83.3 | 194

Table A.4.: Cuffcompare analysis for the real E. coli data set compared against the complete
annotated reference of 4,146 genes (1) and a subset of reference genes (2). The third table
shows the comparison against the complete reference, based on a selected sample of 500
predictions for each method. The highlighted numbers indicate the best results for each
category. Abbreviations: Sn = Sensitivity, Sp = Specificity, F = F-measure.
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GIIRA evaluation on the real yeast data set

(1) Accuracy
s, |
& & % %, N <
S & G %% | %
Methods S % o, %, (}'{6{ %6
Sensitivity

GIIRA_w/_ambiguous| 82 0.4 56.9 56.3 0.2 29
GIIRA_w/o_ambiguous 77.8 | 03 | 56.6 56 0.2 2.8

Cufflinks 75.1 | 0.0 552 | 549 0.0 2.6
Specificity
GIIRA_w/_ambiguous| 80.1 0.2 613 | 59.5 0.1 15
GIIRA_w/o_ambiguous 80.5 | 0.2 69.5 | 67.4 0.1 1.5

Cufflinks 773 | 0.0 61.8 | 61.0 0.0 2.4
F-measure - exact
GIIRA_w/_ambiguous| 81.0 0.3 59.0 57.9 0.1 2.0
GIIRA_w/o_ambiguous 79.1 | 0.2 624 | 61.2 0.1 2.0

Cufflinks 76.2 | 0.0 583 | 57.8 0.0 2.5
Fuzzy Sensitivity
GIIRA_w/_ambiguous - 0.4 57.6 57.4 0.2 3.0
GIIRA_w/o_ambiguous - 0.4 572 | 57.0 0.2 29
Cufflinks - 0.0 56.2 | 56.7 0.0 2.7
Fuzzy Specificity
GIIRA_w/_ambiguous| - 0.2 | 621 | 60.7 0.1 1.5
GIIRA_w/o_ambiguous - 0.2 70.3 68.7 0.1 1.6
Cufflinks - 0.0 629 | 63.1 0.0 2.5
F-measure - fuzzy
GIIRA_w/_ambiguous| - 0.3 | 59.8 | 59.0 0.1 2.0
GIIRA_w/o_ambiguous - 0.3 63.1 | 623 0.1 21
Cufflinks - 0.0 59.6 0.0 0.0 0.0

(2) Missed and novel exons (in percent)

s, |00, (9.9 4.0 | 2% |0
Methods 0 @io, o | 0 | O | oty

GIIRA_w/_ambiguous| 10.6 | 11.5 | 41.7 | 35.7 9.7 11.3
GIIRA_w/o_ambiguous 12.6 | 10.5 | 42.1 27.1 11.5 10.4
Cufflinks 20 55 | 431 | 355 18.7 4.6

Table A.5.: Table (1) shows the Cuffcompare analysis for the real yeast data set (evalu-
ated on the complete genome). Table (2) shows the proportions of completely missed
and completely novel predictions. GIIRA was applied in two configurations: inclu-
ding ambiguous reads (GIIRA_w/_ambiguous), and excluding ambiguous reads (GI-
IRA_w/o_ambiguous). The best values for each category are marked in bold.
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A. Appendix

Sampled GIIRA evaluation on the real yeast data set
% 2
4 | %
Methods %&0 é’\*oo O&oo %@((-)’?\ O&Q} 3 {OQ,&
Sensitivity
GIIRA_w/_ambiguous | 55 0.2 | 548 54.2 0.1 2.7
GIIRA_w/o_ambiguous | 53.9 | 0.2 | 54.1 53.4 0.1 2.6
Cufflinks 545 | 0.0 | 53.8 53.4 0.0 2.5
Specificity
GIIRA_w/_ambiguous | 78.7 | 0.3 | 64.1 62.2 0.1 3.7
GIIRA_w/o_ambiguous | 78.8 | 0.3 | 69.8 67.6 0.1 3.7
Cufflinks 745 | 0.1 65.3 64.1 0.0 3.5
F-measure - exact
GIIRA_w/_ambiguous | 64.8 | 0.2 | 59.1 57.9 0.1 3.1
GIIRA_w/o_ambiguous | 64.0 | 0.2 61.0 59.7 0.1 3.1
Cufflinks 63.0 | 0.0 | 59.0 58.3 0.0 2.9
Fuzzy Sensitivity
GIIRA_w/_ambiguous - 0.3 | 555 55.2 0.1 2.7
GIIRA_w/o_ambiguous | - 0.3 | 5438 54.5 0.1 2.7
Cufflinks - 0.0 | 5438 55.2 0.0 2.6
Fuzzy Specificity
GIIRA_w/_ambiguous - 04 | 649 63.5 0.2 3.8
GIIRA_w/o_ambiguous | - 0.4 | 70.7 68.9 0.2 3.8
Cufflinks - 01 | 665 66.2 0.0 3.6
F-measure - fuzzy
GIIRA_w/_ambiguous - 03 | 59.8 59.1 0.1 3.2
GIIRA_w/o_ambiguous | - 03 | 61.7 60.9 0.1 3.2
Cufflinks - 0.0 | 60.1 60.2 0.0 3.0

ambiguous reads (GIIRA_w/o_ambiguous), and Cufflinks.
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Table A.6.: Cuffcompare analysis for the real yeast data set on a sample of 4,200 predic-
tions for each compared method, evaluated against 5,905 reference transcripts. The
highlighted numbers indicate the best results for each criterion for sensitivity and speci-
ficity for GIIRA including ambiguous reads (GIIRA_w/_ambiguous), GIIRA excluding




Bibliography

J.-M. Ahn, M.-S. Kim, Y.-I. Kim, S.-K. Jeong, H.-]. Lee, S. H. Lee, Y.-K. Paik, A. Pandey, and J.-Y. Cho. Proteogenomic analysis of
human chromosome 9-encoded genes from human samples and lung cancer tissues. Journal of proteome research, 13(1):137-146,
2013.

J. E. Allen and S. L. Salzberg. JIGSAW: integration of multiple sources of evidence for gene prediction. Bioinformatics, 21(18):
3596-3603, 2005.

J. E. Allen, M. Pertea, and S. L. Salzberg. Computational gene prediction using multiple sources of evidence. Genome research, 14
(1):142-148, 2004.

S. F. Altschul, T. L. Madden, A. A. Schiffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs. Nucleic acids research, 25(17):3389-3402, 1997.

C. Ansong, S. O. Purvine, J. N. Adkins, M. S. Lipton, and R. D. Smith. Proteogenomics: needs and roles to be filled by proteomics
in genome annotation. Briefings in functional genomics&proteomics, 7(1):50-62, 2008.

S. D. Armstrong, S. A. Babayan, N. Lhermitte-Vallarino, N. Gray, D. Xia, C. Martin, S. Kumar, D. W. Taylor, M. L. Blaxter, ]. M.
Wastling, et al. Comparative analysis of the secretome from a model filarial nematode (Litomosoides sigmodontis) reveals

maximal diversity in gravid female parasites. Molecular & cellular proteomics, 13(10):2527-2544, 2014.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal
of the royal statistical society. Series b (methodological), 57(1):289-300, 1995.

J. Besemer, A. Lomsadze, and M. Borodovsky. GeneMarkS: a self-training method for prediction of gene starts in microbial
genomes. Implications for finding sequence motifs in regulatory regions. Nucleic acids research, 29(12):2607-2618, 2001.

C. Bielow, S. Aiche, S. Andreotti, and K. Reinert. MSSimulator: Simulation of mass spectrometry data. Journal of proteome research,
10(7):2922-2929, 2011.

P. Blakeley, I. M. Overton, and S. ]. Hubbard. Addressing statistical biases in nucleotide-derived protein databases for proteoge-
nomic search strategies. Journal of proteome research, 11(11):5221-5234, 2012.

T. Bonfert, G. Csaba, R. Zimmer, and C. Friedel. A context-based approach to identify the most likely mapping for RNA-seq
experiments. BMC bioinformatics, 13(Suppl 6):S9, 2012.

E. Bonzon-Kulichenko, F. Garcia-Marques, M. Trevisan-Herraz, and J. Vazquez. Revisiting peptide identification by high-accuracy
mass spectrometry: problems associated to the use of narrow mass precursor windows. Journal of proteome research, 14(2):700—

710, 2014.

R. A. Bradshaw, A. L. Burlingame, S. Carr, and R. Aebersold. Reporting protein identification data the next generation of guide-
lines. Molecular & cellular proteomics, 5(5):787-788, 2006.

R. M. Branca, L. M. Orre, H. J. Johansson, V. Granholm, M. Huss, A. Pérez-Bercoff, J. Forshed, L. Kéll, and J. Lehtio. HiRIEF LC-MS
enables deep proteome coverage and unbiased proteogenomics. Nature methods, 11(1):59-62, 2014.

M. R. Brent. How does eukaryotic gene prediction work? Nature biotechnology, 25(8):883, 2007.
M. Burset and R. Guigé. Evaluation of gene structure prediction programs. Genonzics, 34(3):353-367, 1996.

N. Castellana and V. Bafna. Proteogenomics to discover the full coding content of genomes: a computational perspective. Journal
of proteomics, 73(11):2124-2135, 2010.

N. E. Castellana, S. H. Payne, Z. Shen, M. Stanke, V. Bafna, and S. P. Briggs. Discovery and revision of arabidopsis genes by
proteogenomics. Proceedings of the national academy of sciences, 105(52):21034-21038, 2008.

105



BIBLIOGRAPHY

J. S. Choudhary, W. P. Blackstock, D. M. Creasy, and J. S. Cottrell. Interrogating the human genome using uninterpreted mass
spectrometry data. Proteomics, 1(5):651-667, 2001.

D. Chung, P. F. Kuan, B. Li, R. Sanalkumar, K. Liang, E. H. Bresnick, C. Dewey, and S. Keles. Discovering Transcription Factor
Binding Sites in Highly Repetitive Regions of Genomes with Multi-Read Analysis of ChIP-Seq Data. PLoS computational biology,
7(7):€1002111, 07 2011.

M. Claassen. Inference and validation of protein identifications. Molecular & cellular proteomics, 11(11):1097-1104, 2012.

J.-M. Claverie. Computational methods for the identification of genes in vertebrate genomic sequences. Human molecular genetics,
6(10):1735-1744, 1997.

E. P. Consortium. The encode (encyclopedia of dna elements) project. Science, 306(5696):636-640, 2004.

B. Cooper. The problem with peptide presumption and the downfall of target-decoy false discovery rates. Analytical chemistry, 84
(22):9663-9667, 2012.

CPLEX. International Business Machines Corporation. v12.4: User’s manual for CPLEX. IBM ILOG CPLEX, 2011. URL http:
//wuw-01.ibm.com/software/integration/optimization/cplex-optimizer/.

R. Craig and R. C. Beavis. Tandem: matching proteins with tandem mass spectra. Bioinformatics, 20(9):1466-1467, 2004.

R. Craig, J. Cortens, D. Fenyo, and R. C. Beavis. Using annotated peptide mass spectrum libraries for protein identification. Journal
of proteome research, 5(8):1843-1849, 2006.

F. Crick et al. Central dogma of molecular biology. Nature, 227(5258):561-563, 1970.

V. Dancik, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner. De novo peptide sequencing via tandem mass spectrometry.
Journal of computational biology, 6(3-4):327-342, 1999.

A. L. Delcher, K. A. Bratke, E. C. Powers, and S. L. Salzberg. Identifying bacterial genes and endosymbiont DNA with Glimmer.
Bioinformatics, 23(6):673-679, 2007.

A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the royal
statistical society. Series b (methodological), 39(1):1-38, 1977.

F. Denoeud, J.-M. Aury, C. D. Silva, B. Noel, O. Rogier, M. Delledonne, M. Morgante, G. Valle, P. Wincker, C. Scarpelli, O. Jaillon,
and F. Artiguenave. Annotating genomes with massive-scale RNA sequencing. Genome biology, 9(12):R175, 2008.

E. W. Deutsch, L. Mendoza, D. Shteynberg, T. Farrah, H. Lam, N. Tasman, Z. Sun, E. Nilsson, B. Pratt, B. Prazen, et al. A guided
tour of the Trans-Proteomic Pipeline. Proteomics, 10(6):1150-1159, 2010.

P. Drewe, O. Stegle, L. Hartmann, A. Kahles, R. Bohnert, A. Wachter, K. Borgwardt, and G. Ritsch. Accurate detection of differen-
tial rna processing. Nucleic acids research, 41(10):5189-5198, 2013.

T. H. A. Ederveen, L. Overmars, and S. A. F. T. van Hijum. Reduce manual curation by combining gene predictions from multiple
annotation engines, a case study of start codon prediction. PLoS one, 8(5):e63523, 05 2013.

C. G. Elsik, A. J. Mackey, J. T. Reese, N. V. Milshina, D. S. Roos, and G. M. Weinstock. Creating a honey bee consensus gene set.
Genome biology, 8(1):R13, 2007.

J. K. Eng, A. L. McCormack, and J. R. Yates. An approach to correlate tandem mass spectral data of peptides with amino acid
sequences in a protein database. Journal of the american society for mass spectrometry, 5(11):976-989, 1994.

V.C.Evans, G. Barker, K. J. Heesom, J. Fan, C. Bessant, and D. A. Matthews. De novo derivation of proteomes from transcriptomes
for transcript and protein identification. Nature methods, 9(12):1207-1211, 2012.

S. Fanayan, J. T. Smith, L. Y. Lee, F. Yan, M. Snyder, W. S. Hancock, and E. Nice. Proteogenomic analysis of human colon carcinoma
cell lines 1im1215, 1im1899, and 1im2405. Journal of proteome research, 12(4):1732-1742, 2013.

N. Fawal, Q. Li, C. Mathé, and C. Dunand. Automatic multigenic family annotation: risks and solutions. Trends in genetics, 30(8):
323-325, 2014.

106


http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

BIBLIOGRAPHY

D. Fermin, B. B. Allen, T. W. Blackwell, R. Menon, M. Adamski, Y. Xu, P. Ulintz, G. S. Omenn, et al. Novel gene and gene model
detection using a whole genome open reading frame analysis in proteomics. Genome biology, 7(4):R35, 2006.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian journal of mathematics, 8(3):399-404, 1956.

A. Frank and P. Pevzner. Pepnovo: de novo peptide sequencing via probabilistic network modeling. Analytical chemistry, 77(4):
964-973, 2005.

B. E. Frewen, G. E. Merrihew, C. C. Wu, W. S. Noble, and M. J. MacCoss. Analysis of peptide ms/ms spectra from large-scale
proteomics experiments using spectrum libraries. Analytical chemistry, 78(16):5678-5684, 2006.

M. Garber, M. G. Grabherr, M. Guttman, and C. Trapnell. Computational methods for transcriptome annotation and quantification
using RNA-seq. Nature methods, 8:469-477, 06 2011.

S. Gerster, E. Qeli, C. H. Ahrens, and P. Bithlmann. Protein and gene model inference based on statistical modeling in k-partite
graphs. Proceedings of the national academy of sciences, 107(27):12101-12106, 2010.

S. H. Giese, F. Zickmann, and B. Y. Renard. Specificity control for read alignments using an artificial reference genome-guided
false discovery rate. Bioinformatics, 30(1):9-16, 2014.

GLPK. GNU Linear Programming Kit, v4.47. GLPK, 2006. URL http://www.gnu.org/software/glpk/glpk.html.

S. J. Goodswen, P. J. Kennedy, and J. T. Ellis. Evaluating high-throughput ab initio gene finders to discover proteins encoded in
eukaryotic pathogen genomes missed by laboratory techniques. PLoS one, 7(11), 2012.

M. G. Grabherr, B. ]. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, et al.
Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature biotechnology, 29(7):644-652, 2011.

R. Guigé, P. Flicek, J. Abril, A. Reymond, J. Lagarde, FE. Denoeud, S. Antonarakis, M. Ashburner, V. Bajic, E. Birney, R. Castelo,
E.Eyras, C. Ucla, T. Gingeras, J. Harrow, T. Hubbard, S. Lewis, and M. Reese. EGASP: the human ENCODE genome annotation
assessment project. Genome biology, 7(Suppl 1):S2, 2006.

N. Gupta, S. Tanner, N. Jaitly, J. N. Adkins, M. Lipton, R. Edwards, M. Romine, A. Osterman, V. Bafna, R. D. Smith, et al. Whole pro-
teome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genone
research, 17(9):1362-1377, 2007.

N. Gupta, J. Benhamida, V. Bhargava, D. Goodman, E. Kain, I. Kerman, N. Nguyen, N. Ollikainen, J. Rodriguez, J. Wang, et al.
Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome
research, 18(7):1133-1142, 2008.

M. Guttman, M. Garber, J. Z. Levin, J. Donaghey, J. Robinson, X. Adiconis, L. Fan, M. J. Koziol, A. Gnirke, C. Nusbaum, et al.
Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincrnas.
Nature biotechnology, 28(5):503-510, 2010.

B.J. Haas, S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen, ]. Orvis, O. White, C. R. Buell, and J. R. Wortman. Automated eukaryotic
gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome biology, 9(1):R7,

2008.

C. Holt and M. Yandell. MAKER2: an annotation pipeline and genome-database management tool for second-generation genome
projects. BMC bioinformatics, 12(1):491, 2011.

M. Holtgrewe. Mason - a read simulator for second generation sequencing data. Technical Report TR-B-10-06, Fachbereich fiir
Mathematik und Informatik, Freie Universitit Berlin, 2010.

N. Homer, B. Merriman, and S. F. Nelson. BFAST: an alignment tool for large scale genome resequencing. PloS one, 4(11):e7767,
2009.

T. Huang, J]. Wang, W. Yu, and Z. He. Protein inference: a review. Briefings in bioinformatics, 13(5):586-614, 2012.

N. N. Ivanova, P. Schwientek, H. J. Tripp, C. Rinke, A. Pati, M. Huntemann, A. Visel, T. Woyke, N. C. Kyrpides, and E. M. Rubin.
Stop codon reassignments in the wild. Science, 344(6186):909-913, 2014.

107


http://www.gnu.org/software/glpk/glpk.html

BIBLIOGRAPHY

J. D. Jaffe, H. C. Berg, and G. M. Church. Proteogenomic mapping as a complementary method to perform genome annotation.
Proteomics, 4(1):59-77, 2004.

P. D. Jagtap, ]J. E. Johnson, G. Onsongo, F. W. Sadler, K. Murray, Y. Wang, G. M. Shenykman, S. Bandhakavi, L. M. Smith, and
T. J. Griffin. Flexible and accessible workflows for improved proteogenomic analysis using the galaxy framework. Journal of
proteome research, 13(12):5898-5908, 2014.

K. Jeong, S. Kim, and N. Bandeira. False discovery rates in spectral identification. BMC bioinformatics, 13(Suppl 16):52, 2012.

L. Kill, J. D. Canterbury, J. Weston, W. S. Noble, and M. J. MacCoss. Semi-supervised learning for peptide identification from
shotgun proteomics datasets. Nature methods, 4(11):923-925, 2007.

D. E. Kalume, S. Peri, R. Reddy, J. Zhong, M. Okulate, N. Kumar, and A. Pandey. Genome annotation of anopheles gambiae using
mass spectrometry-derived data. BMC genomics, 6(1):128, 2005.

M. Kearse, R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock, S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer,
B. Ashton, P. Meintjes, and A. Drummond. Geneious Basic: An integrated and extendable desktop software platform for the
organization and analysis of sequence data. Bioinformatics, 28(12):1647-1649, 2012.

D. S. Kelkar, D. Kumar, P. Kumar, L. Balakrishnan, B. Muthusamy, A. K. Yadav, P. Shrivastava, A. Marimuthu, S. Anand, H. Sun-
daram, et al. Proteogenomic analysis of mycobacterium tuberculosis by high resolution mass spectrometry. Molecular & cellular
proteomics, 10(12):M111-011627, 2011.

D. S. Kelkar, E. Provost, R. Chaerkady, B. Muthusamy, S. S. Manda, T. Subbannayya, L. D. N. Selvan, C.-H. Wang, K. K. Datta,
S. Woo, et al. Annotation of the zebrafish genome through an integrated transcriptomic and proteomic analysis. Molecular &

cellular proteomics, 13(11):3184-3198, 2014.

A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical model to estimate the accuracy of peptide identifica-
tions made by ms/ms and database search. Analytical chemistry, 74(20):5383-5392, 2002.

D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and S. Salzberg. TopHat2: accurate alignment of transcriptomes in the
presence of insertions, deletions and gene fusions. Genome biology, 14(4):R36, 2013.

S.Kim and P. A. Pevzner. MS-GF+ makes progress towards a universal database search tool for proteomics. Nature communications,
5(5277), 2014.

I. Korf. Gene finding in novel genomes. BMC bioinformatics, 5(1):59, 2004.
K. Krug, A. Carpy, G. Behrends, K. Matic, N. C. Soares, and B. Macek. Deep coverage of the escherichia coli proteome enables
the assessment of false discovery rates in simple proteogenomic experiments. Molecular & cellular proteomics, 12(11):3420-3430,

2013.

K. Krug, S. Popic, A. Carpy, C. Taumer, and B. Macek. Construction and assessment of individualized proteogenomic databases
for large-scale analysis of nonsynonymous single nucleotide variants. Proteomics, 14(23-24):2699-2708, 2014.

D. Kumar, A. K. Yadav, P. K. Kadimi, S. H. Nagaraj, S. M. Grimmond, and D. Dash. Proteogenomic analysis of bradyrhizobium
japonicum usdall0 using genosuite, an automated multi-algorithmic pipeline. Molecular & cellular proteomics, 12(11):3388—

3397,2013.

B. Kiister, P. Mortensen, J. S. Andersen, and M. Mann. Mass spectrometry allows direct identification of proteins in large genomes.
Proteomics, 1(5):641-650, 2001.

H. Lam, E. W. Deutsch, J. S. Eddes, J. K. Eng, N. King, S. E. Stein, and R. Aebersold. Development and validation of a spectral
library searching method for peptide identification from ms/ms. Proteomics, 7(5):655-667, 2007.

H. Lam, E. W. Deutsch, J. S. Eddes, J. K. Eng, S. E. Stein, and R. Aebersold. Building consensus spectral libraries for peptide
identification in proteomics. Nature methods, 5(10):873-875, 2008.

B. Langmead and S. L. Salzberg. Fast gapped-read alignment with bowtie 2. Nature methods, 9(4):357-359, 2012.

H. Li and R. Durbin. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25(14):1754-1760,
2009.

108



BIBLIOGRAPHY

H. Li, B. Handsaker, A. Wysoker, T. Fennell, . Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, and . G. P. D. P. Subgroup. The
Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078-2079, 2009a.

J. Li, L. J. Zimmerman, B.-H. Park, D. L. Tabb, D. C. Liebler, and B. Zhang. Network-assisted protein identification and data
interpretation in shotgun proteomics. Molecular systems biology, 5(1), 2009b.

J. Li, D. T. Duncan, and B. Zhang. Canprovar: a human cancer proteome variation database. Human mutation, 31(3):219-228, 2010.

Y. E. Li and P. Radivojac. Computational approaches to protein inference in shotgun proteomics. BMC bioinformatics, 13(Suppl 16):
54, 2012.

A.J. Link, L. G. Hays, E. B. Carmack, and J. R. Yates. Identifying the major proteome components of haemophilus influenzae
type-strain nctc 8143. Electrophoresis, 18(8):1314-1334, 1997.

Q. Liu, A.J. Mackey, D. S. Roos, and F. C. N. Pereira. Evigan: a hidden variable model for integrating gene evidence for eukaryotic
gene prediction. Bioinformatics, 24(5):597-605, 2008.

A. Lomsadze, V. Ter-Hovhannisyan, Y. O. Chernoff, and M. Borodovsky. Gene identification in novel eukaryotic genomes by
self-training algorithm. Nucleic acids research, 33(20):6494-6506, 2005.

A. V. Lukashin and M. Borodovsky. GeneMark.hmm: New solutions for gene finding. Nucleic acids research, 26(4):1107-1115, 1998.

B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie. Peaks: powerful software for peptide de novo
sequencing by tandem mass spectrometry. Rapid communications in mass spectrometry, 17(20):2337-2342, 2003.

W. H. Majoros, M. Pertea, and S. L. Salzberg. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders.
Bioinformatics, 20(16):2878-2879, 2004.

M. Mann. A shortcut to interesting human genes: peptide sequence tags, expressed-sequence tags and computers. Trends in
biochemical sciences, 21(12):494-495, 1996.

J. Martin, W. Zhu, K. Passalacqua, N. Bergman, and M. Borodovsky. Bacillus anthracis genome organization in light of whole
transcriptome sequencing. BMC bioinformatics, 11(Suppl 3):510, 2010.

C. Mathé, M.-F. Sagot, T. Schiex, and P. Rouzé. Current methods of gene prediction, their strengths and weaknesses. Nucleic acids
research, 30(19):4103-4117, 2002.

D. Meierhofer, C. Weidner, and S. Sauer. Integrative analysis of transcriptomics, proteomics, and metabolomics data of white
adipose and liver tissue of high-fat diet and rosiglitazone-treated insulin-resistant mice identified pathway alterations and
molecular hubs. Journal of proteome research, 13(12):5592-5602, 2014.

M. L. Metzker. Sequencing technologies—the next generation. Nature reviews genetics, 11(1):31-46, 2009.

A. M. Mezlini, E. J. Smith, M. Fiume, O. Buske, G. L. Savich, S. Shah, S. Aparicio, D. Y. Chiang, A. Goldenberg, and M. Brudno.
iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome research, 23(3):519-529, 2013.

C. U. Mohien, D. R. Colquhoun, D. K. Mathias, J. G. Gibbons, J. S. Armistead, M. C. Rodriguez, M. H. Rodriguez, N. J. Edwards,
J. Hartler, G. G. Thallinger, et al. A bioinformatics approach for integrated transcriptomic and proteomic comparative analyses
of model and non-sequenced anopheline vectors of human malaria parasites. Molecular & cellular proteomics, 12(1):120-131,
2013.

A. Mortazavi, B. A. Williams, K. McCue, L. Schaeffer, and B. Wold. Mapping and quantifying mammalian transcriptomes by
RNA-Seq. Nature methods, 5(7):621-628, 2008.

K. Murakami and T. Takagi. Gene recognition by combination of several gene-finding programs. Bioinformatics, 14(8):665-675,
1998.

S. Nahnsen, A. Bertsch, J. Rahnenfiihrer, A. Nordheim, and O. Kohlbacher. Probabilistic consensus scoring improves tandem mass
spectrometry peptide identification. Journal of proteome research, 10(8):3332-3343, 2011.

A. I Nesvizhskii. A survey of computational methods and error rate estimation procedures for peptide and protein identification
in shotgun proteomics. Journal of proteomics, 73(11):2092-2123, 2010.

109



BIBLIOGRAPHY

A. 1. Nesvizhskii. Proteogenomics: concepts, applications and computational strategies. Nature methods, 11(11):1114-1125, 2014.

A. 1. Nesvizhskii and R. Aebersold. Interpretation of shotgun proteomic data the protein inference problem. Molecular & cellular
proteomics, 4(10):1419-1440, 2005.

A. 1. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical model for identifying proteins by tandem mass spectrometry.
Analytical chemistry, 75(17):4646—4658, 2003.

A. I Nesvizhskii, O. Vitek, and R. Aebersold. Analysis and validation of proteomic data generated by tandem mass spectrometry.
Nature methods, 4(10):787-797, 2007.

T. Nilsson, M. Mann, R. Aebersold, J. R. Yates, A. Bairoch, and J. J. Bergeron. Mass spectrometry in high-throughput proteomics:
ready for the big time. Nature methods, 7(9):681-685, 2010.

K. Ning and A. I. Nesvizhskii. The utility of mass spectrometry-based proteomic data for validation of novel alternative splice
forms reconstructed from rna-seq data: a preliminary assessment. BMC bioinformatics, 11(Suppl 11):514, 2010.

U. Omasits, M. Quebatte, D. J. Stekhoven, C. Fortes, B. Roschitzki, M. D. Robinson, C. Dehio, and C. H. Ahrens. Directed shotgun
proteomics guided by saturated rna-seq identifies a complete expressed prokaryotic proteome. Genome research, 23(11):1916—
1927, 2013.

G. Oshiro, L. M. Wodicka, M. P. Washburn, J. R. Yates, D. J. Lockhart, and E. A. Winzeler. Parallel identification of new genes in
saccharomyces cerevisiae. Genome research, 12(8):1210-1220, 2002.

N. Palmieri, V. Nolte, A. Suvorov, C. Kosiol, and C. Schlotterer. Evaluation of different reference based annotation strategies using
RNA-Seq - a case study in Drososphila pseudoobscura. PLoS one, 7(10):e46415, 2012.

C. Pan, B. Park, W. McDonald, P. Carey, J. Banfield, N. VerBerkmoes, R. Hettich, and N. Samatova. A high-throughput de novo
sequencing approach for shotgun proteomics using high-resolution tandem mass spectrometry. BMC bioinformatics, 11(1):118,
2010.

V. Pavlovi¢, A. Garg, and S. Kasif. A bayesian framework for combining gene predictions. Bioinformatics, 18(1):19-27, 2002.

D. N. Perkins, D. J. C. Pappin, D. M. Creasy, and J. S. Cottrell. Probability-based protein identification by searching sequence
databases using mass spectrometry data. Electrophoresis, 20(18):3551-3567, 1999.

J. K. Pickrell, J. C. Marioni, A. A. Pai, J. F. Degner, B. E. Engelhardt, E. Nkadori, J.-B. Veyrieras, M. Stephens, Y. Gilad, and
J. K Pritchard. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464
(7289):768-772, 2012.

S. R. Ramakrishnan, C. Vogel, T. Kwon, L. O. Penalva, E. M. Marcotte, and D. P. Miranker. Mining gene functional networks to
improve mass-spectrometry-based protein identification. Bioinformatics, 25(22):2955-2961, 2009.

L. Reiter, M. Claassen, S. P. Schrimpf, M. Jovanovic, A. Schmidt, J. M. Buhmann, M. O. Hengartner, and R. Aebersold. Protein
identification false discovery rates for very large proteomics data sets generated by tandem mass spectrometry. Molecular &
cellular proteomics, 8(11):2405-2417, 2009.

B. Y. Renard, W. Timm, M. Kirchner, J. A. Steen, F. A. Hamprecht, and H. Steen. Estimating the confidence of peptide identifications
without decoy databases. Analytical chemistry, 82(11):4314-4318, 2010.

B. Y. Renard, B. Xu, M. Kirchner, F. Zickmann, D. Winter, S. Korten, N. W. Brattig, A. Tzur, F. A. Hamprecht, and H. Steen.
Overcoming species boundaries in peptide identification with bayesian information criterion-driven error-tolerant peptide
search (BICEPS). Molecular & cellular proteomics, 11(7):M111-014167, 2012.

P. Rice, I. Longden, and A. Bleasby. EMBOSS: the European molecular biology open software suite. Trends in genetics, 16(6):
276-277, 2000.

H. Safavi-Hemami, H. Hu, D. G. Gorasia, P. K. Bandyopadhyay, P. D. Veith, N. D. Young, E. C. Reynolds, M. Yandell, B. M. Olivera,

and A. W. Purcell. Combined proteomic and transcriptomic interrogation of the venom gland of conus geographus uncovers
novel components and functional compartmentalization. Molecular & cellular proteomics, 13(4):938-953, 2014.

110



BIBLIOGRAPHY

W. S. Sanders, S. M. Bridges, F. M. McCarthy, B. Nanduri, and S. C. Burgess. Prediction of peptides observable by mass spectrom-
etry applied at the experimental set level. BMC bioinformatics, 8(Suppl 7):523, 2007.

A. Savidor, R. S. Donahoo, O. Hurtado-Gonzales, N. C. Verberkmoes, M. B. Shah, K. H. Lamour, and W. H. McDonald. Expressed
peptide tags: an additional layer of data for genome annotation. Journal of proteome research, 5(11):3048-3058, 2006.

S. Schliesky, U. Gowik, A. P. Weber, and A. Brautigam. Rna-seq assembly—are we there yet? Frontiers in plant science, 3:220, 2012.

A. C. Schrimpe-Rutledge, M. B. Jones, S. Chauhan, S. O. Purvine, J. A. Sanford, M. E. Monroe, H. M. Brewer, S. H. Payne, C. An-
song, B. C. Frank, R. D. Smith, S. N. Peterson, V. L. Motin, and J. N. Adkins. Comparative omics-driven genome annotation
refinement: Application across Yersiniae. PLoS one, 7(3):e33903, 03 2012.

N. J. Schurch, C. Cole, A. Sherstnev, J. Song, C. Duc, K. G. Storey, W. I. McLean, S. J. Brown, G. G. Simpson, and G. J. Barton.
Improved annotation of 3’ untranslated regions and complex loci by combination of strand-specific direct rna sequencing,
rna-seq and ests. PloS one, 9(4):e94270, 2014.

J. Seidler, N. Zinn, M. E. Boehm, and W. D. Lehmann. De novo sequencing of peptides by ms/ms. Proteomics, 10(4):634-649, 2010.

O. Serang, M. J. MacCoss, and W. S. Noble. Efficient marginalization to compute protein posterior probabilities from shotgun
mass spectrometry data. Journal of proteome research, 9(10):5346-5357, 2010.

S. P. Shah, G. P. McVicker, A. K. Mackworth, S. Rogic, and B. F. F. Ouellette. GeneComber: combining outputs of gene prediction
programs for improved results. Bioinformatics, 19(10):1296-1297, 2003.

S. T. Sherry, M.-H. Ward, M. Kholodov, J. Baker, L. Phan, E. M. Smigielski, and K. Sirotkin. dbsnp: the ncbi database of genetic
variation. Nucleic acids research, 29(1):308-311, 2001.

D. Shteynberg, A. I. Nesvizhskii, R. L. Moritz, and E. W. Deutsch. Combining results of multiple search engines in proteomics.
Molecular & cellular proteomics, 12(9):2383-2393, 2013.

R. D. Sleator. An overview of the current status of eukaryote gene prediction strategies. Gene, 461(1):1-4, 2010.

R. Sorek and P. Cossart. Prokaryotic transcriptomics: a new view on regulation, physiology and pathogenicity. Nature reviews
genetics, 11(1):9-16, 2010.

M. Stanke, O. Schoffmann, B. Morgenstern, and S. Waack. Gene prediction in eukaryotes with a generalized hidden Markov
model that uses hints from external sources. BMC bioinformatics, 7:62, 2006.

M. Stanke, M. Diekhans, R. Baertsch, and D. Haussler. Using native and syntenically mapped cDNA alignments to improve de
novo gene finding. Bioinformatics, 24(5):637-644, 2008.

H. Steen and M. Mann. The abc’s (and xyz’s) of peptide sequencing. Nature reviews molecular cell biology, 5(9):699-711, 2004.

M. Sultan, M. H. Schulz, H. Richard, A. Magen, A. Klingenhoff, M. Scherf, M. Seifert, T. Borodina, A. Soldatov, D. Parkhomchuk,
D. Schmidt, S. O'Keeffe, S. Haas, M. Vingron, H. Lehrach, and M.-L. Yaspo. A global view of gene activity and alternative
splicing by deep sequencing of the human transcriptome. Science, 321(5891):956-960, 2008.

S. Tanner, Z. Shen, J. Ng, L. Florea, R. Guigg, S. P. Briggs, and V. Bafna. Improving gene annotation using peptide mass spectrom-
etry. Genome research, 17(2):231-239, 2007.

C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg, B. J. Wold, and L. Pachter. Transcript
assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.
Nature biotechnology, 28(5):511-515, 2010.

C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, and L. Pachter. Differential

gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature protocols, 7(3):562-578,
2012.

Q. Tu, R. A. Cameron, K. C. Worley, R. A. Gibbs, and E. H. Davidson. Gene structure in the sea urchin Strongylocentrotus
purpuratus based on transcriptome analysis. Genome research, 22(10):2079-2087, 2012.

111



BIBLIOGRAPHY

M. J. van Baren, B. C. Koebbe, and M. R. Brent. Using n-scan or twinscan to predict gene structures in genomic dna sequences.
Current protocols in bioinformatics, pages 4-8, 2007.

C.J. van Rijsbergen. Information retrieval. London: butterworths, 2nd ed., 1979.

M. Vingron and M. S. Waterman. Sequence alignment and penalty choice: Review of concepts, case studies and implications.
Journal of molecular biology, 235(1):1-12, 1994.

Q. Wang, Y. Lei, X. Xu, G. Wang, and L.-L. Chen. Theoretical prediction and experimental verification of protein-coding genes in
plant pathogen genome Agrobacterium tumefaciens strain C58. PLoS one, 7(9):e43176, 09 2012.

X. Wang and B. Zhang. customprodb: an r package to generate customized protein databases from rna-seq data for proteomics
search. Bioinformatics, 29(24):3235-3237, 2013.

X. Wang and B. Zhang. Integrating genomic, transcriptomic and interactome data to improve peptide and protein identification
in shotgun proteomics. Journal of proteome research, 13(6):2715-2723, 2014.

X. Wang, R.]. Slebos, D. Wang, . J. Halvey, D. L. Tabb, D. C. Liebler, and B. Zhang. Protein identification using customized protein
sequence databases derived from rna-seq data. Journal of proteome research, 11(2):1009-1017, 2011.

X. Wang, Q. Liu, and B. Zhang. Leveraging the complementary nature of rna-seq and shotgun proteomics data. Proteomics, 14
(23-24):2676-2687, 2014.

Z. Wang, M. Gerstein, and M. Snyder. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics, 10(1):57-63,
2009.

C. Wei and M. Brent. Using ESTs to improve the accuracy of de novo gene prediction. BMC bioinformatics, 7(1):327, 2006.

D. L. Wheeler, D. M. Church, S. Federhen, A. E. Lash, T. L. Madden, J. U. Pontius, G. D. Schuler, L. M. Schriml, E. Sequeira, T. A.
Tatusova, et al. Database resources of the national center for biotechnology. Nucleic acids research, 31(1):28-33, 2003.

E. Wijaya, M. C. Frith, P. Horton, and K. Asai. Finding protein-coding genes through human polymorphisms. PLoS one, 8(1):
e54210, 2013.

M. Wilhelm, J. Schlegl, H. Hahne, A. M. Gholami, M. Lieberenz, M. M. Savitski, E. Ziegler, L. Butzmann, S. Gessulat, H. Marx,
et al. Mass-spectrometry-based draft of the human proteome. Nature, 509(7502):582-587, 2014.

S. Woo, S. W. Cha, G. Merrihew, Y. He, N. Castellana, C. Guest, M. MacCoss, and V. Bafna. Proteogenomic database construction
driven from large scale rna-seq data. Journal of proteome research, 13(1):21-28, 2013.

T. Woyke and E. M. Rubin. Searching for new branches on the tree of life. Science, 346(6210):698-699, 2014.

T. Yada, T. Takagi, Y. Totoki, Y. Sakaki, and Y. Takaeda. Digit: a novel gene finding program by combining gene-finders. In
Proceedings of the 8th Pacific Symposium on Biocomputing (PSB 2003), Lihue, Hawaii, USA, pages 375-387, 2002.

J. R. Yates III, J. K. Eng, and A. L. McCormack. Mining genomes: correlating tandem mass spectra of modified and unmodified
peptides to sequences in nucleotide databases. Analytical chemistry, 67(18):3202-3210, 1995.

N. Yok and G. Rosen. Combining gene prediction methods to improve metagenomic gene annotation. BMC bioinformatics, 12(1):
20, 2011.

J.-E. Yu, Z.-Z. Guo, X. Sun, and J.-H. Wang. A review of the computational methods for identifying the over-annotated genes and
missing genes in microbial genomes. Current bioinformatics, 9(2):147-154, 2014.

F. Zickmann, M. S. Lindner, and B. Y. Renard. GIIRA — RNA-Seq driven gene finding incorporating ambiguous reads. Bioinfor-
matics, 30(5):606-613, 2014.

112



Eigenstindigkeitserklarung

Ich versichere, dass ich die hier vorgelegte Dissertation selbststandig angefertigt
habe und die benutzten Quellen und Hilfsmittel vollstindig angegeben sind.

Ein Promotionsverfahren wurde zu keinem friitheren Zeitpunkt an einer anderen
in- oder ausldndischen Hochschule oder bei einem anderen Fachbereich beantragt.
Die Bestimmungen der Promotionsordnung sind mir bekannt.

Franziska Zickmann, Berlin, Februar 2015

113



Lebenslauf

For reasons of data protection,
the curriculum vitae is not included in the online version

114



Publikationen

Zickmann F and Renard, BY : MSProGene - Integrative proteogenomics beyond six-
frames and single nucleotide polymorphisms. Bioinformatics, 2015, 31(12), 1106-i115.

Zickmann F and Renard, BY : IPred - Integrating ab initio and evidence based pre-
dictions for better gene identification. BMC Genomics. 2015, 16(1), 134.

Calvignac-Spencer S, Schulze JM, Zickmann F, and Renard, BY : Clock Rooting Fur-
ther Demonstrates that Guinea 2014 EBOV is a Member of the Zaire Lineage. Plos current
Biology, 2014, 10.1371/ currents.outbreaks.c0e035c86d721668a6ad7353f7f6fe86

Zickmann F, Lindner, MS, and Renard, BY : GIIRA - RNA-Seq driven gene finding
incorporating ambiguous reads. Bioinformatics, 2014, 30(5), 606-613.

Giese, SH, Zickmann F, and Renard, BY : Specificity Control for Read Alignments Us-
ing an Artificial Reference Genome Guided False Discovery Rate. Bioinformatics, 2014,
30(1), 6-16.

Lindner, MS, Kollock, M, Zickmann F, and Renard, BY : Analyzing genome cover-
age profiles with applications to quality control in metagenomics. Bioinformatics, 2013,
29(10), 1260-1267.

Renard BY, Xu B, Kirchner M, Zickmann F, Winter D, Korten S, Brattig NW, Tzur A,
Hamprecht FA, and Steen H : Overcoming species boundaries in peptide identification
with Bayesian information criterion-driven error-tolerant peptide search (BICEPS). Mol
Cell Proteomics, 2012, 11(7), M111.014167.

Scornavacca C, Zickmann F, and Huson DH : Tanglegrams for rooted phylogenetic
trees and networks. Bioinformatics, 2011, 27(13), 248-256.

115



	Introduction
	Proteogenomics
	Gene prediction
	Protein identification
	Open problems
	Terminology
	Thesis outline

	Constructing customized transcript databases
	Candidate search
	Maximum-Flow optimization
	Candidate refinement and scoring
	Implementation
	Experiments
	Results
	Discussion

	Postprocessing of gene predictions
	Prediction combination
	Alternative isoforms
	Output
	Implementation
	Experiments
	Results
	Discussion

	Integrative proteogenomics
	Transcript database and spectra search
	Proteogenomic network
	Post-processing
	Output
	Implementation
	Experiments
	Results
	Discussion

	Summary and outlook
	Outlook

	Appendix
	Bibliography

