
Freie Universität Berlin
Institute of Mathematics and Computer Science

Dissertation

Atomic Transaction Processing in

Mobile Ad-Hoc Networks

Joos-Hendrik Böse

in partial ful�llment of the requirements for the degree of

doctor rerum naturalium

Supervisors:
Prof. Dr. Heinz Schweppe
Prof. Dr. Stefan Böttcher

Submission: November 12, 2008
Disputation: January 30, 2009

Abstract

Mobile Ad-Hoc Networks (MANETs) are self-organized wireless networks where
mobility and limited energy resources cause frequent communication and node
failures. Guaranteeing consistency and integrity of distributed data in such a
volatile environment is challenging. A key concept to assure these guarantees
are distributed atomic transactions. Transferring this concept to a MANET en-
vironment raises several new research questions due to high failure probabilities.
This work analyzes blocking risks of distributed transactions in MANETs and
provides solutions to control these risks.

It is well known that a non-blocking atomic commit protocol cannot exist
in presence of communication and node failures. This impossibility has little
impact on transaction processing in �xed networks, since communication and
node failures are so rare that transaction processing is not signi�cantly a�ected
or delayed; however, the situation in MANETs is not clear. Research has not
answered yet which transactions show high blocking risks and how blocking
risks are in�uenced by di�erent transaction models. Therefore, a controlled risk
management in MANET transaction processing is not possible yet. This thesis
contributes towards a better understanding of atomic transaction processing in
MANETs by presenting:

• A probabilistic model to predict the abort and blocking risks for arbitrary
transaction and MANET scenarios caused by communication or node fail-
ures. The model is used to analyze strict and semantic transaction models.

• A solution to control blocking risks caused by participant failures called
Shared Log Space (SLS). The SLS system allows to preserve decision logs
of a transaction at a de�ned availability within a MANET for recovering
participants. It is shown how the SLS is embedded in commit processing of
strict and semantic transactions and how blocking risks can be decreased to
a desired level. Two implementation approaches of the SLS are described
and evaluated.

• A probabilistic model to analyze the use of a backup coordinator (BC) to
reduce blocking risks caused by a node failure of the transaction coordi-
nator. It is shown that an integration of a BC is not necessarily bene�cial
but may increase the blocking risk in some situations. The presented prob-
abilistic model allows to identify such situations. Additionally, I propose a
scheme to integrate the BC with the SLS to assure a required availability
of decision logs if the transaction coordinator fails.

These contributions are fundamental, as they provide a comprehensive model
to predict and control blocking risks in MANETs. Such a model is useful as it
allows for adaptive risks management during transaction processing, i.e. it can
be decided whether the use of a more reliable protocol, e.g. the SLS or BC, is
indicated and to what level blocking risks can be reduced.

i

ii

Acknowledgments

This thesis is the result of my research at the Database and Information Systems
Group of the Freie Universität Berlin. While conducting research I had the
pleasure of working with excellent people.

In the �rst place, I want to thank my primary supervisor Professor Dr.
Heinz Schweppe. Without his support and advice as well as the freedom and
con�dence he has given me, this work would have never been possible. I am also
very pleased to have Professor Dr. Stefan Böttcher as the second examiner of my
thesis. He encouraged me to work on atomic transaction processing in MANETs
and welcomed me in Paderborn several times for productive discussions.

I thank all my current and former colleagues at the Freie Universität for
the cooperative and pleasant work environment. Especially, I want to thank
Jürgen Bross for numerous hours of technical discussions on weekends and late
evenings. I also want to thank all my graduate students, in particular Andreas
Thaler, Stefan Murawski, and Petra Fiedler who contributed to this work.

I want to thank my family for always supporting and encouraging me and
�nally, I thank my girlfriend Alexandra for her patience during all phases of this
work.

iii

Contents

1 Introduction 3
1.1 Motivation and Problem . 3
1.2 Mission and Contributions . 4
1.3 Thesis Structure . 5

2 MANETs: Background and Preliminaries 7
2.1 Principles and Enabling Technologies 8
2.2 MANET Modeling and Simulation 14
2.3 System and Failure Model . 18
2.4 Summary and Conclusion . 20

3 Atomicity: Background and Preliminaries 23
3.1 The Transaction Concept . 23
3.2 Transaction Models . 25
3.3 Atomic Commit Problems . 30
3.4 Atomic Commit Protocols . 36
3.5 Commit Protocols for Mobile Environments 48
3.6 Transaction Models of this Work 54
3.7 Summary and Conclusion . 57

4 Atomic Transactions in MANETs 59
4.1 MANET Parameters . 61
4.2 Transaction Parameters . 67
4.3 Preliminary Considerations . 69
4.4 Abort Probability . 72
4.5 Blocking caused by Participant Failures 80
4.6 Blocking Caused by Coordinator Failures 95
4.7 Case Study - Mission Coordination 102
4.8 Summary and Conclusion . 105

5 Shared Log Space (SLS) 109
5.1 Idea and Related Work . 110
5.2 SLS Architecture . 113
5.3 Integration of SLS in Recovery Protocols 118
5.4 SLS Lightweight Approach . 124
5.5 Log Availability Model . 130
5.6 Implementation of the SLS Operations 144
5.7 Simulative Evaluation . 156

1

2 CONTENTS

5.8 Overlay-based Implementation Approach 166
5.9 Summary and Conclusion . 171

6 Backup Coordinator 173
6.1 Multiple Coordinators . 174
6.2 Single BC with Veto Right Protocol 175
6.3 SLS Escalation Strategy . 185
6.4 Summary and Conclusion . 194

7 Summary and Conclusion 195

A Symbols and Abbreviations 199

B Simulation Tools 205
B.1 The NS2 Simulation Process . 205
B.2 MarNET Emulator . 207

Bibliography 213

C Anhang gemäÿ Prüfungsordnung 227

Chapter 1

Introduction

Mobile Ad-Hoc Networks (MANETs) are self-organized wireless networks in
which mobile devices communicate with each other in a peer-to-peer fashion
without requiring �xed infrastructure. Such networks become more realistic
with the increasing availability of a�ordable wireless devices. Communication
in MANETs is inherently unreliable due to mobility and limited energy re-
sources. Providing transactional support to guarantee consistency and integrity
of distributed data and applications is therefore more demanding than in �xed
networks. One challenge is to overcome high blocking risks of distributed trans-
actions. This work analyzes and proposes solutions to compensate these risks.

1.1 Motivation and Problem

MANETs can be imagined wherever there is a certain concentration of mobile
computers, such as gatherings of people in a public place or vehicular networks
on highways. Possible applications are, for example, sharing of music between
persons or the exchange of tra�c and road information among vehicles. Addi-
tionally, MANETs are especially attractive in situations where a network infra-
structure is not available or has been destroyed like in a military or disaster
scenario.

Applications deployed in a MANET face the inherent challenge of having
to deal with frequent communication and node failures. Preserving consistency
and integrity of distributed data in presence of failures is di�cult and received
a lot of attention in the research �eld of distributed atomic transactions.

The basic rationale of atomic transactions is to model a set of operations as
one larger portion of work that is treated as a single operation. This operation
is executed in an atomic manner, meaning that either all embraced operations
are executed successfully or none. In a distributed transaction, operations are
assigned to multiple nodes of a network. To coordinate the atomic execution of
these operations, a so-called Atomic Commit Protocol (ACP) is required. In a
MANET where communication is unreliable and nodes can fail at any time, an
ACPs cannot completely avoid so-called blocking situations. A node experienc-
ing a blocking situation cannot decide whether a transaction was successful or
not and has to wait for an undetermined time to reach a decision.

Although distributed atomic transactions are susceptible to blocking, nu-

3

4 CHAPTER 1. INTRODUCTION

merous applications demand for atomicity guarantees in MANETs and therefore
have to consider blocking risks. One example of such an application is mission
coordination in a military or disaster scenario. Distributed resources, such as
medical and technical units, must commit to missions in unison, because mis-
sions only succeed if all of the required resources are available. Another example
of an application requiring atomic transactions are trading transactions, where
an electronic good (e.g. a music �le) is exchanged for some virtual currency.
Here, atomicity is required in the sense that either both, goods and money are
exchanged or nothing at all. Several other MANET applications demanding
atomicity guarantees are described in [108].

In research, blocking is considered a major problem of distributed atomic
transaction processing. The practical relevance of this problem is expected to
be di�erent for MANETs compared to �xed networks. While in �xed networks,
practice showed blocking situations to be so rare that transaction processing
is not signi�cantly a�ected or delayed, in MANETs the situation is not clear.
The general assumption is that, due to more frequent communication and node
failures, blocking problems require more attention than in the �xed world. How-
ever, it has not been answered yet which kind of transactions show high blocking
risks and how di�erent transaction models in�uence these risks. Such informa-
tion is important to decide for a given transaction whether the use of a more
reliable ACP or recovery scheme to reduce blocking risks is indicated. At the
time of writing this thesis, the common way to quantify these risks have been
tedious simulation studies. This approach is obviously not feasible to derive
blocking probabilities for an adaptive risk management during transaction pro-
cessing. Hence, calculation models are necessary to predict the blocking risks
of a transaction analytically. Additionally, schemes to reduce blocking risks are
required when blocking risks are high. For such recovery schemes it is desirable
to be able to predict their bene�t.

Besides increased blocking risks, transactions in MANETs also exhibit high
abort risks, since a single communication or node failure can cause the complete
transaction to be aborted. To decide during transaction processing whether
the abort risk of a transaction is acceptable, a calculation model is needed. In
addition, being able to predict the abort risk of a transaction is required to
derive its blocking probability since blocking is a subsequent problem to abort,
i.e. a blocking situation can only occur if the transaction is not aborted before.

These observations motivated the main contributions of this thesis.

1.2 Mission and Contributions

The main objectives of this thesis are: (i) to examine the blocking and abort
probabilities of atomic transactions in MANETs and to develop probabilistic
models to derive these risks analytically; and (ii) to develop schemes to com-
pensate for blocking risks in a predictable way. Towards these goals I present
three signi�cant contributions in the area of atomic transaction processing in
MANETs. The �rst contribution is:

• A probabilistic model which allows to predict the abort and blocking prob-
abilities of a transaction processed in a MANET. I consider such a model to
be crucial because it allows to answer the fundamental question of whether

1.3. THESIS STRUCTURE 5

transaction processing is possible in a MANET scenario or if a high abort
risk renders transaction processing impossible. The model also reveals
which blocking situation requires special attention and whether blocking
is a problem at all in a transaction. The presented prediction model is
developed for basic transaction models providing strict or semantic atom-
icity and considers recovery from failures as well as cooperative recovery
in calculations of blocking risks.

The calculation models presented in this thesis allow for any given combina-
tion of a MANET and a transaction to compute the probability for blocking.
Based on these probabilities, additional schemes can be integrated to reduce the
blocking risk. Throughout the work, I distinguish blocking situations caused by
a participant and by a coordinator. I present a compensation scheme for both
blocking situations, allowing to reduce blocking risks in a controlled manner.
These schemes are the second major contribution of this work:

• Blocking situations caused by a participant failure are reduced by the so-
called Shared Log Space (SLS), allowing participants to leave blocking
situations at a de�ned probability. One can think of the SLS as a dis-
tributed shared storage that preserves a transaction decision at a desired
availability within a MANET. Controlling the availability of the transac-
tion decision for blocked participants allows to adjust the probability that
a blocked participant can learn the transaction decision. Blocking is there-
fore compensated with a de�ned probability. I present and evaluate two
implementation approaches of the SLS. The main focus of this work is on
a lightweight approach that disseminates the decision log once and does
not maintain its availability any further. The second approach presented
distributes the decision log within a cluster-overlay structure and actively
maintains its availability.

• Blocking situations caused by a node failure of the coordinator are com-
pensated by a backup coordinator (BC). I provide a probabilistic model
to calculate the bene�t of a single BC. Such a model is crucial because
the integration of a BC is not necessarily bene�cial but harmful in some
MANET scenarios. In a second step, I propose a scheme that integrates
the BC protocol with the SLS. This allows participants which are blocked
due to a node failure of the coordinator to leave blocking at a de�ned
probability.

I consider these contributions to be fundamental, as they provide a compre-
hensive model to predict and control blocking risks in MANETs. Providing
an analytical approach to these problems is useful as it allows controlled risk
management during transaction processing.

1.3 Thesis Structure

The remainder of this dissertation is structured as follows: First, relevant back-
ground information on MANETs and atomic transactions is given in Chapter 2
and Chapter 3.

6 CHAPTER 1. INTRODUCTION

In Chapter 2, I present several important routing and broadcasting schemes
required for the understanding of subsequent chapters. Additionally, the system
and failure model used within this work is de�ned.

Chapter 3 introduces the concept of atomic transaction processing and dis-
cusses di�erent transaction models. The atomic commit problem is de�ned
formally, and important ACPs are presented and evaluated according to their
applicability in MANETs. At the end of Chapter 3, the strict and semantic
transaction models are de�ned, which are used in subsequent chapters to reason
about abort and blocking risks as well as compensation schemes.

Chapter 4 presents the �rst major contribution of this thesis. Here, the calcu-
lation model for abort and blocking probabilities of strict and semantic transac-
tions is presented. The chapter also demonstrates how parameters of the system
model such as the probability of communication failures can be derived for a
given MANET scenario. The derived formulae for abort and blocking probabil-
ities are applied to an example scenario and compared to experimental results
obtained by simulations using the ns2 network simulator. The presented calcu-
lations of blocking probabilities also consider simple recovery schemes. Parts of
the calculation model presented in Chapter 4 have been published in [28, 26].

Chapter 5 gives a formal description of the Shared Log Space (SLS) archi-
tecture and its integration into strict and semantic transaction models. Two
implementation approaches of the SLS are described, while the main focus of
Chapter 5 is on a lightweight approach and its underlying availability model.
An overlay-based implementation approach is only brie�y described. In the end,
a ns2 simulation study shows the bene�t of the SLS for blocked participants in
an example MANET scenario.

In Chapter 6, compensation for blocking situations caused by a node failure
of the coordinator with a backup coordinator (BC) is described. I provide a
detailed calculation model to compute the decrease in blocking probability if a
BC is used. Additionally, a strategy is presented that combines the SLS with the
BC approach. Calculation models presented in this chapter have been published
in [27].

Finally, Chapter 7 summarizes and concludes this thesis. Appendix B con-
tains detailed information about simulation parameters and a description of the
simulation environments used for evaluation of the schemes proposed in this
work.

Chapter 2

MANETs: Background and
Preliminaries

A Mobile Ad-hoc Network (MANET) is an infrastructure-less network formed
by autonomous mobile devices that are equipped with short-range radio devices.
The key characteristics of MANETs are node mobility, causing frequent topology
changes of the network, and limited energy and computational resources. These
characteristics raise many challenges for network protocol design in all layers of
the protocol stack. E.g. the physical layer has to deal with rapid changes in link
quality, while the media access layer has to minimize collisions and deal with
hidden and exposed terminal problems. At the network layer, mobile nodes have
to calculate paths to allow for packet exchange over multiple hops. Although
research has made great advances, communication in MANETs is inherently
unreliable and applications deployed in a MANET have to deal with frequent
node and communication failures.

Even though in recent years a large research community has actively worked
on MANETs, they are still mainly an academic topic. An exception are personal
area networks (PANs) using the 802.15 (Bluetooth) standard [59]. Here, up to
eight devices can be connected in an ad-hoc manner in a so-called piconet.
However, such PANs are not at the center of this work, as they are mainly
intended to pair mobile devices at very close distances, such as a headset with
a mobile phone or a PDA with a desktop PC. The type of MANET that is
considered in this work are networks of larger scale, covering complete university
campuses or even complete districts of a city and consisting of 10�100 mobile
nodes. Except for small lab deployments with just a few nodes, real-world
MANET experiments are not practical. Simulation of MANETs has become
the preeminent approach to evaluating proposed schemes, while the potential of
analytical modeling is often underrated.

In this chapter, I brie�y present principles and enabling technologies of
MANETs to provide important background information. Besides technical is-
sues like radio standards and routing algorithms, I introduce standard modeling
concepts of MANETs. However, I only present a selection of topics important to
this work; for a more comprehensive introduction to MANETs I refer the reader
to [115, 73]. Especially important for the remainder of this work are the system
and failure models derived from the MANET principles presented in the end of

7

8 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

this chapter in Section 2.3.1.

2.1 Principles and Enabling Technologies

The main driving factor of MANETs is the rapid progress in wireless communi-
cation. Open standards and the availability of cheap chipsets have resulted in a
wide proliferation of mobile devices that are technically capable to cooperatively
form MANETs. The most widely accepted standard for wireless ad-hoc technol-
ogy is the IEEE 802.11 protocol family [58] brie�y described in the following, as
the 802.11 physical and MAC layers are used in simulations in later chapters.

At the network layer, nodes must cooperate to calculate communication
paths, and forward packets along these paths to allow for communication be-
tween nodes not in each other's direct radio range. Discovery and maintenance
of such routes is the task of multi-hop routing algorithms. The main challenge
of such multi-hop schemes is to deal with node mobility, which leads to sud-
den path breaks and network partitioning. The frequency of such events varies
widely between di�erent MANET scenarios, as they depend on the grade of node
mobility as well as on the network density. It is a major problem in research on
MANETs to derive general insights that are valid for a wide range of MANET
scenarios. A common classi�cation is to di�erentiate between dense and sparse
MANETs. Although this is a raw informal classi�cation, it is widely used and
most protocols developed for MANETs focus on either dense or sparse networks.
General solutions that �t all classes of MANETs are rare.

In this section I will present the important multi-hop routing algorithms
as well as broadcast schemes. This is important because routing information
provided by routing schemes is used later by the Shared Log Space (SLS) pre-
sented in Chapter 5, and broadcast schemes are a fundamental building block
of the SLS to increase data availability in a MANET. Additionally, the current
MANET research landscape is brie�y outlined and the mission of this work is
related to other research activities.

2.1.1 Radio Technology

The most widely accepted wireless standard is the IEEE 802.11 protocol fam-
ily. Members of this family are the 802.11a/b/g/p protocols. The radio range
of mobile nodes using 802.11 is approximately a few 100m outdoors and less
than 100m indoors. IEEE 802.11 provides an ad-hoc mode in addition to the
commonly used infrastructure mode. However, the ad-hoc mode de�ned by
IEEE 802.11 does not de�ne any multi-hop routing schemes. Other standards,
e.g. the hiperLAN family (the european counterpart to IEEE 802.11) provides
a centrally controlled packet-forwarding mechanism, allowing nodes to receive
packages that are in deadspots of a mobile support station, while a distributed
path calculation for multi-hop routes is not part of this standard. To provide
such a multi-hop routing in MANETs, a special routing extension on the network
layer like AODV [117] or DSDV [116] is mandatory.

2.1. PRINCIPLES AND ENABLING TECHNOLOGIES 9

802.11a 802.11b 802.11p hiperLAN-1 hiperLAN-2

Frequency 5 GHz 2.4 GHz 5.9 GHz 5.15+17.1 GHz 5 GHz
Radio range 100m some 100m 1000m 50m 50�100m
Transm. rate 54Mbps 11Mbps 27Mbps 23.5Mbps 54Mbps

Table 2.1: Comparison of wireless standards.

Table 2.1 compares transmission rates and radio ranges of di�erent 802.11
and hiperLAN standards. While IEEE 802.11a/b are commonly found in stan-
dard consumer products, 802.11p is an evolving standard for vehicular wireless
access, supporting high node speeds up to 200 kph. Other standards assume
only node speeds of about 50 kph.

2.1.2 Research Issues in MANETs

As MANETs are a young research �eld, manifold research activities are found
in this area. This subsection gives a brief overview of the main research �elds
in this area and shows how the research presented in this thesis integrates into
the MANET research agenda and how it relates to other activities in this area.
Figure 2.1 shows the di�erent layers of a MANET and lists important research
issues at each layer.

Figure 2.1: Research issues related to MANET layers.

The link and physical layers are considered by the wireless standards de-
scribed above, e.g. 802.11 or hiperLAN. Here, research focuses on medium ac-
cess, e.g. solving the hidden terminal problem and frequency modulation at the
physical layer. Most current research activities are found at the network layer of
the MANET protocol stack. Here, research activities are concerned with routing
schemes and other communication-related problems such as reliable multicast
or e�cient broadcast schemes. Clustering protocols are examined to allow for
logical grouping of mobile nodes and to establish an overlay hierarchy that can
be used e.g. for routing or service discovery. At the transport layer, the main
challenge is to provide for more convenient transport protocols like TCP. The
application layer of the MANET protocol was recently considered by scholars
examining data management problems like data consistency and transaction
processing, which is also the main concern of this thesis.

10 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

The main challenge here is to design schemes that are capable of tolerating
frequent communication and node failures of a MANET. Coordination prob-
lems such as consensus and leader election attracted the interest of scholars
in [21, 132, 155]. The main problem of research activities on the application
layer in MANETs is that they are heavily in�uenced by subjacent layers. As
no standardized protocol stack for MANETs exists, the performance of schemes
proposed at the application layer is in�uenced by the con�guration e.g. of routing
schemes, MAC layer and transport layer. Another observation in this context is
that many problems a�ect multiple layers of the protocol stack. While in �xed
networks the strict separation of layers is bene�cial as it hides complexity and
allows for interoperability of di�erent implementations of the di�erent layers, it
is often desirable in MANETs to comprise multiple layers into the solution of
a problem. For example, the general problem of reliability and fault tolerance
a�ects all layers of a MANET. At the application layer, certain reliability re-
quirements may be posed that are to be considered by the transport and network
layer, e.g. by prioritizing certain packets and by modifying the modulation at
the physical layer to minimize the loss rate of these packets. Figure 2.1 shows
how the issue of reliability and fault-tolerance cuts through all MANET layers.
This general approach is known as cross-layer architecture and applies to many
other problems, such as assuring cooperation and fairness in MANETs or energy
e�ciency.

Generally, the solutions in MANETs are application driven; the development
of �one-size-�ts-all� solutions is not feasible for MANETs. For example, a ve-
hicular MANET must deal with fast-changing topologies, while a MANET of
mobile sensors is more susceptible to failures caused by exhausted energy re-
sources. Hence, research in MANETs often considers a certain class of MANET
scenarios, making it di�cult to evaluate the relevance of a proposed approach
for other scenarios. Here, analytical models signi�cantly simplify the evaluation
of schemes for di�erent classes of MANET scenarios compared to simulation
based evaluation.

2.1.3 Routing Algorithms

The most commonly used routing protocols are topology-based. Here, nodes use
knowledge about the current topology of the network to decide which neighbor
a packet must be forwarded to for it to reach a remote node. In contrast, e.g.
geographic routing uses the geographic location of the destination node to decide
how to forward a message. Hierarchical routing protocols establish an overlay
network, for example, by clustering used for routing.

The main problem to be solved by topology-based routing schemes is how to
discover the constantly changing network topology. To learn about the current
network topology, mobile nodes periodically announce their presence and keep
track of their current neighbors. By sharing collected knowledge, the complete
network topology can be learned over time. However, the learned topology must
undergo constant maintenance to delete broken routes and detect new ones.

Topology-based routing schemes either constantly keep track of the current
network topology or discover routes only on demand, i.e. when an application ac-
tually issues a message, the routing scheme initiates route discovery. Approaches
following the �rst strategy are called proactive, while the second approach is de-

2.1. PRINCIPLES AND ENABLING TECHNOLOGIES 11

noted as reactive. The important point for this work is that proactive as well
as reactive routing schemes provide a local routing table that allows the direct
neighbors of a node to be discovered. In Table 2.1(a) an example routing table
for the topology depicted in Figure 2.1(b) is shown.

(a) Routing table of node A.

Destination Next Hop Hops
Seq. #

DSDV

Seq. #

AODV

E A 1 E 08 10

C B 2 C 02 24

B A 1 B 06 32

F B 2 F 04 14

A A 0 A 12 68

G E 2 E 05 12

(b) Example MANET topology.

Table 2.2: Example MANET routing topology.

Route entries are annotated with sequence numbers and other protocol spe-
ci�c �ags, to indicate the age and state of a route as well as to anticipate cycles
of routes.

In the following, the most important proactive and reactive routing schemes
for this work are brie�y presented. For implementation and simulation of ap-
proaches developed in this work I use the DSDV (proactive) [116] and AODV
(reactive) [117] routing protocols that are brie�y presented in the following,
while advanced variants of AODV like the Reliable AODV protocol [79] are not
considered.

2.1.3.1 Proactive Routing

In a proactive routing scheme, nodes constantly keep track of topology changes.
Hence, a node maintains routes to every node at any time. The most notable
proactive routing algorithm is the Destination Sequence Distance Vector Routing
(DSDV) protocol. A DSDV routing-table entry contains the destination, the
next hop to use as relay, the hop count of the route and a sequence number.
The sequence number of a route is issued by the destination node and indicates
the age of the entry. A node periodically announces its routing table to its
neighbors with a sequence number increased by two. A node detecting a broken
link increases the sequence number of its routing entry by one.

Table 2.1(a) shows an excerpt of an example routing table of the node with
id A for the example topology shown in Figure 2.1(b). From its routing table,
A can learn that node E and B are in its direct neighborhood, while the route
to G via E is currently broken. For a more detailed description of DSDV, see
[116]. The important issue for this work is the fact that nodes in direct hop
range can be directly extracted from the routing table.

In practice, DSDV has been found to be practical for smaller networks with
few nodes. Its main drawback is that routes are maintained that are possi-
bly never used, which causes a higher message overhead compared to reactive
schemes.

12 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

2.1.3.2 Reactive Routing

In reactive routing schemes, topology information is only acquired if a route
to a certain destination is requested. Hence, unnecessary route maintenance is
avoided in exchange for a short delay induced by route discovery. The most
prominent reactive routing schemes are Dynamic Source Routing (DSR) [74]
and Ad-hoc On Demand Distance Vector routing (AODV) [117]. While DSR is
a rather old protocol, AODV is currently one of the most used-schemes and is
introduced here brie�y.

In AODV every node keeps track of its direct neighbors by listening to pe-
riodical HELLO broadcasts issued by each node to announce its presence to its
direct neighborhood. In the case where a route to a destination is unknown,
the source node issues a route request (RREQ) message to all its direct neigh-
bors. The RREQ message contains the network identi�er of the source node, the
identi�er of the destination node, a lifespan value and an increasing sequence
number, serving as the unique id of the message. A node receiving a RREQ
message rebroadcasts the message to its neighbors if it does not know a route to
the destination of the RREQ. If it has a route to the destination, it answers with
a route reply (RREP) message to the source node. In both cases, the node saves
the new route learned through the RREQ message. Hence, the RREP message
can be transferred back on the path it took to the node that provided a valid
route to the destination. The RREQ message is rebroadcast until its lifespan
expires. If the source node does not receive an answer to its RREQ message, it
reissues a new RREQ message with a higher lifespan value and a new id.

Routing entries are adjusted by distributing route error (RERR) messages
that are issued when a node recognizes that one of its routes has become invalid.

Table 2.1(a) shows an sample excerpt from a routing table; the �fth column
contains AODV sequence numbers. These sequence numbers are used to decide
whether a piece of received routing information is newer than the current entry.
A higher sequence number indicates a more recent route.

2.1.4 Broadcasting in MANETs

Delivering a message to all nodes in a MANET is the goal of a class of broadcast
protocols called �ooding protocols. Broadcasts are used to discover routes or
resources in MANETs. For example, in this work I will use broadcasts to discover
nodes that have participated in a transaction and to distribute log data within
a MANET.

I borrow the classi�cation of broadcast schemes proposed by [77], distin-
guishing broadcast-in-space and broadcast-in-time protocols. Broadcast-in-space
protocols deliver a message within milliseconds to all nodes within a network
partition. Nodes that reside in other partitions are not reached. These protocols
are designed for delay-sensitive applications such as service or route discovery
and have to deal with the broadcast storm problem [105], which causes a com-
plete blocking of the wireless medium when too many nodes try to forward a
package simultaneously. Proposals to avoid broadcast storms are to use a ran-
dom waiting time before a node forwards a received packet (Random Access
Delay (RAD)), probabilistic schemes that forward a packet-based on a prede-
termined probability [105], counter based approaches that rebroadcast only if
a the number of redundant packages received falls below a certain threshold

2.1. PRINCIPLES AND ENABLING TECHNOLOGIES 13

value, and protocols using information about the current number of neighbors
[114, 33] or the neighbor change rate [146] to decide whether a package is going
to be rebroadcasted. For an overview and discussion of the numerous proposed
broadcasting-in-space schemes, I refer to [77, 154]. In this work, I use broad-
casting protocols based on the probabilistic approach.

In contrast to broadcast-in-space schemes, broadcast-in-time protocols rely
on node mobility to distribute data in a MANET. Such protocols are based
on a store-and-forward strategy where packets are transported from one parti-
tion to another partition by moving nodes and are primarily designed for sparse
MANETs. The main problem to be solved here is not the broadcast storm prob-
lem but to detect network partitions. To initiate a rebroadcast of a data item in a
partition where the data has not been distributed yet, either negotiation-based
strategies or repetitive-broadcasting strategies are used. In negotiation-based
protocols such as SPIN (Sensor Protocols for Information via Negotiation) [70]
or NADD (Negotiation based Ad-Hoc Data Dissemination Protocol) [66], nodes
advertise data they have stored to surrounding nodes, which in turn answer with
a request for data they have not received yet. Hence, data is only rebroadcast on
request by nodes that are missing some data. Repetitive broadcasting of a data
item omitting a negotiation phase is the central approach of the so-called hiper-
�ooding protocols like [109, 149]. Rebroadcast of data is initiated, if partitions
previously separated are merged.

Recently, scholars have proposed integrated protocols that cope with the
broadcast storm problem and with network partitioning. The most prominent
approach of this class is hypergossiping [78]. Hypergossiping applies di�erent
strategies to reach all nodes in a partitioned network. Within partitions, a so-
called intra-partition forwarding strategy is used, which is based on a probabilis-
tic forward scheme. Broadcast repetitions are used when merging of partitions
is detected.

Broadcasting schemes in MANETs is an active research area that constantly
generates more message e�cient �ooding protocols. The SLS proposed later in
this work requires �ooding schemes but does not make any assumptions on how
they are implemented.

2.1.5 Summary - Principles and Enabling Technologies

In this section, I have presented the MANET research landscape and integrated
my research activities. As multi-hop routing and broadcasting are relevant to
this work, some key characteristics and concepts have been presented for these
areas. The presented MANET characteristics are captured by the system and
failure models of this thesis presented at the end of this chapter.

The presentation of routing schemes also narrows down the class of MANETs
I am interested in within this work, which are MANETs using topology-based
routing schemes posing no further assumptions on node characteristics such as
knowledge about the current position etc.

However, the schemes and models presented in the remainder of this work
do not depend on certain multi-hop routing schemes, i.e. they are independent
of the concrete multi-hop routing scheme used in a MANET scenario. More
advanced routing schemes possibly available in future can be easily integrated
into the probabilistic models presented in this work.

14 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

2.2 MANET Modeling and Simulation

Real-world MANET experiments are tedious and expensive in terms of required
equipment and resources. Hence, examination of MANETs is commonly done
analytically or by means of simulations. In both cases, abstract models are
required to describe the real-world behavior of a MANET at an abstract level.

Analytical investigation of MANETs is mostly based on geometric graph
models that are used to derive certain static characteristics, such as connected-
ness or path probability, while dynamic topology changes are hard to express
analytically. To understand the in�uence of these network dynamics, simulation-
based approaches are typically used.

In this work analytical as well as simulation-based studies are presented.
Hence, the basic properties of both approaches are brie�y presented in the fol-
lowing.

2.2.1 Geometric Graph Models

To analytically reason about a MANET, it is commonly modeled as a geometric
random graph. It is assumed that nodes are randomly placed in an area A, while
links between nodes are de�ned by a wireless link model. The spatial distribution
of nodes and links between them de�nes the topology of the MANET at a
random time. The wireless link model describes whether a direct link between
two nodes exists and models the propagation of the radio signal. The commonly
used link model is the purely geometric link model [121], which assumes that the
received signal strength diminishes in proportion to some power of the geometric
distance between two nodes. Hence, if omnidirectional antennas are assumed, a
node has links to all nodes that are currently located within a certain radius r.
In reality, objects such as buildings or walls shield the signal in di�erent ways,
so that two receivers that are within a radius r to a sender encounter di�erent
probabilities to receive the signal. This behavior is approximated by the shadow
fading link model [121], which assumes a log-normal distributed probability for
a link between two nodes in distance r. Based on a spatial distribution of
nodes and the geometric link model, a random geometric graph can be de�ned,
consisting of a set V = {n0, n1, . . . nm} of vertices (nodes) and a set E of edges
(links), described by node pairs E = {ninj , . . . , nnnm}. The geometric random
graph G is then de�ned by G = {V,E}.

Within this work the central concept of path probability is derived from G.
The path probability Ppath describes the probability that for a random place-
ment and given transmission capabilities, a multi-hop path exists between two
randomly chosen nodes. While analytical derivation of Ppath is complex for n-
hop paths and not solved yet, there exist calculation models to estimate Ppath
for 1�2 hop paths. The probability that a communication path between two
nodes survives for a period t is de�ned as path-duration. The path-duration is
mainly in�uenced by the changing topology and is therefore hard to express an-
alytically. Hence, simulation is commonly used to reason about path-durations
in a MANET scenario. A MANET simulation is based on various models as
described in the following.

2.2. MANET MODELING AND SIMULATION 15

2.2.2 Simulation Models

Simulation of MANETs is by far the most often used approach to investigate the
inherent properties of MANETs and to evaluate the performance of protocols
and applications. At the time of writing, simulation-based approaches are the
only possibility for examining the in�uence of dynamic topology changes in a
MANET. However, the main challenge of a simulation-based analysis is to de�ne
appropriate models that approximate reality at a reasonable level of abstraction.
The dynamic topology of a MANET is in�uenced (i) by node mobility, de�ned
by a mobility model, (ii) node failure characteristics de�ned by an outage model,
and (iii) by the link model (see above) as depicted in Figure 2.2.

The mobility model has a signi�cant in�uence on topology dynamics, as
it directly de�nes speed and direction of movement for every node. In this
work, I will use di�erent mobility models, namely the Area Graph Based (AGB)
model and the more common Random Way-Point (RWP) mobility model. I
will dedicate the next subsection to these models. The outage model describes
node outages e.g. caused by exhausted energy resources or technical failures of
nodes. It commonly considers energy consumption required for packet transfer
and hence is in�uenced by network tra�c. The outage model can also be de-
�ned by assuming arbitrary probability densities for technical and other failure
events. Based on the dynamic topology, the behavior of the physical, link and
network layers can be simulated. On top of this setup application models are
implemented like transaction models as in this work.

Application Model

Network Layer

Link Layer

Physical Layer

Topology Dynamics

Mobility
Model

Outage
Model

Link
Model

Figure 2.2: Models required for MANET simulation.

As an implementation of these sub-models and layers is tedious and error
prone, correctly proved simulation frameworks like ns2 [2, 23] or GloMoSim
[11] are the �rst choice for simulative approaches. In this work, I use ns2 as
well as the MarNET emulation system described in Appendix B.2 for simulative
evaluation. Even with a given simulation framework, the mobility, outage, and
link models have to be adjusted by numerous parameters that may bias results.
Deriving meaningful statistical results is therefore far from trivial, and an ana-
lytical approach should always be considered �rst. The credibility of MANET
simulations has to be considered as critical if either one of the important models
is not considered or if implementation and con�guration of one model is not
completely understood.

For this work, I consider analytical models, as the more valuable contribu-

16 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

tion for evaluation, as they abstract from the numerous parameters induced by
simulation models. I regard simulation studies as useful tests whether the pro-
posed approach can be e�ciently implemented and to provide a �reality check�,
which allows to identify whether any important factors have been missed by an
analytical model. The simulative evaluation is therefore kept brief compared to
the model parts of this work. For a further discussion of pitfalls and problems
of simulative evaluation, I refer to [8, 86].

In the following, the important mobility models used later are described.

2.2.3 Mobility Models

The choice and understanding of mobility models used in simulations is cru-
cial to evaluate results. While a large number of mobility models have been
proposed, only a few are commonly used by the research community, mainly
because they are implemented in the major simulation frameworks like ns2.
For a comprehensive overview and classi�cation of available mobility models,
see [32, 15].

The main classi�cation criterion of mobility models is their level of detail.
At a microscopic level, the individual node motion is described, e.g. �at time
100 node n1 begins to move from point (x1, y1) towards point(x2, y2) with speed
v�. On a macroscopic level, movement is described on a larger scale, e.g. �At
time 100 node n1 moves from building A to building B�.

The by far most commonly used mobility model is the Random Way-Point
(RWP) mobility model, �rst described in [75]. RWP is a mobility model that
describes movement on a microscopic level and does not assume any restrictions
on movement paths of nodes such as roads. Variants like the Random Direction
Model [127] overcome the problem of density waves in the center of the simula-
tion area in the RWP model by allowing only direction changes if a node reaches
the boundaries of the simulation plane. Other models sharing the same basic
properties of the RWP model are described in [100, 62, 112]. Because the RWP
model is used in this work, it is presented in more detail in Subsection 2.2.3.2.
Another common model describing movement on a microscopic level that re-
stricts movement to a de�ned grid of roads is the Manhattan Mobility (MH)
model proposed in [96]. Other classes of models describing movement at a mi-
croscopic level are group mobility models, which take the correlation between
individual nodes into account; see e.g. [72]. For a survey of such models mainly
proposed in transportation theory, see [71].

Models describing node movement on a macroscopic level are commonly
found in the area of cellular networks. Here, only the movement from one cell to
another is of interest, in order to model the hand-over process of mobile clients
between neighboring base stations. Because MANETs do not rely on a cell-based
network structure, these models cannot be applied directly. A generalization is
to model node movement as a random walk on an undirected graph as proposed
in [144]. In a graph model, vertices of the graph represent locations or areas,
while edges represent paths in the real world, e.g. streets between these areas.
A mobility model based on such a graph describes the transition of nodes from
one area to another. Hence, it is modeled how nodes �jump� from one location
to another without describing the microscopic view of the transition process
between areas. Additionally, the microscopic view on movement within areas

2.2. MANET MODELING AND SIMULATION 17

main
disaster site

secondary
disaster site

medical site
supply depot

rescue airfield refugee camp

(a) Graph-based mobility model.

main disaster site

500m * 500m

secondary
disaster site

200m * 80m

medical
 site

80m * 200m

rescue airfield
500m * 50m

supply
depot

100m * 100m

0.25

0.33

0.325

0.33 0.33

0.33

0.330.5

0.5

0.5 0.15

0.325

0.25

0.33

(b) Area Graph�based mobility model.

Figure 2.3: Graph-based and Area Graph-based mobility model.

is neglected here. A model compensating these disadvantages is the so-called
Area Graph�Based (AGB) [19] mobility model. The main idea of the AGB
mobility model is to describe node motion on a microscopic as well as on a
macroscopic level. In the following, the Area Graph-Based mobility model is
described, followed by the RWP mobility model.

2.2.3.1 Area Graph Model

The Area Graph-Based model (AGB) is based on a directed graph G = (A, E).
The vertices A of G represent areas with higher node density, like buildings or
public places. In contrast to the graph model proposed by [144], where vertices
are interpreted simply as points, the AGB model interprets vertices as areas
with de�ned dimensions, e.g. the dimensions of a university campus or of a
building. The edges E represent paths e.g. streets or gangways between these
areas. Edges connecting two areas Ai and Aj are directed and weighted, while
the weights in�uence the probability of which outgoing edge a node chooses.
Figure 2.3(b) depicts the general idea of the AGB model.

Movement between areas is described on a macro level similar to the graph-
based mobility model of [144] shown in Figure 2.3(a). In contrast to the graph-
based model, the AGB model describes the movement of nodes also on a micro
level within areas. When a node moves from one area to another, e.g. from the
rescue air�eld to the main disaster site, it joins the MANET formed by mobile
nodes in the destination area Ai (e.g. the main disaster site). Nodes spend a
random period in Ai before moving to another area Aj . The sojourn time t a
node remains in Ai is therefore modeled as a random variable described by a
cumulative distribution function (cdf) FL(t). In this work, I will assume that
FL(t) describes an exponential distribution.

The movement insideAi is described by a microscopic mobility model. While
this can be any microscopic model, I will use RWP in this work. The time a
node needs to move from one area to another is de�ned by the length of the edge
and the speed of the node, which is uniformly chosen from a de�ned interval
[vmin, vmax].

The main reason to choose the AGB model in my thesis is its ability to
model a leave and join rate of nodes in a certain area. Nodes leaving an area
Ai disconnect from the MANET in Ai and hence are not available anymore

18 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

for transactions and recovery schemes examined in this work. Hence, the AGB
model allows to simulate a churn rate of nodes in Ai that has various in�uences
e.g. on data availability and transaction failures. The leave probability described
by FL(t) is directly used in the failure model of this work described below.

2.2.3.2 Random Way-Point Mobility Model

The goal of the RWP model is to achieve a uniform random distribution of nodes
within a bounded area. This is achieved by the following behavior of nodes: at
the beginning of the simulation all nodes are randomly placed in the simulation
area A. Then every node randomly chooses a so-called way-point from all points
in A and moves towards this point in a straight line with constant speed v, while
v is randomly chosen from the interval [vmin, vmax]. When the node arrives at
the way-point, it pauses for a time tpa and then chooses a new way-point and
speed.

Simulations have shown, that the goal of a completely uniform random dis-
tribution in A is not met by the RWP model. It has been shown that the
node density in the center of A is slightly higher than in the border areas of
A [18]. However, the RWP model approximates a uniform distribution quite
well. As parameters it requires the dimensions (xA, yA) of A, a speed interval
[vmin, vmax] from which v is uniformly chosen, and a pause time tp.

2.2.4 Summary - MANET Modeling and Simulation

This section has presented background information on how MANETs are com-
monly examined and analyzed. As MANET research is based on simulations
and analytical considerations rather than on real-world experiments, knowledge
about the basic modeling principles is essential to the reader to interpret the
results of this work.

Based on the models introduced, some important de�nitions like path proba-
bility PPath, path duration, and expected sojourn times of nodes in A have been
introduced, which are embraced in the system model of this work presented in
the following.

2.3 System and Failure Model

Given the preliminary considerations about MANETs above, this section will
de�ne the system and failure model of my thesis. The system model is based on
the standard partially synchronous system model, assuming communication and
site failures of nodes and is enhanced with certain assumptions on reachability
and availability of nodes in a MANET A.

2.3.1 System Model

The system model considers a MANET A formed in a single area of a larger
network described by the AGB mobility model. The macro view of the AGB
model is used here to model the fact that a MANET is not a closed system,
but new nodes can join as well as leave A. I assume that the total number of

2.3. SYSTEM AND FAILURE MODEL 19

nodes in A, denoted by nA, shows a negligible variation and is quasi constant
over time, which is feasible if nodes enter and leave A at equal rates.

The probability that a node disconnects from A because it moves into an-
other area at time t is described by the probability density function (pdf) fL(t).
Analogously, the probability that a node joinsA after being disconnected at time
t is described by the pdf fJ(t). Nodes may have individual pdfs, with fL,i(t)
and fJ,i(t) describing the individual leave and join densities of node i. Note
that if individual leave and join probabilities are assumed, nA is still assumed
to remain constant.

Nodes in A are assumed to have the same radio range and relay messages
for each other to provide for multi-hop routing. Although message delays in A
depend on the hop count of communication paths, for the sake of simplicity,
I assume an average message delay δm for A. Note that δm is not an upper
bound for message delay, but rather a guideline describing the message delay of
most messages if a path is available. A time-out value δto describes a reasonable
period of time to wait for an expected message within a synchronous period of
the system.

Figure 2.4: System Model.

Topology dynamics, mainly in�uenced by the mobility and link models, are
captured in my system model by (i) the constant path probability PPath of
A, (ii) by the pdf fC(t), describing the path duration for A, and (iii) the pdf
fCR(t) describing the probability that a broken path recovers after t. The prob-
ability that a broken communication path recovers is a conditional probability
presuming that both communication partners remain in A.

In addition to moving to other areas, nodes may disconnect from A forever
if they experience a non-recoverable technical failure. The probability of this
happening is described by the pdf fT (t). Recoverable failures causing a dis-
connection from A represent e.g. energy-related outages. The probability that
a node disconnects due to a recoverable technical failure is described by pdf
fE(t) and the density of energy-related outage times by pdf fRE(t). I use the
subscripts E and RE here because I assume recoverable technical failures to be
energy-related.

Figure 2.4 depicts the general idea of the system model. While the commu-
nication characteristics within A are described by the parameters nA, PPath,
fC(t), fCR(t), δm, and δto, the leave and rejoin probability of nodes is described
by the pdfs fER(t), fE(t), fT (t), fL(t), and fJ(t).

The described system model is generic in the sense that it describes ar-
bitrary MANET scenarios; to examine a concrete MANET scenario, the pdfs

20 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

introduced here must be derived for the scenario under consideration. How these
probabilities can be derived for a given scenario is shown in Chapter 4.

2.3.2 Failure Model

The failure model describes failures from a single node's perspective. Failures
lead to situations where a node cannot communicate with another node anymore.
A node in the system model described above can generally experience a node
failure or a communication failure. Node and communication failures are de�ned
as follows.

Node failure

A node failure describes all events that cause a node to disconnect from A.
Hence, cdf FN (t), the probability for a node to experience a node failure within
time t, is given by the probability that (i) a node leavesA, (ii) exhibits an energy-
related failure or (iii) experiences a technical failure. Given the pdfs fL(t), fE(t)
and fT (t) from the system model, FN (t) can be calculated by considering the
complementary probabilities of the cdfs FL(t), FE(t) and FT (t) as

FN (t) = 1−
[
(1− FL(t)) · (1− FE(t)) · (1− FT (t))

]
(2.1)

It is assumed that mobile nodes are equipped with some kind of stable storage
that survives node failures. Hence, data written to stable storage is available
after recovery from node failures.

Communication failure

A communication failure describes all events that lead to an outage of the
communication between two nodes that are connected to A. A communication
failure causes the break of a communication path that was functional before
and is induced by the dynamic network topology. The probability for a
communication failure to happen within time t is given by the distribution
of path durations described by the cdf FC(t), which is directly derived from
the according pdf fC(t) provided by the system model. Hence, I denote the
probability for a communication failure within time t by FC(t).

By F (t) I denote the cdf of the general failure that either a communica-
tion or a node failure occurs until t, derived by considering the complementary
probabilities of node and communication failures:

F(t) = 1−
[
(1− FC(t)) · (1− FN (t))

]
(2.2)

From a single node's perspective, F (t) describes the probability that communi-
cation with another node fails, because either the communication path breaks
or because the communication partner disconnects from A within t.

2.4 Summary and Conclusion

In this chapter, I gave a short overview of the MANET research landscape and
introduced MANET principles as well as related work important to this thesis.

2.4. SUMMARY AND CONCLUSION 21

These are multi-hop routing and broadcast schemes as well as basic modeling
and simulation principles. I have also shown how this work integrates into
research activities in the area of MANETs. At the time of writing, this work is
one of the few that examines a problem on the application layer in MANETs.

From the general MANET characteristics, I extracted the system model and
failure model of this work. Atomic transaction processing is analyzed in the
following chapters based on these models. A unique characteristic of the system
model in contrast to commonly proposed models is that I do not consider a
MANET to be a closed system, but nodes are assumed to constantly leave and
rejoin the network. This is modeled by considering one area A of a MANET
de�ned by the AGB model. The numerous factors reducing reliability of commu-
nication in A are condensed in the pdfs fC(t), fRC(t), and the constant Ppath.

The following chapter introduces principles of transaction processing and
derives the application model of this work. Application and system models are
then analyzed together in Chapter 4.

22 CHAPTER 2. MANETS: BACKGROUND AND PRELIMINARIES

Chapter 3

Atomicity: Background and
Preliminaries

This chapter provides an introduction to distributed atomic transaction process-
ing and therefore introduces the application model investigated within this work.
Based on the general principles of distributed transaction processing, the con-
cepts of strict and semantic atomicity are introduced and formalized by de�ning
di�erent types of atomic commit problems. For each atomic commit problem,
solvability is discussed and fundamental results available in the literature are
presented.

For each atomic commit problem known protocols solving this problem are
described and their applicability in MANETs is discussed. To give an overview
of related work in the area of atomic commit processing, I will present some
commit protocols recently proposed for infrastructure-based mobile networks.
The discussion of minimal protocols solving certain atomic commit problems
is the starting point for the examination of atomic commit in MANETs and
motivates the general approach of probabilistic analysis of commit protocols
followed by this work.

Besides presenting background information and related work of atomic com-
mit processing, a major objective of this chapter is the formal de�nition of
transaction models that are used within the remainder of this thesis to investi-
gate abort and blocking risks of atomic transaction in MANETs.

The chapter is structured as follows: Section 3.1 introduces the basic trans-
action concepts, while Section 3.2 discusses di�erent transaction models and
atomicity notions. Section 3.3 formally de�nes important atomic commit prob-
lems and discusses their solvability in MANETs. In Section 3.4, important
atomic commit protocols are presented solving these problems. Finally, Sec-
tion 3.6 presents the transaction models used to examine atomic transactions in
MANETs in the remainder of this work.

3.1 The Transaction Concept

Transactions are one of the most successful abstractions in information tech-
nology. Transactional systems make the developer's life easier by freeing him

23

24 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

to explicitly deal with problems that stem from concurrent access to shared
resources and by masking transaction and site failures that can occur at lower
system levels, e.g. page failures, consistency violations, etc. This is achieved by
grouping several computational tasks into a single consistent and reliable unit
of work called a transaction, which is conceptually treated as a single operation
masking failures of embraced operations and hiding their e�ects until the whole
portion of work is considered to be correct.

In general, the notion of transactions is tightly bound to the ACID prop-
erties. Processing of a transaction is expected to meet the ACID properties
(atomicity, consistency, isolation, and durability) [147, 80, 64]. Some transac-
tion models weaken one or more of these properties, but generally the problem
of guaranteeing ACID is inherent to all transactional systems. In short, the
ACID properties are:

Atomicity is also known as the all or nothing property. This property re-
quires that either all operations of a transaction are completed or none
at all. To ensure atomicity, recovery mechanisms are required that undo
executed operations or complete the remaining operations of a transaction
if a transaction is aborted intentionally, e.g. due to consistency or concur-
rency violations (transaction recovery), or if a system failure occurs, such
as media, process, or communication failures (crash recovery).

Consistency requires that a transaction always leaves a system in a consis-
tent state and no inconsistent states are ever exposed. A state is consistent
if all integrity constraints of a system are satis�ed. Broadly speaking, the
consistency property requires correctness of a transaction.

Isolation demands that not only the e�ect of a single transaction is correct,
but also the concurrent execution of multiple transactions. If isolation is
satis�ed, the overall e�ect of a transaction schedule must be the same as
if transactions had been executed in a serial order.

Durability ensures that modi�cations made on behalf of a successfully com-
pleted transaction persists even if the computer, or the medium on which
the data is stored, subsequently crashes. Hence, durability ensures that
no information is lost due to failures.

In its most simple form a transaction is completely executed on one server
that hosts all of the required data and functionality. In a distributed sys-
tem, functionality and data objects are allocated to di�erent network nodes.
A transaction which is processed among multiple computer nodes is naturally
decomposed into portions of work by the allocation of functionality and data
objects to the di�erent network nodes. Hence, the internal structure of such
a transaction is determined by the location of functionality or data within the
network. All work processed at one node forms a subtransaction, also denoted
as a transaction branch. Guaranteeing ACID for such a distributed transaction
is considerably more di�cult than in the centralized case, because coordination
among sites processing transaction branches is required to ensure ACID at a
global level. In the remainder of this work, I am solely concerned with such
distributed transactions, henceforth simply called transactions.

3.2. TRANSACTION MODELS 25

To ensure atomicity at the global transaction level, Atomic Commit protocols
(ACP) establish agreement on the termination decision (abort or commit of local
transaction branches) among involved sites. As this work focuses on atomicity
in MANETs, an understanding of the distributed atomic commit problem solved
by an ACP is fundamental. I will describe this problem in detail in Section 3.3.

While the lack of an omniscient controlling entity in a distributed transac-
tion also makes it di�cult to ensure other ACID properties, e.g. providing isola-
tion becomes more complicated as dependencies between concurrent distributed
transactions have to be considered. However, I argue that these problems are
only relevant at high transaction load, which is commonly not assumed in a
MANET, since here transactions are processed in a peer-to-peer fashion where
the transaction load is distributed among nodes. In contrast, Atomicity is the
property that is directly a�ected by volatile communication and frequent node
failures in MANETs, independently of the transaction load.

While the transaction concept was initially developed in the context of online
transaction processing (OLTP) in database systems, which I call the traditional
transaction model, transactions are also successfully applied in other applica-
tion domains, such as CAD/CAM applications or transactional work�ows. In
these scenarios, atomic operations are not necessarily database operations but
arbitrary method invocations or tasks that are assigned to a functional compo-
nent or even a human. Numerous transaction models for these so-called non-
traditional applications have been proposed in the literature posing a di�erent
atomicity semantic than known from OLTP. In contrast to OLTP transactions,
non-traditional transactions are possibly long-living like transactional work�ows
and may show more complex nested or multi-level structures than the �at dis-
tributed transaction introduced above.

3.2 Transaction Models

In the following, I will brie�y describe some selected transaction models impor-
tant for this work. Besides the traditional transaction model, general concepts
of so-called advanced transaction models (ATMs) are presented, with a focus on
the di�erent termination dependencies of subtransactions in these models that
cause the atomic commit problem.

3.2.1 Traditional Transaction Model

The traditional �at distributed transaction model is by far the most relevant
model in practice and is manifested in the de-facto standard X/Open Distributed
Transaction Processing (DTP) [40]. It is basically concerned with transactions
among distributed databases. A strong school of thought exists for this trans-
action model, providing solutions to implementation issues on concurrency and
atomicity [57, 13, 153, 14].

The structure of a traditional transaction is solely determined by the alloca-
tion of accessed resources in the network. All units of work executed at a certain
node are assembled into one subtransaction assigned to this node. Hence, one
characteristic is that a traditional distributed transaction consists of one nest-
ing level only. The transaction framing these subtransactions is called global

26 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

transaction in X/Open terminology. In the X/Open standard architecture, op-
erations of a subtransaction are received by a resource manager (RM), which
must reside on each network node. The RM guarantees ACID at a local level,
i.e. at the level of subtransactions. To ensure atomicity of the global transaction,
the X/Open standard proposes an additional functional component called the
transaction manager (TM), responsible for coordinating atomicity of the global
transaction. Hence, X/Open proposes a strict separation of the execution co-
ordinator and the TM. The role of the execution coordinator is taken by an
application that executes operations of the global transaction at remote sites by
means of RPC calls.

The most important characteristic of the traditional transaction model in the
context of this work are its strict inter-transaction dependencies1. All transac-
tion branches S0, . . . , Sn of a global transaction T are bound to each other by
termination dependencies, i.e. {∀i,∀j |Si can only commit or abort until Sj
aborts or commits}. The dependencies between each transaction branch Si and
T are given by abort and commit dependencies, i.e. {∀i | if Si aborts, then T
must be aborted} and {∀i | if T aborts, then Si must be aborted} and {∀i | if Si
commits, then T must commit}.

The termination dependencies among subtransactions induce a fundamental
problem: the termination dependencies implicate that a transaction partici-
pant cannot unilaterally decide whether to abort or commit its local transaction
branch if the state of another Si is unknown. Therefore, the basic problem to
be solved by an Atomic Commit Protocol (ACP) is to derive the state of remote
transaction branches in cases of communication and site failures.

The abort dependency between subtransactions and the global transaction T
force a transaction to be completely aborted if any subtransaction fails. Hence,
even if only a single operation of a transaction fails, the successful parts of the
transaction are also lost.

The dependencies de�ned above describe an atomicity semantic called strict
atomicity. They are strict in the sense that no subtransaction Si is allowed to
terminate as long as it is not guaranteed that every other subtransaction termi-
nates. To resolve the termination dependencies of strict atomicity, a local RM
must be able to announce to the other transaction branches that it is prepared
to commit its local branch, without actually committing that branch. Hence,
another important characteristic of the traditional transaction model is that it
requires RMs to provide such a prepared state.

The strict abort dependencies of the traditional model causes high rates
of transaction abort in situations where failures occur frequently. Frequent
failures may occur due to unreliable nodes and communication channels like
in MANETs or because transactions are running very long2. So-called long-
lived transactions motivated the development of advanced transaction models
(ATMs), which diminish the strict abort and termination dependencies of the
traditional model in order to tolerate failures of transaction branches without
being forced to abort the complete transaction.

1Termination, commit, and abort dependencies are here understood as proposed by the
ACTA framework [37].

2In [54] Jim Gray calculates that the probability of a deadlock (transaction failure) increases
with the fourth power of the transaction size.

3.2. TRANSACTION MODELS 27

3.2.2 Advanced Transaction Models

ATMs are designed to be more failure resilient, because the e�ect of a failure
is limited to smaller entities than the global transaction, which is desirable in
volatile environments like a MANET.

Generally, ATMs provide special constructs that exploit the semantic re-
lationship of a subtransaction with other subtransactions, allowing for more
advanced failure handling than the strict model. ATMs emerged in the early
90s, but have not found their way into the real world and have mainly remained
an academic topic. In contrast, work�ow-management systems stem from real
world requirements demanding for transactional features but lack the theoreti-
cal foundation that ATMs provide. Currently, research tends to combine both
�elds, I refer the interested reader to [22, 141, 52, 134]. Important to this thesis
is that with ATMs, a new atomicity notion called semantic atomicity has been
proposed, weakening the strict atomicity notion introduced above.

The handling of faulty subtransactions proposed by the �ve ATMs: (i)
Sagas [50], (ii) the ConTract model [150], (iii) Flex Transactions [47], (iv) S-
Transactions [148], and (v) the Multi-Level transaction model [152]; can be
summarized by four approaches to cope with abort or unknown states of a
subtransaction. Based on the semantic of the subtransaction, the following is
proposed in ATMs:

1. Simply ignore the failure of a subtransaction and continue to execute the
remaining correct subtransactions. Subtransactions allowing for such a
scheme are called non-vital subtransactions.

2. Retry the aborted subtransaction (forward recovery). In cases where a
temporal failure caused the abort of a subtransaction, it may be possible to
re-execute the subtransaction. A subtransaction allowing for this semantic
is called a retryable subtransaction.

3. Initiate another alternative subtransaction that implements a semantically
similar action (contingency subtransaction).

4. Abort the global transaction and all running subtransactions as in the
traditional model (vital subtransaction).

Options (1�3) allow a transaction to be committed successfully in spite of fail-
ures, while (4) is the traditional approach. Although ATMs and their strategies
(1�3) were initially developed to overcome transaction failures due to concur-
rent transaction processing in long-lived transactions, these strategies naturally
�t into a distributed setting where communication and node failures are as-
sumed rather than transaction failures. For example, if a remote site executing
a subtransaction no longer answers, the execution coordinator may execute a
contingency transaction on another reachable node and hence commit the global
transaction. However, an important aspect in the context of atomicity is that
the global decision must still be consistent and every node executing a transac-
tion branch must follow the global decision, i.e. also a non-vital subtransaction
is not allowed to commit if the global decision is to abort. In other words, a
non-vital subtransaction is non-vital for a global commit decision but vital for
global atomicity. Hence, schemes 1�3 aim at allowing a global transaction to be

28 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

committed in the case of failures, but does not ease the problem of providing
atomicity.

In a MANET, assuring strict atomicity is susceptible to blocking, as sub-
transactions cannot unilaterally decide on commit, but require communicating
over unreliable communication links to learn about the state of the other sub-
transactions. Local commit must be delayed until all transaction branches are
ready. ATMs approach this undesirable delay with the concept of semantic
atomicity described in the following.

Semantic Atomicity

The basic idea of semantic atomicity is to allow subtransactions to terminate
independently without coordinating with other subtransactions by removing
the termination dependencies among transaction branches. Resources held by
a transaction branch can be immediately freed as soon as a local decision has
been made.

Thus atomicity is given up for a weaker notion of atomicity (semantic atomic-
ity) �rst introduced by [49] and adapted to distributed environments in [94, 158].
The basic concept of semantic atomicity is applied in most ATMs and is some-
times also called relaxed atomicity or semi-atomicity [158].

Here, atomicity is not provided on the physical level, but rather on a seman-
tic level. The idea is to take temporal inconsistencies into account but eventually
ensure atomicity semantically on the global level. To reach an unanimous deci-
sion a posteriori (after some participants have committed their local transaction
branch), a recovery mechanism is required that can reverse the decision of a
local RM and hence undo the e�ects of a committed transaction. The corre-
sponding recovery concept is called semantic recovery and is based on the idea
of compensating transactions [81, 49].

Compensating transactions semantically undo the e�ect of an already com-
mitted transaction. Hence, in semantic atomicity subtransactions are allowed
to unilaterally commit, without considering the other subtransactions and the
global transaction state. If the local decision opposes the global decision, a
compensating transaction must be executed. Therefore, every subtransaction
Si is associated with a compensating transaction called CSi that systematically
removes all the e�ects of Si.

If a strict abort rule is applied, i.e. if no failure is tolerated, the follow-
ing inter-transaction dependencies must be maintained in a semantic scheme:
(i) {∀i | if Si aborts, then T must be aborted}, (ii) {∀i | Si aborts if still execut-
ing and T aborts. Si can decide on commit if T has not aborted}, (iii) {∀i | CSi
is not allowed to begin work until Si has committed. Hence, CSi can only be
started after Si is committed}, (iv) {∀i | CSi is only allowed to begin work if T
has aborted. If T commits, CSi is never executed}, and (v) {∀i | CSi is forced
to commit if T aborts. Hence, if T aborts, CSi is started if not yet executing
and is not allowed to abort}.

Note that dependency (i) can be substituted with advanced constructs to
tolerate failures as described above.

A major implication of the semantic atomicity scheme on the execution envi-
ronment is that RMs are not required to implement a prepared state as in strict
atomicity, which makes it especially appealing for non-database applications.

3.2. TRANSACTION MODELS 29

However, implementing the semantic scheme in reality poses several other
problems. The main problem is to guarantee isolation in presence of temporal
inconsistency as shown by the following example: consider the global transaction
T that is composed of two subtransactions S0 and S1. Now, S0 manipulates a
data item a, while S1 writes item b. Assume that the RM executing S1 decides
to commit while S0 is aborted by its controlling RM. Another transaction Si
reading a and b is now exposed to an inconsistency. If the global decision on T is
to abort, a compensating transaction CS1 is executed undoing the e�ects of S1,
the problem is then to deal with the depending transaction Si that has seen the
e�ects of S1 and S0. One option would be to compensate Si, as its e�ects are
based on inconsistent premises. But this approach would result in the cascading
execution of compensating transactions, which must not happen. Delaying Si
until S1 receives the �nal decision of the coordinator would contradict the initial
idea of semantic atomicity, as this would lead to a strict scheme. Hence, the
main goal is to undo the e�ects of transactions using compensating transactions
but leave the e�ects of dependent transactions intact.

Implementation of a general approach to maintain the possibility for com-
pensation for arbitrary transactions is hard. Whether the use of compensating
transactions is feasible mainly depends on the given application scenario. A gen-
eral model proposed by academia is the soundness criterion [94, 81]. Soundness
is achieved if a compensating transaction CSi undoes the e�ects of transaction
Si cleanly, leaving the e�ects of all transactions depending on Si denoted by the
set dept(Si) intact. It is shown in [81] that a history is sound if the compensating
transaction commutes with every transaction in dept(T). Several scholars have
proposed protocols to assure soundness, e.g. the Polarized Protocol proposed in
[94] or ε-Serializability [120]. It is obvious that enforcing soundness will still
require transactions to be delayed or to be rejected. Generally, all dependent
transactions using conditional constructs are problematic. Hence, whether a
protocol enabling soundness is bene�cial depends on the transaction load and
type of depending transactions, which depends on the application and MANET
scenario under investigation.

Semantic atomicity is an appealing concept to increase the autonomy of
transaction participants, because unilateral decision making is now possible.
The price to pay is the overhead to maintain soundness and the requirement to
provide compensating transactions. This concept is tightly bound to applica-
tion semantics and relies on the assumption that compensating operations can
be found, which is not always the case (e.g. �ring a missile is obviously not a
compensatable action). Additionally, designing compensating transactions in-
creases the development cost of a transactional systems. In fact the need to
implement compensating transactions requires the developer to explicitly deal
with failure handling, which in a way contradicts the initial intent of the trans-
action concept.

However, there are a lot of application scenarios where compensation actions
are found intuitively and therefore semantic atomicity is a natural �t. E.g. in
a mission-control scenario, a rescue unit that has committed itself to a mission
can easily compensate this action by dropping its commit to a mission and
continuing to answer requests of other missions, and no dependent transactions
have to be considered in this application.

30 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

3.2.3 Summary - Transaction Models

In this section, I have introduced the traditional transaction model and the
general ideas behind advanced transaction models (ATMs) and their di�erent
termination dependencies. These dependencies de�ned the notions of strict and
semantic atomicity. Abstractions of both models are later used in this chapter
to de�ne the transaction models examined in a MANET environment.

Since communication and node failures are assumed to occur frequently
in MANETs, the failure handling of ATMs can be considered bene�cial for
MANETs with regard to transaction abort. The inherent problem of ensuring
termination dependencies among transaction branches to assure strict and se-
mantic atomicity remains for both models. While a communication failure does
not necessarily cause abort in an ATM, the RM executing the subtransaction
which state is unknown has eventually to follow the global decision. Removing
uncertainty about the global decision is a central problem in both models in
presence of node and communication failures.

It is the central focus of this thesis to examine the problems that occur
when the termination dependencies of strict and semantic atomicity have to
be assured in a MANET environment. These are generally maintained by a
coordinating entity that processes an ACP solving the atomic commit problem.
While in this section the general atomicity semantic was introduced together
with a general discussion of transaction models, the resulting atomic commit
problems are de�ned formally in the following.

3.3 Atomic Commit Problems

To examine strict and semantic atomicity in MANETs, the theoretical founda-
tion of the underlying atomic commit problems is discussed �rst. The objective
of this section is to give a formal description of the atomic commit problem and
to discuss its general solvability, before protocols solving the di�erent commit
problems are presented.

Depending on the transaction model, i.e. whether strict or semantic atom-
icity is considered and how RMs process local transaction branches, di�erent
atomic commit problems are distinguished. Namely, I will consider the stan-
dard atomic commit problem, the dictatorial atomic commit problem, and the
semantic atomic commit problem.

At the heart of all commit problems lies the blocking problem, which describes
the situation that a participant is forced to wait for an unforeseeable length of
time to be able to learn the global transaction decision.

The atomic commit problem is a fundamental coordination problem exten-
sively examined by the database and distributed systems community. In the
following solvability results proposed in the literature for the asynchronous and
partially synchronous system models are brie�y reviewed and their impact on
this work is discussed.

3.3.1 Atomic Commit (AC)

The standard atomic commit problem, mostly just called the atomic commit
problem, stems from the traditional transaction model and its termination de-

3.3. ATOMIC COMMIT PROBLEMS 31

pendencies. From the informal description of transaction dependencies described
in Subsection 3.2.1 four conditions are derived to de�ne this problem. These
conditions are classi�ed as either safety or liveness conditions. Safety conditions
describe what is allowed to happen, while liveness conditions describe what
must happen to achieve progress of the agreement process. Articles describing
the derivation of these conditions in more detail are for example [63, 13, 61].
The safety conditions of the atomic commit problem are:

AC1 (Uniform-Agreement): No two participants reach di�erent decisions.

AC2 (Uniform-Validity): If a participant decides to commit, then all par-
ticipants have voted for commit.

AC3 (Stability): A participant cannot reverse its decision after reaching
agreement.

Note that AC1�AC3 re�ect the termination dependencies presented in Sec-
tion 3.2.1. To ensure that a solution of the atomic commit problem makes
progress, the liveness condition AC4 is de�ned:

AC4 (Non-Triviality): If all participants can commit and there are no fail-
ures, then every correct participant decides to commit.

The main intention of condition AC4 is to prevent the unexpected solution
of unilateral abort of all participants, i.e. that all participants always decide on
abort. The conditions {AC1, AC2, AC3, AC4} de�ne the atomic commit (AC)
problem.

The AC problem de�ned so far does not require all processes to decide.
Hence, another liveness condition requiring progress of the commit process called
the non-blocking property AC5 is posed:

AC5 (Non-Blocking): All correct participants reach a decision.

Non-blocking here means, that no correct participant must wait for
failed participants to recover in order to reach a decision. Conditions
{AC1, AC2, AC3, AC4, AC5} de�ne the non-blocking atomic commit (NB-
AC) problem [61]. I will show later that the NB-AC problem is not solvable,
due to the strict de�nition of AC4. To allow solvability in such an environment,
the alleviated Non-Triviality property AC4* is de�ned:

AC4* (Non-Triviality*): If all participants can commit, and no participant
is suspected to be failed, then every correct participant reaches a commit
decision.

The di�erence between AC4 and AC4* is that AC4* allows to decide on
abort if all participants can commit. This is because commit must only be
decided, if �no participant is suspected to be failed �. The unexpected solu-
tion to always decide on abort is still prohibited with AC4*. For a more de-
tailed discussion of AC4* I refer the reader to [39]. The problem de�ned by
{AC1, AC2, AC3, AC4*, AC5} is called the non-blocking weak atomic com-
mit (NB-WAC) problem. And analogously, the weak atomic commit (WAC)
problem is de�ned by {AC1, AC2, AC3, AC4*}.

32 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

Solvability of NB-AC and NB-WAC

Reasoning about the AC problems is commonly based on the standard asyn-
chronous system model with crash failures [42, 48], where communication is
assumed to be reliable but process speeds and message delays are generally un-
bounded. In this system model, AC and WAC are solvable, because blocking is
allowed if precise knowledge about the state of other participants is missing due
to a failure. Solvability is also indicated by the existence of protocols such as
2PC that are known to be correct. The asynchronous model assumes less about
timeliness than the system model of this work which is assumed to be partially
synchronous. Therefore, results of the asynchronous system model are portable
to the MANET system model of this work and AC as well as WAC are solvable
in a MANET. I refer to [97] for a proof and discussion of the relation between
the asynchronous and partially synchronous model.

NB-AC was proven not to be solvable in the asynchronous system model
as �rst shown in the fundamental result of [137]. This major theorem can be
found in most textbooks on transactions like [153, 13, 14] and states that no
commit protocol that solves NB-AC can exist in the asynchronous model if
multiple site failures can occur. It is shown that the main requirement to solve
NB-AC is to allow for independent recovery of transaction participants in the
presence of multiple failures. The proof that independent recovery cannot be
guaranteed in the asynchronous system model is based on the observation that
for a protocol that provides independent recovery, there must always exist a time
slot in which the simultaneous failure of two participants leads to inconsistency
[137]. In a MANET, such a failure situation is generally given if a communication
failure occurs. If the communication path between two nodes breaks, both nodes
cannot distinguish whether the other node su�ered a node failure and therefore
abort is indicated, or if a communication failure occurred and messages from
the other node are simply lost. Hence, a single communication failure leads to a
situation which is indistinguishable from a real simultaneous node failure. Based
on this reasoning, there exists no distributed commit protocol that can guarantee
independent recovery if communication failures may occur, and therefore NB-
AC is not solvable in a MANET.

While the minimal assumptions of the asynchronous system model are con-
venient for theoretical proof and algorithm development, distributed systems of
the real world show periods of synchrony and hence show more timing guarantees
than assumed in the asynchronous model. To examine agreement problems in a
more realistic way two main concepts to consider synchronous periods within a
distributed system have been de�ned: (i) partially synchronous system models
have been de�ned and classi�ed in [44, 46]; and (ii) the asynchronous system
model has been enhanced by the theoretical concept of unreliable failure detec-
tors in [36]. For the discussion of solvability of NB-AC and NB-WAC, I will
follow the reasoning based on the concept of unreliable failure detectors.

An unreliable failure detector can be thought of as an oracle that gives hints
on the failure state of processes, which are possibly false suspicions. It can be
shown that in the partially synchronous model unreliable failure detectors with
certain accuracy and completeness properties can be implemented [35] using
time-outs. Several non-blocking agreement problems that are not solvable in
the asynchronous system, e.g. consensus [48, 113], are found to be solvable in
an asynchronous system with failure detectors. E.g. [36] and [35] showed that

3.3. ATOMIC COMMIT PROBLEMS 33

consensus is solvable in the asynchronous system model with unreliable failure
detectors that meet weak completeness and eventual weak accuracy and a ma-
jority of non-faulty processes. Here, weak completeness means that eventually
every faulty participant is permanently suspected by some correct participants.
Eventual weak accuracy requires that there is eventually a correct participant
that is never suspected.

However, the availability of unreliable failure detectors does not help to solve
NB-AC. The strict de�nition of AC4 demands precise knowledge about failures,
which cannot be provided by unreliable failure detectors. Weakening AC4 by
requiring commit only if �no participant is suspected to be failed � allows to abort
the global transaction also if all subtransactions could be committed. It is
exactly this property that allows to solve NB-WAC in a partially synchronous
model.

Solvability of NB-WAC is shown in [60] by reducing NB-WAC to consensus,
which allows solvability results of consensus proven in [36] and [35], to be applied
to the NB-WAC problem. [60] proved solvability of NB-WAC by constructing a
protocol that uses multiple instances of a consensus algorithm and hence solves
NB-WAC if a majority of participants does not crash, i.e. if a majority of par-
ticipants can reach each other.

Based on the results of [60], it can be concluded that NB-WAC is solvable in
a MANET environment if a majority of transaction participants does not su�er
a node failure and can reach each other. Note that in MANETs, partitioning
frequently causes a situation where a majority of participants is not available if
they are residing in di�erent partitions. However, in a partition with a majority
of participants a decision is reached, while minorities in other partitions remain
blocked.

Note that the theoretical result on NB-WAC solely states solvability, while
applicability of solutions is not considered here. Solvability is based on the ratio-
nale that eventually a synchronous period occurs that allows the transaction to
be terminated with at least a majority of participants. However, for a practical
solution the time required to eventually reach agreement is crucial. Note that
until agreement on the termination decision has been �nally achieved, transac-
tion participants remain uncertain about the global decision and are in a state
similar to blocking.

While reasoning about solvability is interesting and attracted numerous
scholars, its practical impact is questionable, since the most commonly used
commit protocol (2PC) solves AC or WAC only and shows to be su�cient in
practice.

3.3.2 Dictatorial Atomic Commit (DAC)

While in the AC problems presented above, the veri�cation of ACID for lo-
cal transaction branches is embedded into the AC problem, the basic idea of
Dictatorial Atomic Commit (DAC) is to exclude the veri�cation of the ACID
properties from the commit problem. DAC presumes that the ACID proper-
ties are already guaranteed by participants at commit time. This means that,
in contrast to the AC problem, participants are not required to explicitly an-
nounce that they will move into the prepared state. The main idea of DAC is
to derive the vote of a participant implicitly from the way participants execute

34 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

their transaction branch. If all operations have been successfully executed and
acknowledged to the coordinator, the coordinator implicitly assumes that the re-
mote RM can ensure ACID locally and simply dictates the global decision when
all operations of all subtransactions are �nally processed. Hence, a participant
is implicitly assumed to move into prepared state every time it acknowledges an
operation. The coordinator can then simply dictate the global decision without
being required to collect any votes.

Protocols solving the DAC problem provide atomicity, but the problem
solved is slightly di�erent from the AC problem discussed above. While AC is
de�ned by the uniform validity condition AC2 stating: �If a participant decides
on commit, then all participant have voted for commit�, in DAC, the uniform
validity condition is based on the initial values of participants that are known
by the coordinator before the protocol is started. The initial values of partici-
pants are either commit if the last operation of a branch has been successfully
executed and acknowledged or abort if a negative acknowledgment was received.
The uniform validity condition in DAC is given by:

AC2_DAC (Uniform Validity): The global decision must be an initial
value.

Hence, the DAC problem is de�ned by the conditions {AC1, AC2_DAC, AC3}.
Note that the non-triviality property is not required here because AC2_DAC
ensures that if all participants have the initial value commit, then the global
decision must be commit. A weaker notion of the DAC problem is de�ned, by
an alleviated variant of AC2_DAC that allows for an abort decision although
all participants are correct.

AC2_DAC* (Uniform Validity*): The global decision must be commit if
no participant is suspected to be failed and the initial values of all partic-
ipants is commit.

Requiring non-blocking leads to the non-blocking dictatorial commit (NB-DAC)
and non-blocking weak dictatorial commit (NB-WDAC) problem, de�ned by
{AC1, AC2_DAC, AC3, AC5} and {AC1, AC2_DAC*, AC3, AC5} respec-
tively.

Solvability of NB-DAC and NB-WDAC

Reasoning about solvability of the dictatorial atomic commit problem is based
on similar thoughts as those for the AC problem. In the synchronous model with
crash failures, the lack of precise knowledge about the initial value of participants
precludes a solution of NB-DAC similar to NB-AC. This is easy to see in the
following situation: if a participant successfully executes and acknowledges its
last operation and the acknowledgment message is lost due to a communication
failure, then the coordinator cannot decide on the initial state of the participant
and a correct decision cannot be guaranteed. NB-WDAC is not solvable in a
purely asynchronous system models due to the impossibility for independent
recovery in presence of multiple node failures as described in Section 3.3.1.

Similar to NB-WAC, NB-WDAC can be reduced to consensus as shown
in [4], which allows for a solution in the partially synchronous system model
with unreliable failure detectors implementing weak completeness and eventual

3.3. ATOMIC COMMIT PROBLEMS 35

weak accuracy if a majority of participants can reach each other. Hence, it can
be concluded that DAC and NB-WDAC are generally solvable in a MANET if
a majority of participants can reach each other.

3.3.3 Semantic Atomic Commit (SAC)

As described in Section 3.6.3, semantic atomicity allows RMs to decide on com-
mit of their local transaction branch autonomously. No coordination with other
RMs that execute subtransactions of the same global transaction or with the
coordinator is required. This implies, that no prepared state is required since all
transaction branches are directly transferred from executing to abort or commit
state.

Semantic atomic commit (SAC) obviously violates the AC1 property, as
participants of a global transaction are allowed to decide di�erently on their
local transaction branches. Reaching an unanimous decision a posteriori also
violates the AC3 (Stability) property of atomicity, which causes some authors
to talk about non-atomic transactions here. Generally, there is no commonly
accepted de�nition of the semantic atomic commit problem and most scholars
contributing to this area tend to pose their own de�nitions, like semi-atomicity in
[158] or relaxed-atomicity in [94]. I give a de�nition of SAC conditions here, that
re�ects the possibility of temporal inconsistency by using a vague �eventually�-
formulation. I modify AC1 and AC3 as follows:

AC1_SAC (Uniform Agreement): Eventually all participants decide ei-
ther on commit or to abort.

AC3_SAC (Stability): A participant cannot reverse its decision after eventu-
ally reaching agreement, while unilateral commit decisions can be revoked.

The condition AC1_SAC allows for temporarily inconsistent decisions of par-
ticipants, because AC1_SAC requires only that eventually uniform agreement
is reached. Similar AC3_SAC only requires that the eventual agreement is not
reversed, while a unilateral commit decision is allowed to be revoked.
Validity of the global decision is de�ned similar to DAC, since the acknowledg-
ment of the last operation is interpreted as an implicit vote by the coordinator.
Hence, SAC is de�ned by conditions {AC1_SAC, AC2_DAC, AC3_SAC}.

While blocking as in AC and DAC cannot occur in SAC, another situa-
tion similar to blocking may occur, which I call extended uncertainty. An ex-
tended uncertainty situation is a situation where participants remain uncertain
about the global decision while they have already reached a decision locally
and are forced to wait until failures of other participants recover before they
can learn about the global decision. To anticipate this situation I de�ne condi-
tion AC5_SAC :

AC5_SAC (Extended Uncertainty): All participants eventually learn
about the global decision and adjust their local decision accordingly.

In fact the semantic of condition AC5_SAC is similar to the non-blocking condi-
tion AC5, with the di�erence that AC5_SAC is concerned with the adjustment
of a local decision already made according to the global decision, while AC5 is
concerned with a local decision not derived yet.

36 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

I call the commit problem de�ned by {AC1_SAC, AC2_DAC, AC3_SAC,
AC5_SAC} eventually certain semantic atomic commit (EC-SAC). A weak-
ened notion analogous to NB-WAC and NB-DAC is de�ned by {AC1_SAC,
AC2_DAC*, AC3_SAC, AC5_SAC} and called eventually certain weak se-
mantic atomic commit (EC-WSAC).

Solvability of SAC, EC-SAC and EC-WSAC

SAC is quite similar to the DAC problem: in both problems, blocking as well as
extended uncertainty is caused by uncertainty about the global decision. Hence,
argumentation about solvability of SAC and EC-SAC is similar to DAC.

SAC is solvable in the asynchronous and partially synchronous system model,
since progress of participants is not required. The EC-SAC problem is not
solvable in the asynchronous system model and in the partially synchronous
model with unreliable failure detectors, because precise information about the
failure state of participants is not available with unreliable failure detectors.
EC-WSAC is solvable in the partially synchronous model with unreliable failure
detectors and a majority of correct processes, as similar to NB-WDAC it is
reducible to the consensus problem.

Hence, in a MANET the EC-WSAC problem is solvable if a majority of par-
ticipants is reachable, i.e. if a majority of participants remains in one partition.

3.3.4 Summary - Atomic Commit Problems

This section de�ned atomic commit problems that so far have been analyzed
by the distributed system and database research community. I presented some
reasoning about the solvability of these problems in a MANET. For the sake of
clarity the theoretical proofs have been cited only and have not been described
in detail here. It was shown that the non-blocking variants of atomic commit
are only solvable in a MANET if a majority of participants can reach each other,
while participants residing in partitions with a minority of participants remain
blocked or uncertain.

Hence, blocking cannot be completely avoided and applications deployed to a
MANET have to cope with blocking situations in small partitions. The question
to be answered now is how e�cient protocols solve the non-blocking variants of
atomic commit problems. To answer this question, I will present the important
commit protocols proposed in the literature in the following.

3.4 Atomic Commit Protocols

In this section, atomic commit protocols (ACPs) solving the commit problems
described in the previous section are described and evaluated according to their
applicability in MANETs.

To evaluate the applicability of an ACP for MANETs its time and message
complexity are especially important. Sending messages in MANETs is expensive
in terms of required energy. With increased time complexity of a protocol,
the probability of a communication or node failure to occur during protocol
execution increases. Hence, the ideal ACPs for MANETs show small message
and time complexities.

3.4. ATOMIC COMMIT PROTOCOLS 37

The log-complexity, i.e. the number of required forced-write log operations,
is not considered here. Log-complexity is an important evaluation criterion in
�xed environments where a write operation on concurrently accessed storage
causes a considerable transaction delay. However, in a MANET environment
where a high transaction load on a mobile node is not assumed, log-complexity
is not considered to be a relevant factor and will therefore be omitted in the
following descriptions of ACPs.

Especially important to estimate the blocking risks of an ACP is the so-called
window of uncertainty which is inherent to all ACPs and closely related to the
time complexity of protocols. By window of uncertainty I denote the period,
where a participant is uncertain about the global decision and a communication
failure with the coordinator or a node failure would cause blocking or extended
uncertainty of the participant. The size of the uncertainty window is denoted
by ∆U .

Hence, to evaluate the blocking risk of a protocol, the size of ∆U has to be
considered. In most ACPs, ∆U increases when there are failures. I therefore
de�ne ∆Umin as the size of the uncertainty window in the failure-free case and
∆Umax for the situation where failures increase the uncertainty window.

In the following, the basic variants of protocols proposed to solve the WAC,
WDAC, NB-WAC, and SAC problems, including basic recovery strategies to
compensate for blocking situations, are presented.

3.4.1 Protocols solving AC and WAC

The most often used protocol in practice solving AC and WAC is the Two-
Phase Commit (2PC) protocol [53] and its optimizations. 2PC is adapted by
the major transaction standards DTP by X/Open [40] and OTS of OMG [110].
As the 2PC protocol is well known, I will only give a very brief description of
the protocol in the following that focuses on termination and restart protocols
as well as on blocking situations.

3.4.1.1 Two-Phase Commit Protocol (2PC)

2PC is initiated and controlled by a central transaction manager that models the
global transaction to commit in one of the four states: initial, collecting, aborted,
or committed. Transaction branches controlled by participants are either in the
initial, prepared, committed, or aborted state as shown in Figure 3.1(a). As the
name of the protocol indicates, it consists of two phases: (i) a voting phase where
votes of participants are collected; and (ii) a decision phase where the decision is
derived by the coordinator and distributed to participants. The voting phase is
initiated by the coordinator by sending a prepare message to every participant.
After issuing the prepare message, the coordinator immediately transits from
the initial to the collecting state, as depicted in Figure 3.1(b).

A participant receiving a prepare message in initial state checks whether the
ACID properties for its local transaction branch are assured and answers with
an OK or No vote. If the participants vote is No, it aborts the local transaction
and transits into the abort state. Otherwise the participant transits into the
prepared state (see Figure 3.1(a)).

By evaluating the votes of all participants, the coordinator derives the global
decision according to the following rules: if all participants have sent an OK

38 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

initial

prepared aborted

committed

prepare
yes

prepare
no

commit
ack

abort
ack

(a) 2PC state transitions of partici-
pants.

initial

aborted

collecting

committed

request
prepare 1..n

yes 1..n
commit 1..n

at least one no
abort 1..n

(b) 2PC state transitions of coordina-
tor.

Figure 3.1: 2PC protocol state transitions.

message, the coordinator decides on commit and issues a commit message to
every participant. If the coordinator receives at least one No message from
a participant, it decides on global abort and sends an abort message to every
participant. Participants proceed according to the coordinator's decision and
either move their transaction from the prepared state to the committed state or
from prepared to abort. This rule solves the AC problem. The WAC problem is
solved, if the coordinator also decides on abort if a vote is missing, i.e. decided
by a time-out.

The protocol description above describes the failure-free case of 2PC. In a
MANET, node or communication failures can hit any node at any time during
protocol execution. A failure during protocol execution leads to the execution
of a termination protocol at all participants that did not su�er a node failure. A
node that su�ered from a node failure executes a restart protocol when recovering
from its failure. During the restart protocol, a recovering participant examines
its local log entries3 to learn about the state of un�nished transactions at failure
time. If a transaction in prepared state is found, the participant cannot decide
on this transaction independently and is blocked.

Since time-outs are the only failure detectors available in MANETs, they are
used to trigger termination protocols. Termination and restart protocols of par-
ticipants are susceptible to blocking if they are initiated while the participants'
transaction is in the prepared state, as in this situation the participant cannot
decide on its transaction branch autonomously. Such blocking situations are
de�ned in the following and used within the remainder of this thesis.

3.4.1.2 Blocking Situations in 2PC

A participant experiences a blocking situation when a failure occurs while it is
in the prepared state. This stems from the fact that by entering the prepared
state a participant gives up autonomy and control on its local transaction branch
in favor of the coordinator. With handing over control to the coordinator, the

3The required log writes of 2PC have been omitted in the description of 2PC here. I refer
to [14] for a detailed description of the forced-write log operations required in 2PC.

3.4. ATOMIC COMMIT PROTOCOLS 39

participant enters its window of uncertainty. Two blocking situations caused by
failures de�ned in the system model of this thesis can occur:

Blocking caused by a participant failure Describes the situation, where a
failure of a participant leads to blocking of this participant. This happens
if a participant su�ers from a failure while it is in its window of uncer-
tainty. A communication failure with the coordinator during uncertainty
prevents the global decision of the coordinator from being delivered. A
node failure of the participant requires execution of the restart protocol
at reconnection. While the participant is detached from A it is blocked;
it remains blocked if it cannot reach the coordinator at the time it re-
connects to A4. In the remainder of this work, I denote this situation by
blocking (i).

Blocking caused by a coordinator failure Describes the situation, where
a node failure of the coordinator leads to blocking of participants. This
happens if the coordinator experiences a node failure, while participants
are in their window of uncertainty (i.e. in the prepared state). All par-
ticipants that are in the prepared state are then blocked, because they
cannot receive the global decision from the coordinator. Depending on
when exactly the node failure of the coordinator occurs, some participant
may have received the global decision or all participants are uncertain. In
the remainder of this work, I will call this situation blocking (ii).

In the literature, blocking caused by a coordinator failure is considered to be
the more severe blocking situation, because here possibly multiple participants
are blocked and have to wait until the coordinator recovers from failure. It is
one of the main contributions of this thesis to examine which blocking situation
is actually relevant in MANETs. I will show in Chapter 4 that in MANETs,
blocking (i) is more relevant than blocking (ii).

A common scheme to allow participants to leave the blocking state is cooper-
ative recovery proposed with 2PC in [41]. In this scheme, a blocked participant
queries all other participants in order to learn about the global decision within
its termination or restart protocol. This is feasible because in the case of a
blocking situation caused by a communication failure (blocking (i)), there is a
chance that another participant has not su�ered from a communication failure
with the coordinator and thus is not uncertain about the global decision. Such
a node is a potential cooperation partner for the blocked participant. In the
case of a blocking situation caused by a coordinator failure, the chance to �nd
another certain participant is also given, as there might be participants that
did not receive the prepare message and hence did not move into uncertainty.
I will show in Chapter 4 that cooperative recovery is a very e�cient scheme
to compensate for blocking in a MANET. The only requirement of cooperative
recovery is that all participants know each other.

3.4.1.3 Evaluation of 2PC

With n participants, the 2PC protocol has a message complexity of 4n in the
failure-free case if acknowledgments for commit messages are issued by partic-

4A is the MANET considered within the AGB mobility model as assumed in the system
model of this work described in Section 2.3.1

40 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

ipants. Omitting acknowledgments leads to a message complexity of 3n. If
the coordinator and one participant are colocated on a single node, message
complexity reduces to 3n− 3 or 4n− 4 in the failure-free case.

If f participants time-out during their uncertainty period and execute coop-
erative recovery within their termination protocol, fn requests are sent. At most
n− f + 1 certain participants (including the coordinator if the communication
path recovered) will answer the request. As a result of an answer to a request,
blocked participants move out of uncertainty and will also answer requests of
uncertain participants resulting in a total number of 2nf − f2

2 + n
2 messages as

shown in [13]. However, cooperative recovery is not guaranteed to be successful
within the �rst request round and is repeated until successful. Hence, the pre-
vious estimation is only a very rough approximation for the message complexity
of cooperative recovery and can be interpreted as a lower bound.

2PC is susceptible to blocking because it only solves the AC and WAC prob-
lems. Hence, to evaluate the applicability of 2PC in a MANET, the likelihood for
blocking should be examined, which depends on the size ∆U of the uncertainty
window.

A participant enters its window of uncertainty after issuing its vote message.
Considering only message delays, ∆U is of size 2δm if no communication failures
occur, i.e. one message delay δm is required for vote messages and one for the
commit message. Hence, ∆Umin has size 2δm. If a failure occurs, the coordinator
misses a vote and awaits a time-out ∆vo, the uncertainty window of a correct
participant is then extended to ∆Umax = 2δm + ∆vo.

The main advantage of 2PC is its small message complexity of 4n; in fact,
2PC shows the smallest possible message complexity to solve AC and WAC.
Additionally, the small size of ∆U compared to other protocols is an argument
in favor of 2PC.

Variants of the 2PC protocol proposed in the literature reduce transaction
delay by omitting log operations rather than changing the message scheme.
The most important proposals here are the Presumed-Abort and Presumed-
Commit protocol [90, 7, 101]. The Presumed-Abort protocol reduces required
log writes by omitting a forced log write at the coordinator in cases where
the transaction was aborted. If on restart the coordinator does not �nd a log
on a transaction, it presumes that this transaction was aborted. The same
idea is behind the presumed commit protocol, only that it is presumed that
a transaction was committed if no log is found. However, such optimizations
aim at increasing throughput in �xed environments, where forced log writes are
expensive operations. This is not the case in MANETs.

3.4.2 Protocols solving DAC

The DAC problem assumes that the commit decision is derived from the exe-
cution phase and no explicit voting is required. This allows the voting phase of
the 2PC protocol to be dropped. The most recognized protocol solving DAC
is the one-phase commit protocol (1PC) proposed in [55]. The small message
complexity of 1PC makes it especially interesting for infrastructure-based mo-
bile environments as proposed in [5, 4]. In the following, the basic structure of
the 1PC protocol is discussed.

3.4. ATOMIC COMMIT PROTOCOLS 41

3.4.2.1 One-Phase Commit Protocol (1PC)

In the 1PC protocol every operation of a local transaction branch executed by a
participant is acknowledged to the coordinator. By sending an acknowledgment,
the participant promises that the ACID properties are guaranteed for all oper-
ations executed so far and an immediate commit of the complete transaction
branch is possible. A positive acknowledgment inherently posses the semantic
of a commit vote, while a negative acknowledgment has the same consequences
as an abort vote. The actual commit protocol consist only of a single message
round, where the coordinator sends a commit or abort message to all partici-
pants and collects acknowledgments. The coordinator decides on global commit
if positive acknowledgments from all participants for all operations are received.
This is safe because the acknowledgments ensure that all participants receiving
the commit decision can commit.

1PC is a blocking protocol and therefore solves DAC and WDAC. By issuing
an acknowledgment message a participant transfers control of its transaction
branch to the coordinator, i.e. it moves into prepared state. In fact, the only
time a participant can unilaterally abort the transaction is after it has received
an operation from the coordinator and before issuing the acknowledgment for
this operation. During this period, 1PC is susceptible to the same blocking
situation as 2PC.

3.4.2.2 Evaluation of 1PC

The low message complexity of 2n of the commit phase is the major advan-
tage of 1PC for a MANET scenario. At �rst glance, the main drawback of
the 1PC protocol is its tight integration of the execution and commit process,
which requires that the commit coordinator receives acknowledgments for all
operations. However, a closer look at the main standards DTP of X/Open and
OTS by OMG reveals that the most important transaction standards assume a
similar behavior with 2PC, with the di�erence that operation acknowledgments
are sent to the execution coordinator and not to the commit coordinator.

In the case of failures, a cooperative recovery scheme similar to 2PC can
be used to compensate for blocking of participants. The message complexity of
cooperative recovery is the same as in 2PC. Similar to 2PC, 1PC is susceptible
to blocking caused by a coordinator (blocking (ii)) and to blocking caused by a
participant failure (blocking (i)). However, the size of ∆U is a severe drawback
of the protocol as shown in the following.

Assume that δopi,i+1 is the size of the uncertainty period between operation
i and i+ 1 of a participant called PA, m the total number of operations issued
to PA, to the time PA acknowledges its last operation, and tl the time the last
participant acknowledges its last operation. Hence, at tl+δm the global decision
is derived by the coordinator. The size of ∆U of PA in the failure-free case is
given by the sum of all intermediate uncertainty periodes and calculates as ∆U =∑m
i=1[δopi,i+1] + tl + δm − to. During this time, PA is susceptible to blocking (i)

and blocking (ii). Hence, the size of ∆U is di�erent for every participant and
depends on the number and distribution of operations assigned to PA. However,
∆U is considerably larger than in 2PC, which is the major disadvantage of this
protocol concerning its applicability in MANETs. Due to the intermingling of
processing and commit phase, a failure during the processing phase causing

42 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

transaction abort reduces the size of ∆U only if the last participant fails with
its last operation, then ∆U is increased by a time-out ∆vo.

The di�erent variants and optimizations of 1PC proposed aim at alleviating
the disadvantage of extensive logging by proposing strategies reducing required
log writes. For example, the Coordinator Log [138] and Implicit Yes-Vote pro-
tocol [6] transfer the responsibility for ensuring commit-resiliency from partici-
pants to the coordinator.

3.4.3 Protocols solving NB-WAC

The most prominent algorithms solving NB-WAC are the Paxos Commit proto-
col (PC) [56] and the Quorum Three-Phase Commit protocol (Q3PC) [13, 136].

At the heart of Paxos Commit lies the Paxos Consensus algorithm proposed
in [91, 119, 88]. Paxos Consensus solves the consensus problem in partially
synchronous systems if at least a majority of so called acceptor processes are
available. For a detailed description of Paxos Consensus, see [89, 34].

The PC protocol uses multiple instances of Paxos Consensus to solve
NB-WAC and reaches a decision if a majority of participants are available. Re-
call that this is exactly the behavior predicted by the discussion on solvability
of NB-WAC in the previous section. PC does not provide special termination or
restart protocols in case of failures like 2PC or 3PC do; in fact, it is always the
same protocol that can be safely started and restarted multiple times in parallel
to derive a decision. Ballot numbers chosen for every execution of the algorithm
are used to order and separate multiple PC instances. The PC protocol is de-
scribed in more detail later, while for Q3PC only a brief description is given in
the following.

Q3PC is based on the Three-Phase Commit protocol (3PC) proposed in [135]
that enhances the 2PC protocol with an additional protocol phase allowing a
new coordinator to be elected that can can terminate the transaction on behalf
of the failed coordinator. However, 3PC allows for non-blocking termination
only under the single failure assumption [135], which is not given if communi-
cation failures can occur. To allow at least a majority of correct participants
to terminate in presence of node and communication failures, a quorum-based
decision on the global decision is proposed by Q3PC [13, 160]. However, deriv-
ing a quorum requires safe election of a new coordinator, and the newly elected
coordinator has to assure that a majority of participants know its intention, i.e.
a majority of participants must be reachable before it can decide. The main
problem of Q3PC is that it is not resilient to faulty leader election. Reaching
agreement on a new coordinator requires to solve the leader election problem (a
problem as hard as consensus) in presence of node and communication failures.
This process is disregarded in descriptions of Q3PC. However, it is treated sepa-
rately in distributed system research, and solutions to this problem are assumed
to be available elsewhere. It is the main advantage of PC over 3PC that PC
is resilient to faulty leader election and the algorithm is speci�ed completely.
Multiple instances of PC can be safely processed in parallel with two nodes con-
sider themselves as coordinator. Such a situation would lead to inconsistency
in Q3PC. In the following, I will brie�y describe the PC protocol, while for the
sake of clarity, Q3PC is not regarded further.

3.4. ATOMIC COMMIT PROTOCOLS 43

3.4.3.1 Paxos Commit (PC)

Within an instance of the Paxos Consensus algorithm, proposed values of partic-
ipants are collected and one proposed value is chosen and remembered forever,
i.e. consensus among participants is reached on this value.

The basic idea of Paxos Commit is to derive consensus on each participants'
state (prepared or abort), while the coordinator simply combines the consensus
values, i.e. if every participant proposed prepare and prepare was the chosen
value for every Paxos instance, the global decision is commit. Therefore, the
PC protocol involves the three roles of Paxos Consensus: acceptor, proposer,
and leader. The leader role is initially taken by the transaction coordinator,
while transaction participants act in the role of proposers and as acceptors.
However, there can be more acceptors integrated than participants are involved
in the transaction. The basic idea is that every participant tries to get his vote
(prepared or abort) accepted within an instance of the Paxos Consensus protocol
by a majority of acceptors. Hence, there is one instance of the Paxos Consensus
protocol started for each transaction participant.

The protocol is initiated by the leader sending a prepare message containing
ballot number 0 to all participants. The coordinator is stateless and simply
learns about the outcome of PC later. A participant receiving this message
tries to get its initial value (prepared or abort) accepted by sending a message
containing its vote and the ballot number received with the according prepare
message to every acceptor. Every acceptor maintains a vector with the votes of
participants. These vectors are sent to the leader and are evaluated according
to the following rule: if for every participant involved a majority of acceptors
received prepared as proposal, the global decision is commit. If the leader learns
that one instance with ballot 0 has proposed abort, the global decision is abort
and the leader can shortcut the protocol by broadcasting an abort message to
all participants.

If no decision with some participants is derived in the �rst round, the leader
can issue a new prepare message with an increased ballot number starting a
new instance of Paxos Commit. For every ballot number di�erent from 0, an
additional phase is prepended to the protocol. The new ballot number is sent in
a propose message to all acceptors. If a majority of acceptors reply and indicate
that they have not seen a higher sequence number, then the leader is the current
leader and acceptors will reject messages with lower ballot numbers. The new
leader then issues a new prepare message with the new ballot number.

3.4.3.2 Evaluation of PC

Paxos Commit is resilient against communication and site failures and not sus-
ceptible to blocking if a majority of acceptors remain non-faulty. In the failure-
free case, �ve message rounds are required to derive a decision. As an instance
of Paxos Consensus is executed for every participant, PC shows a high message-
complexity of n(2n + 3) − 1, if only participants act as acceptors. The high
message complexity is a severe drawback of the protocol and its application in
MANETs. For an exact analysis of message complexity, see [56]. If only the
coordinator node is used as acceptor, PC reduces to 2PC.

Although participants in PC do not enter an uncertainty window as in 2PC
and 1PC where a failure causes execution of a termination or restart protocol

44 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

that is susceptible to blocking, failures while participants are in prepared state
cause initiation of a new instance of PC. This period has a similar semantic as
the uncertainty window ∆U de�ned above and is given by: (i) the message delay
of the propose message of a participant; (ii) the message delay for the accepted
votes sent to the coordinator by acceptors; and (iii) the message delay to learn
the �nal decision derived by the coordinator. Hence, in the failure-free case the
period where a failure causes restart of PC is given by ∆Umin = 3δm, while if
there are failures this period can extend to ∆Umax = 3(δm + δto). If the time
acceptors and the coordinator wait for proposals and accepted votes is similar
to the time a coordinator would wait for a vote in 2PC, i.e. ∆vo = δto, then
∆Umax is three times larger in PC than in 2PC.

In cases of network partitioning, isolated participants remain blocked in the
sense that they cannot get a quorum as leader of PC and will restart an instance
of PC over and over again until a participant can be reached that knows the
global decision or a majority of acceptors is �nally reached. However, in a
partition containing a majority of participants, NB-WAC is solved. Hence,
PC is susceptible to the same blocking situations as 2PC, i.e. blocking (i) and
blocking (ii), while these are limited to participants residing in partitions with
a minority of participants.

If transactions with only two participants are processed while the coordinator
is colocated with one participant, additional nodes to act as acceptors have
to be de�ned. This is required because a communication failure between the
coordinator and the participant will immediately cause a situation where neither
the coordinator nor the other participant can reach a majority of acceptors and
both will remain blocked. Hence, at least three acceptors are required to allow
for a majority quorum.

3.4.4 Protocols solving SAC

In semantic atomic commit, participants are allowed to terminate their local
transaction branches unilaterally without waiting for the other participants to
decide. However, the global commit decision can be derived �rst, when all
participants have completed their branches. This induces a new class of blocking
situations that I denote as extended uncertainty and that are de�ned later in
this subsection.

Protocols proposed so far di�er in when participants are noti�ed that their
local transaction branch is �nished and no new operations will be sent for a
transaction. The most cited protocol addressing SAC is the Optimistic-2PC
(O2PC) protocol [93], which is brie�y described in the following, while more
important to this work is a variant that I call Early Commit (EC) proposed in
ATMs like Sagas [50] or Multi-Level transactions [152].

O2PC is a slightly modi�ed version of the 2PC protocol using the same
message �ow as 2PC. The only di�erence is that in O2PC, participants do not
move into a prepare state but directly commit their local branch after sending
a commit vote. All participants commit their transaction branch at the same
time on receipt of the prepare message. Thus, participants must wait until all
other participants have �nished their transaction branches before local commit
is possible. If the local commit decision opposes the global decision, a com-
pensating transaction must be executed to semantically undo the e�ects of the

3.4. ATOMIC COMMIT PROTOCOLS 45

committed transaction branch as described in Section 3.2.2. The message and
time complexity of O2PC is similar to 2PC as the protocols show the same
message �ow.

3.4.4.1 Early Commit (EC)

An alternative scheme allowing for fast local commit is to let participants know
immediately when their transaction branch is �nished and no further operations
will follow. In this scheme, a participant can terminate its local transaction
branch as soon as it has executed the last operation of its branch at time to,
without being required to wait until all other participants have �nished their
branches. Hence, similar to 1PC the commit phase and the execution phase in
EC are not separated as in 2PC, but they overlap. The EC approach is proposed
with most advanced transaction models.

The general semantic transaction model used in the remainder of this work
to investigate semantic atomicity in MANETs will follow the EC approach.

3.4.4.2 Evaluation of EC

While with O2PC the uncertainty window of participants is similar as in 2PC,
the EC approach induces larger uncertainty windows, as a participant moves into
uncertainty with the acknowledgment of its last operation. While it is bene�cial
for participants to terminate their transaction branches early, the increased size
of uncertainty periods might have a negative e�ect. Assume that to is the time a
participant acknowledges its last operation, then its uncertainty window begins
at to, because from this point in time it cannot in�uence the global decision any
more. If the last participant acknowledges its last operation at time tl, then the
coordinator derives the global decision at time tl+ δm. The uncertainty window
∆U of the participant is of size [tl + 2δm − to] in the failure-free case, while
the uncertainty window of the last participant is of size 2δm. Hence, in the EC
scheme all participants have individual uncertainty windows. In the presence of
failures the uncertainty window of participants varies, as the coordinator may
decide on abort before tl and after to. Hence, ∆U of a correct participant is
reduced to tf − to where tf is the time, when the coordinator detects a failure
that leads to abort.

Similar to 1PC, the commit process itself requires only one message round
with message complexity 2n. The suggested approach to compensate for ex-
tended uncertainty situations that are de�ned in the following is cooperative
recovery showing a message complexity of [2nf − f2

2 + n
2], while f is the number

of failed participants.

3.4.4.3 Blocking Situations in Early Commit

Blocking, in the sense that a participant is forced to remain in prepared state,
cannot occur in semantic atomicity since no prepared state exists. However,
for reasons already described in Section 3.2.2, it is undesirable for participants
to remain uncertain about the global decision inde�nitely. The same failure
situations that cause blocking (i) and (ii) in 2PC, cause a situation where a
participant is uncertain about the global decision for an inde�nite period in the

46 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

EC protocol. I call these situations extended uncertainty and distinguish two
cases:

Extended uncertainty caused by a participant failure Describes the sit-
uation where a node failure of a participant PA or a communication failure
with the coordinator force PA to remain uncertain about the global de-
cision, although this decision is available in A. A communication failure
with the coordinator leads to such a situation if it occurs after PA has
acknowledged its last operation at to and the global decision cannot be
delivered to PA due to a communication failure. Similarly, a node failure
of PA causes extended uncertainty if the coordinator is unreachable at
reconnection of PA to A. In the remainder of this work, I will call this
situation extended uncertainty (i).

Extended uncertainty caused by node failure of the coordinator
De�nes the situation situation where a node failure of the coordinator
leads to extended uncertainty of participant PA if the node failure
happens after PA has acknowledged its last operation at to and before
the global decision is derived by the coordinator. In this situation, PA
will not receive the global decision and cannot decide independently on
the global decision. In the remainder of my thesis, I will call this situation
extended uncertainty (ii).

A main di�erence of the extended uncertainty situation de�ned above to blocking
is that extended uncertainty (i) and (ii) can already occur during the processing
phase, while blocking (i) and (ii) can only happen during the commit phase,
causing uncertainty windows to be wider than in the strict case. It will be
a major contribution of Chapter 4 to predict the risk of extended uncertainty
induced by the EC scheme.

3.4.5 Summary - Atomic Commit Protocols

In this section, I summarized the results of over two decades of research on ACPs,
ranging from 2PC proposed by Jim Gray in 1978 to Paxos Commit published
by Lamport and Gray in 2003. The protocols presented are theoretically well
understood and proven to be correct and therefore present the state-of-the-art
in commit protocols for general system models like the asynchronous model
and models assuming partial synchrony. Table 3.1 summarizes the important
characteristics of the presented protocols that in�uence their applicability in a
MANET.

For applicability in a MANET, commit protocols should show a small un-
certainty window to keep the probability for blocking in strict atomicity and
extended uncertainty situations in semantic atomicity small, because these sit-
uations generally cause the initiation of expensive recovery schemes such as
cooperative recovery, election of a new leader, or restart of a PC instance. Ad-
ditionally, message complexity should be low, as message transfer in MANETs
is expensive in terms of required energy and is susceptible to communication
failures.

Of all schemes enforcing strict atomicity, the basic 2PC protocol has the
smallest uncertainty window. It is therefore the candidate to be considered �rst

3.4. ATOMIC COMMIT PROTOCOLS 47

Commit

Protocol

Problem

solved

Message

Complexity

(no failures)

Message

Complexity

(f failures)

Uncertainty

Window ∆U

Two-Pase
Commit

AC/WAC 4n 2nf − f2
2 + n

2

∆Umin = 2δm

∆Umax = 2δm + ∆vo
One-
Phase
Commit

DAC/WDAC 2n 2npf −
f2
2 +

np
2

Pm
i=1[δopi,i+1] + tl − to

Paxos
Commit NB-WAC♣ [n(2a+ 3)− 1]F [2a+ n(2a+ 3)− 1]F

∆Umax = 3(δm + δto)

∆Umin = 3δm
Quorum
Three-
Phase

Commit �
NB-WAC♠ 5n [(n − f)2 + 2(n − f)]

∆Umax = 4δm + δto

∆Umin = 4δm

Optimistic
Two-
Phase
Commit

SAC/WSAC 4n 2nf − f2
2 + n

2

∆Umin = 2δm

∆Umax = 2δm + ∆vo

Early
Commit

SAC/WSAC 2n 2nf − f2
2 + n

2
tl + 2δm − to

F a is the number of acceptors in each instance of Paxos Consensus.
♣ NB-WAC is solved if a majority of acceptors can reach each other.
� For the derivation of message complexities for O3PC, see [13].
♠NB-WAC is solved if a majority of participants can reach each other.

Table 3.1: Comparison of atomic commit protocols.

for a MANET environment. However, 2PC is susceptible to blocking as it solves
AC andWAC only. Hence, the question to be answered to judge the applicability
of 2PC for MANETs is how often a blocking situation is actually experienced,
and how well cooperative recovery can compensate for these situations. Only
if the resulting blocking rate is unacceptable, more reliable protocols solving
NB-WAC, such as PC or Q3PC, must be considered.

The price to pay by the non-blocking protocols PC and Q3PC is a higher
message complexity and larger uncertainty windows than in 2PC. While the
non-blocking behavior in a partition with a majority of participants is desirable
in MANETs, the latter is not. The question to be answered here is how much
better the compensation for blocking in a MANET environment is compared
to 2PC with cooperative recovery. Note that with increased size of uncertainty
windows and a higher message complexity, also the probability of failures and
therefore for blocking increases, because more messages are transferred that can
be lost and larger uncertainty windows increase the risk of failures to occur
within these windows. Hence, only if the negative e�ect of larger uncertainty
windows does not overcompensate the non-blocking behavior in a large partition,
application of PC or Q3PC is feasible. Hence, whether a protocol is bene�cial
depends on the distribution of node and communication failures in a certain
MANET scenario.

Of the protocols solving semantic atomicity, O2PC has a slightly higher
message complexity of 4n, but a much smaller uncertainty window compared
to the EC scheme. O2PC shows basically the same characteristics as 2PC,
except that it is not susceptible to blocking but to extended uncertainty. This
is not astonishing since it has exactly the same structure and message �ow
as 2PC. Hence, results of the blocking rate derived for 2PC are portable to
extended uncertainty that would occur with O2PC. I will therefore not consider
the O2PC protocol directly any further since 2PC will be examined in detail in

48 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

the following chapters.
In contrast, the EC scheme shows a unique structure and message �ow not

found in any other protocol. The size of uncertainty windows in the EC scheme
depends heavily on the temporal distribution of operations to participants, but
can generally be assumed to be larger than in 2PC schemes. An exception is
the case where only one remote participant exists; then the size of the uncer-
tainty window reduces to 2δm. The message complexity of the EC scheme is
rather low at 2n, making it a promising candidate for MANETs. I will examine
the susceptibility for extended uncertainty of the EC scheme in more detail in
the following chapters, as this scheme is mostly used in ATMs and is also less
susceptible to abort than 2PC, as I will show in Chapter 4.

The protocols presented above solve the atomic commit problems with a
minimum of assumptions about the system model, i.e. they consider an asyn-
chronous or partially synchronous system model. I consider the development of
fundamentally new protocols solving these problems in the asynchronous and
partially synchronous system models to be not feasible since the minimal pro-
tocols for solving atomic commit in these models are found yet.

The development of new commit protocols is more application-driven. Spe-
cial characteristics of the environment that the transactional system is deployed
to can be exploited to design more reliable commit protocols. Hence, new pro-
tocols can be found for more special system models rather than the basic asyn-
chronous or partially synchronous models. Therefore, the basic question in the
context of this work is whether a MANET shows some special characteristics
that can be exploited to increase reliability of commit protocols, i.e. to design
novel protocols.

If minimum assumptions are made for a MANET environment as in the
system model of this work described in Section 2.3, the system model equals the
asynchronous system model and the basic protocols presented in this section are
indicated. In cases where further assumptions can be made, such as stable nodes
that are assumed not to disconnect from A or reliable communication channels
with at least some nodes, enhancements of the basic protocols presented here
are imaginable. This general pattern can be observed in the area of cell-based
wireless environments. Here, several commit protocols have been proposed that
are tailored to the more special system model of cell-based wireless networks
and make use of special characteristics such as mobile-support stations, that
are assumed to be stable and always reachable within a cell. For the sake of
completeness, I present some of these protocols in the following section since
they present the latest developments in the area of atomic commit protocols.

3.5 Commit Protocols for Mobile Environments

Several commit protocols that are optimized for mobile environments have re-
cently been proposed. These protocols are mostly not designed for MANET
environments but for cell-based mobile networks where a distributed transac-
tion is processed between mobile hosts and �xed servers that reside in a �xed
network. I call this environment infrastructure-based.

To the best of my knowledge, there has only been one protocol proposed so
far in [29] that is especially developed for MANETs.

3.5. COMMIT PROTOCOLS FOR MOBILE ENVIRONMENTS 49

3.5.1 Infrastructure-Based Mobile Environments

In an infrastructure-based environment, so-called mobile-support stations (also
called base-stations) connected through a �xed network serve mobile nodes
roaming in a de�ned area (cell). Within the back-end, stationary servers are
placed. While �xed servers and mobile-support stations and their communica-
tion network is assumed to be stable, mobile nodes are assumed to frequently
disconnect from their mobile-support station.

The most-cited transaction models proposed in this environment are Report-
ing Transactions [38], Kangaroo Transactions [45], Pro-Motion Compacts [151],
and Toggle Transactions [43]. For an overview of transaction concepts for the
mobile-host �xed-server environment, see [133]. These models propose advanced
schemes addressing the migration of mobile hosts between cells during transac-
tions processing and mostly assume semantic atomicity.

However, there exist some commit protocols specially developed for the
infrastructure-based environment, such as the Transaction Commit on Time-
out protocol (TCOT) [83], the Unilateral Commit for Mobile (UMC) [20] pro-
tocol, and the Mobile 2PC (M2PC) [106] protocol. The basic building block
for optimization here is the assumption that the �xed-wired back-end servers
and mobile-support stations are reliable. Mobile support-stations and back-end
server are used as log entities to persist the global transaction decision. At re-
connection time, an uncertain mobile host is then guaranteed to leave blocking.
In the following, TCOT, UMC, and M2PC are described brie�y.

3.5.1.1 Transaction Commit on Timeout (TCOT)

The Transaction Commit on Timeout (TCOT) protocol [83] uses time-outs to
allow for unilateral commit and compensating transactions to undo opposing lo-
cal decisions. Hence, TCOT solves semantic atomicity. The basic idea of TCOT
is that participants assume commit as the global decision if the transaction is
not aborted within a certain time-out period. The transaction model assumed
by TCOT di�ers from the standard X/Open model by presuming that every
transaction participant knows all operations of its branch in advance. In TCOT
a transaction branch is called execution-fragment and the global transaction is
decomposed into such fragments that are shipped to participants at transaction
start. TCOT assumes exactly one mobile node among transaction participants
that holds a data replica originated from a �xed server. All participants cal-
culate an execution time-out and a shipping time-out at transaction start, that
is sent to the coordinator before they begin execution of their fragments. The
execution time-out is an upper bound for the time a node requires to execute
its fragment, while the shipping time-out describes an upper bound required
by the mobile host to transfer updates to the �xed replica master server in the
back-end.

The coordinator decides on abort if an abort message from a participant is
received or if a participant does not send a commit message until its execution
time-out is exceeded. Global commit is decided if the coordinator receives com-
mit messages from all participants within their execution time-outs. The main
advantage of the protocol is that only a global abort decision is propagated
to participants, while a global commit decision is not. Hence, the message-
complexity is reduced. A participant can unilaterally decide on commit if it

50 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

commits within its execution time-out. Furthermore, participants may com-
plete the transaction independently based on time-out values.

The main drawback of TCOT is the presumption that accurate time-outs
for execution and message transfer can be derived. Note that this poses strong
timing guarantees not given by the basic asynchronous and partially synchronous
system models.

3.5.1.2 Unilateral Commit for Mobile (UCM)

The Unilateral Commit for Mobile (UCM) protocol [20] is basically a 1PC pro-
tocol providing strict atomicity, i.e. the DAC problem is solved. In contrast
to TCOT, multiple mobile clients can participate in a transaction. The main
failure cases considered are transient failures of mobile clients and disconnec-
tion of clients from their mobile-support station. Coordinator failures are not
considered.

UCM mainly proposes an architecture with the functional entities Partici-
pant, PAgent, LogAgent, and Coordinator. Operations sent to a mobile host are
continually logged on a �xed server to allow later retransmission if the global
decision was commit and a mobile host su�ered a failure before being able to
commit its local transaction branch. To preserve the commit information, the
PAgent is located at a mobile-support station. To ensure that a recovering mo-
bile participant can learn if it must redo a branch which was lost due to a failure,
the PAgent executes a small transaction on the mobile host that force-writes the
global commit decision. First, if this operation is acknowledged successfully by
the mobile participant, the PAgent forwards the �nal commit decision. On re-
ceipt of the �nal commit message, the mobile host commits its local transaction
branch and makes it durable. Hence, UCM assumes that the work of transac-
tions in prepared state is completely lost when the mobile host fails. In cases
where recovering mobile hosts contact the PAgent and the PAgent discovers
that an uncommitted transaction branch was lost and has to be re-executed,
the LogAgent is contacted and the according operations are transferred to the
mobile host. This concept is also known as logical logging.

In fact, UCM does not pose any fundamentally new solutions to solve DAC.
The main contribution of this protocol is to propose an architecture that in-
tegrates the mobile-support stations into 1PC processing and describes how to
distribute transaction logs e�ciently among �xed servers, mobile-support sta-
tions, and mobile hosts.

3.5.1.3 Mobile-2PC (M-2PC)

The Mobile-2PC (M-2PC) protocol [106] revisits the standard 2PC protocol in
the mobile-client �xed-server environment. M-2PC does not consider coordina-
tor failures or permanent failures of mobile hosts.

The main idea is to distinguish between commit among �xed participants
and with mobile participants. Commit among participants residing in the �xed
back-end is done using the standard 2PC protocol, while mobile participants
can delegate their commit duties to the coordinator. The idea here is that a
mobile participant moves directly into prepared state after successfully executing
its branch by sending a commit vote to the coordinator without awaiting a
prepare message. Afterwards, the mobile participant can disconnect from the

3.5. COMMIT PROTOCOLS FOR MOBILE ENVIRONMENTS 51

support station, while the coordinator commits the transaction among the �xed
participants considering the mobile host's vote. On reconnection, the mobile
host can learn about the global decision.

The advantage of this scheme is that a disconnection of the mobile host after
it has �nished its transaction branch does not delay other participants or aborts
the complete transaction. Note that this is basically the same idea underlying
the EC scheme described in Section 3.4.4.1. Hence, SAC is solved for mobile
transaction participants and AC is solved for participants of the �xed network.

3.5.2 Infrastructure-less Mobile Environments

As MANETs are infrastructure-less by de�nition, commit protocols assuming
reliable parts such as mobile-support stations are not applicable. One of the
few commit protocol tailored specially to MANETs is the integrated commit
protocol for mobile network databases proposed by Böse et. al. [29] and described
in the following.

3.5.2.1 An Integrated Commit Protocol for Mobile Networks

The integrated commit protocol for mobile network databases uses multiple
coordinators to increase reliability of commit processing. Blocking risks are
reduced because participants that can contact multiple coordinators in case of
failures to learn about the global decision and the failure of a coordinator can be
compensated by another coordinator that derive the global decision on behalf
of the failed coordinator.

While the use of multiple coordinators decreases the risk that a participant
cannot reach any coordinator, a new problem has to be solved, namely agreement
among coordinators on the global commit decision must be established, i.e. NB-
WAC has to be solved among the coordinator group. Blocking risks within
the group of coordinators is reduced by assuming that all coordinator nodes
will remain in close vicinity, e.g. 1�2 hop distance, to each other for the time
of transaction processing. To reduce the blocking risk of coordinators further,
3PC in combination with Paxos Consensus is used to solve NB-WAC for at
least a majority of coordinators. These considerations resulted in the system
architecture depicted in Figure 3.2.

Each participant is assigned to one node of the coordinator group and pro-
cesses a 2PC protocol with this node. One node of the coordinator group acts as
main coordinator within the 3PC protocol processed by the coordinator group.
Since communication among coordinators is transparent for participants, from
the outside perspective the coordinator group acts like a single commit coordi-
nator, i.e. the group presents a consistent state of the global decision.

In the failure-free case coordinators collect votes derived within 2PC from
participants and forward the bundled votes to the main coordinator. This
presents the �rst phase of the 3PC protocol processed within the coordinator
cloud. If all participants voted for commit, the main coordinator issues a pre-
pare_to_commit message that is acknowledged by all coordinators. The �nal
commit message of the main coordinator is then forwarded to the participants
of each coordinator.

In the case of a blocking situation caused by a participant failure, i.e. block-
ing (i) as de�ned in Section 3.4.1.2, a participant that cannot reach its assigned

52 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

Figure 3.2: Integrated Commit Protocol for Mobile Network Databases.

coordinator can contact another node of the coordinator group to learn about
the global decision. This implies that all nodes of the coordinator group must
be known to all participants before the transaction is started.

Blocking situations caused by a node failure of the coordinator, i.e. block-
ing (ii), is prevented by allowing another coordinator to terminate the transac-
tion. However, this requires to solve safe leader election and blocking among
coordinators. Blocking within the coordinator group is avoided for at least a
majority of coordinators by the use of 3PC combined with a quorum approach.
To preclude faulty election of a new coordinator, ballot numbers as known from
Paxos Consensus are used. In the case of network partitioning, non-blocking
behavior can only be reached for a majority of coordinators that can reach each
other. The probability of this blocking situation is minimized by assuming that
coordinators are in close distance to each other and that therefore partitioning
is unlikely. For a more detailed description of failure handling, see [29].

In the failure-free case, the protocol needs 3n + 4c + 1 messages to reach a
decision, where c denotes the number of coordinators. While 3n + 1 messages
are required by the 2PC protocol, 4c messages are the cost of 3PC within the
coordinator group. The message costs of 3PC are less expensive since coordina-
tors are assumed to reside in direct vicinity and hence no relaying of messages is
required, i.e. a single broadcast message of the main coordinator is received by
the complete coordination cloud. Therefore, a major advantage of the protocol
is that the message load in the failure-free case is only slightly increased com-
pared to 2PC, while the protocol is considerably more reliable since NB-WAC
is solved if a majority of coordinators is available.

A drawback of the approach is its complexity in the failure case, which
anticipates application of this protocol if there are frequent failures. However,
message complexity is then not higher than in Paxos Commit or Q3PC. The
main disadvantage of the protocol is the strong assumption that a coordinator
cloud can be found. To make sense, the protocol needs at least a group of three
coordinators, otherwise more e�cient backup commit protocols like [82, 124] can

3.5. COMMIT PROTOCOLS FOR MOBILE ENVIRONMENTS 53

be used, which I will present in more detail in Chapter 6. However, discovering
at least three stable nodes in single or 1�2 hop distance may be a di�cult task
in a highly dynamic MANET. Furthermore, in a dense MANET with low node
mobility where such a group is likely to be given, multi-hop routing schemes
will most likely be able to provide long path durations; hence, blocking due to
partitioning or communication failures is a rare event and even more lightweight
protocols such as 2PC are possibly su�cient. It is one objective of this work to
answer this question.

3.5.3 Summary - ACPs for Mobile Environments

In this section, I have presented some commit protocols designed for wireless
environments. The common rationale behind all protocols presented was to
exploit special characteristics of the system environment such as mobile-support
stations or a reliable group of coordinators that is assumed not to partition to
allow for more e�cient recovery schemes to compensate blocking and extended
uncertainty situations. Note that increasing the e�ciency of recovery or reducing
the probability that a protocol leads to blocking are the natural options to
approach the blocking problem, since completely anticipating the problem is
impossible, as shown in Section 3.3.

The common idea behind the protocols presented above is to use more reli-
able entities to preserve transaction logs or to coordinate commit processing of
a transaction. Hence, as blocking is at its core a matter of reliability and avail-
ability of commit information, the basic rationale all optimizations of commit
protocols in wireless environments must follow is to increase the availability of
this information. In fact, the SLS architecture presented in Chapter 5 follows
exactly this idea.

Another observation of this section is that except for the integrated commit
protocol of Section 3.5.2.1, no commit protocols specially tailored to MANETs
exist. The protocols proposed for infrastructure-based environments are obvi-
ously not applicable in a MANET.

Design of new commit protocols for MANETs requires characteristics of the
system model to be identi�ed, that can be exploited to increase the availabil-
ity of commit information. For example, the integrated commit protocol as-
sumes a group of nodes with temporarily reliable communication. While the
infrastructure-based environment has some obvious properties such as reliable
�xed mobile-support stations and servers that can be used for this purpose, the
MANET system model of this work is more closely related to the basic partially
synchronous system model that assumes no such properties. Hence, possible
optimizations in a MANET can only be found if the current network topology
and therefore reliability of communication and availability of nodes for a certain
time are considered in one way or another. However, this must happen in an
ad-hoc manner, i.e. adaptive approaches considering the current situation and
adapting commit processing accordingly are required.

Protocols developed for MANETs show an optimization in theory, while a
quantitative statement about the blocking reduction achieved is at most given
by simulation for some example MANET scenarios. Estimation of the bene�t for
other MANET environments is impossible without new simulation studies. Gen-
erally it is not clear whether optimizations are actually required or if lightweight

54 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

protocols such as 2PC show a blocking rate in MANETs one can live with.
In the following, I will de�ne the transaction models that are used to ex-

amine the abort and blocking risks of the basic commit protocols described in
Section 3.4 in MANETs.

3.6 Transaction Models of this Work

Investigation of abort and blocking probability within the remainder of this
thesis will be based on two transaction models de�ned in this section. One
represents traditional transactions as described in Section 3.2.1 and enforces
strict atomicity using 2PC, the other transaction model shall represent advanced
transactions as introduced in Section 3.2.2 and provides semantic atomicity using
the EC scheme. While in the beginning of this chapter, these models were
described in a rather informal way, a more formal description is given here.
Both models are based on a general model of distributed transactions described
�rst and di�er in commit processing only.

3.6.1 General Distributed Transaction Model

The basic transaction model I consider is the �at ACID transaction model. Fol-
lowing the X/Open DTP model, a transaction consists of a set of operations
that are issued by an application. All operations received by a participant con-
stitute a local transaction branch of the global transaction. To avoid the need
for initially choosing a coordinator, I assume that the application process and
the transaction coordinator are colocated.

Each execution of an operation is acknowledged by the participant. These
acknowledgments are used to detect failures of participants, while a di�eren-
tiation between a node failure or a communication failure is not possible. If
an acknowledgment for an operation is not received during timeout ∆op, the
application requests the coordinator to globally abort the transaction. The
coordinator will then issue abort messages to all participants. Advanced trans-
action models can be re�ected here by tolerating detected failures as described
in Section 3.2.2. However, rich nested structures of subtransactions as proposed
in some advanced transaction models are not assumed.

Generally, I distinguish between the processing phase and the decision phase
of a distributed transaction. The processing phase begins at time ts when the
application initiates the transaction and ends at time tp when the acknowledg-
ment of the last operation of the global transaction is received by the application.
The participant executing the last operation of the global transaction is denoted
as PAlast.

I assume that a participant i receives the last operation of its transaction
branch at some random time to. For each participant, the random variable to
is distributed within the interval [ts, tp] according to a pdf o(to). The pdf o(to)
depends on application semantics, i.e. the role of participant i in the transac-
tion. For the sake of simplicity, I assume the same pdf for all participants of
a transaction. The distribution of operations in [ts, to] for a participant is not
considered. The basic idea of the model is that a failure in the interval [ts, to] is
detected at the latest at time to, independently of the distribution of operations

3.6. TRANSACTION MODELS OF THIS WORK 55

Coordinator

Application

Participant 1
(PA

last
)

Participant 2

Processing Phase Decision
 Phase

op op op

commit-request

op op

ack

ack

ack ack

ack

commit

commit

t
o,2 t

o,1 t
p

t
s

ΔU

prep.

prep.

ok

ok

commit

Figure 3.3: Strict transaction model with 2PC.

within this interval, while a failure in [to, tp] will �rst be detected in the commit
phase.

If no failure is detected during [ts, tp], the decision phase is initiated by
starting an ACP at time tp in the strict model and at time t′p in the semantic
transaction model.

As already mentioned, the application and the coordinator are assumed to
be colocated on the same node, allowing message delays of message exchange
between the coordinator and the application to be neglected. Execution delays
during the processing phase are also neglected. Based on this general model, I
di�erentiate between the strict and semantic transaction model.

3.6.2 Strict Transaction Model

The strict model shall represent the traditional transaction model described in
Section 3.2.1. In the strict model, termination of a local transaction branch
is conditionally bound to the termination of the other branches of the same
global transaction. A local transaction branch that already completed all its
operations is not allowed to commit until all other remote branches are known
to terminate successfully. To resolve these termination dependencies, a local
transaction manager must be able to announce that it is prepared to commit
its local branch. In the strict model, the 2PC protocol is used to terminate the
global transaction atomically. 2PC is applied to solve the WAC problem, hence
if the coordinator misses a vote it will decide on abort during the commit phase.

Since the uncertainty periods resulting from the strict model are of special
interest within the following chapters, they are recalled brie�y. In the strict
model, 2PC is started at time tp. I assume that all prepare messages are sent
at the same time (tp). Then the length of the critical window ∆U , where
participants are vulnerable to a coordinator's node failure or a communication
failure, is at minimum ∆Umin = 2δm and at maximum ∆Umax = 2δm + ∆vo.
In cases where no failure has occurred, the window has length ∆Umin, because
all vote and �nal commit messages are delivered within δm. Otherwise, the
coordinator must await timeout ∆vo, so that ∆U increases to ∆Umax.

Figure 3.3 depicts ∆U where participants are vulnerable to blocking situa-

56 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

Coordinator

Application

Participant 2

Processing Phase Decision
 Phase

op op op op

op op

ack

ack

ack ack ack

ack

gl. commit

gl. commit

t
o,2

t
o,1t'

p
t
u

t
s

ΔU
PAlast

ΔU
P2

Δ
ex

Participant 1
(PA

last
)

Figure 3.4: Semantic transaction model with EC.

tions. A node of failure of a participant PA or a communication failure of PA
with the coordinator during ∆U causes a blocking (i) situation. ∆U is given
by the interval [tp + δm, tp + 3δm] if all other participants are correct or by
[tp + δm, tp + 3δm + ∆vo] if any other participant su�ered a failure that causes
the coordinator to await time-out ∆vo. The intervals where a node failure of the
coordinator causes a blocking (ii) situation is [tp, tp+2δm] or [tp, tp+2δm+∆vo]
in case a participant su�ers a failure that prevents its vote message to be deliv-
ered within δm. If blocking (i) or blocking (ii) occurs, I consider the execution
of a cooperative recovery scheme by blocked participants.

3.6.3 Semantic Transaction Model

The semantic model represents the class of advanced transaction models ensur-
ing semantic atomicity as described in Section 3.6.3. In the semantic model,
a local transaction branch terminates as soon its last operation is processed.
Hence, semantic atomicity is maintained by means of compensating transac-
tions, which semantically undo the e�ects of a committed branch. I assume
that a participant knows if an operation is the last of a branch. Commit is
processed according to the EC scheme, presented in Section 3.4.4.1.

While in strict atomicity, ∆U is the same for all participants, in seman-
tic atomicity, ∆U is individual for each participant. This is due to the fact
that a participant i commits its local transaction branch right after success-
fully executing its last operation at time to, moving into uncertainty afterwards.
The acknowledgment of this operation is an implicit yes vote to the coordi-
nator. The coordinator later derives the global decision, without requiring an
additional vote from this participant. In fact, the last operation of the last par-
ticipant PAlast decides the global transaction. Hence, in semantic atomicity, I
de�ne that the processing phase ends at t′p, which is the time the coordinator
sends the last operation to PAlast. Hence, execution and acknowledgment of
this operation can be considered as the decision phase. The coordinator derives
the global decision at tu = t′p+2δm+∆ex, where ∆ex is a constant time assumed

3.7. SUMMARY AND CONCLUSION 57

for the execution of the last operation. This scheme is depicted in Figure 3.4.
It is easy to see that the size of the uncertainty window is generally wider

with semantic atomicity. If no failure with any participant is detected by the
coordinator, the individual uncertainty period of a participant i starts already
at time to,i and ends with tu + δm. If the coordinator detects a failure during
the processing phase at time tf , the global decision (abort) is decided before t′p
and the uncertainty window of i reduces to [to,i, tf + δm]. If to,i > tf , i never
enters uncertainty, since i receives the coordinator's decision before moving into
uncertainty. A node failure of i or a communication with the coordinator while
i is in its uncertainty period results in extended uncertainty (i), while a node
failure of the coordinator while i is in its uncertainty window causes extended
uncertainty (ii) as de�ned in Section 3.4.4.3.

If a participant su�ers an extended uncertainty (i) or extended uncer-
tainty (ii) situation it will initiate a cooperative recovery scheme, by contacting
all other participants to derive the global decision.

3.7 Summary and Conclusion

This chapter has introduced principles of atomic transaction processing and
discussed several Atomic Commit Protocols (ACPs) proposed within the past
30 years. I have presented the status quo on atomic commit problems and
shown that blocking cannot be completely avoided in presence of node and
communication failures in MANETs.

The blocking problem has been described for strict and semantic atomicity,
and the relevant blocking situations to be regarded within the remainder of this
work (i) caused by a participant failure and (ii) caused by a node failure of the
coordinator have been de�ned.

I have presented some related work in the area of infrastructure-based wire-
less networks and discussed the basic rationales behind optimization of atomic
commit protocols. Finally, the transaction models to be used in the remainder
of this thesis have been de�ned.

The objective of this chapter was to present the theoretical foundation of
atomic commit and related work in this area. It was made clear that at most
the NB-WAC problem is solvable in a MANET if a majority of transaction
participants remains connected to each other while a minority of participants
remains blocked.

Fundamental enhancements of existing ACPs or the design of completely new
protocols, e.g. solving NB-WAC are not expected for minimal system models.
The direction followed by most scholars in this area is application driven. More
e�cient recovery protocols are developed by exploiting special characteristics
of the system environment or application as observed in infrastructure-based
networks. However, exploiting reliable parts of the system model like mobile-
support stations is not an option in MANETs.

While solvability results of commit problems and characteristics of ACPs
like message and time complexity have been intensively studied, the implication
of these results for concrete scenarios have not been addressed yet. However,
from a practical point of view, it is of interest how many blocking situations
have to be expected for a given application and MANET scenario if a certain
ACP is used. The currently available results, e.g. that in the case of network

58 CHAPTER 3. ATOMICITY: BACKGROUND AND PRELIMINARIES

partitioning only participants residing in a small partition are blocked while in
a partition with a majority of participants non-blocking is achieved, are of little
use for a practical decision on which protocol to use in a given MANET scenario.
Here, it must be decided for a given application whether an acceptable number
of blocking situations can be expected or whether a high blocking probability
hinders progress of an application and therefore deployment of the application to
a MANET is not feasible. Additionally it is of interest how much the blocking
risk is reduced in case a more reliable ACP like PC or Q3PC is used. To
answer such questions, quantitative statements about blocking probabilities are
required. In fact, the most fundamental question of whether blocking is actually
a relevant problem in MANETs has not been answered yet.

Given the observation that in practice blocking situations in �xed wired net-
works are extremely rare (2PC is mostly used in practice) and the few blocking
situations that occur can easily be tolerated without large delays in transaction
processing, it is of interest whether the situation is fundamentally di�erent in
MANETs.

To answer the more general question whether atomic transaction processing
is feasible at all in a given MANET scenario or whether high abort rates ren-
der transaction processing impossible, abort risks must also be analyzed for a
MANET. The next step of my work is to answer precisely these questions. I
will use the MANET system model de�ned in Chapter 2 to derive an analytical
model that predicts the abort and blocking probabilities in MANETs for the
strict and semantic transaction model de�ned in this chapter.

Chapter 4

Atomic Transactions in
MANETs

The previous two chapters provided background information on MANETs and
a theoretical view of the atomic commit problem and atomic commit proto-
cols (ACPs). The aim of this chapter is to relate both areas and to examine
the real-world behavior of atomic transactions in MANETs to investigate the
relevance of blocking problems. This is motivated by the observation that in
practice theoretically unreliable protocols such as 2PC are used in partially
synchronous system, e.g. the internet, and the theoretical impossibility results
on non-blocking atomic commit and consensus seem to have no relevant im-
pact, since blocking risks are negligible and tolerable. The major objective of
this chapter is to investigate whether the situation is similar for MANETs, i.e.
I want to show the expected dimension of abort and blocking probability in
MANETs. Until now, most research concerned with coordination problems in
MANETs has simply presumed that, due to node mobility and resource con-
straints more reliable ACPs are required and hence that blocking is a relevant
problem in MANETs, while quantitative statements about the expected impact
of failures on coordination guarantees have not been provided.

However, general statements about abort and uncertainty rates in MANETs
cannot be given, since an in�nitive number of transaction and MANET scenarios
exist and each combination shows individual failure characteristics. Therefore,
I am presenting a probabilistic model that allows to predict the expected abort
and blocking rate of transactions for any MANET scenario that is based on the
MANET model introduced in Section 2.3.

The purpose of the probabilistic model developed here is twofold; on the one
hand, it can be used to decide on the applicability of a transactional application
in a MANET setting a priori by predicting expected abort rates. Without such
a model it requires vast simulation studies to �nd out if a transactional system
is applicable at all in a MANET environment, or if a more failure tolerant trans-
action model is indicated. For example, if for a transactional application 50%
of all transactions must be expected to abort, then transaction processing is not
feasible. However, this decision depends on the individual application. On the
other hand, the presented model can be used to optimize transaction process-
ing at runtime by integrating more reliable ACPs only when actually required.

59

60 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

Based on the number of participants and duration of the processing phase, a
coordinator can calculate the probability of the transaction to be aborted due
to a communication or node failure as well as the risk of a participant to su�er
a blocking situation. If these probabilities are unacceptable, the transaction can
be rejected, or additional schemes like the Shared Log Space (SLS) as proposed
in Chapter 5 or a backup coordinator as proposed in Chapter 6 can be embed-
ded in commit processing to compensate for blocking. In short, the questions
answered by the presented calculation model are:

• What is the probability that a transaction of the strict or semantic trans-
action model will abort due to node or communication failure in a given
MANET scenario?

• What is the probability that a participant of a strict or semantic transac-
tion will encounter a blocking (i) or extended uncertainty (i) situation that
cannot be compensated for by cooperative recovery?

• What is the probability that a participant of a strict or semantic trans-
action will encounter a blocking (ii) or extended uncertainty (ii) situation
caused by a node failure of the transaction coordinator?

To calculate the abort and blocking probability of a transaction, the transac-
tion model and several transaction and MANET related parameters have to be
extracted from the application scenario.

Transaction related parameters considered describe the transactions pro-
cessed, i.e. (i) the size of the processing phase given by tp − ts, which is mainly
determined by the number of operations issued within the distributed transac-
tion; (ii) the number of participants denoted by n; (iii) the distribution of last
operations described by the pdf o(to); and (iv) time-out parameters de�ned by
the transaction model, e.g. ∆ex or ∆vo.

Parameters from the MANET scenario are required to derive the probabil-
ities of node, communication and general failures. These parameters are the
pdfs and constants fE(t), fER(t), fT (t), fL(t), fJ(t), fC(t), fCR(t), δm, and δto
de�ned by the MANET system model of this work.

I will present how these parameter are derived before the probabilistic model
is developed. Therefore, this chapter is structured as follows: �rst, MANET re-
lated parameters are extracted from an example scenario. This example scenario
is then used within the remaining chapters. The derivation of fC(t) and fCR(t)
requires special attention, since an analytical evaluation is not possible, but sim-
ulations and statistical analysis are required. Afterwards, Section 4.4 calculates
the probability of transaction abort in the strict and semantic transaction model.
Calculations to predict blocking caused by participant failures are presented in
Section 4.5, while Section 4.6 presents calculations to predict blocking caused
by node failure of the coordinator. The results of Sections 4.4, 4.5, and 4.6 are
then applied to a more concrete application scenario in Section 4.7. In the end,
a detailed problem and research statement is derived, as well as a conclusion on
the relevance of the blocking problem in MANETs is given.

Parts of the calculation models presented in this chapter have been published
in [26, 25, 28].

4.1. MANET PARAMETERS 61

4.1 MANET Parameters

In this section, I will present how the cdfs FN (t) and FC(t) describing the proba-
bility of node and communication failures can be derived for a concrete MANET
scenario. As an example MANET scenario used within the remainder of this
thesis, I assume the following setting based on a disaster recovery situation:

15 mobile recovery units move on a square of 500m* 500m ac-
cording to the Random Way-point (RWP) mobility model at 2.0�
5.0mps, relaying messages for each other using AODV. Batteries of
nodes are assumed to deliver 2 h of service, while the mean time to
failure due to a technical failure is 500 h. The rescue units form a
MANET A connected to other areas according to the AGB mobil-
ity model; each node has an expected sojourn time of 30min before
moving out of A. For example, rescue units salvage injured persons
from collapsed buildings in A, and transport them to a rendezvous
site outside of A for medical treatment. Mobile units are assumed
to carry PDAs with IEEE 802.11�compliant radio adapters with ap-
prox. 120m radio range. The time rescue units remain disconnected
from A before reentering A is distributed exponentially with an ex-
pectation of 1 h.

To obtain the probability F (t), that communication between two nodes is pos-
sible within t, the cdf for node failures FN (t) and for communication failures
FC(t) has to be determined.

4.1.1 Probability of Node Failures FN(t)

According to the failure model of this thesis a node failure causes the complete
disconnection of a node from A. The probability of this event is derived from the
following probabilities: (i) disconnection caused by exhausted energy resources
fB(t); (ii) disconnection due to a technical problem fT (t); or (iii) because the
node moves out of the area of A, given by the pdf fL(t).

fL(t) can be directly obtained from the AGB mobility model as de�ned in
Section 2.2.3.1, since it takes the probability distribution of how long a node
remains within one area as input. In this work, I am assuming exponentially
distributed sojourn times, while any other distribution could be used without
changing the calculation model presented here. In the real world, distribution of
sojourn times may di�er among nodes; e.g., a supply team dispatching supplies
to rescue workers is expected to spend less time inA than a rescue team removing
construction waste with heavy machinery. However, for the sake of simplicity, I
assume FL(t) to be an exponential distribution with parameter λL = 1/1800 in
the example scenario for all nodes of A.

The probability that a node disconnects from A due to exhausted energy
resources by t is denoted by the cdf FB(t). For a randomly chosen node from A,
it is unknown how long it has been operational, and hence how long its energy
resources will last. If mobile nodes enter A with fully charged batteries and have
a constant energy consumption, a randomly chosen node from A can be assumed
to have remaining energy resources uniformly distributed in the interval [0, b]. b
denotes the maximum service time of 7200 s as described above. If nodes are not

62 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

assumed to enterA with fully charged batteries, then an exponential distribution
with parameter λE = 1/b is a feasible assumption for fE(t). It is then modeled
that the probability of exhausted energy resources within an in�nitesimally small
time step is always the same, while the expected service time is b. However,
both the uniform distribution over the interval [0, b] as well as an exponential
distribution are signi�cant simpli�cations, since in reality, the remaining energy
is in�uenced by �uctuating power consumption, which is subject to numerous
in�uences and therefore hard to capture analytically. However, it will be shown
later that the probability of transaction abort or blocking due to exhausted
energy resources is small and negligible. Additionally, energy related failures
can be easily anticipating by simply excluding participants with low energy
resources from a transaction at runtime. Therefore, a raw estimate is su�cient
and favored over accurate modeling here. In the following, I will mostly use the
uniform distribution over [0, b] for calculations if not stated di�erently.

The disconnection from A caused by a technical failure is also a rare event, if
PDAs or laptops are assumed as mobile devices. The scenario description states
that the mean time to failure is given by 500 h, hence an exponential distribution
with λT = 1/(18 ∗ 104) is a meaningful assumption for FT (t), which results in a
negligible probability of node failures due to technical defects. However, in other
scenarios with much cheaper hardware, like sensor nodes, FT (t) may become
more relevant.

If for fE(t) a uniform distribution over [0, b] is assumed, the probability that
a node failure happens within time t is given by:

FN (t) = 1−
(

(1− t

b
) ·
[
1− (1− e

t
λL)
]
·
[
1− (1− e

t
λT)
])

(4.1)

Note that in Formula (4.1), the case t > b is neglected, as I am not concerned
with long-lived but OLTP transactions in this work and therefore with small
values of tp. In Section 4.4, I will show that transactions with a processing
phase larger than 100 s are not feasible in the example scenario.

4.1.2 Communication Failures Fc(t)

The failure model of this work de�nes a communication failure as all events
that lead to an outage of the communication between two nodes in A, while
both communication partners are connected to A. A communication path that
was functional before breaks, if a direct link between two nodes on the path
suddenly becomes unavailable. If no multi-hop routing is used, every link break
immediately causes a communication failure, while with multi-hop routing, the
underlying routing scheme possibly provides an alternative route.

The probability that a communication path is available until time t is de-
scribed by the cdf FC(t), which is primarily in�uenced by the node density,
radio range of nodes, node mobility, and the routing scheme in A. I also show
in the following that FC(t) also depends on the hop count of the path when
communication is initiated. As it is complicated to model the numerous de-
pendent events that cause the break of a communication path, most scholars
propose statistical analysis of path duration, i.e. of FC(t), based on simulation
studies. For example, in [10, 128] the distribution of path durations for di�erent
mobility models is derived by simulation. In [67, 87] an analytical approach
is also proposed to approximate the distributions of path durations. However,

4.1. MANET PARAMETERS 63

[67, 87, 10, 128] show that the underlying mobility model impacts path and link
durations, but for the most common mobility models, such as RWP, Manhat-
tan Mobility [96], and Freeway Mobility [129], an exponential distribution of
path durations for routes with more than 2 hops is a reasonable approximation.
The work cited above solely considers paths with more than two hops (in the
following denoted by 2+ hop count) and derives exponentially distributed path
durations. In contrast, I am especially interested in the probability distribution
of paths with 1�2 hops. This is due to the fact that the abort rate for transac-
tions initiated in 1�2 hop distances is considerably smaller than for transactions
initiated with participants in arbitrary hop distances, as shown in Section 4.4.
In fact, transaction processing with participants in 2+ hops distances mostly
shows such a high abort probability in the example scenario that the feasibility
of transaction processing must be questioned.

To derive FC(t) for 1�2 hop paths, as well as for 2+ hop paths in the example
scenario, I present a simulation study using the ns2 network simulator. The
simulation considers movement in A only, where 15 nodes move according to
the RWP mobility model within an area of 500m* 500m, as assumed in the
example scenario, with speeds between 2.0 and 5.0mps and a pause time of 1 s
before choosing a new way-point.

The following behavior of nodes was simulated in ns2 : two nodes in 1�2
or 2+ hop range were randomly chosen and a probe message was exchanged
every second between these nodes. A node receiving a probe answered with an
acknowledgment message. The time until a communication path breaks, i.e. the
time when no acknowledgment for a probe message was received anymore, was
measured as well as message delays of all messages exchanged. A more detailed
description of the simulation settings, e.g. antenna characteristics etc., are given
in Appendix B.1.1.1.

The resulting histograms showing the frequencies of measured path durations
are given by Figure 4.1. Analysis of the durations of paths initiated in 2+ hop
range shown in Figure 4.1(b) con�rms the results of [67, 87, 10, 128]. For
these paths, an exponential distribution of path durations can be presumed.
Figure 4.1(b) shows an exponential distribution with parameter λ=0.0514 �tting
the measured distribution, where λ is derived using the Maximum Likelihood
method. An important observation to be made here is the high probability of
very short path durations in the example scenario, i.e. 22% of the paths do
not survive 5 seconds. I show later that the abort rate in such a setting is not
acceptable, even for very short transactions.

A di�erent picture is obtained for paths that are initiated in 1�2 hop dis-
tances. The resulting histogram of path durations in Figure 4.1(a) shows a very
di�erent shape compared to 2+ hop paths. What is important here is the high
probability that a path will survive the �rst seconds after initiation, e.g. in the
example scenario, 99% of all links survive the �rst 5 seconds. After a period
with a small risk for a path break right after path initiation, the risk increases
quickly, as shown in Figure 4.1(a). After 40 s about 60% of all links have to
be expected to fail. The path characteristics of 1�2 hops paths is accurately
approximated by a log-normal distribution, as shown by the red curve in Fig-
ure 4.1(a) with parameters µ=3.5343 and σ=0.6770 for the example scenario.
Again, standard techniques such as the Maximum Likelihood method have been
used to estimate these parameters.

64 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

To demonstrate the in�uence of node speed FC(t), Figure 4.1(c) depicts
the results for a simulation assuming the parameters of the example scenario,
while node speeds are reduced from 2.0�5.0mps to 1.0�2.0mps. With reduced
node speeds path durations are obviously higher, while the distribution of path
durations is still accurately modeled by a log-normal distribution as shown by
the red curve in Figure 4.1(c).

Based on the results presented above and related work [67, 87, 10, 128] it can
be concluded that log-normal and exponential distributions can be assumed for
fC(t) for the common mobility scenarios at moderate and high node mobility.
For the purposes of this work I derived fC(t) by simulation, while in future
approaches to derive fC(t) analytically might become available. However, for the
development of the probabilistic model presented in this chapter it is irrelevant
how fC(t) is derived.

While an exponential distribution of communication failures eases calcula-
tions signi�cantly due to the memoryless property of exponential distribution
functions, the probabilistic models presented in this chapter can take arbitrary
distributions as input, as the model does not make any assumptions about the
type of the input pdfs.

I will mostly consider a log-normal distribution for fC(t) as this would be a
realistic choice for the example scenario as shown later.

4.1.3 General Failure F (t)

The event that a node connected to A suddenly cannot communicate with an-
other node anymore, that was reachable before is de�ned as the general failure.
The probability of a general failure happening within time t is given by F (t) and
describes the probability that a communication failure between the two nodes
will occur or that the communication partner will disconnect from A, i.e. the
communication partner su�ered a node failure.

Given the cdfs derived above, F (t) of the example scenario if 1�2 hop paths
are assumed is given by Formula (4.2):

F (t) = 1−
“

(1− 1√
2π · σ

tZ
0

1

x
e−(lnx−µ)2/2σ2

dx) ·
ˆ
(1− t

b
) · (e−t·(1/(λL+λT)))

˜”
(4.2)

with values for the parameters σ, µ, λT , λL, and b as derived in Section 4.1.1.
Figure 4.2 shows a plot of F (t) for the example scenario to demonstrate the

major in�uence of FC(t) on the general failure.
Figure 4.2 shows that, for the example scenario, node failures are almost

negligible. Even if nodes move slowly at 1.0�2.0mps (red curves), the in�uence
of node failures on the general failure rate is small compared to communication
failures in this setting. For example, at t=50 s consideration of node failures
raises the overall failure probability from 18% to 22%, as shown by the red
dashed and the red solid curve in Figure 4.2. At at an increased node speed
of 2.0�5.0mps, the e�ect of node failures on the general failure is marginal as
shown by the green curves in Figure 4.2.

The in�uence of node failures might have a greater in�uence in other scenar-
ios, e.g. where transition rates between MANET areas are signi�cantly higher, or
more failure-prone hardware like sensors nodes are employed. Therefore, node

4.1. MANET PARAMETERS 65

(a) Relative frequencies of path durations for paths initiated in 1�2 hop
distance, measured in the example scenario with AODV multi-hop routing.

(b) Relative frequencies of path durations for paths initiated in 2+ hop
distance, measured in the example scenario with AODV multi-hop routing.

(c) Relative frequencies of path duration for paths initiated in 1�2 hop
distance, measured in the example scenario at reduced speeds of 1.0�2.0mps
with AODV multi-hop routing.

Figure 4.1: Histograms of measured path durations based on 10000 tests.

66 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

Figure 4.2: In�uence of node failures on F (t).

failures are considered within all calculations in the following, although their
impact is small in the example scenario.

One important property of communication failures is that they are assumed
to eventually recover if both communication partners remain in A. To under-
stand to what extent failures are transparent to transaction processing, fCR(t)
has to be derived.

4.1.4 Probability of Path Recovery FCR(t)

As described in the system model of this work, communication failures are sub-
ject to recovery. The time that messages between two nodes cannot be delivered,
is distributed by fCR(t) (see system model Section 2.3.1).

The time that communication between two nodes is unavailable is in�uenced
by multiple factors. The network density and network size nA in�uence the
probability that an alternative path can be found, while node mobility in�uences
the probability that new paths are formed. Additionally, the routing scheme
plays an important role, as the time required to detect an invalid route and to
initiate discovery of an alternative route di�ers for multi-hop routing schemes.

Proactive routing like DSDV recognizes broken routes more quickly, since
topology changes are constantly propagated through the network. DSR main-
tains multiple paths for one destination, while AODV maintains only one route
per destination and therefore has to perform a route discovery whenever a path
breaks. As all these factors are hard to grasp analytically, I propose a simu-
lation study using the same simulation as in Section 4.1.2, with the di�erence
that exchange of the probe message is continued after the path breaks and the
time is measured until the probe message is received again. For the example
scenario with AODV routing, Figure 4.3(a) shows the resulting histogram of
measured path outage times. It can be observed that new paths are found with
a probability of 14% after 10 s. This is explained by the fact that AODV awaits
a time-out before a stale route is considered to be broken and discovery of a
new route is initiated. A log-normal distribution here �ts the distribution of
the path outage periods, if the delay δPB is considered that describes the time

4.2. TRANSACTION PARAMETERS 67

AODV requires to detect the path break, as shown by the dotted line in Figure
4.3(a). fCR(t) is then given by:

fCR(t) =

8<: 1

(t−δPB)σr
√

2π
· e
„
− (ln(t−δPB)−µr)2

2σ2
r

«
for t > δPB

0 for t ≤ δPB
(4.3)

The in�uence of the routing scheme and node speeds on path recovery is
demonstrated by Figure 4.3(b) and 4.3(c). Figure 4.3(b) shows the distribution
of path outages of the example scenario and node speeds of 2.0�5.0mps if no
multi-hop routing is used, i.e. communication is only possible between nodes in
direct radio range. Here, long outage periods are more likely than in scenarios
with AODV. However, a log-normal distribution with parameters µ=4.78 and
σ=1.34 provides a good approximation to these frequencies.

Figure 4.3(c) shows the e�ect of slow moving nodes (1.0�2.0mps) if no multi-
hop routing scheme is considered. Here, the duration of path outages is more
widely distributed, and very long outage periods of up to 500 s are possible.

I will show later that fCR(t) has a strong in�uence on abort and blocking
probabilities if a multi-hop routing scheme is used.

4.1.5 Summary - MANET Parameters

In this section, I demonstrated how the parameters required by the MANET
system model can be obtained for a given MANET scenario. Since convenient
analytical approaches to derive cdfs FC(t) and FCR(t) and message delay δm
are yet not available yet, I proposed a simple simulation study to estimate these
parameters statistically. However, the MANET research community is actively
working on approaches to derive FC(t) and FCR(t) analytically, e.g. [67, 87].
Such models can be possibly used in future, since it is irrelevant for this work
how these distributions are derived. However, it is out of the scope of this
thesis to develop such analytical approaches. For the purpose of this work,
simulation provides a convenient way to learn about the characteristics of a
MANET scenario and to derive the desired cdfs.

4.2 Transaction Parameters

As described in Chapter 3, the parameters of a transaction are: (i) the trans-
action model; (ii) the size of its processing phase [ts, tp]; (iii) the number of
participants n and (iv) the distributions of the last operations assigned to par-
ticipants given by o(to).

I do not propose an example transaction scenario to derive a �xed set of
parameters like in the previous section, but the four transaction parameters will
be varied systematically to demonstrate their in�uence on abort and blocking
risks.

Whether the strict or the semantic transaction model is assumed depends
on application semantic, i.e. if a distributed database application or a non-
traditional application is considered. In the following, both models are consid-
ered by the calculation models proposed.

68 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

(a) Relative frequencies of �rst outage durations with AODV for paths
initiated in 1�2 hops distance.

(b) Relative frequencies of �rst outage durations without multi-hop routing,
for link initiated in 1�2 hops distance.

(c) Relative frequencies of �rst outage durations without multi-hop rout-
ing and slow node movement of 1.0�2.0mps for hops initiated in 1�2 hops
distance.

Figure 4.3: Distribution of path outages measured in 10000 test for the example
MANET scenario.

4.3. PRELIMINARY CONSIDERATIONS 69

The size of the processing phase [ts, tp] mainly depends on the number of
operations issued to participants and the grade of parallelism of operation al-
location. Given an execution delay ∆ex, the number of operations issued, and
δm, it is obviously possible to approximate the size of the processing phase for
a concrete transaction. I present an example of how the size of the processing
phase is derived for an example scenario in the end of this chapter.

The number of nodes n participating in a distributed transaction is assumed
to be small, i.e. 2�6 participants. The exact value of n depends on the concrete
application on hand. In the following, I will mostly assume 3 participants, but
I will also vary n to examine its in�uence on abort and blocking rates.

The time to the last operation of a participant's transaction branch is ex-
ecuted has great in�uences on abort and blocking rates in the strict and the
semantic transaction model. A general failure with a participant during the
processing phase is detected at latest at to. Therefore, to de�nes the interval
[to, tp] where a communication failure with a participant or a node failure of
the participant is not detected by the coordinator, because no messages are ex-
changed. A failure in [to, tp] will �rst be detected within the decision phase of
the transaction. In the semantic transaction model, to is also the time where a
node enters its uncertainty window.

For the calculation model presented in the next subsections, I assume that
to follows the same probability distribution o(to) for all participants. In reality,
the distribution of operations during the processing phase depends on the ap-
plication and the role of each participant. Arbitrary distributions for o(to) can
be imagined. For sake of simplicity, I assume a uniform distribution of to over
tp, i.e.

o(to) = 1/tp (4.4)

where tp is the size of the interval [ts, tp] with ts = 0.
In the following, the MANET and transaction parameters are used as input

for a calculation model that predicts abort and blocking risks of transactions
in MANETs. The example MANET scenario de�ned above is used as the main
scenario while transaction parameters are varied.

4.3 Preliminary Considerations

In this section, I present some preliminary calculations, which are frequently
used. In many cases, I calculate the probability that an event happens during
an interval [t1, t2]. Given a cdf F , it is computed by the di�erence F (t2)− F (t1).
In the following I use the notation F (t1..t2) for this probability. For most cal-
culations, I present two variants, one considering a single recovery cycle of com-
munication paths and another neglecting recovery of communication paths. If
a cdf F describes the variant that does not consider recovery, then F ′ denotes
the expression considering a single recovery cycle.

Important preliminary results are the probabilities that a transaction ac-
tually enters the decision phase of a transaction. The decision phase is not
entered if the transaction is aborted before, because the coordinator detects a
participant's failure. These probabilities are derived in the following.

70 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

4.3.1 Recognized Failures in the Processing Phase

A participant's node or communication failure is only detected in the processing
phase if it happens within the interval [ts, to], since then the coordinator would
observe that an operation has not been acknowledged. This event occurs if a
participant su�ers from a failure at time tf before the last operation is processed
at time to, hence if to > tf . Po>f (tp) denotes the probability that a participant's
failure happens in the interval [ts, to] and thus is detected by the coordinator.
Po>f (tp) is given by

Po>f (tp) =

tpZ
0

toZ
0

o(to) · f(tf) dtfdto (4.5)

if ts = 0. The bounds of the integrals in Po>f (tp) are chosen by the following
consideration: if to ∈ [0, tp], then tf must occur in the interval [0, to].

I use the subscript of o > f to indicate the failure type considered; i.e.
Po>fN (tp) denotes the probability that a node failure occurs and is recognized by
the coordinator, while Po<fC (tP) describes the same for communication failures.

If (i) a log-normal distribution with parameters µ and σ for communication
failures, (ii) node failure probabilities as derived above, and (iii) o(tp) = 1/tp
are applied to Po>f (tp), then Po>f (tp) is given by

Po>f (tp) =

tpZ
0

1

2tp
·

"
3− 2e−λLto − 2e−λT +

r
1

σ2
σ

+
2to
b

+ Erfc

»
µ− ln(to)√

2σ

–#
dto (4.6)

while Erfc denotes the complementary error function. The complementary prob-
ability 1− Po>f (tp) is the probability that a failure occurs and is not detected
or that no failure happens during [ts, tp].

4.3.2 Unrecognized Failures in the Processing Phase

A failure of a participant during [ts, tp] is not recognized if the failure happens
after the last operation was acknowledged. Hence, if to ∈ [ts, tp], then tf has
to be from the interval [to, tp] for this event to happen. The probability that a
failure occurs in [ts, tp] and is not recognized by the coordinator is denoted by
Po<f (tp) and is given by

Po<f (tp) =

tpZ
0

tpZ
to

o(to) · f(tf) dtfdto (4.7)

if ts=0. Using a log-normal distribution for fC(t) and fN (t) as derived for the
example MANET scenario of this work, Po<f (t) given by

Po<f (tp) =

tpZ
0

“
e−λLto + e−λT to − e−λLtp − e−λT tp +

tp−to
b

”
tp

+
Erf

h
µ−ln(to)√

2σ

i
− Erf

h
µ−ln(tp)√

2σ

i
2tp

dto (4.8)

4.3. PRELIMINARY CONSIDERATIONS 71

The complementary probability 1 − Po<f (tp) describes the probability of the
events that either no failure occurs during [ts, tp] or that a failure occurs and is
recognized.

4.3.3 Unrecognized Failure and Recovery

As described in the system model and in Section 4.1.4, communication failures
are subject to recovery, and the �rst random outage time of a communication
path is described by the pdf fCR(t). A result frequently used is the probability
of an agnostic failure in [ts, tp]. The coordinator reacts agnostically to a failure
of a participant if the failure happens after to and recovers by tp. Given the pdf
of path outage fCR(tr), last operation o(to), and communication failure fC(tf),
the probability of an agnostic communication failure is given by Po<fC ,r(tp):

Po<fC ,r(tp) =

tpZ
0

tfZ
0

tp−tfZ
0

fCR(tr) · o(to) · fC(tf) dtrdtodtf (4.9)

if ts=0. The bounds of the integrals in Po<fC ,r(tp) are chosen according to the
following consideration: if tf ∈ [0, tp] then the last operation must have been
acknowledged before the failure occurs and hence, to ∈ [0, tf]. The outage period
of communication must be smaller than the time until the end of the decision
phase is reached and therefore tr ∈ [0, tp − tf].

Note that Po<fC ,r(tp) assumes only a single failure and recovery cycle, while
in reality multiple failure and recovery cycles may occur over time. However,
the probability of multiple failure and recovery cycles is negligible for the short
transactions considered in this work. Simulation results presented later show
that accurate predictions are derived by considering only one recovery cycle. If
for fC(t) and FCR(t) exponential distributions are assumed, consideration of
multiple failure and recovery cycles is possible, because the memoryless prop-
erty of exponential distributions can be exploited to model a stochastic process
describing the states of a path. Such calculations are omitted here, but their
integration in the calculation model presented here is straightforward.

The complementary probability 1 − Po<fC ,r(tp) describes the probability
that (i) no failure happens during [ts, tp], or (ii) that a failure is experienced
and recognized, or (iii) that a failure is not recognized and does not recover
until tp.

Recovery from a node failure was not considered here since the time horizon
of recovery from a node failure is in the dimension of several minutes. Hence,
the probability that a node failure is not recognized and recovers within the
processing phase is negligible. In contrast, for calculations of the probability
that a failure is not recognized by the coordinator and does not recover before
tp, node failures have to be considered as shown in the following.

4.3.4 Unrecognized Failure and no Recovery

The event that a participant su�ers from an unrecognized failure in the inter-
val [ts, tp] and the failure does not recover until tp may occur in two situations:
(i) the participant su�ers from a communication failure that does not recover
until tp, or (ii) the participant su�ers from a node failure.

72 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

The probability of the �rst event is calculated by Po<fC ,nr(tp):

Po<fC ,nr(tp) =

tpZ
0

tfZ
0

∞Z
tp−tf

fCR(tr) · o(to) · fC(tf) dtrdtodtf (4.10)

if ts=0, where the bounds of the integrals are chosen as follows: if tf ∈ [0, tp],
then to ∈ [0, tf] and the outage time of the communication path must exceed the
remaining processing phase, hence tr ∈ [tp−tf ,∞]. If situation (ii) is considered,
the probability that a general failure happens in [ts, tp], which is not recognized
and does not recover by tp, is given by Po<f,nr(t):

Po<f,nr(tp) = 1−
ˆ
1− Po<fN (t)

˜
·
ˆ
1− Po<fC ,nr(t)

˜
(4.11)

Given the preliminary considerations above, the remainder of this chapter is
concerned with the prediction of abort and blocking probabilities in the strict
and semantic transaction models.

4.4 Abort Probability

The probability that a transaction is aborted due to a node failure or a com-
munication failure is useful at runtime to decide on whether abort risks of a
given transaction can be tolerated or if the transaction is better rejected. Addi-
tionally, being able to predict abort probabilities also allows to decide whether
transaction processing is feasible at all in a certain application and MANET
scenario at design time.

While the abort rate that an application can live with depends on the in-
dividual application semantics, I assume that an abort rate larger than 20% is
not tolerable for most applications in the disaster scenario assumed here.

Calculation of the abort probability is also crucial for the derivation of block-
ing probabilities, since blocking situations can only occur if the transaction has
not been aborted before. Hence, a high abort rate reduces the probability of
blocking. This e�ect is especially strong in the strict model, where blocking
cannot occur during the processing phase and abort during this phase renders
blocking impossible.

In the following, I present a calculation model to derive the abort probabili-
ties for the strict and semantic transaction models. The model is applied to the
example MANET scenario of this chapter.

4.4.1 Abort Probability in the Strict Model

In the strict transaction model, a transaction can be aborted by the coordinator
during the processing phase [ts, tp] or during the decision phase [tp, tp + ∆U].
Both events are mutually exclusive and considered separately in the following.

Abort is decided in [ts, tp] if the coordinator misses an acknowledgment for
an operation and within [tp, tp + ∆U] if a vote of a participant does not arrive
within time-out ∆vo. First, I will consider the probability of abort in the interval
[ts, tp] and afterwards for [tp, tp + ∆U].

4.4. ABORT PROBABILITY 73

4.4.1.1 Abort Probability in the Processing Phase

The probability that in a transaction with n participants all participants either
do not su�er from a failure within [ts, tp] or the failure is not recognized, is
calculated by

[
1−Po>f (tp)

]n
. The complement of

[
1−Po>f (tp)

]n
describes the

probability that at least one participant su�ers a recognized failure in [ts, tp].
This is the probability of a transaction to abort in [ts, tp] due to a participant
failure.

If the coordinator su�ers from a node failure within [ts, tp], participants will
abort unilaterally at tp + ∆Umax + δm. This is safe, as no participant will move
into prepared state, since no prepare messages can arrive. The probability that
a transaction is aborted can now be calculated by the probability that either
a recognized participant failure or a node failure of the coordinator happens
within [ts, tp] denoted by Pap(tp).

Pap(tp) = 1−
ˆ
1− Po>f (tp)

˜n · ˆ1− FN (tp)
˜

(4.12)

4.4.1.2 Abort Probability in the Decision Phase

In interval [tp, tp + ∆U], a transaction is aborted if the coordinator misses the
vote of a participant after awaiting a timeout ∆vo. This can happen either
because a participant has not received a prepare message or its vote message
cannot be transmitted due to a communication failure. The prepare message
is not received in three situations: (A) if a participant su�ers an unrecognized
failure that does not recover until tp; (B) if the prepare message is lost due to a
general failure of a participant in [tp, tp + δm]; and (C) if a participant receives
the prepare message, but its vote message is lost due to a communication failure
within the interval [tp + δm, tp + 2δm].

If recovery of communication failures is not considered, the probability that
at least one of n participants experiences situation A while the coordinator does
not su�er from a node failure is given by PA(tp).

PA(tp) =
“ˆ

1− Po>f (tp)
˜n − ˆ1− F (tp)

˜n” · ˆ1− FN (tp)
˜

(4.13)

Node failures of the coordinator within [tp, tp + ∆U] are not considered, as
this situation causes blocking, which is considered in Section 4.6.

The probability of situation B is given by F (tp..tp + δm), that of C by
FC(tp + δm..tp + 2δm). Since the events B and C are not independent, the
probability for the event that B or C occurs is calculated by PBC(tp).

PBC(tp) = F (tp..tp + δm) + Fc(tp + δm..tp + 2δm)

−F (tp..tp + δm) · Fc(tp + δm..tp + 2δm) (4.14)

The probability that abort is decided in the decision phase if recovery of com-
munication paths is not considered is now given by

Pad(tp) = PA(tp) +
ˆ
1− F (tp)

˜n · PBC(tp) (4.15)

In the case where recovery of communication paths is considered, an addi-
tional event must be regarded for situation A. This is the situation that at least
one of n participants su�ers from an unrecognized failure in [ts, tp] that does

74 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

not recover by tp, while the other participants do not su�er from a failure in
[ts, tp] or an unrecognized failure occurs which recovers by tp. This probability
is calculated by

PA′(tp) =

nX
i=1

„
n
i

«
Po<f,nr(tp)

i

·
n−iX
j=0

„
n− i
j

«ˆ
1− F (tp)

˜j · Po<f,r(tp)n−i−j (4.16)

If recovery of communication paths is considered for situation B and C, the
probability that at least one participant su�ers from B or C has to consider that
participants may su�er a failure that recovers by tp. Therefore, the probability
that, for at least one of n participants, event B or C occurs is given by PBC ′(tp).

PBC′(tp) =

nX
i=0

ˆ
1− F (tp)

˜i·Po<fC ,r(tp)n−i · “1−
ˆ
1− PBC(tp)

˜i”
(4.17)

The probability of abort in the decision phase, considering one recovery cycle of
communication failures, is now given by P ′ad(tp).

P ′ad(tp) = PA′(tp) + PBC′(tp) (4.18)

The overall risk of a transaction to abort is now simply calculated by con-
sidering the probability that abort is decided in interval [ts, tp] or [tp, tp + ∆U].
If no recovery of communication is considered, Pa(tp) gives the overall abort
probability.

Pa(tp) = Pap(tp) + Pad(tp) (4.19)

P ′a(tp) analogously gives the overall abort probability if a single recovery cycle
of communication failures is assumed.

P ′a(tp) = Pap(tp) + P ′ad(tp) (4.20)

4.4.1.3 Predictions and Simulation Results

In the following, the calculation model derived above is applied to the example
MANET scenario and theoretical results are compared to measurements of a
simulation study. Results are presented for strict transactions with n=3 and
processing phases of 1�200 s, while additionally node speeds, initiation distance,
and routing schemes are varied to demonstrate their in�uence on transaction
abort.

Experiments have been done using the ns2 network simulator with the mo-
bility and radio settings of the example MANET scenario. For a detailed de-
scription of the settings see Appendix B.1.1.1. The following was implemented
in ns2 to simulate a transaction of the strict model: a transaction is initiated
by choosing a random node to act as coordinator. n participants are randomly
chosen from all nodes in 1�2 hop distance to the coordinator. The exact pro-
cess of how coordinator and participants are chosen and simulation scripts are
created is described in Appendix B.1. For every participant, time to is calcu-
lated using o(tp) and beginning with transaction start, the coordinator issues

4.4. ABORT PROBABILITY 75

an operation message every second to all participants that have not reached
their to. A participant receiving such a message immediately replies with an
acknowledgment. If the coordinator does not receive an acknowledgment for an
operation message within time-out δto=1 s, the transaction is aborted. In case
acknowledgments for all issued operations are received by tp, 2PC is initiated.
Here, abort is decided if a vote times-out after ∆vo=1 s.

Figure 4.4 compares the abort rates predicted by the proposed calculations,
with measurements obtained from the simulation study. Figures 4.4(a), 4.4(b),
and 4.4(c) compare predicted and measured abort rates in the example MANET
scenario (a) with AODV routing, (b) without routing, and (c) with slow moving
nodes (1.0�2.0mps). In the following, I will �rst analyze abort rates in the
processing and decision phase, before the overall abort rate and the in�uence of
hop distances at initiation time is discussed.

Abort in Processing and Decision Phase

Generally, it can be observed that the predicted abort rates in the processing
phase approximate the experimental rates accurately. For example, Curve 1
and 4 of Figure 4.4(a) show that at a processing phase of 40 s, Pap(tp) predicts
an abort rate of 55.7%, while the measured rate of transactions aborted in the
processing phase is 55.4%. A similar accuracy of predictions is achieved in
the scenario where no multi-hop routing is used as shown in Figure 4.4(b) by
Curve 1 and 4, and if node speeds are decreased to 1.0�2.0 mps as depicted in
Figure 4.4(c) by Curve 2 and 5.

The probability of an abort decision in the processing phase is monotonically
increasing over tp and converges to 1. Pap(tp) has a log-normal like shape, as
its major in�uence is the probability for communication failures during the pro-
cessing phase. For the example scenario, it is shown that the abort risks within
the processing phase increases fast, e.g. with node speeds of 2.0�5.0mps and
multi-hop routing the abort probability during the processing phase is greater
than 90% for tp>100 s as shown in Figure 4.4(a).

In contrast to Pap(tp), the probability of transaction abort in the deci-
sion phase Pad(tp) converges to 0 for increasing tp as shown in the three Fig-
ures 4.4(a), 4.4(b), and 4.4(c), while for small tp abort in the decision phase is
more likely than in the processing phase.

Figure 4.4(a) shows that neglecting the e�ect of path recovery leads to pre-
dictions higher than the actually observed rates, e.g. for tp=40 s, Pad(tp) predicts
a 37.4% abort probability, while the measured rate is only 13.7%. Here, P ′ad(tp)
considering path recovery has to be used to derive more realistic approximations
as shown by Curves 2 and 5 in Figure 4.4(a). It can be further observed that
for small tp, the measured values are slightly smaller than predicted by P ′ad(tp),
while for large tp, the measured abort rate in the decision phase is slightly
underestimated.

Higher predictions for small tp are explained by the e�ect that, for small tp,
the message delay is smaller than for large tp, because for small tp participants
and the coordinator are most likely still in close vicinity during the decision
phase, since transactions are initiated in 1�2 hop distance. The predicted value
calculated by P ′ad(tp) uses δm, which is an average value greater than the real
message delay for small tp.

76 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

(a) Abort rates in the example MANET scenario with AODV
multi-hop routing. Predictions are based on parameters n=3 and
δm=180ms.

(b) Abort rates for the example MANET scenario without
multi-hop routing. Predictions are based parameters n=3 and
δm=180ms.

(c) Abort rates for n=1 and reduced speeds of 1.0�2.0mps in the example MANET scenario
and strict transaction model.

Figure 4.4: Abort probabilities of strict transactions in the example scenario.

4.4. ABORT PROBABILITY 77

Smaller predictions for large tp are explained by the fact that P ′ad(tp) consid-
ers only a single recovery cycle of communication paths, while in reality multiple
failure and recovery cycles can occur. Especially for large tp, the probability of
a communication paths that recovered to fail again increases.

If no multi-hop routing is used neglecting the e�ect of recovery of failed
communication paths is small as shown in Figure 4.4(b) by Curves 2, 3, and 5.
Here P ′ad(tp) as well as Pad(tp) provide good approximations of the measured
abort rates.

Overall Abort Rate

Figure 4.5(b) depicts the overall abort probability as calculated by For-
mula (4.20) and experimental values for the example scenario with and without
multi-hop routing. Generally, it can be observed that the overall abort rate is
high. For example, at tp=20 s an overall abort rate of 32.7% is observed with
multi-hop routing and of 54.4% without. A feasible abort rate smaller than 20%
with n=3 is given only for processing phases smaller than 15 s with multi-hop
routing. If no multi-hop routing is used, feasible transaction processing in the
example scenario is only possible for tp<13 s.

As already stated in Section 4.1.2, the hop count of communication paths
at transaction initiation is critical to the abort rates as shown in Figure 4.5(a).
While for the results in Figure 4.4(a), 4.4(b), 4.4(c), and 4.5(b) transactions
initiated in 1�2 hop distance and therefore log-normal distributions have been
assumed for FC(tp), Figure 4.5(a) compares the abort rate for transactions ini-
tiated in 1�2 (Curve 1) and 2+ (Curve 2) hop distances. For 2+ hop distances
the abort probability in the processing phase is already larger than 20% for
transactions with tp>3 s. Hence, only very short transactions are feasible at all
with three participants in this scenario. Given this observation, I will assume
1�2 hop distances for transaction initiation for the example scenario within the
remainder of this chapter.

How sensitive the abort probability is to node speeds is shown in Fig-
ure 4.4(c). Here, the example MANET scenario is simulated with lower node
speeds of 1.0�2.0mps. At these speeds, the predicted and measured abort rates
are signi�cantly smaller than with speeds of 2.0�5.0mps. Here, even transac-
tions with a duration of up to 80 s show an abort risk smaller than 20%.

Based on the results presented above, I conclude that calculations of Sec-
tion 4.4.1 predicting the abort risks of strict transactions in a MANET accu-
rately characterize the dimensions of abort rates to be expected in a MANET
scenario. While Pd(tp) gives very accurate predictions, the major abstraction of
the system model to assume an average δm and considering a single failure and
recovery cycle of communication paths leads to less accuracy of predictions of
abort risks in the decision phase. However, for transaction sizes where moder-
ate abort rates are observed, predictions of the overall abort rate are su�ciently
accurate.

4.4.2 Abort Probability in the Semantic Model

The semantic transaction model de�ned in Section 3.2.2 allows for temporarily
diverse commit decisions of participants. A participant derives a local prelimi-
nary decision on abort or commit that is veri�ed later when the �nal decision

78 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

(a) Comparison of abort rates in the processing
phase for 1�2 and 2+ hop initiation distances.

(b) Abort rates with and without multi-hop rout-
ing.

Figure 4.5: Overall abort probabilities in the example scenario.

is made by the coordinator. The processing phase of a transaction ends at t′p,
when the coordinator issues the last operation to the last participant. Successful
acknowledgment of this operation decides the global transaction. Therefore, the
global decision is derived at time t′P +2δm+∆ex, where ∆ex is the time required
by the last participant (PAlast) to execute its last operation; I denote this point
in time as tu.

In the semantic scheme, the decisive factor for transaction abort is the prob-
ability of abort during the processing phase, because the e�ect that an unrec-
ognized failure that does not recover in time causes an abort decision in the
decision phase does not exist. Thus, the abort probability is expected to be
lower than in the strict model. Node failures of the coordinator during the
processing and decision phase are not considered in the following calculations,
because in the semantic model these failures cause an extended uncertainty (ii)
situation, which is extensively examined in Section 4.6.

In the semantic model, I denote the probability of abort during the processing
phase as P ∗ap(t′p), which is computed by the complementary probability that
neither all nodes in PAother do not cause an abort nor does PAlast during
[ts, tp].

P ∗ap(t′p) = 1−
ˆ
1− Po>f (t′p)

˜n−1 ·
ˆ
1− F (t′p)

˜
(4.21)

In the interval [t′p, tu], only a failure of PAlast can cause an abort decision
denoted by P ∗ad(t′p). For this event to happen, the transaction should not be
aborted during the processing phase and PAlast has to su�er a node or commu-
nication failure in the interval [t′p, tu].

P ∗ad(tp) =
ˆ
1− Po>f (t′p)

˜n−1 · F (t′p..tu) (4.22)

The overall probability of a transaction being aborted in the semantic model is
then given by P ∗a (t′p).

P ∗a (t′p) = P ∗ap(t′p) + P ∗ad(t′p) (4.23)

4.4. ABORT PROBABILITY 79

(a) Abort probability of semantic transactions in
the example scenario with AODV routing.

(b) Abort probability of semantic transactions in
the example scenario without routing.

Figure 4.6: Abort probabilities of semantic transactions in the example MANET
scenario.

4.4.2.1 Predictions and Simulation Results

In Figure 4.6, the abort rate predicted by P ∗a (tp) is compared with measurements
obtained from a ns2 simulation study. In the simulation study, the message
exchange of the semantic model was implemented. Similar to the simulation
study of the previous section, coordinators and three participants in 1�2 hop
distance are randomly chosen. For every participant, to was derived by o(tp)
and operation messages are issued to a participant by the coordinator every
second until participants reach to. If acknowledgments for operations are not
received within δto=1 s, abort is executed. PAlast waits for ∆ex=1 s before
answering its last operation.

Abort rates are measured for the example scenario with and without multi-
hop routing. The simulation results validate the predictions of P ∗a (tp) in both
cases. It can be observed that P ∗a (tp) predicts slightly higher abort probabilities
than observed in experiments for small tp. Similar to strict transactions, this is
explained with smaller δm in reality for short transactions, while P ∗a (tp) uses an
average estimate of δm for long and short transactions.

In contrast to the strict transaction model, multi-hop routing has little in-
�uence on the abort rate, as recovery of communication links does not in�uence
the abort probability in the semantic model.

Another important result is the validation of the presumption that the abort
probability in the semantic model is smaller than in the strict model. It showed
that this is especially true in the case where no multi-hop routing is used. In
this case, transactions with tp=20 s show an abort risk of 10.5% in the semantic
model, while in the strict model abort has a probability of 54.4%. If multi-hop
routing is used, then the decrease in abort probability is smaller, e.g. 10.4% in
the semantic model compared to 32.7% in the strict model at tp=20 s.

80 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

4.4.3 Summary - Abort Probabilities

In this section, I presented formulae to approximate the abort rate of transac-
tions in the strict transaction model and in the semantic transaction model. The
general observation is that the abort rate is high in the example MANET sce-
nario. Abort rates of similar dimensions should be expected in other MANET
scenarios that are of the same class as the example scenario, i.e. scenarios that
show similar node movement and network densities. It was shown that only
short transactions with values of tp<15 s in the strict model and t′p<23 s in the
semantic model are feasible if abort rates smaller than 20% are required.

Generally, the semantic transaction model shows a lower susceptibility for
abort than the strict model, e.g. 10.4% abort risks at t′p=20 s, while in the strict
model 32.7% is observed.

The abort probability is mainly in�uenced by node mobility and node speeds
as well as by hop distances at transaction initiation. Decreased node speeds dras-
tically reduce the expected abort rate, e.g. node speeds of 1.0�2.0mps allow for
transaction sizes of up to 80 s as shown in Section 4.4.1.3. Choosing participants
in 2+ hop distance at transaction initiation leads to exponentially distributed
communication failures causing intolerable high abort risks.

Multi-hop routing slightly reduces the number of aborts in the strict model,
since recovery of communication paths is more likely with multi-hop routing
and more transient failures occur that do not cause abort. Abort during the
processing phase is not reduced, since it is assumed that until to operations are
issued every second to a participant and a missing acknowledgment immediately
causes abort.

Although abort rates have been only presented for the example MANET
scenario, I argue that this section shows that a primary problem of transaction
processing in MANETs are high abort rates. It is important to keep in mind
that other failure situations, such as blocking (i) and extended uncertainty (i)
considered in the following section, are subsequent problems to abort, since
blocking can only occur if a transaction is not aborted before.

4.5 Blocking caused by Participant Failures

In the strict and the semantic transaction models, a participant encounters a
blocking or extended uncertainty situation if it su�ers a communication failure
with the coordinator or disconnects from A while it is uncertain about the global
decision. The probability of this event is strongly in�uenced by the probabil-
ity that participants enter their uncertainty window and by the extent of this
uncertainty period.

In the following, the probability of blocking (i) and extended uncertainty (i)
as de�ned earlier is analyzed and a probabilistic model is presented and applied
to the example MANET scenario.

4.5.1 Probability of Blocking (i)

In 2PC, a participant failure causes a blocking (i) situation if a communication
failure with the coordinator or a disconnection of the participant fromA happens
while the participant is in the prepared state (see Section 3.6.2). The objective of

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 81

this section is to develop calculations that predict the probability of a participant
to experience such a situation.

The formulae I present in the following have to be interpreted from a single
participant's perspective, i.e. they describe the probability of an individual par-
ticipant to su�er blocking. In the following, I denote this participant by PA,
the set of the other n− 1 participants is called PAother.

The probability of blocking is calculated by considering the probability that
PA enters its uncertainty window at time tp+δm with sending its vote and that
a failure occurs before PA leaves the prepared state at time tp + δm + ∆U . For
clarity's sake I de�ne t̃p = tp+δm, where t̃p is the time PA enters its uncertainty
period.

As described in Section 3.6.2, the uncertainty window ∆U in 2PC can be of
size ∆Umin = 2δm or of size ∆Umax = 2δm + ∆vo when the coordinator awaits
a time-out ∆vo for a missing vote.

The most decisive factors in the computation of the blocking risk of PA
are the probabilities for entering the uncertainty window and that the uncer-
tainty window is extended to ∆Umax. Thus, the probabilities for entering an
uncertainty window of size ∆Umin or of size ∆Umax are required.

If at least one participant of PAother does not reply with a vote message, the
uncertainty window enlarges to size ∆Umax. In case recovery of communication
failures is assumed, the probability of this event is denoted by P ′Umax(tp) and
given by the probability that at least one node of PAother su�ers from a failure
that does not recover until tp, while the other nodes in PAother either do not
su�er from a failure or the failure recovers by tp.

P ′Umax(tp) =

n−1X
i=1

"„
n− 1

i

«
Po<fC ,nr(tp)

i

·
n−1−iX
j=0

„
n− 1− i

j

«ˆ
1− F (tp)

˜j
Po<fC ,r(tp)

n−1−i−j

#
(4.24)

In fact a time-out may also happen if no failure of a node in PAother happened
until tp, but in [tp, tp + 2δm]. Here a time-out is caused by a participant, if a
general failure happens within [tp, t̃p] or a communication failure occurs within
[t̃p, tp + 2δm]. I do not consider these cases, as the probability of such an event
is negligible small. This is due to the fact that the intervals are of size δm
only. Generally, I will neglect events that occur in intervals of size ≤ δm in the
following.

PUmax(tp) describes the probability that the uncertainty window of PA is of
size ∆Umax if recovery of communication failures is not considered. PUmax(tp)
solely requires that at least one node in PAother su�ers an unrecognized failure
given by

PUmax(tp) =
ˆ
1− Po>f (tp)

˜n−1 −
ˆ
1− F (tp)

˜n−1
(4.25)

The probability no time-out occurs, i.e. that ∆U is of size ∆Umin, is given
by the probability that all PAother do not su�er a failure or that all failures
recover by tp. This probability is given by P ′Umin(tp) if a single recovery cycle
of communication failures is assumed.

82 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

P ′Umin(tp) =

n−1X
i=0

"„
n− 1

i

«
·
ˆ
1− F (tp)

˜i · Po<fC ,r(tp)n−1−i

#
(4.26)

P ′Umin(tp) considers all possible situations where i nodes do not su�er from any
failure while np − 1 − i su�er a communication failure that recovers until tp.
If no recovery of communication failures is considered, P ′Umin(tp) simpli�es to
PUmin(tp).

PUmin(tp) =
ˆ
1− F (tp)

˜n−1
(4.27)

The probability that PA su�ers from a failure within its window of uncer-
tainty is given by F (t̃p..t̃p + ∆U). I denote the probability F (t̃p..t̃p + ∆Umax)
by UFmax(tp) and de�ne UFmin(tp) analogously.

Since blocking (i) considers only failures of participants, I am only interested
in situations where the coordinator does not su�er from a node failure. This
probability is given by CNmin(tp) = 1 − FN (tp + ∆Umin) and CNmax(tp) =
1− FN (tp + ∆Umax) respectively.

The risk of PA of su�ering from a blocking situation caused by a participant
failure during uncertainty can now be derived as the probability that PA en-
ters an uncertainty window of size ∆Umin or ∆Umax and that a failure occurs
during this period. This probability is computed by P ′u(t) in case recovery of
communication is considered.

P ′u(tp) = CNmax(tp) · P ′Umax(tp) · UFmax(tp)

+CNmin(tp) · P ′Umin(tp) · UFmin(tp) (4.28)

If recovery of paths is not regarded, the risk of PA of su�ering blocking is given
by Pu(tp).

Pu(tp) = CNmax(tp) · PUmax(tp) · UFmax(tp)

+CNmin(tp) · PUmin(tp) · UFmin(tp) (4.29)

4.5.1.1 Predictions and Simulation Results

To verify the developed formulae predicting the probability of blocking (i), I did
a simulation study for the example MANET scenario using ns2. In this study,
the message �ow of strict transactions with n=3 was simulated.

Transaction initiation and processing is similar to the simulations of Sec-
tion 4.4.1, while here node failures of the coordinator are anticipated to reduce
measured blocking situations to cases caused by participant failures. Partici-
pants are informed about the global decision of the coordinator at time t̃p+∆U .
To derive the rate of blocking (i) situations, the number of participants which
entered uncertainty but did not received the global decision from the coordinator
is counted.

Figure 4.7 depicts the results of simulations and predictions of Pu(tp) and
P ′u(tp). While results in Figure 4.7(a) consider multi-hop routing, Figure 4.7(b)
depicts results for the example MANET scenario without routing.

The important observation concerning transaction processing in the exem-
plary MANET scenario is that the probability of blocking (i) situations are low

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 83

compared to abort rates. For example, for tp<15 s, the probability of blocking (i)
situations is at maximum of 2% with and without multi-hop routing.

Additionally it can be observed that the predictions of P ′u(tp) meet the mea-
sured data better for large tp than Pu(tp) in case multi-hop routing is used (see
Figure 4.7(a) Curve 1, 2, and 5). However, with increasing tp the probability of
multiple path outages and recovery cycles increases and leads to slightly higher
blocking rates than predicted by P ′u(tp).

If no multi-hop routing is used, Pu(tp) as well as P ′u(tp) provide accurate
approximations of the measured blocking rate (see Figure 4.7(b) Curves 1, 2,
and 3). Generally it is shown that multi-hop routing has little in�uence on the
probability of blocking (i), since the blocking rate is nearly the same for the
scenario with and without multi-hop routing.

(a) Probability of blocking caused by participant
failures in the example MANET scenario with
multi-hop routing.

(b) Probability of blocking caused by participant
failures in the example MANET scenario without
multi-hop routing.

Figure 4.7: Probability of a blocking situations caused by a participant failure in
the strict model. Transaction parameters are ∆vo=1 s and n=3. The measured
blocking rates are based on 10000 initiated transactions.

Figures 4.7(a) and 4.7(b) also show that the message delay δm has a major
in�uence on blocking probability. In case an average message delay of δm=1 s
is given, the probability of blocking (i) rises to 10.5%. Such message delays are
imaginable if the message load is very high in a MANET or if epidemic message
transport is used.

However, the blocking risk examined here can be further reduced if a coop-
erative recovery scheme is executed. Another possibility would be to integrate
an availability check of participants, e.g. an additional message round, before
the prepare message is issued to reduce the risk of the uncertainty window to
enlarge to ∆Umax. In the following, I will calculate the probability of a node to
su�er a blocking (i) situation and unsuccessful cooperative recovery.

4.5.1.2 Blocking (i) with Cooperative Recovery

As described in Chapter 3, a blocked participant PA executes a cooperative
recovery scheme at time tcr = tp+∆Umax+δm, since this is the latest time that

84 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

the global decision can arrive from the coordinator. The success of cooperative
recovery depends on the probability that PA can reach one of PAother that is
not blocked.

For communication paths between PA and nodes in PAother, I assume the
same distribution of path durations as for communication paths between the
coordinator and participants. If recovery of paths is disregarded, the probability
that PA can reach a node in PAother is given by FN (tcr). If recovery from
communication failures between PA and one of PAother is considered to derive
more realistic predictions in case a multi-hop routing scheme is available, Pc,nr(t)
is used. I de�ne Pc,nr(t) as the probability of a communication path between
PA and one of PAother to break and not to recover until t. Pc,nr(t), is calculated
as

Pc,nr(t) =

tZ
0

∞Z
t−tfc

fC(tfc) · fRC(tr) dtrdtfc (4.30)

if ts=0. Since, Pc,nr(tcr) does not consider a recovered link to fail again, it con-
verges towards 1.0 for increasing tcr, while FN (tcr) converges to 0. In the real
world, the reachability of another participant is obviously not certain or impos-
sible for large tcr. A communication path will most likely experience numerous
failure and recovery cycles over time. As already mentioned in Section 4.1.2,
multiple failure and recovery cycles can be modeled if failures and path out-
ages are exponentially distributed. In case of log-normal cdf FC(t), this is not
possible. An alternative option is to use Ppath as de�ned in Chapter 2 as an ap-
proximation for the probability that PA can reach a node of PAother. However,
for small tcr, Ppath underestimates this probability and is better approximated
by FN (tcr) and Pc,nr(tcr), while for larger tcr Ppath provides a better approxi-
mation than F (tcr) and Pc,nr(tcr). In the following, I will present calculations
using F (tcr), Pc,nr(tcr), and Ppath to calculate the probability of cooperative
recovery to be unsuccessful.

To derive the probability that PA experiences a blocking situation and co-
operative recovery is not successful, the states of nodes in PAother have to be
considered. If PA is blocked, a node in PAother can experience one of the three
situations: (i) the node never received a prepare message and therefore never
entered uncertainty; (ii) the prepare message is received, the participant voted
and also received the global decision; or (iii) the participant is blocked like PA.

Participants in PAother that experienced situation (i) and (ii) are poten-
tial cooperation partners for PA. Cooperative recovery is not successful if PA
cannot reach at least one of these nodes.

To calculate the probability that cooperative recovery is not successful, I dis-
tinguish the two cases that ∆U is either of size ∆Umin or of size ∆Umax. The
uncertainty window is of size ∆Umax if at least one unrecognized failure occurs
with one of PAother that does not recover until tp. I �rst consider the case
∆Umax. Formula CR1(tp) therefore enumerates the probabilities for all combi-
nations of events that lead to a situation where j nodes of PAother encounter
situation (i) and cannot be reached by PA, while k of PAother experience situ-
ation (ii) and are also unreachable for PA. In CR1(tp), I use three nested sums
to enumerate the combined events. The outer sum selects subsets X of PAother
that do not encounter a node failure. The second sum selects subsets Y with

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 85

j nodes from X that have su�ered an unrecognized communication failure that
does not recover until tp. These nodes have experienced situation (i). Hence,
for unsuccessful cooperative recovery, PA should not reach any of the j nodes.
The innermost sum considers participants that encounter situation (ii). Here,
subsets Z with k nodes from Y are selected that have received the global deci-
sion but are not reachable by the participant due to a communication failure.
CR1(tp) is then given by

CR1(tp) =

n−1X
i=0

„
n− 1

i

«
Po<fn(tp)

iˆ1− Fn(tp)
˜n−1−i

·
n−1−iX
j=0

„
n− 1− i

j

«
Po<fc(tp)

jˆ1− Po<fc(tp)˜n−1−i−j
FC(tcr)

j

·
n−1−i−jX
k=0

„
n− 1− i− j

k

«ˆ
1− F (tp..tp + ∆Umax)

˜k
FC(tcr)

k

·F (tp..tp + ∆Umax)n−1−i−j−k (4.31)

In CR1(tp), recovery of communication failures is not considered, because
FC(tcr) is used as probability of successful communication between PA and
a node in PAother for cooperative recovery. Consideration of path recovery
leads to CR1′(tp) by substituting all occurrences of FC(tcr) in Formula (4.31)
with Pc,nr(tcr). Using Ppath results in CR1pp(tp) and is derived by replacing all
occurrences of FC(tcr) in Formula (4.31) with Ppath.

If i=j=0, Formulae CR1′(tp), CR1pp(tp), and CR1(tp) consider a case where
the uncertainty window is of size ∆Umin. The probability of this event has to
be subtracted from CR1(tp), CR1pp(tp) and CR1′(tp) respectively, and is given
by CR2(tp), CR2pp(tp), and CR2′(tp). CR2(tp) is given by

CR2(tp) = CR1(tp)−
»ˆ

1− Fn(tp)
˜n−1ˆ

1− Po<fc(tp)
˜n−1

·
n−1X
i=0

»„
n− 1

i

«ˆ
1− F (tp..tp + ∆Umax)

˜i
FC(tcr)

i

·F (tp..tp + ∆Umax)n−1−i
––

(4.32)

while again CR2′(tp) is derived by replacing all occurrences of FC(tcr) with
Pc,nr(tcr) and CR2pp is given by substituting FC(tcr) in Formula (4.32) with
Ppath.

If all nodes vote, ∆Umin is entered. PA then blocks if su�ering failure during
[t̃p, t̃p + ∆Umin], described by probability UFmin as de�ned in Section 4.5.1.
Cooperative recovery is not successful if all nodes of PAother that received the
global decision are not reachable for PA. This probability is denoted by CR3(tp)
in case recovery of communication paths is not considered, by CR3pp(tp) if Ppath
is used, and by CR3′(tp) if a single recovery cycle for communication failures
is assumed and therefore Pc,nr(tcr) is used. CR3(tp), CR3′(tp), and CR3pp(tp)
are given by

86 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

CR3(tp) =
ˆ
1− F (tp)

˜n−1 ·
n−1X
i=0

„
n− 1

i

«ˆ
1− F (tp..tp + ∆Umin)

˜i
·FC(tcr)

i
F (tp..tp + ∆Umin)

n−1−i (4.33)

CR3
′
(tp) =

ˆ
1− Po<f,nr(tp)

˜n−1 ·
n−1X
i=0

„
n− 1

i

«ˆ
1− F (tp..tp + ∆Umin)

˜i
·Pc,nr(tcr)

i
F (tp..tp + ∆Umin)

n−1−i (4.34)

CR3
pp

(tp) =
ˆ
1− F (tp)

˜n−1 ·
n−1X
i=0

„
n− 1

i

«ˆ
1− F (tp..tp + ∆Umin)

˜i
·P ipathF (tp..tp + ∆Umin)

n−1−i (4.35)

The probability that PA su�ers a blocking situation that cannot be recovered
immediately is now given by

P ′u,cr(tp) = CNmax(tp) · UFmax(tp) · CR2′(tp)

+CNmin(tp) · UFmin(tp) · CR3′(tp) (4.36)

if a single recovery cycle of communication failures is assumed. If no recovery
from path breaks is considered, Pu,cr(tp) describes the risk of PA to su�er
blocking (i) and unsuccessful cooperative recovery.

Pu,cr(tp) = CNmax(tp) · UFmax(tp) · CR2(tp)

+CNmax(tp) · UFmin(tp) · CR3(tp) (4.37)

If Ppath is used to this probability is given by P ppu,cr(tp)

P ppu,cr(tp) = CNmax(tp) · UFmax(tp) · CR2pp(tp)

+CNmax(tp) · UFmin(tp) · CR3pp(tp) (4.38)

While Pu,cr(tp), P ppu,cr(tp), and P
′
u,cr(tp) calculate the probability that the �rst

request round of cooperative recovery is not successful, consecutively recovery
rounds are possibly successful. Pu,cr(tp), P ppu,cr(tp) and P

′
u,cr(tp) are the relevant

probabilities here, because only a participant that experiences blocking and
cannot recover immediately must retry recovery for an inde�nite period which
is the semantic of a blocking situation.

4.5.1.3 Predictions and Simulation Results

Figure 4.8 shows probabilities derived by P ′u,cr(tp), P ppu,cr(tp), and Pu,cr(tp)
for the example MANET scenario. Figure 4.8(a) presents results if multi-hop
routing is used, while Figure 4.8(b) considers single-hop routing only. In Fig-
ures 4.8(c) and 4.8(d) results for transactions with two participants with and
without multi-hop routing are presented.

The important observation is that the risk of PA su�ering blocking (i) is
signi�cantly reduced by cooperative recovery. For example, without cooper-
ative recovery and with AODV routing, the probability of blocking is 2% at

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 87

(a) Probability of blocking (i) with cooperative recovery
and multi-hop routing.

(b) Probability of blocking (i) with cooperative recovery
without multi-hop routing.

(c) Probability of blocking (i) with cooperative recovery,
multi-hop routing, and n=2.

(d) Probability of blocking (i) with cooperative recovery,
no routing, and n=2.

Figure 4.8: Risk of PA of su�ering from a blocking (i) situation and unsuc-
cessful cooperative recovery in the example MANET scenario with transaction
parameters ∆vo=1 s, and δm=180ms.

88 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

tp=15 s with n=3 (see Section 4.5.1.1). With cooperative recovery this proba-
bility decreases to 0.22%. In the example scenario, this probability reaches a
considerable value of 0.7% only for transactions with tp>30 s. Note that for the
example MANET scenario, I assumed that only transactions with tp<15 s are
feasible, here blocking (i) risks are negligible in the example MANET scenario
with cooperative recovery.

The majority of blocking (i) situations compensated for by cooperative re-
covery bene�t from nodes in PAother that did not receive the prepare message
and hence su�ered from an undetected communication failure with the coordi-
nator, while the situation where a partner for cooperative recovery is found that
received the global decision is rare.

Simulation results of a ns2 simulation study for the example MANET sce-
nario show that the proposed calculation model predicts the real world blocking
rates accurately, especially if no multi-hop routing is used, i.e. if recovery of
communication failures takes long, as shown in Figure 4.8(b). If multi-hop rout-
ing is used, Pu,cr(tp) provides an upper bound, while P ′u,cr(tp) gives a lower
bound of blocking (i) risks. P ppu,cr(tp) calculates accurate approximations for
large tp as shown in Figure 4.8(a). This is explained by the fact that Pu,cr(tP)
does not consider any recovery of failed communication paths, while P

′

u,cr(tp)
considers exactly one recovery cycle and assumes no subsequent path failures.
In contrast, P ppu,cr(tp) considers the constant Ppath of A and therefore meets the
real values exactly for large tp (here, for tp < 50s). For the transaction sizes
where transaction processing is feasible in the example scenario, predictions of
Pu,cr(tP) and P

′

u,cr(tp) are close together and therefore also meet the simulation
results accurately. However, in contrast to strict transaction processing with-
out cooperative recovery, using a multi-hop routing scheme signi�cantly reduces
blocking risks compared to the situation where no multi-hop routing is used.
For example, with multi-hop routing the maximum blocking (i) probability is
0.26%, without a maximum of 0.58% is measured.

Experimental values are derived from a simulation similar to the simulation
presented in Section 4.5.1.1, while a cooperative recovery scheme is initiated
by blocked participants at time tcr. Presented measurements are derived by
including all recovery attempts successfully within the �rst message round of
cooperative recovery.

Success of cooperative recovery is highly dependent on the number of par-
ticipants, as shown in Figures 4.8(c) and 4.8(d). Figure 4.8(c) shows that the
probability of blocking, i.e. of unsuccessful cooperative recovery increases sig-
ni�cantly for n=2 compared to n=3. E.g. with n=2 the probability of blocking
is 0.48%, compared to 0.22% with n=3 if no multi-hop routing is used (see
Figure 4.8(c)). The reduction of blocking (i) risks with n=3 is also supported by
the e�ect that with n=3 a higher abort rate in the processing phase is observed,
compared to the case with n=2, which leads to fewer transactions actually en-
tering the commit phase and less blocking can happen.

Given the observations above, it can be concluded that cooperative recovery
is a highly e�cient scheme to compensate for blocking (i) situations. Since,
cooperative recovery does not increase the message or time complexity of 2PC
in the failure-free case, it is the number one choice to decrease blocking risks in
the strict scheme.

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 89

4.5.2 Probability of Extended Uncertainty (i)

In the semantic model, the processing phase of a transaction is given by
the interval [ts, t′p], while the decision phase is de�ned by [t′p, tu + δm] with
tu = t′p + ∆ex + δm. t′p is de�ned as the time the coordinator sends the last
operation to the last participant denoted by PAlast. A participant PA enters
its uncertainty window at time to and leaves uncertainty at tu + δm.

Analogous to blocking (i) in the strict model, an extended uncertainty (i)
situation is de�ned in the semantic model as any situation where the global
decision is made by the coordinator but cannot be transferred to PA due to a
communication failure or because PA has disconnected from A. In contrast to
the strict model, where blocking can only occur in the decision phase, extended
uncertainty (i) can already occur in the processing phase. In the following, I
will analyze the probability of extended uncertainty (i) in the processing and
decision phase of a semantic transaction. I �rst consider the processing phase.

In the interval [ts, t′p], the coordinator decides on abort if detecting a failure.
PA experiences an extended uncertainty (i) situation if the coordinator recog-
nizes a failure with one of PAother or with PAlast, while PA has already entered
its uncertainty window and cannot receive the global abort decision from the
coordinator. The abort decision is not received if PA experiences a communica-
tion failure with the coordinator that does not recover in time, or if PA su�ers
a node failure.

While in the strict model all participants enter uncertainty at time t̃p, the
time a participant enters uncertainty in the semantic model varies for every
participant and is given by to. Hence, for every point in time tf in [ts, t′p],
the situation must be considered that a recognized failure occurs causing abort
of the transaction (I call this situation A) and that PA is in its uncertainty
window and cannot receive the global abort decision (I call this event B). The
probability of event A is given by Po<fc,nr(tf) and Po<fc(tf) respectively, while
the probability of situation B is computed by PB(tf , t′p).

PB(tf , t
′
p) = 1−

ˆ
1− f(tf) ·O(tf ..t

′
p)
˜n−2 ·

ˆ
1− f(tf)

˜
(4.39)

The probability that situation A and B happens in the interval [ts, t′p] is the
probability of PA to experience extended uncertainty (i) in this interval. I call
this probability Pu1(t′p) and it is given by

Pu1(t′p) =

t′pZ
0

PB(tf , tp) · Po<fc(tf) dtf (4.40)

if recovery of communication is not considered. If the reachability of the coor-
dinator is calculated by Po<fc,nr(t), P

′u1(t′p) is derived.

P
′
u1(t′p) =

t′pZ
0

PB(tf , tp) · Po<fc,nr(tf) dtf (4.41)

An extended uncertainty situation of PA is caused in the interval [t′p, tu + δm]
if the global decision is made by the coordinator at tu, but PA cannot receive
this decision because of a communication failure or disconnection from A. The
probability for PA to experience an extended uncertainty situation if the trans-

90 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

(a) Probability of extended uncertainty in the ex-
ample MANET scenario with multi-hop routing.

(b) Probability of extended uncertainty caused by
a participant failure without routing.

Figure 4.9: Probability of extended uncertainty (i) for semantic transactions,
with n=3, δm=180ms and ∆ex=1 s.

action enters the decision phase is given by Pu2(t′p) if recovery of path breaks
is not considered.

Pu2(t′p) = Po<f (tu) ·
“

1− Po>f (t′p)
n−2 ·

ˆ
1− F (t′p)

˜”
(4.42)

and by P ′u2(t′p) if a single recovery cycle of communication failures is considered.

P ′u2(t′p) = Po<fc,nr(tu) ·
“

1− Po>f (t′p)
n−2 ·

ˆ
1− F (t′p)

˜”
(4.43)

The probability that PA experiences an extended uncertainty (i) situation in
the processing phase or in the decision phase is now given by P

′∗
u (t′p) if recovery

of path breaks is considered:

P
′∗
u (t′p) = P ′u1(t′p) + P ′u2(t′p) (4.44)

and by P ∗u (t′p) if recovery of communication paths is neglected.

P ∗u (t′p) = Pu1(t′p) + Pu2(t′p) (4.45)

4.5.2.1 Predictions and Simulation Results

Figure 4.9 depicts the probability of extended uncertainty (i) for the example
MANET scenario calculated by P

′∗
u (t′p) and P

∗
u (t′p). Predictions are compared

to measurements obtained from a ns2 simulation study.
ns2 was used in order to simulate the message �ow of transactions in the

semantic transaction model. The rate of extended uncertainty (i) situations was
measured by counting all the participants that have entered uncertainty and
have not subsequently received the global decision until tu + δm + δto.

The hypothesis that the semantic model shows a higher susceptibility to
extended uncertainty (i) situations than the strict model does to blocking (i) is
clearly con�rmed by analytical predictions as well as by simulation results as
shown by Figure 4.9(a) and 4.9(b).

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 91

Figure 4.9(a) shows that the probability of extended uncertainty (i) in the
example MANET scenario with multi-hop routing is considerably higher, with
16.94% for t′p=15 s compared to 2% for blocking (i) situations in the strict
model.

If no multi-hop routing is used, the probability for extended uncertainty (i)
increases to 26.77% at t′p=15 s. Hence, the e�ect of short path outages with
multi-hop routing reduces the probability of extended uncertainty (i) drastically.
This also shows the importance of considering recovery of paths if multi-hop
routing is used. Neglecting path recovery leads to predictions that drastically
overestimates the real risks as shown in Figure 4.9(a) by Curve 2 and 3.

The mistake in P
′∗
u (t′p) (shown by Curve 1 in Figure 4.9(a)) of considering

only one recovery cycle is re�ected by the e�ect that, for large tp, the probability
of extended uncertainty (i) is underestimated by P

′∗
u (t′p). However, this has only

a small impact, because at large tp where the simpli�ed assumption of the cal-
culation model becomes relevant, transaction processing is not feasible because
of high abort rates, as described in Section 4.4.2. Recall that only transac-
tions with tp<20 s are considered feasible in the example MANET scenario and
semantic transaction model.

4.5.2.2 Extended Uncertainty (i) with Cooperative Recovery

In the semantic model, cooperative recovery is started at t∗cr = tu + δm, as this
is the latest point in time a participant can expect the global decision. The
probability that PA su�ers an extended uncertainty (i) situation that cannot
be compensated for immediately by cooperative recovery at t∗cr depends on the
probability that PA su�ers extended uncertainty and that neither a node of
PAother nor PAlast is certain and reachable for PA at t∗cr.

I �rst consider recovery with PAlast separately. A node failure of PAlast
within [ts, t′p] always causes an abort of the global transaction and also induces
PAlast unavailability for cooperative recovery at t∗cr. A communication failure
of PAlast with the coordinator within the processing phase [ts, t′p] also causes
an abort of the global transaction, but PAlast is a potential cooperation partner
for PA in this case, as PAlast is always certain within [ts, t′p]. Now, I assume
that such a communication failure occurs at time tf during [ts, t′p]. PAlast is
only available for cooperative recovery with PA if it does not su�er node failure
within [tf , t∗cr].

The probability that at time tf the transaction is aborted by a commu-
nication failure between the coordinator and PAlast (given by fC(tf)), while
PAlast does not su�er a node failure until recovery of PA is started (given by[
1 − FN (tf ..t∗cr)

]
) and PA is uncertain at time tf (given by O(0..tf)) and PA

cannot reach PAlast at t∗cr is calculated by CR1∗
′
(tf) if recovery of path breaks

is neglected.

CR1∗
′
(tf) = O(0..tf) · Po<fc,nr(tf)

·
h
fN (tf) + fc(tf) ·

ˆ
1− FN (tf ..t

∗
cr)
˜
· Pc,nr(t∗cr)

i
(4.46)

If recovery of communication paths is not considered, i.e. the reachability of
a recovery partner is given by FC(tcr), CR1∗(tf) is derived.

92 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

Figure 4.10: Decision tree of nodes in PAother.

CR1∗(tf) = O(0..tf) · Po<fc(tf)

·
h
fN (tf) + fc(tf) ·

ˆ
1− FN (tf ..t

∗
cr)
˜
· FC(t∗cr)

i
(4.47)

If the reachability of a participant of PAother is described by Ppath, CR1∗ results
in CR1∗pp(tf).

CR1∗pp(tf) = O(0..tf) · Po<fc(tf)

·
h
fn(tf) + fc(tf) ·

ˆ
1− FN (tf ..t

∗
cr)
˜
· Ppath

i
(4.48)

Line (2) of CR1∗
′
(tf), CR1∗(tf), and CR∗pp(tf) considers the probability

that PA encounters a communication failure with PAlast that prevents commu-
nication at time t∗cr (given by P c,nr(t∗cr), FC(t∗cr), and Ppath respectively). The
factors Po<fc(tf) in Formulae (4.47) and (4.48) and Po<fc,nr(tf) in Formula
(4.46), describe the probability that the coordinator cannot reach PA at time
tf , when the global transaction is aborted.

To estimate the probability that a node of PAother is a potential partner
for cooperative recovery, for every point in time within the processing phase
[ts, t′p], the state of each participant has to be be considered. A participant can
remove uncertainty from PA if it is in one of the two following situations: (i)
if it has not su�ered failure and has not received its last operation; or (ii) if
it encounters a communication failure with the coordinator that leads to abort
of the transaction, i.e. the communication failure with the coordinator happens
before to. Participants that experienced a node failure or are uncertain cannot
remove uncertainty from PA.

Figure 4.10 shows the decision tree with paths leading to situations (i) and
(ii). The idea of the following calculation is to sum up the probabilities for
a subset of PAother to encounter situation (i) or situation (ii) and not to be
reachable for PA at t∗cr due to a communication failure.

To select the relevant probabilities for nodes in PAother to encounter situa-
tion (i) or (ii), I use nested sums according to the following considerations: for a
point in time tf , a set A from PAother with i nodes is selected, which encounter
a node failure that causes abort, while the other n − 2 − i nodes are divided
in the set B of j nodes, which experience a node failure that does not lead to

4.5. BLOCKING CAUSED BY PARTICIPANT FAILURES 93

the abort of the global transaction, and a set C of n − 2 − i − j nodes, which
does not experience a node failure. Set C is further decomposed into sets D
with k nodes, which encounter a communication failure with the coordinator
that causes abort, and E with n − 2 − i − j − k nodes that either encounter a
communication failure that does not lead to transaction abort or do not su�er
from a communication failure with the coordinator at tf . All nodes in D expe-
rience situation (i). Set E is further decomposed into sets F and G, where F
contains l nodes that experienced a communication failure that does not cause
abort, while G contains n − 2 − i − j − k − l nodes, which do not experience
a communication failure at tf . Set G now contains m nodes, which have not
experienced any failure and are not uncertain as they have not received their
last operation at tf , while n − 2 − i − j − k − l −m nodes of G are uncertain.
Hence, the m nodes of G have experienced situation (ii). Cooperative recovery
is not successful if PA cannot reach nodes in D and m nodes of G. From these
considerations, I derive Formula CR2∗

′
(t′p):

CR2
∗′

(t
′
p) =

t′pZ
0

pcr1(tf) ·
n−2X
i=0

„
n− 2

i

«
P
′
o>fn

(tf)
i

·
n−2−iX
j=0

„
n− 2− i

j

«
P
′
o<fn

(tf)
j ·
ˆ
1− fN (tf)

˜a
·
aX
k=0

„
a

k

«h
P
′
o>fc

(t
′
f) ·

ˆ
1− FN (tf ..tu)

˜
· P c,nr(t

∗
cr)
ik

·
bX
l=0

„
b

l

«
P
′
o<fc

(tf)
l ·
ˆ
1− fc(tf)

˜c
·

cX
m=0

„
c

m

«h
O(tf ..t

′
p) ·

ˆ
1− FN (tf ..t

∗
cr)
˜
· P c,nr(t

∗
cr)
im

·O(0..tf)
d
dtf (4.49)

with the upper bounds of summations:

a = n− 2− i− j
b = n− 2− i− j − k
c = n− 2− i− j − k − l
d = n− 2− i− j − k − l −m

The variant of CR2∗
′
(t′p) that does not consider recovery of communica-

tion paths is called CR2∗(t′p) and is derived by substituting all occurrences of
Pfc,nr(t

∗
cr) with FC(t∗cr). If reachability of a recovery partner is approximated by

Ppath, CR2∗pp(t′p) is derived by substituting all occurrences of Pfc,nr(t
∗
cr) with

Ppath. Formula CR2∗
′
(t′p) includes a path where the transaction is not aborted

in [ts, t′p], which happens for i=k=0. I denote this case as CR3∗
′
(t′p).

94 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

CR3
∗′

(t
′
p) =

t′pZ
0

pcr1(tf) ·
n−2X
i=0

„
n− 2

i

«
P
′
o<fn

(tf)
i ·
ˆ
1− fN (tf)

˜n−2−i

·
n−2−iX
j=0

„
n− 2− i

j

«
P
′
o<fc

(tf)
j ·
ˆ
1− fc(tf)

˜a
·
aX
k=0

„
a

k

«
(O(tf ..t

′
p) ·

ˆ
1− FN (tf ..tu)

˜
· P fc,nr(t

∗
cr)
˜k

·O(0..tf)
d
dtf (4.50)

Again, variant CR3∗(t′p) is derived by substituting P c,nr(t∗cr) with FC(t∗cr).
CR3∗pp is derived similarly by using Ppath instead of P c,nr(t∗cr).

Now, the probability that PA su�ers from an extended uncertainty situation
that cannot be recovered immediately at time t∗cr is given by P ∗

′

u,cr(t
′
p) if a single

recovery cycle is assumed.

P ∗
′

u,cr(t
′
p) = CR2∗

′
(t′p)− CR3∗

′
(t′p) (4.51)

By P ∗u,cr(t
′
p) if recovery of path breaks is neglected.

P ∗u,cr(t
′
p) = CR2∗(t′p)− CR3∗(t′p) (4.52)

And by P ∗ppu,cr(t
′
p) if Ppath is used to approximate successful communication at

t∗cr.

P ∗ppu,cr(t
′
p) = CR2∗pp(t′p)− CR3∗pp(t′p) (4.53)

4.5.2.3 Predictions Extended Uncertainty (i)

Figure 4.11 depicts probabilities calculated by P ∗u,cr(t
′
p), P

∗′
u,cr(t

′
p), and P

∗pp
u,cr(t

′
p)

for the example MANET scenario and transactions with 2�3 participants.
The major result is that, similar to the strict case, cooperative recovery sig-

ni�cantly compensates for extended uncertainty (i) situations. For example, Fig-
ure 4.9(a) shows a probability of extended uncertainty (i) to occur of 21% for a
transaction with t′p=20 s, n=3, and without cooperative recovery, which reduces
to maximum 1.7% if cooperative recovery is used as shown in Figure 4.11(a).

If no multi-hop routing is used, the probability for blocking reduces from
51% to 1.19% at t′p=20 s with three participants as shown in Figures 4.9(b)
and 4.11(b).

If multi-hop routing is used, recovery of communication paths has a major
in�uence as shown in Figure 4.11(a). In this case, P ∗

′

u,cr(t
′
p) underestimates the

real uncertainty rate, because only one failure and recovery cycle of communica-
tion paths is considered by P ∗

′

u,cr(t
′
p). Hence, once recovered, a link is assumed

to remain operational forever. In reality, this is obviously not true, and there-
fore the observed rate of uncertainty probability is upper bounded by P ∗u,cr(t

′
p)

and lower bounded by P ∗
′

u,cr(t
′
p). P

∗pp
u,cr(t

′
p) predicts uncertainty rates considering

the constant path probability for communication paths and derives values lying
between P ∗u,cr(t

′
p) and P

∗′
u,cr(t

′
p) for large t

′
p. However, for t

′
p<20 s, the values of

all three predictions are close together and should provide a good approximation
of extended uncertainty (i) rates in the example scenario.

4.6. BLOCKING CAUSED BY COORDINATOR FAILURES 95

Similar to the strict case, the number of participants is a decisive factor.
This can be observed in Figure 4.11(c) and 4.11(d) showing the uncertainty
probabilities for the example scenario and transactions with n=2. Here, the
rate of extended uncertainty situations increases from 1.9% with n=3 to 5%
with n=2 in the multi-hop scenario with t′p=20 s.

4.5.3 Summary - Blocking caused by Participants

In this section, I have presented a calculation model to predict the blocking
and uncertainty risks due to participant failures with and without cooperative
recovery. Results for the example MANET scenario show that the risk of PA
su�ering blocking (i) is very low if multi-hop routing and cooperative recovery
is used. In fact, without cooperative recovery, the risk is below 4% for tp<15 s,
while cooperative recovery reduces this risk below 1%.

In the semantic model, the probability of extended uncertainty caused by
a failure of PA is considerably higher compared to the strict model, while co-
operative recovery is also very e�cient. Generally, the probability of blocking
or extended uncertainty with cooperative recovery is strongly in�uenced by the
number of participants involved in a transaction. This observation is a primary
motivation for the design of the SLS presented later in Chapter 5.

Transactions with just two participants show the highest risk of blocking in
the strict model for the example scenario, because cooperative recovery with
n=2 is less e�ective and the probability that such a transaction reaches the
decision phase in the strict model is considerably higher than with n>2.

In the semantic model, a transaction with two participants shows the high-
est risk for extended uncertainty (i) measured so far in the example scenario.
Hence, semantic transactions with few participants will most likely require re-
covery schemes in addition to cooperative recovery to compensate for extended
uncertainty.

By comparing most analytical predictions to simulation results, I showed
that abstractions made within the probabilistic models presented are feasible and
hence, that the models can be used to predict blocking and extended uncertainty
caused by participants failures realistically.

4.6 Blocking Caused by Coordinator Failures

While the previous section was concerned with blocking situations caused by
participant failures, this section examines the probability of blocking caused by
a node failure of the transaction coordinator. In the literature, this situation
is assumed to be the more severe case, because the failure of the central coor-
dination entity may cause blocking of multiple participants, while failure of a
participant results in blocking of that participant only.

I demonstrate in the following that the probability of blocking caused by a
node failure of the coordinator, i.e. the probability of blocking (ii) and extended
uncertainty (ii) is very low for the example MANET scenario. The calculations
presented in the following omit recovery of path breaks and therefore provide an
upper bound for blocking (ii) and extended uncertainty (ii) probabilities. Like
in Section 4.5, I will �rst consider the strict transaction model and then the
semantic model.

96 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

(a) Probability of extended uncertainty (i) with cooper-
ative recovery and multi-hop routing.

(b) Probability of extended uncertainty (i) with cooper-
ative recovery and without multi-hop routing.

(c) Probability of extended uncertainty (i) with n=2 and
multi-hop routing.

(d) Probability of extended uncertainty (i) with n=2 and
without multi-hop routing.

Figure 4.11: Probability of extended uncertainty (i) in the example MANET
scenario with cooperative recovery.

4.6. BLOCKING CAUSED BY COORDINATOR FAILURES 97

4.6.1 Probability of Blocking (ii)

In the strict model, the most decisive factors in the computation of the block-
ing (ii) risk of a participant are the probabilities for entering the decision phase
and that ∆U is extended to ∆Umax. The probabilities for PA to enter an un-
certainty window of ∆Umin or of ∆Umax are given by the probability that the
coordinator awaits time-out ∆vo or not. I already calculated these probabilities
as PUmin(tp) and PUmax(tp) in Section 4.5.1 in Formulae (4.27) and (4.25).

In fact, a time-out ∆vo may also happen if no failure of a node in PAother
happens until tp, but in the interval [tp, tp+ 2δm]. Here, a time-out is caused by
a participant if a general failure happens within [tp, tp+δm] or a communication
failure occurs within [tp + δm, tp + 2δm]. I do not consider these cases here,
because the probability of such an event is negligible, as the intervals are of size
δm only. Generally, I neglect events that occur in intervals smaller than 2δm in
the following.

I denote the probability of a node failure of the coordinator within inter-
val [tp, tp + ∆Umin] by CFUmin(tp), which is given by FN (tp..tp + ∆Umin).
CFUmax(tp) is de�ned analogously. The probability that PA does not en-
counter any failure until tp + ∆Umin, given by 1 − F (tp + ∆Umin), is denoted
by PAUmin(tp). Analogously I de�ne PAUmax(tp).

The probability that PA enters an uncertainty window of size ∆Umax or of
∆Umin and, while uncertain about the global decision, the coordinator su�ers
from a node failure and thus PA is blocked is now given by Pv(tp).

Pv(tp) = PAUmax(tp) · CFUmax(tp) · PUmax(tp)

+PAUmin(tp) · CFUmin(tp) · PUmin(tp) (4.54)

Predictions of Pv(tp) for the example MANET scenario are presented at the
end of this subsection.

Blocking (ii) with Cooperative Recovery

If PA su�ers blocking (ii), a cooperative recovery scheme is initiated.
The success of this scheme is given by the probability that PA can reach

at least one node in PAother that is not blocked. Recall that here I only con-
sider the case that a coordinator failure during ∆U leads to blocking. Now, if
PA is blocked, all nodes of PAother that also received the prepare message are
blocked too. Only nodes that encountered an unrecognized communication fail-
ure remain unblocked and thus are potential cooperative partners for PA. Such
a partner is reachable for PA if it is still alive and no communication failure
between them has happened within [ts, tp + ∆U + δm]. As above, I distinguish
the two cases that ∆U is either of length ∆Umin or ∆Umax. First, I consider
case ∆Umax.

Again, I consider the case that at least one unrecognized failure leads to
∆Umax. In Formula (4.55), I investigate probabilities for all combinations of
events that lead to at least one unrecognized failure and additionally let j nodes
of PAother remain unblocked. I use two nested sums that enumerate combined
events. The outer sum selects subsets X of nodes of PAother that do not en-
counter a node failure. The inner sum then selects from X the subsets Y of
nodes that have su�ered from an unrecognized communication failure by tp. All
j nodes in subsets Y are unblocked and potential recovery partners for PA.

98 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

If all j nodes are unreachable, because of a communication failure with PA,
cooperative recovery is unsuccessful.

CR1(tp) =

n−1X
i=0

"„
n− 1
i

«
· Po<fn(tp)

i ·
ˆ
1− FN (tp)

˜n−1−i

·
n−1−iX
j=0

„
n− 1− i

j

«
· Po<fc(tp)

j ·
ˆ
1− Fc(tp)

˜n−1−i−j

·
ˆ
Fc(tp + ∆Umax)

˜j#
(4.55)

As CR1(tp) also includes the case that no node of PAother encounters a failure
(i=j=0), which leads to ∆Umin, one needs to subtract the probability of this
event leading to CR2(tp).

CR2(tp) = CR1(tp)−
ˆ
1− FN (tp)

˜n−1 ·
ˆ
1− Fc(tp)

˜n−1
(4.56)

In the case that ∆Umin is entered, all nodes have voted and thus are un-
certain. Then no partner for cooperative recovery exists. The probability that
∆Umin is entered is given by PUmin(tp), as calculated in Formula (4.27). The
probability that PA is blocked due to a node failure of the coordinator during
∆Umin and cannot recover cooperatively is now given by Pv,cr(tp).

Pv,cr(tp) = PAUmax(tp) · CUmax(tp) · CR2(tp)

+PAUmin(tp) · CUmin(tp) · PUmin(tp) (4.57)

Predictions Blocking (ii)

Figure (4.12) presents blocking probabilities calculated by Pv,cr(tp) for the ex-
ample MANET scenario of this work. The important result here is that the
probability of PA su�ering blocking due to a node failure of the coordinator
in ∆U is very small and in fact negligible. For the example MANET scenario,
the probability of blocking (ii) is in the 10−4 domain and is further reduced by
cooperative recovery as shown in Figure 4.12(a) and 4.12(b) by Curve 2.

Even if the probability of a node failure is drastically increased, e.g. by
assuming that the expected sojourn time of mobile nodes in A is only 10min
instead of 30min, the probability of blocking caused by a node failure of the
coordinator does not leave the 10−3 domain, as shown in Figure 4.12(b).

The main reason for the small blocking risk induced by coordinator node
failures is the small size of ∆U with 2PC. The probability of a node failure
even within ∆Umax is negligible in the example scenario. For the example
MANET scenario used here, and scenarios where the probabilities for node and
communication failures show similar dimensions, it can be derived that blocking
caused by a node failure of the coordinator is a rare event that can be neglected
for most scenarios in the strict transaction model.

However, calculations presented here are crucial to identify MANET scenar-
ios where blocking (ii) occurs more frequently.

4.6.2 Probability of Extended Uncertainty (ii)

In the semantic model, the end of the processing phase is given by t′p, which
is the time the last operation for PAlast is issued by the coordinator. At time

4.6. BLOCKING CAUSED BY COORDINATOR FAILURES 99

(a) Probability of blocking (ii) in the example
MANET scenario with and without cooperative
recovery.

(b) Probability of blocking (ii) with and without
cooperative recovery and an increased node failure
probability (λL=1/200).

Figure 4.12: Probability of blocking (ii) for the example MANET scenario with
n=3, δm=180ms, ∆vo=1 s, and multi-hop routing.

tu = t′p + ∆ex + δm, the coordinator derives the global decision as described
in Section 3.6.3. ∆ex also serves as time-out, i.e. if the coordinator does not
receive an acknowledgment until tu, it suspects PAlast to be failed and decides
on abort.

In contrast to the strict model, all participants but PAlast enter uncertainty
already during [ts, t′p] with acknowledgment of their last operation at to. PAlast
enters uncertainty at t′p + δm + ∆ex and remains uncertain for 2δm. In the
following, I will �rst consider the risk of extended uncertainty in the interval
[ts, t′p] and afterwards in [t′p, tu] from the perspective of PA that is not PAlast.

In the interval [ts, t′p], a node failure of the coordinator causes an extended
uncertainty (ii) situation of PA if the failure occurs after to and PA did not
previously cause transaction abort. This probability is computed by Pv1(tfn,c),
where tfn,c denotes the time of the coordinator's node failure.

Pv1(tfn,c) =

tfn,cZ
o

o(to) ·
ˆ
1− F (to)

˜
dto (4.58)

The probability that PA is not uncertain and has not caused an abort until
tfn,c is given by Pnv1(tfn,c), where

[
1−F (tfn,c)

]
is the probability that PAlast

does not cause an abort of the transaction until tfn,c .

Pnv1(tfn,c) =

tpZ
tfn,c

o(to) · dto
ˆ
1− F (tfn,c)

˜
(4.59)

The calculation of the probability that PA is uncertain and the coordinator
su�ers a node failure in [t′p, tu] has to consider that the transaction has not
previously aborted. This probability is given by Pv2(t′p).

Pv2(t′p) =
ˆ
1− F (tu)

˜
·
ˆ
1− Po>f (t′p)

˜n−1 · FN (t′p..tu) (4.60)

100 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

The probability that PA su�ers extended uncertainty (ii) in [t′p, tu] is directly
given by Pv2(t′p). For extended uncertainty (ii) caused in [ts, t′p], PA is required
to be uncertain when the coordinator node failure happens (Line (1) of Formula
(4.61)), while n− 2 nodes in PAother are uncertain or not, which is considered
in Line (2) of Formula (4.61) by enumerating all possible combinations of i
uncertain and n − 2 − i certain nodes in PAother. The last participant PAlast
is required not to cause abort of the transaction in [ts, t′p]. For the probability
that PA su�ers from extended uncertainty I now gain P ∗v (t′p).

P ∗v (t′p) =

t′pZ
0

»
fN (tfn,c) · Pv1(tfn,c)

·
n−2X
i=0

»„
n− 2

i

«
Pv1(tfn,c)

i · Pnv1(tfn,c)
n−2−i

–
·
ˆ
1− F (tfn,c)

˜–
dtfn,c + Pv2(t′p) (4.61)

Results of P ∗v (t′p) for the example MANET scenario are given at the end of
this subsection.

Extended Uncertainty (ii) with Cooperative Recovery

If PA does not receive the global decision until tu+δm, it executes a cooperative
recovery scheme. I compute the probability for this scheme to be unsuccessful.

The probability that PA cannot reach a participant that is certain depends
on the probability that all certain participants have su�ered a node failure after
tfn,c or a communication failure with PA until tu+2δm. I denote this probability
by C ′(tfn,c).

C′(tfn,c) = FN (tfn,c ..tu) + Fc(tu + 2δm)− FN (tfn,c ..tu) · Fc(tu + 2δm) (4.62)

In Formula (4.61), I already distinguished between certain and uncertain par-
ticipants in PAother. To derive the probability that PA su�ers from extended
uncertainty (ii) and cooperative recovery is not successful, i.e. PA remains uncer-
tain, I expand Formula (4.61) with the probability that no certain participant
(PAlast and n − 2 − i of PAother) is reachable for PA, while reachability is
computed by C ′(tfn,c). I then derive P ∗v,cr(t

′
p).

P ∗v,cr(t
′
p) =

t′pZ
0

»
fN (tfn,c) · Pv1(tfn,c)

·
n−2X
i=0

»„
n− 2

i

«
Pv1(tfn,c)

i ·
ˆ
Pnv1(tfn,c) · C

′(tfn,c)
˜n−2−i

–
·
ˆ
1− F (tfn,c)

˜
· C′(tfn,c)

–
dtfn,c + Pv2(t′p) (4.63)

Predictions for the Example MANET Scenario

Figure (4.13) depicts results computed by P ∗v,cr(t
′
p) for the example MANET

scenario of this work. Although the probability for uncertainty caused by a
node failure of the coordinator is signi�cantly higher than in the strict case, e.g.

4.6. BLOCKING CAUSED BY COORDINATOR FAILURES 101

(a) Probability of extended uncertainty (ii) with
λL=1/1800.

(b) Probability of extended uncertainty (ii) with
λL=1/200.

Figure 4.13: Probability of extended uncertainty (ii) in the example MANET
scenario and transaction parameters n=3, δm=180ms, ∆ex=1 s, and λto=1 s.

at maximum 0.7% at t′p=30 s, it is still low compared to the uncertainty risk
induced by participant failures, i.e. of extended uncertainty (i).

For values of t′p with moderate abort rates (t′p≤20 s) the probability of ex-
tended uncertainty (ii) is smaller than 0.6%. Increased uncertainty risks com-
pared to the strict case are caused by the fact that a node failure of the co-
ordinator in [ts, t′p] can already cause extended uncertainty (ii) in the semantic
model, while in the strict case, only node failures in the interval [tp, tp + ∆U]
are relevant.

Cooperative recovery compensates extended uncertainty (ii) situations espe-
cially well for small t′p. For values of t

′
p showing a moderate abort probability,

the probability of extended uncertainty (ii) and unsuccessful cooperative recov-
ery remains smaller than 0.2%, as shown in Figure (4.13) by Curve 2. Hence,
the probability for uncertainty caused by the coordinator is also negligible for
the example MANET scenario and semantic transactions.

Figure 4.13(b) shows the increased probability of extended uncertainty (ii)
if a high node failure probability (λL=200−1) is assumed. While the risk is
signi�cantly increased, cooperative recovery reduces this risk below 1%. With-
out cooperative recovery, risks reach at maximum 5% in the example MANET
scenario as shown by Curve 1 in Figure 4.13(b). However, at λL=200−1 a high
abort rate has to be expected possibly rendering transaction processing unfea-
sible.

4.6.3 Summary - Blocking caused by Coordinator Failure

In this section, I proposed a calculation model for the probability that PA
will su�er a blocking or extended uncertainty situation that is caused by a
coordinator's node failure.

For the example MANET scenario, I showed that these probabilities are
smaller than 1% for strict and semantic transactions. The risk of PA to su�er
extended uncertainty (ii) is with up to 0.7% larger than blocking (ii) risks in the

102 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

strict model. Here, the probability of blocking (ii) is smaller than 0.03%. Even
if the node failure probability is drastically increased, blocking (ii) and extended
uncertainty (ii) probabilities do not reach signi�cant values. Furthermore, the
calculation model presented does not consider recovery from path breaks and
therefore provides an upper bound of expected blocking and extended uncer-
tainty risks. The real risks have to be expected to be even smaller, since recov-
ery of communication paths reduces the probability of ∆U to be extended to
∆Umax. Additionally I showed that cooperative recovery can reduce these risks
even further.

It can be concluded that blocking (ii) and extended uncertainty (ii) situa-
tions are less relevant than blocking (i) and extended uncertainty (i) situations
in MANET scenarios that are similar to the example MANET scenario of this
work. In this section, I presented a probabilistic model to calculate these risks
for arbitrary scenarios to identify situations where blocking (ii) and extended
uncertainty (ii) is a more relevant situation.

4.7 Case Study - Mission Coordination

In the previous sections, I presented calculation models that were applied to
an example MANET scenario without a concrete transaction in mind, but for
varying tp and t′p. In this section, I apply the calculation model to a concrete
transaction scenario, to show abort and blocking risks for a realistic example.

Transaction Description

Th examined transaction scenario is placed in the often-used disaster setting:
Assume that multiple rescue teams move into a disaster area and coordinate their
missions in a transactional manner. Imagine that an earthquake hits a major
city and destroys most of the infrastructure. Medical, �re, police, and rescue
units move into the area, and each unit is equipped with a PDA or notebook
and connected to a MANET that is formed collaboratively by all rescue units.
Rescue missions are coordinated in an ad-hoc manner.

Assume the following situation: a police patrol is informed that residents are
suspected to be trapped under a collapsed building. On its way to the collapsed
building, the police commander uses his PDA to discover rescue resources and
to initiate and coordinate a rescue mission. To initiate the mission, several het-
erogeneous resources must collaborate at the mission site. The mission control
system is assumed to know by con�guration that the following resources are
required: (i) a rescue unit (trackers) to locate trapped residents and to provide
�rst aid; (ii) technical resources with heavy equipment to remove construction
waste to access the trapped. I assume that one part of a technical unit are
supply trucks carrying basic supplies such as water, fuel, or blankets.

The atomicity semantic required here is: only if all required resources are
available within the right time at the right place can the mission be successful. If
one resource, such as trackers, is not available, other units should not be blocked
for an arbitrary time, but are better used within other missions. To guarantee
successful mission initiation, either all required resources must commit to the
mission, or the mission is aborted. I assume that resources are available and
therefore no aborts due to unavailability occur.

4.7. CASE STUDY - MISSION COORDINATION 103

Figure 4.14: Transactional mission control

Rescue resources are contacted and commit themselves to a mission within a
transaction. Figure 4.14 depicts the message exchange between the coordinator
and resources. The �rst query issued to every resource checks if the resource
is generally available. In the remainder of the processing phase, details and
additionally required resources and supplies are negotiated. If negotiation is
successful, the resource commits itself to the mission and moves towards the
mission site. However, only when the global commit message is received can
the resource be sure that the mission is really happening. Hence, a semantic
transaction is assumed here. In the following, the semantic of the messages
exchanged is described brie�y:

Tracker Unit : First a query is sent to check if the tracker team is available
and can make it to the mission site in less than 10min (msg. [av(10m,loc)]).
The mission client running on the track team commander's PDA knows that
the tracker team is not involved in another mission yet; it checks the current
position of the team and estimates if the team can make it to the mission site in
time. Positive feedback (msg. [ok]) is sent to the coordinator. In the following
interaction, additional parameters of the mission are negotiated. The coordi-
nator sends an additional query asking if personnel and equipment su�ces to
search 150m* 50m (msg. [can(150x50)]). The tracker unit acknowledges the re-
quest positively. To search an area of this size, additional supplies are required,
e.g. bottled water, and generators to recharge track robots. This supply request
is issued in the [ok(supplies)] message. The coordinator checks back with the
technical unit if it can provide the required supplies for the track team. On the
mission site, a doctor is also required to provide �rst aid to salvaged residents.
Hence, the coordinator asks if the tracker team has medical personnel who can
provide the required service. The tracker unit acknowledges this request posi-
tively, but requests additional supplies. The coordinator requests these supplies
at the technical unit and gets them (msg. [med. supply ok]). Negotiation with
the tracker team is concluded by a [move] message. By acknowledging this mes-
sage, the tracker team commits to the mission. If all other resources also commit
to the mission, global commit is received (msg. [gl. com.]) later.

Technical - Supply Unit : The unit �rst receives a query if it is available and
if it can reach the mission site within the next 30min. The mission software
of the technical team checks whether heavy machines and supply trucks can be

104 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

moved to the mission site and answers a�rmatively. Part of the technical unit
are supply trucks, carrying major supplies such as fuel, water, and general res-
cue equipment, like medical supplies. These supplies are dispatched to mission
sites. After con�rming availability, the technical unit receives several requests
for supplies required by other units (tracker supplies and medical supplies) or
required due to special circumstances at the mission site (heavy machines, spot-
lights etc.). On a�rmative feedback on all supply requests, the coordinator
derives the global commit decision after the last request is acknowledged and
a global commit message is sent to all units. With the reception of the global
commit message, the units are certain that the mission was successfully initiated
and will actually take place.

Transaction Parameters

From the descriptions above, I derive the transaction parameters t′p, n, and
o(to). The processing time t′p of the transaction depends on the time resources
require locally to decide if participation in the mission is possible. For example,
if a resource is asked to be in place within 10min, then it has to calculate e.g.
using a navigation system if this is possible. I assume that each resource requires
5 s to decide whether it can participate in the mission. This calculation is done
in parallel by the tracker and the technical resource. I assume that the tracker
team mission software requires 3 s to estimate the additional supplies required
to search the area as well as to decide on the additional resources required by
its medical personnel.

I assume that the technical team answers supply requests within 2 s, be-
cause the resource management software of the technical team must possibly
check sensors or RFIDs to estimate the remaining amount of supplies like wa-
ter or blankets. Therefore, the processing time of the transaction sums up to
t′p=5s+3s+2s+3s+2s+2s+2s=19s. I assume that an additional second is re-
quired for message delays, resulting in t′p=20 s.

By observing the message �ow in Figure (4.14), I derive that the last opera-
tion is received within the second half of t′p. I assume a uniform distribution of
to in this period. Hence, o(to) for the tracker resource is given by

o(to) =

 0 for to <
t′p
2

2
t′p

for to ≥
t′p
2

(4.64)

The technical unit is PAlast and receives its last operation at t′p.

MANET Parameters

I assume that the disaster site A spans 2000m* 2000m and 40 rescue units
roam within the area. Rescue units generally move within the destroyed streets
by trucks, jeeps, or other vehicles. I assume uniform distributed speeds of 1.0�
5.0mps for all teams on the site. Every commander of a rescue team car-
ries a PDA or another mobile device equipped with radio interfaces similar
to the 914MHz Lucent WaveLAN DSSS card with approximately 170m radio
range. The speci�cation of radio and antenna characteristics can be found in

4.8. SUMMARY AND CONCLUSION 105

Appendix B.1.1.2. For FN (t′p), I assume the distribution as described in Sec-
tion 4.1.

If the transaction is initiated with participants in 1�2 hop distance, a log-
normal distributed cdf FC(tp) with µ=3.153 and σ=1.146, a message delay of
approx. δm=200ms, and for FRC(t′p) a log-normal distribution with parameters
µ=3.584 and σ=0.820 is derived.

Probability of Abort and Extended Uncertainty

Given the parameters above, the proposed calculation model can now be used
to derive abort and uncertainty risks for the given transaction scenario. The
derived values are summarized in Table 4.1. I assume that the probability of
transaction abort is barely tolerable with 21%. In the case where all partic-
ipants know each other and thus, cooperative recovery is possible, the risk of
a participant to su�er from an extended uncertainty situation is predicted by
3.7%�4.5%. If cooperative recovery is not possible, the risk of extended uncer-
tainty situation is high at 39%�41%. The probability that a participant su�ers
from extended uncertainty (ii) is predicted by 0.3%�0.8%.

As in a disaster scenario assumed here a rescue unit should always be freed
from stale commitments, a probability of 4.5% to su�er from extended uncer-
tainty (i) is unacceptable. Hence, recovery schemes in addition to cooperative
recovery should be considered for this transaction.

The remainder of this thesis is concerned with such approaches.

Probability Formula Value

Abort P∗a (t′p) 0.21

Extended uncertainty (i) with path recovery. P∗
′

u (t′p) 0.39

Extended uncertainty (i) without path recovery. P∗u (t′p) 0.41

Extended uncertainty (i) with cooperative recovery and
with path recovery.

P∗
′

u,cr(t′p) 0.037

Extended uncertainty (i) with cooperative recovery and
without path recovery.

P∗u,cr(t′p) 0.045

Extended uncertainty (i) with cooperative recovery using
Ppath.

P∗ppu,cr(t′p) 0.05

Extended uncertainty (ii). P ′u(t′p) 0.008

Extended uncertainty (ii) with cooperative recovery. P ′u,cr(t′p) 0.003

Table 4.1: Abort and uncertainty risk with t′p=20 s and n=2.

4.8 Summary and Conclusion

This chapter presented an in-depth investigation of abort and blocking proba-
bilities in the strict and semantic transaction model for MANETs. I proposed
a probabilistic model to estimate the blocking and abort rates of transactions
in an arbitrary MANET scenario. The model was veri�ed by simulation for an
example MANET scenario.

106 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

The measured and calculated abort and blocking probabilities for the ex-
ample scenario showed some interesting results that can be expected to hold
for similar transaction and MANET scenarios: only if failure probabilities are
high, blocking and extended uncertainty situations can be observed at an notice-
able rate. But, high failure probabilities predominantly increase the probability
for transaction abort, which prevents a strong increase of blocking risks. I
showed that the simple rationale that a lot of failures cause a lot of blocking
and extended uncertainty situations is not true. High blocking probabilities are
only observed for speci�c combinations of transaction and MANET parameters.
Therefore, reasoning about the relation of failure probabilities and abort as well
as blocking probabilities is complex and requires a formal model as presented in
this chapter. In short, the most important results presented in this chapter are:

• Increased failure probabilities predominantly raise the susceptibility of
transaction abort, while the increase of blocking risks is moderate or even
recurrent, since less transactions enter the decision phase. Abort risks
increase fast for increasing tp and therefore a calculation model as devel-
oped here is required to identify the spectrum of tp with moderate abort
probabilities.

• Blocking situations that cannot be immediately compensated for by coop-
erative recovery are observed only for a certain range of tp in a MANET
scenario. To identify these speci�c transaction sizes, a calculation model
as presented here is important.

• It showed that the abstractions made by the presented model are su�cient
to provide accurate predictions of abort and blocking risks. Hence, the
model can be used to decide whether additional recovery schemes such as
the SLS presented in the following chapter should be integrated for a given
transaction.

• The semantic transaction model is generally more susceptible to extended
uncertainty, than the strict model is to blocking. It is also less susceptible
to abort as no collection phase exist.
Semantic transactions with two participants is the transaction scenario
with the highest probability of extended uncertainty identi�ed.

• Cooperative recovery is a most e�cient recovery scheme in all blocking and
extended uncertainty situations. For most strict transactions, cooperative
recovery reduces the probability for blocking below 1% in the example
MANET scenario.

• From the two de�ned blocking situations; blocking (i) and blocking (ii) and
extended uncertainty (i) and extended uncertainty (ii) respectively, the sit-
uations caused by participant failures are much more likely, than the situ-
ations caused by a node failure of the coordinator. In fact, the probability
that a node failure of the coordinator causes blocking of a participant is
negligible for the MANET scenarios considered here.

The model presented is useful, as it allows to decide, whether it is feasible to
execute a transaction with a given processing time, or if a transaction will most

4.8. SUMMARY AND CONCLUSION 107

likely abort. Proposed predictions of blocking rates can be used to decide if ad-
ditional recovery schemes like the SLS, as presented in the following chapter, or
a backup coordinator as proposed in Chapter 6 should be integrated in transac-
tion processing. A prophylactic integration of the SLS or a backup coordinator
respectively is not recommended, as such schemes always induce an additional
message overhead.

Additional recovery schemes like the SLS are generally required, as I showed
in the previous sections that transactions scenarios exist, where even coopera-
tive recovery does not reduce the risk of extended uncertainty su�ciently. The
remainder of this work will be concerned with such recovery schemes reducing
the probability of blocking.

The problem of high abort rates requires work on advanced transaction mod-
els that are more failure tolerant within the processing phase. In further re-
search, the concepts of advanced transaction models described in Chapter 3
should be integrated in the calculation model presented here. I consider such
an enhancement of the calculation model as straightforward. Reduced abort
rates of advanced transaction models are expected to cause higher blocking and
extended uncertainty risks, since more transaction will enter the decision phase.
This will also increase the demand for advanced recovery schemes such as the
SLS or backup coordinators to compensate for blocking.

108 CHAPTER 4. ATOMIC TRANSACTIONS IN MANETS

Chapter 5

Shared Log Space (SLS)

This chapter describes the idea, architecture, and implementation of the Shared
Log Space (SLS). The SLS is a shared distributed storage that allows to save the
global decision of a transaction within a MANET at a de�ned availability. In
this chapter, I will describe how the SLS is used to compensate for blocking (i)
and extended uncertainty (i) situations. In Chapter 6 it will be shown how
the SLS is used with a backup coordinator to compensate for blocking (ii) and
extended uncertainty (ii) situations. Embedding the SLS into atomic transaction
processing allows one to guarantee that successful recovery from blocking or
extended uncertainty has a de�ned probability.

The probability of successful recovery depends on the availability of the
global transaction decision at recovery time. The basic idea of the SLS is to
control this availability by storing the decision log on multiple nodes of the
MANET. From the application developer's perspective and for the designer of
recovery protocols, the SLS provides a convenient abstraction, since the details
of preserving the commit decision at desired availability as well as the retrieval
of the decision at recovery time are completely hidden.

Although the SLS is presented here in the context of atomic transaction
processing, its functionality is also relevant in other domains. For example,
in [30] it is proposed to write signed messages of eCommerce transaction to the
SLS to allow for weak fairness [9] in transactional goods exchange. In [65] a
distributed reputation system bene�ts from the SLS by preserving information
within the SLS that proves unfair behavior of nodes.

To implement the proposed abstraction, two major problems have to be ad-
dressed: (i) since node movement and node failures in�uence the probability
that a blocked node can access the decision log, the problem of estimating the
optimal set of nodes to place log copies on has to be solved; and (ii) in coordi-
nation with the dissemination of the decision, the according retrieval operation
executed by an uncertain participant at recovery time has to locate the decision
log fast and at low message expenses.

The remainder of this chapter is structured as follows: In the �rst three
sections of this chapter, I present the general concept of the SLS, while a de-
tailed description of implementation issues and an evaluation is given within
the last �ve sections. The conceptualization given in the �rst sections is biased
by the lightweight implementation approach, which is the main implementation

109

110 CHAPTER 5. SHARED LOG SPACE (SLS)

approach followed in this work. Hence, some concepts only relevant for this
approach are also described with the general SLS concepts.

In more detail, Section 5.1 describes the basic idea of the SLS, related work,
and the concrete failure cases addressed, while Section 5.2 provides a formal-
ization of the SLS operations. Section 5.3 presents how SLS operations are
integrated into recovery protocols of strict and semantic transactions. Sections
5.4 and 5.5 present major implementation problems and their solutions such
as derivation of node failure probabilities and the log availability model un-
derlying the lightweight approach. In Section 5.6 the implementation of SLS
operations in the lightweight approach is described and evaluated afterwards
in Section 5.7. Section 5.8 brie�y presents and evaluates an alternative imple-
mentation approach of the SLS based on a cluster overlay. Finally, Section 5.9
concludes the chapter.

5.1 Idea and Related Work

The main problem addressed in this chapter is compensation for blocking and
extended uncertainty situations that are caused by node or communication fail-
ures of transaction participants. In the following, these situations are brie�y
reviewed and the basic idea of how the SLS increases the chance of participants
to leave uncertainty is introduced. Since the SLS is based on controlling the
availability of the decision log within a MANET, related work on data availabil-
ity in MANETs is discussed.

5.1.1 Problem and Idea

Blocking (i) and extended uncertainty (i) situations occur if a participant moves
into uncertainty and does not receive the global decision due to a communica-
tion failure with the coordinator or because the participant disconnects from the
MANET. From the coordinator's perspective, it is indistinguishable whether a
participant experiences such a situation, or whether the acknowledgment mes-
sage for the global decision was lost and the participant was able to leave uncer-
tainty. Hence, the coordinator cannot securely decide on whether a participant
is uncertain or not.

In contrast to the blocking situations caused by a node failure of the coor-
dinator, in blocking (i) and extended uncertainty (i) situations the coordinator
is still connected to A and therefore the global decision is generally existent in
A. Thus, the main issue of e�cient transaction termination is to deliver this
transaction decision to the uncertain participant rather than deriving a global
decision.

The basic structure of the participant's termination protocol executed in case
of blocking (i) and extended uncertainty (i) is to loop through all possibilities to
learn about the global decision as shown in Figure 5.1. These options are:
(i) to contact other participants; and (ii) retry to contact the coordinator. The
main idea of the SLS architecture is to allow uncertain participants to leave
the termination loop faster, by adding the SLS as third option to learn about
the global decision to the termination protocol. In the following, the time the
termination protocol of the participant is executed is denoted by tter,p, while
the coordinator executes its termination protocol at time tter,c.

5.1. IDEA AND RELATED WORK 111

send vote to
coordinator

send request to
participants

wait for answer

received
decision

no answer
received

wait for global
decision

send ack to
coordinator

received
answer

no decision
received

Figure 5.1: Participant termination protocol with cooperative recovery.

Since the coordinator can neither decide whether a participant is uncertain,
nor whether a participant is blocked due to a communication or node failure,
the coordinator's termination protocol has to consider all three situations. In
the standard termination protocol, the coordinator passively waits for a request
of the restarting or terminating participant. The coordinator cannot decide on
the state of participants, i.e. whether a possibly uncertain participant is still
connected to A. Hence, the coordinator cannot decide on whether a participant
executes a termination or restart protocol.

The participant's restart protocol is executed at reconnection toA if a partic-
ipant su�ered a node failure while uncertain. The restart protocol executed has
the same structure as the participant's termination protocol. It loops through
the two options: (i) contacting other participants; and (ii) contacting the co-
ordinator to learn about the global decision. Hence, the same idea as above
applies here: increased availability of the decision log also raises the probability
of the restarting participant to leave uncertainty. Similar to the participant ter-
mination protocol, e�ciency of the restart protocol can be increased by adding
a third option to learn about the global decision.

The important di�erence between the termination and restart protocols is
the time when the protocols are initiated. While the participant's termination
protocol in the strict model is executed at time tter,p = tp + ∆Umax + 2δm
and at t′ter,p = t′p + ∆ex + 2δm in the semantic model, the restart protocol of
participants is executed at the time when the uncertain participant reconnects
to A. I denote this point in time by tres, while tres is unknown. Since the
coordinator cannot distinguish whether a participant su�ered a communication
or a node failure, it cannot decide when the decision log is required by the
uncertain participant. Therefore, increased availability of the decision log has
to be assured until the latest possible time, when recovery of the participant is
expected.

As described above, recovering participants remain blocked because commu-
nication between the participant and the coordinator fails, either because the
coordinator has left the network or because no communication path is available.

112 CHAPTER 5. SHARED LOG SPACE (SLS)

The key idea of SLS is to solve this dilemma by decoupling communication of
nodes from their presence in A at recovery time. This idea is inspired by the con-
cepts of shared communication spaces such as Linda [51] or by its counterpart
in mobile environments Lime [104, 103]. Both systems decouple communica-
tion between processes (Linda) and mobile nodes (Lime) in time and space,
i.e. nodes or processes need not necessarily be connected at the same time to
exchange messages.

The idea proposed here, adapts such concepts to communicate the global
decision of a transaction to recovering participants, independently of the pres-
ence of previous transaction partners and the coordinator in A at recovery time.
A recovering node which is not able to reach the coordinator should be able to
learn about the global decision using the SLS to leave uncertainty at high proba-
bility. Therefore the SLS establishes a distributed shared storage for small data
items guaranteeing a certain availability of such data in presence of churn and
constant changes in the network topology of A.

Several other works addressed the problem of data availability in MANETs. I
therefore review work related to the SLS in the following, before the architecture
of the SLS is described in more detail.

5.1.2 Related Work

Related work dealing with data availability in MANETs can be found in di�erent
areas. The by far most publications dealing with data availability can be found in
the context of data replication [131, 111, 69, 140, 76, 125, 130, 68]. Other works
like [157, 92] address data availability in the context of caching or hoarding.

The main objective in data replication is to provide a high availability of
consistent data that is distributed among multiple nodes, while various nodes
may update data. The main problems to solve in data replication are: (i) al-
location of replicas to achieve a high availability; (ii) propagation of updates
to all nodes holding a copy of a manipulated data object; and (iii) providing
consistency of accessed data, i.e. anticipating or resolving con�icts due to con-
current updates. While (ii) is mostly solved by �ooding approaches such as
hyper-gossiping, probabilistic �ooding, or multicast schemes and message over-
head is minimized by adapting propagation intervals to access frequencies, (iii)
is a more complex problem.

In the area of distributed databases, various replication and replica control
schemes have been proposed, which can be classi�ed as strict replica control pro-
tocols and lazy replica control protocols [160]. Strict replica control enforces one-
copy equivalence. Prominent protocols of this class are ROWA and ROWA-A
that require the availability of all replicas or quorum schemes that require nodes
to obtain a quorum for update operations [143]. Lazy replication protocols pro-
vide eventual consistency only, as updates are performed and propagated to the
other copies in a lazy manner. Several approaches have been proposed based
on time stamps or node priorities to solve update con�icts. However, with lazy
replication temporary inconsistent states are inevitable. Strict as well as lazy
replication control approaches have been transferred to MANETs. For exam-
ple, in [76], the authors propose to maintain consistency based on a quorum
approach in MANETs, while in [125] lazy update propagation is proposed with
a con�ict resolution based on time stamps. The authors of [125] propose that all

5.2. SLS ARCHITECTURE 113

nodes maintain update operations on data objects within a tree structure, allow-
ing to reconciliate updates in arbitrary orders. Additionally, a local and global
consistency level is de�ned for replicas and methods are proposed to guarantee
consistency among replicas.

Problem (i) is related to this work in the sense that in replica allocation it
is decided on which nodes replicas are saved to achieve high data availability.
Numerous approaches have been proposed for MANETs. I refer to [68] for a
comprehensive overview of allocation schemes in MANETs. Proposed schemes
allocate replicas based on access frequencies (of single nodes or within a neigh-
borhood) or consider the network topology to decide on which nodes to place
copies on. The idea of allocation schemes considering the network topology is
to place replicas in a way that in case of network partitioning replicas are avail-
able in each partition, while access frequencies are used to allocate copies within
partitions. As prediction of network partitioning is one of the hardest and still
unsolved problems in MANETs, the general approach is to discover network
components with a high degree of connectness, as such components will most
likely not be partitioned. Discovery of connected components requires either
knowledge of the complete network topology and can then be done using graph
algorithms or clustering concepts. As the topology of a MANET constantly
changes, the allocation of copies must be constantly maintained and controlled,
resulting in a high message overhead observed for these approaches.

As the SLS does not allow for update operations on decision logs, prob-
lems (ii) and (iii) induced by the update anywhere property are not relevant for
this work. Allocation schemes using access frequencies are not applicable in the
context of the SLS as the decision log is at most read once by a node. The idea
of considering the network topology to achieve high log availability is adapted in
the cluster-based implementation approach of the SLS presented in Section 5.8.

Research on caching in MANETs is related to this work in some ways, as
the objective of caching in MANETs is to increase the data availability in areas
of the network where it is frequently accessed. As with replication schemes the
main challenge here is to develop appropriate allocation schemes [157, 92]. While
the main objective of caching is to decrease the time needed to access a data
object, the primary concern of the SLS is that a decision log can be retrieved at
all within de�ned time bounds.

5.2 SLS Architecture

In this section, the basic abstractions of the SLS system are introduced. As
mentioned above, the SLS is a distributed system formed by collaborative and
fair acting nodes in the system model of this work. For simplicity, it is assumed
that all nodes of a MANET participate in the SLS System.

5.2.1 Preliminaries and De�nitions

First, let me introduce some important concepts and de�nitions required later.
A central problem to be solved by an implementation of the SLS is to predict
and control the availability of a decision log at an arbitrary time t in the future.
Among other things, this calculation requires to estimate the probability that a
speci�c node is connected to A at time t. I call this the probability of presence of

114 CHAPTER 5. SHARED LOG SPACE (SLS)

Coordinator

Assistant
Assistant Assistant

Assistant

Shared Log Space

writeSLS
save decision
log with P

ret

readSLS
read decision
log at P

ret

Participant

log dissemination

log dissemination

Figure 5.2: Abstract SLS model.

i in A at time t; it is denoted by Pi,pr(t). The probability that a node i holding a
log is connected to A and an uncertain participant can reach this node is called
reachability of i. Nodes that hold a decision log of a transaction, although they
have never participated in the transaction, are called assistant nodes.

Before a participant moves into uncertainty, it announces a so-called retrieval
probability denoted by Pret to the coordinator. This is the probability that the
participant wants to be able to retrieve the decision log in case it su�ers a
blocking or extended uncertainty situation.

Since providing availability of a decision log for unlimited time is expensive
in terms of messages, a time limit until the retrieval probability Pret of the
decision log should be provided is de�ned. Therefore, every retrieval probability
announced by a participant is combined with a so-called mission time denoted
by tm, describing the duration the participant requires Pret to be maintained.
Another reason to introduce tm besides high message costs is the fact that it is
hard to decide when a log item is obsolete. This requires consensus among all
transaction participants on whether the log is still needed and hence is as hard
to solve as atomic commit itself.

5.2.2 SLS Abstractions and Operations

The SLS is collectively formed by assistant nodes that cooperatively store trans-
action logs to increase their availability for recovering participants. The basic
concept of the SLS is depicted in Figure 5.2. It is assumed that a middle-
ware component, a so-called Local Log Space (LLS) component resides on every
node of the MANET. An application accesses the SLS through the LLS by the
writeSLS, readSLS, and register operation. In the following, a brief formaliza-
tion of these operations is given while a more detailed discussion of the problems
to be solved by each operation is given later.

• writeSLS[tid , log,Pret,tm,k,∆w]: The writeSLS operation is invoked by
the coordinator to preserve a decision log within A at availability Pret
until tm. The operation is not allowed to terminate before the promised
log availability is reached. However, the writeSLS operation is not allowed
to execute for an arbitrary long time, but has to terminate at least after

5.2. SLS ARCHITECTURE 115

time ∆w. If available, a so-called dissemination plan k is considered, that
is derived by executing the register operation.

• readSLS[tid ,k]→ log: A recovering node can execute the readSLS opera-
tion to retrieve a decision log previously written to the SLS by a writeSLS
operation. The tid parameter identi�es the transaction the decision log
should be retrieved for, while k is the dissemination plan used by the ac-
cording writeSLS operation. The concept of k is described below. k can
be null if unknown. The readSLS operation has to return the desired log
item with probability Pret until tm within time ∆r.

• register[tid ,tm,Pret,tp]→ k: The register operation asserts whether Pret
can be generally provided in a MANET and in some scenarios prepares
a so-called dissemination plan k. A dissemination plan k is a concept of
the lightweight implementation approach and allows for a message e�cient
dissemination and retrieval scheme of decision logs if k is communicated to
participants that expect to execute a readSLS operation. Parameters tm,
Pret, and tp are required to prepare k to meet Pret until tm. tp is required
to consider aging of k. Plan aging and the abstraction of k is described
below. Whether a plan k can be used depends on the MANET scenario,
i.e. whether multi-hop routing is used or not.

In the following, the concept of the dissemination plan is described and respon-
sibilities and problems to solve by each SLS operation are discussed.

5.2.2.1 Dissemination Plan

To achieve the demanded availability of the decision log at minimum cost, the
dissemination plan k is central. In the lightweight implementation approach
k de�nes which assistant nodes will be used to place the decision log on. k
contains either a set of assistant nodes identi�ed by their nodeId. For example,
if k = {23, 12, 55}, then the retrieval process expects that the decision log was
distributed to nodes with nodeId 23, 12, and 55. If multi-hop routing is used,
such information allows for e�cient dissemination and retrieval schemes that do
not require expensive broadcast and �ooding mechanisms, because the nodes in
k can be directly addressed. However, it is not always possible to determine
a set of de�ned assistant nodes a priori, either because not enough nodes can
be found in the current vicinity or because the reachability of assistant nodes
will most likely have changed when the writeSLS operation is executed. Hence,
k can also contain an unde�ned set of assistant nodes. The unde�ned set of
assistant nodes is simply a number of nodes, e.g. k = {23, 12, 55, (3)} states that
the decision log should be disseminated to nodes 23, 12, 55, and additionally to
any three other nodes.

The dissemination plan is determined by the register operation and must be
made available to participant nodes before a readSLS operation is executed. The
most severe problem of the dissemination plan is its validity. If the time between
calculation of k and realization of k is large, nodes available at calculation time
are possibly not reachable when k is executed. I call this problem plan aging.
The age of k is simply measured by the time elapsed since register was called
and is denoted by ∆k.

116 CHAPTER 5. SHARED LOG SPACE (SLS)

However, a dissemination plan is only feasible in MANET scenarios where
multi-hop routing is used, as only then a recovering node can address assistant
nodes de�ned in k directly. If no multi-hop routing scheme is used, k is not
used.

5.2.2.2 SLS Operations

In the following, the responsibilities and problems to be solved by implementa-
tions of the SLS operations are discussed. The operations are described as used
in the lightweight implementation approach, where the register operation plays
a decisive role. Problems to be solved by operations di�er for scenarios with
and without multi-hop routing.

register - Operation

In the case where multi-hop routing is used, the main objective of the register
operation is to derive a dissemination plan k, which is then used by the writeSLS
and readSLS operations. Three main actions must be performed within the
register operation: (i) it has be assured that the demanded log availability Pret
can be provided at all in the given MANET; (ii) potential assistant nodes have
to be discovered; and (iii) based on the discovered assistant set the optimal
dissemination plan k has to be derived. In the following, these actions are
described in more detail:

(i) Assert demanded log availability. Before any calculations to derive
k are done, the register operation has to assert, whether the demanded log
availability Pret can be achieved at all. This is generally done by comparing the
demanded Pret to the maximal possible log availability of the given MANET
scenario denoted by Pmax. Pmax is achieved if the log is saved by nA nodes
of A. I will show in Section 5.5.4 that high levels of Pret cannot be met in all
scenarios, especially if the node failure probability and churn rate is high and
tm is large. The main practical problem here is to derive Pmax.

(ii) Discovery of potential assistant nodes. To determine a de�ned set of
assistant nodes to be used in k, reachable nodes have to be discovered �rst. These
nodes may be discovered in the direct neighborhood or in multi-hop distances,
while the message complexity of the discovery process should be small. To derive
the optimal dissemination plan, the short-term and long-term reachability of
nodes has to be considered. Short-term reachability is the probability that an
assistant node discovered at the time when the register operation is executed is
reachable to save the decision log when the writeSLS operation is initiated. The
long-term reachability of a node is the probability that an assistant node can
be reached by a recovering node at time tres and tter,p respectively. As these
probabilities may vary among the potential assistant nodes, such reachability
information has to be acquired within the discovery process.

(iii) Calculation of dissemination plan. After the available assistant nodes
and their failure probabilities are discovered, such information is used to cal-
culate an optimal k. The optimal k is the set of assistant nodes that, within

5.2. SLS ARCHITECTURE 117

tm, guarantees availability of the decision log that is larger than Pret using the
smallest set of discovered assistants.

A major problem to consider is aging of k. Individual nodes de�ned in k are
possibly not reachable when the writeSLS operation is called. The probability
of this situation increases if the period between execution of the register and
writeSLS operation is large. Therefore, the timing of the register method in
relation to a writeSLS invocation is critical in protocol design. Considering the
short-term reachability of potential assistant nodes is crucial to anticipate plan
aging. The log availability achieved by a plan k considering plan aging is called
LA∗(k, tm). Hence, the plan derived by the register operation has to assure that
∀t ∈ [tter,c, tm] |LA∗(k, t) ≥ Pret.

writeSLS - Operation

The writeSLS operation is responsible for placing the decision log on assistant
nodes such that the demanded availability Pret of the decision log is assured.
This is achieved by considering the dissemination plan k but also requires to
compute the actually achieved log availability at execution time. I call the
realized plan kr while the plan derived by the register operation is denoted by k.
In case k cannot be realized due to plan aging, new assistants have be discovered
within the writeSLS operation to assure that ∀t ∈ [tter,c, tm] |LA(kr, t) ≥ Pret,
where LA(kr, t) describes the log availability achieved by the actually realized
dissemination.

Another main requirement of the writeSLS operation is fast execution. This
is crucial as a node failure interrupting the writeSLS operation jeopardizes the
promised availability of the decision log if it hits the coordinator before a su�-
cient availability of the decision log is achieved. While the writeSLS operation
is only allowed to terminate after su�cient log availability is assured, an upper
time bound for the execution time denoted by ∆w should not be exceeded. To
solve this problem, the writeSLS operation has to provide a contingency plan if
the execution limit ∆w approaches and a su�cient log availability is not reached
yet. A possible contingency plan is to initiate a broadcast-in-time scheme that
disseminates the decision log to all nodes in A. The major challenge to be solved
by an implementation of the writeSLS operation is to �nd a balance between
observing ∆w and fallback to a suboptimal contingency plan (e.g. �ooding).

In case no multi-hop routing is used, k is null and thus not considered.
kr then contains only assistants discovered at execution time of the writeSLS
operation. Pret, tm, and ∆w are mandatory parameters as well as log and tid.

readSLS - Operation

The responsibility of the readSLS operation is to discover at least one assistant
node holding the decision log for transaction tid and return it to the requesting
application. The main challenge here is to �nd a message-e�cient and fast
scheme to locate assistant nodes. Knowledge provided by the dissemination
plan k can be used to directly contact nodes carrying the desired decision log.

As mentioned above, the readSLS operation must return the desired decision
log after ∆r at a probability equally to or larger than Pret until tm. ∆r depends
on the implementation of the readSLS operation.

118 CHAPTER 5. SHARED LOG SPACE (SLS)

Discovering an assistant node at minimum cost is the central problem to solve
by an implementation of the readSLS operation, especially in a scenario where
no routing is used and hence no k is given. In this case, a search request has to
be distributed within A, e.g. using a ring search or �ooding protocol. The prob-
lem to overcome here is to �nd a balance between expensive broadcast-in-space
schemes and cheaper schemes querying only a certain area or zone of A.

5.3 Integration of SLS in Recovery Protocols

Using the SLS in atomic commit protocols requires the integration of the reg-
ister, writeSLS, and readSLS methods into given transaction protocols. In the
following, I will describe the coordinator termination protocol and the partici-
pant termination and restart protocols using the SLS for the strict and semantic
transaction models.

Before these operations can be used, coordinator and participants must agree
on values for Pret and tm. I assume that participants demand individual Pret and
tm. Considering individual demands of participants on Pret and tm is straightfor-
ward if the writeSLS operation assures the availability required by the possibly
uncertain participant, i.e. the participant from which no acknowledgment was
received. However, k has to meet the highest Pret requested by participants.

The writeSLS operation is embedded in the termination protocol of the
coordinator, while the readSLS operation is integrated into the termination and
restart protocols of participants. On transaction completion the coordinator
executes the writeSLS operation if a participant is suspected to have su�ered a
failure during uncertainty.

5.3.1 Coordinator Termination Protocol with SLS

If an acknowledgment for the global decision is missing, the global decision has
to be saved to the SLS to allow recovering participants to retrieve the decision
log from the SLS. The writeSLS operation is expensive in terms of messages
and therefore should only be executed if participants are actually suspected to
be blocked and not in a prophylactical manner. A prophylactical execution of
the writeSLS operation is not feasible, since the the probability of blocking is
low (see Chapter 4) and therefore also the execution of a corresponding readSLS
operation.

Except for the case when the acknowledgment of a participant for the global
decision is lost, the only operation causing message overhead in the failure-
free case is the register operation. This is inevitable, as this operation has
to be executed before any participant moves into uncertainty to assure that
participants know k at recovery time. If no multi-hop routing is used, the
register method does not derive a dissemination plan, but asserts only whether
Pret < Pmax, which causes no extra message overhead if Pmax is known. In the
following, the coordinator's termination protocol is described for the strict and
semantic transaction model.

5.3. INTEGRATION OF SLS IN RECOVERY PROTOCOLS 119

collect votes

send
commit/abort

writeSLS(log,k)

received all acks acks are missing

wait for acks

register()

send (prepare, k)

Figure 5.3: Coordinator termination protocol with SLS in the strict model.

5.3.1.1 Strict Transaction Model

In Figure 5.3, the termination protocol of the coordinator is depicted for the
strict transaction model. In the strict model, all nodes move into uncertainty
simultaneously when answering the prepare request. Thus, the prepare message
is the last message received by a participant before entering uncertainty. For
message e�ciency, the dissemination plan k is sent together with the prepare
command as a single message. Important is that the dissemination plan k is valid
with high probability when communicated to participant nodes, i.e. k should be
as new as possible. With increasing time elapsed between the creation of k and
execution of the writeSLS operation, the problem of plan aging becomes more
relevant, reducing message e�ciency of the approach.

The problem to solve is to execute the register method early enough to not
arti�cially delay the processing phase, and late enough to minimize the e�ect of
aging of k. ∆k is given by tp− ttr + ∆U , where ttr is the point in time when the
register operation terminates. Hence, the minimum age of k is given by ∆U in
case ttr = tp. Since ∆U is small in the strict model (see Chapter 4), aging of k
is not as severe as in the semantic transaction model which is described in the
following.

5.3.1.2 Semantic Transaction Model

In the semantic transaction model, nodes move into uncertainty after acknowl-
edging their last operation. In contrast to the strict scheme, it is possibly
required to execute the writeSLS operation during the processing phase of a
transaction in the interval [ts, t′p]. A plan k has to be available and known by
uncertain participants before the writeSLS operation is executed. Since, the un-
certainty windows of participants are considerably larger in the semantic model
than in the strict model and k has to be derived before any participants move

120 CHAPTER 5. SHARED LOG SPACE (SLS)

last operation for participant i
approaching

register()

wait for ack
 from i

received ack ack missing

process operations

decide for
commit

send gl. commit
to all part.

writeSLS(log,k)

received all ackssome acks are missing

wait for acks

was last
participant

decide for abort

send gl. abort
 to all part.

∆
k
 > ∆

k,tresh
OR k=null ∆

k
 ≤ ∆

k,tresh

send(lastOp,k) to
participant isend(lastOp,k) to i and all

other uncertain
participants negative

feedback

Figure 5.4: Coordinator termination protocol with SLS in the semantic model.

5.3. INTEGRATION OF SLS IN RECOVERY PROTOCOLS 121

into uncertainty, plan aging is a more severe problem. Figure 5.4 depicts the
proposed termination protocol for semantic transactions considering aging of k.

I propose the approach to renew k if ∆k reaches a threshold and to propa-
gate the new k to all uncertain participants. However, it is not guaranteed that
every participant can receive the most recent k, but the chance that an uncer-
tain participant knows a more recent k is increased compared to the approach
to derive a single k before the �rst participant enters uncertainty. Another ap-
proach would be to review k by checking the reachability of the assistant nodes
de�ned in k. However, this increases message overhead and is only feasible if k
can be revised at no additional cost, e.g. if a lookup on the local routing table
is possible to verify k.

In this work, I propose to use a threshold value ∆k,thr indicating the allowed
age of a plan. Figure 5.4 depicts the termination protocol considering revision
of k depending on its age: before the last operation for a participant i is issued,
the coordinator checks whether k exists and veri�cation is required. If ∆k

exceeds threshold ∆k,thr or no k has been derived yet, the register operation is
called. If k does not require veri�cation, it is sent to participant i as a single
message with the last operation of i. If a new plan is derived, k is not only
sent to i but also to all participants that have already moved into uncertainty.
Afterwards, the coordinator waits for acknowledgments from participant i for
successful execution of its last operation. If the acknowledgment is missing,
the coordinator decides on global abort and sends its global decision to all
participants. If at least one acknowledgment message for the global decision is
not received, then the writeSLS operation is executed by the coordinator. If
a failure occurs with a participant i in [ts, ti,o] the transaction is aborted and
the writeSLS operation is executed if at least one acknowledgment of uncertain
participants is missing.

If there is no failure, the coordinator will decide on commit if the last par-
ticipant acknowledges its local transaction branch. Only if an acknowledgment
for the global commit message is missing from a participant, the writeSLS op-
eration is executed using the latest k. In the case where all acknowledgments
are received, the only message overhead is produced by the register operation.

5.3.2 Participant Termination and Restart using the SLS

To integrate the SLS into the termination and restart protocols of participants,
the readSLS operation is embedded in the standard participant protocols. Recall
that the restart and termination protocols are considered to be executed in A
only. Nodes disconnected from A defer execution of the restart protocol until
reconnected to A.

Integration of the readSLS operation in participant termination and restart
protocols is straightforward. After all standard options to learn about the trans-
action decision: (i) contacting the coordinator and (ii) contacting the other
participants, are not successful, the readSLS operation is executed. The moti-
vation to try (i) and (ii) �rst, is the potentially high message cost of the readSLS
operation.

In the following, the participant termination and restart protocols for strict
and semantic transactions are described.

122 CHAPTER 5. SHARED LOG SPACE (SLS)

send vote

received decision commit or abort,
 send ack

no decision received

send request to
coordinator and

participants

wait for answer

decision received

no decision received

readSLS()

wait for decision

commit or abort

(a) Termination protocol with SLS.

get state of
unfinished TA

no vote send
abort TA

uncertain about TA

send request to
coordinator and

participants

wait for answer

decision received

no decision received

readSLS()

commit or abort

(b) Restart protocol with SLS.

Figure 5.5: Participant termination and restart protocols with SLS in the strict
transaction model.

5.3.2.1 Participant Termination Protocol with SLS

The participant termination protocol is executed at time tter,p. Figure 5.5(a)
depicts the termination protocol in the strict case. As mentioned above, it is fea-
sible to initiate a cooperative recovery cycle �rst, before the readSLS operation
is executed. If cooperative recovery is not successful, the readSLS operation is
called and executes in parallel to the repeatedly executed cooperative recovery
scheme as shown in Figure 5.5(a). The readSLS operation returns the decision
log with probability Pret after time ∆r. If cooperative recovery is successful
before, the protocol terminates, as well as the readSLS operation terminates
the protocol when successful.

Figure 5.6 depicts the participant termination protocol with SLS for the
semantic transaction model. The protocol has the same structure as the protocol
of the strict case. The main di�erence is that a compensation transaction has
to be executed if the global decision con�icts with the local one.

5.3.2.2 Participant Restart Protocol with SLS

Figures 5.5(b) and 5.7 depict the restart protocol with SLS for the strict and
semantic models. These protocols are similar in their structure to the termina-
tion protocols described above, with the di�erence that the decision phase is not
considered. In the strict and semantic cases, it is �rst checked whether a trans-
action is undecided. In such a situation, the coordinator and all participants
of the transaction are contacted �rst to learn about the global decision. If no
answer is received, the readSLS operation is executed in parallel to cooperative
recovery like in the termination protocols.

5.3. INTEGRATION OF SLS IN RECOVERY PROTOCOLS 123

last operation
received

process
operation

last operation
successful

send positive
ack

send negative
ack

abort local TA
branch

wait for global
decision

commit locally

received decision

 send ack

compensate TA
 send ack

received abort received commit

send request to
coordinator and

participants

wait for answer

decision received

no decision
received

readSLS()

last operation
unsuccessful

Figure 5.6: Participant termination protocol with SLS in the semantic transac-
tion model.

compensate TA commit TA

received abort received commit

send request to
coordinator and

participants

wait for answer

decision received

no decision
received

readSLS()

get state of
unfinished TA

last operation not
acknowledged abort TA

Figure 5.7: Participant restart protocol with SLS in the semantic model.

124 CHAPTER 5. SHARED LOG SPACE (SLS)

5.4 SLS Lightweight Approach

While the previous sections described the abstractions of the SLS and the in-
tegration of its operations in termination and restart protocols of strict and
semantic transactions, this section introduces issues of the lightweight imple-
mentation approach. The basic idea of the approach is to place the decision
log on a small set of assistant nodes that provides the desired log availability
Pret for time tm. The smaller this node set, the more message e�cient is the
preservation process. The lightweight approach does not consider the topological
structure of the network and basically works on a ��re-and-forget� basis, i.e. the
decision log is placed on assistants and after a su�cient availability is reached,
the availability of the decision log is no longer maintained. In contrast, dissem-
ination and retrieval approaches can also be built on top of a topology-aware
overlay structure, e.g. a cluster overlay, where the cluster-head is responsible
for maintaining availability of a decision log in its cluster. I describe such an
implementation in Section 5.8.

The main objective of the lightweight approach is to discover a small set of
assistant nodes, providing the demanded availability, and place logs on them in
an e�cient way. Therefore, four main problems have to be addressed: (i) dis-
semination and retrieval strategies are required for a message e�cient placement
of the decision log; (ii) assistant nodes have to be discovered; (iii) the short-term
reachability of assistant nodes has to be evaluated to address the problem of plan
aging; and (iv) a mathematical model to calculate the log availability achieved
by an assistant set is required. This section addresses problems (i)�(iii), while
(iv) is discussed within the next section.

5.4.1 Dissemination and Retrieval Strategies

Generally, I distinguish two major approaches of log placement in the lightweight
approach: (i) controlled dissemination where the exact set of assistant nodes is
known; and (ii) an uncontrolled dissemination where the dissemination process
has no exact knowledge on which assistant nodes the log is placed on.

The most message e�cient combination of log dissemination and log re-
trieval is a controlled dissemination scheme and a retrieval process which has
exact knowledge of the assistant set. I already mentioned this scheme in the con-
text of the register operation in Section 5.2, where one intention of the register
method is to de�ne the assistant set (plan k) before any participants move into
uncertainty, and to let the readSLS operation know k. However, this scheme
does not make sense in all scenarios, e.g. if no multi-hop routing is used, then
knowledge of k is of less bene�t, as the retrieval process cannot directly send a
message to these nodes.

A controlled dissemination strategy requires acknowledgments of assistants
that saved the log to be collected, to allow the coordinator to decide on the
achieved log availability. The decision log can be placed either using direct
messages or by broadcasting the log. If the log is directly placed on nodes de�ned
by k the dissemination is called directed, while I call the dissemination process
undirected if the decision log is broadcasted until enough nodes acknowledged
receipt of the decision log.

While directed as well as undirected dissemination requires time to collect
acknowledgments of assistants that received the decision log, an uncontrolled

5.4. SLS LIGHTWEIGHT APPROACH 125

dissemination based on a �ooding scheme requires only the time to initiate
�ooding. This requires only one broadcast message. In the following, the dis-
semination schemes used for the SLS implementation are described.

5.4.1.1 Directed Dissemination

Directed dissemination allows for the most message e�cient dissemination and
retrieval process. If the log is placed on #k individual nodes known by the read-
SLS operation, the maximum number of messages required to disseminate and
retrieve the decision log is 4#k. Note that I use the # to denote the cardinality
of a node set, i.e. #k is cardinality of set k. Since placement and retrieval is
done using directed messages, this scheme can only be applied in scenarios with
multi-hop routing. A major disadvantage of the directed dissemination strategy
is that reliable assistant nodes have to be discovered and de�ned within the
register method, which requires additional message overhead as I will show in
Subsection 5.4.2. Additionally the short-term reachability of assistants has to be
considered to deal with the problem of plan aging as described in Subsection 5.3.

I consider the directed strategy as especially important in the real world, as
this strategy allows to exploit individual failure probabilities of assistant nodes,
i.e. few very reliable nodes can be chosen as assistants to achieve the desired
availability. For example, assume that in the disaster scenario of Section 4.1
some command trucks are placed in certain positions in the disaster area. These
trucks have a very low probability of node failures, because they will remain
within the site much longer than other rescue resources and will not fail due
to exhausted batteries, as they are possibly equipped with a diesel generator.
Considering such individual failure probabilities is a main key to achieve high
log availability at minimum cost, as I will show later.

Although aging of k can be considered, it may be possible that not all assis-
tants de�ned in k are reachable at dissemination time. In such a case, a fall-back
to undirected dissemination or �ooding is possible.

5.4.1.2 Undirected Dissemination

If the set of assistant nodes is not de�ned before the writeSLS operation is
executed, an undirected dissemination strategy is initiated by the writeSLS op-
eration. Distribution of the decision log is undirected in the sense that assistant
nodes are not de�ned a priori, but the decision log is broadcasted and all nodes
receiving the log store it and acknowledge its preservation to the issuing node.
Hence, the process of assistant discovery and log placement is combined in one
message round. This scheme is especially feasible in scenarios where no multi-
hop routing is used, as here a direct placement on de�ned nodes is not possible.
However, the scheme can obviously be also applied in multi-hop scenarios.

To disseminate the decision log in an undirected manner, it is broadcasted
in increasing hop ranges using a broadcast-in-space scheme. Acknowledgments
of nodes that received the decision log are used to decide when su�cient log
availability is reached and distribution of the decision log can be stopped.

As acknowledgment messages of assistant nodes can contain information
about the individual node failure probability of the node that stores the de-
cision log, individual nodes showing high reliability can be exploited to achieve

126 CHAPTER 5. SHARED LOG SPACE (SLS)

the desired log availability with a small assistant set. However, this cannot be
planned as with directed dissemination.

While in a scenario where multi-hop routing is available, an assistant node
can send its acknowledgment message directly to the coordinator node; in sce-
narios where no multi-hop routing is used this is not possible. Here, the acknowl-
edgment has to be broadcasted in the same hop distance as the decision log to
assure that the node executing the writeSLS operation receives the acknowledg-
ment message. This results in a high message load for large hop ranges. Thus,
depending on the hop diameter of A, from a certain broadcast range, a �ooding
scheme (uncontrolled dissemination) as described in the following subsection is
feasible.

Since with undirected dissemination the retrieval process has no knowledge
on which node the decision log resides, the readSLS operation cannot address
an assistant node directly, but a search request has to be distributed within A
to discover an assistant node carrying the desired decision log. The hop dis-
tance the search request is broadcasted depends on the availability calculation
used at dissemination time. The calculation of log availability considers a path
probability Ppath as I will describe later. The path probability either describes
the probability of a path with arbitrary hop distance, or a path with a bounded
distance, e.g. 1�2 hops denoted by Ppath,1−2hop. For example, if the path prob-
ability of a 1�2 hop path is used in availability calculations, then the log will be
distributed to enough assistant nodes to assure that a recovering participant will
�nd an assistant in its 1�2 hop neighborhood at Pret. Hence, the hop radius used
for searching an assistant, depends on Ppath used in availability calculations.

In case multi-hop routing is available, I use the path probability for arbitrary
long paths. The retrieval process then broadcasts the search request within the
complete network and assistant nodes holding the decision log can send the log
directly to the requesting node. If no multi-hop routing is used, Ppath,1−2hop

should be used, as an assistant node cannot directly send the decision log to
the requesting node, but the decision log has to be broadcasted in the same hop
distance as the search request of the readSLS operation.

If the undirected dissemination schemes cannot place the decision log on
enough assistant nodes within certain time bounds, a fallback to a dissemination
based on �ooding as described in the following is always possible.

5.4.1.3 Flooding

If the node executing the writeSLS operation resides in a small partition, di-
rected and undirected dissemination can probably not reach enough assistant
nodes to provide the desired availability of the decision log within ∆w. If the dis-
tributing node su�ers node failure before a su�cient log availability is achieved
the whole SLS approach is failed. The major advantage of a �ooding scheme
in such a situation is that the writeSLS operation can terminate right after
the �ooding protocol is initiated. Even if the coordinating node su�ers a node
failure, the log dissemination will continue.

Using a broadcast-in-time protocol allows to eventually distribute a log item
to all nodes of the network, but possibly requires some time to visit all nodes
(see Section 2.1.4 for an introduction to broadcast schemes in MANETs). Log
dissemination is uncontrolled, as the node that initiated log distribution has no
knowledge which nodes are holding the log. Additionally, acknowledgments as

5.4. SLS LIGHTWEIGHT APPROACH 127

used in the directed and undirected scheme are not feasible here, as this results
in multiple �ooding of the network.

The basic guarantee given by a broadcast-in-time scheme is that all nodes in
the network are eventually visited. If the total number of nodes (or the average
number of nodes) within the network nA is known, then the eventually achieved
availability of the decision log can be calculated (this calculation is presented in
Section 5.6.1.1).

The disadvantage of this log dissemination strategy is that all nodes of the
network are contacted and therefore much more assistant nodes than actually
required are used, resulting in an unnecessarily high message load.

A major problem here is to decide when the initiated distribution should
be stopped. There is no �ooding approach that allows to terminate the dis-
semination process after a certain number of nodes have been reached, since
every node has only a local view on the dissemination process. As I assume in
my system model that new nodes enter A, the distribution of the decision log
will never stop, because of new nodes causing other nodes to rebroadcast the
log. A safe way would be to terminate the distribution at an upper time limit,
which is associated with a decision log. The mission time tm is a conservative
but safe time limit at which to stop the distribution of the log item. However,
additional research is required to design a partition-aware �ooding mechanism
that terminates after reaching a certain number of nodes.

As long as such schemes are not available, I propose to use any partition-
aware broadcast strategy or an integrated approach such as hypergossiping with
an upper time limit for data distribution given by tm.

For a concrete implementation of the SLS, I proposed a simple probabilistic
�ooding protocol based on a push-based strategy that broadcasts decision logs
within random intervals to prevent broadcast storms. A decision log is not rec-
ognized for further rebroadcasts if it has reached a maximum broadcast number.
The maximum number of broadcasts is approximated using tm and the expected
time required to execute a certain number of broadcasts. If a node receives a
decision log, it is saved and a timer initiating the next broadcast is scheduled if
not already pending.

If a decision log has been �ooded in A, a recovering node executing the
readSLS operation can most likely discover the log in its direct neighborhood,
i.e. in 1�2 hop distances using the same retrieval process as with undirected
dissemination.

5.4.2 Discovery of Assistants

In the directed dissemination scheme potential assistant nodes have to be dis-
covered before a writeSLS operation is possibly executed. The objective of the
discovery process is to locate nodes that will be reachable for the coordinator
in case the writeSLS operation is executed. This is done either by broadcasting
a discovery message or by looking up a local routing table, e.g. as provided by
AODV or DSDV routing protocols to identify neighbors in direct vicinity.

5.4.2.1 Using a Discovery Message

An implementation of the approach using a discovery message is straightfor-
ward: a so-called SLS assistant request message (SARQ) is broadcasted and

128 CHAPTER 5. SHARED LOG SPACE (SLS)

every node receiving such a packet answers with a so-called SLS assistant re-
ply message (SARP). The set of discovered assistant nodes, called kdis, is then
given by all nodes from which a SARP message was received. A SARQ mes-
sage contains three �elds to control the broadcast range of the SARQ message:
the MAX_HOPS, CUR_HOPS, and an ID �eld. A node receiving a SARQ
message rebroadcasts the message only if it has not already rebroadcasted a
message with the same ID and if CUR_HOPS < MAX_HOPS. Before the
message is rebroadcasted, the CUR_HOPS value is increased, while initially
CUR_HOPS=1.

A major advantage of assistant discovery using SARQ messages is that con-
text information such as movement direction, battery level, or individual node
failure probabilities can be transported within the SARP message. Such context
information is used (i) to rank the nodes in kdis according to their short-term
reachability to identify the assistants that will most likely be reachable when the
writeSLS operation is executed; and (ii) to calculate the long-term reachability
of an assistant node required to derive LA(k, t).

Calculations for (i) and will be presented in Subsection 5.4.3, while (ii) is
addressed in Section 5.5.

5.4.2.2 Using Local Routing Information

If topology-based multi-hop routing is used, neighbor discovery is also done on
the routing layer. For example, in AODV every node periodically broadcasts
HELLO messages to announce its presence to its current vicinity. Another
scheme is to use Link Layer feedback from the MAC protocol as provided in
802.11 to sense the presence of nodes in direct radio range, without issuing
any messages. Independently of how the routing scheme discovers neighbors,
the routing table can be used to obtain kdis without extra message cost at the
application layer. A lookup in an AODV routing table reveals all nodes that
are direct neighbors, while in multiple-hop distances, not all available nodes are
necessarily listed (see Section 2.1.3).

In Chapter 2, I presented the routing information provided by AODV in
Table 2.1(a). In contrast to the scheme where SARP messages can be used to
transport context information, the routing table does not provide any further
context information about assistant nodes besides hop count and the age of a
routing entry. Here, an integrated cross-layer approach is required to transport
context information within node discovery of the routing layer.

5.4.3 Evaluate Short-Term Reachability of Assistants

To consider the problem of plan aging in the directed dissemination scheme,
the short-term reachability of a discovered assistant has to be taken into ac-
count. The short-term reachability is the probability that a node discovered
and selected within the register operation can actually be reached to preserve
the decision log when the writeSLS method is executed. One probability is to
use FC(t) as given by the system model to evaluate the short-term accessibility
of an assistant node.

If additional information about the movement of assistants is available, like
position, speed, and direction, more accurate predictions for reachability of as-
sistants for the coordinator can be derived within a short time horizon. Such

5.4. SLS LIGHTWEIGHT APPROACH 129

movement information can be transported within SARP messages as described
above. In the following, I will describe one approach based on the Link Expira-
tion Time (LET) to estimate the probability that a direct link of the coordinator
with an assistant node fails.

The LET can be used to rank assistant nodes according to their short-term
reachability. The LET was originally presented in [139] and is given in For-
mula (5.1). I use the LET to derive a probability of a direct communication link
after time t between the coordinator i and an assistant node j initially at posi-
tions (xi, yi), (xj , yj) and moving with velocities vi, vj in directions θi and θj .
The LET denoted as δlet is not a probability but the time the direct connection
between two nodes holds, if speed and direction of movement is retained.

δlet =
−(ab+ cd) +

p
(a2 + c2)r2 − (ad− bc)2

a2 + c2
(5.1)

with:

a = vicosθi − vjcosθj
b = xi − xj
c = visinθi − vjsinθj
d = yi − yj (5.2)

Note that calculation of δlet assumes the simple Free Space radio propagation
model [121]. The main idea I propose is to interpret δlet as a probability variable
called Dlet, which is subject to a certain dispersion. Additionally, the time tter,c
when the dissemination plan k is executed is also considered to be a random
variable called Tdis spreading around the expected value tter,c.

The desired probability that an assistant node is reachable at dissemination
time is then given by the probability

P (Dlet < Tdis) = P (Dlet − Tdis < 0) = P (X < 0) (5.3)

with X = Dlet − Tdis. As Dlet and Tdis are subject to numerous (mostly
unknown) in�uences, a normal distribution of Dlet and Tdis with parameter
µlet = E(Dlet) = δlet, σ2

let = V ar(Dlet), µdis = E(Ddis) = (tp + Umax) and
σ2
dis = V ar(Ddis) is assumed based on the central limit theorem. As Dlet

and Tdis are normal distributed, X is also normal distributed with parameters
µX = E(X) = µlet − µdis and σ2

X = V ar(X) = σ2
let + σ2

dis.
The probability for the event Dlet < Tdis is now given by FX(X = 0):

P (X < 0) = FX(X = 0) =
1

σX
√

2π

0Z
−∞

e
− 1

2 (
t−µX
σX

)2

dt (5.4)

With the transformation z = t−µX
σX

the formula to calculate the probability
that an assistant node is in direct connection range at time tdis is then given
by:

P = FX(t) =
1√
2π

−µX
σXZ

−∞

e−
1
2 z

2
dz (5.5)

130 CHAPTER 5. SHARED LOG SPACE (SLS)

Formula (5.5) requires µX and σX as input. While µX is derived from δlet
and tdis, σX is not directly given and hence, has to be derived by simulation
or other measurements for a speci�c MANET scenario. However, calculation of
σlet or σdis is a statistical standard method and therefore not presented here.
For a more detailed presentation of the approach including calculations and
simulation results, I refer to [142, 31].

As multi-hop routing is assumed to be available if direct dissemination is
used, the failure of a direct link does not necessarily mean that communica-
tion between interaction partners fails, since an alternative multi-hop route is
possibly available. However, FX(t) is a good indicator for the real short-term
reachability as shown in [142] and therefore useful to rank assistant nodes ac-
cording to their reachability at tter,c.

The main disadvantage of this approach is that position information must be
available and that only the Free Space radio propagation model is considered,
which is not realistic in urban areas.

5.4.4 Summary - SLS Implementation

In this section, I presented the basic idea of the lightweight implementation ap-
proach of the SLS and introduced some problems to be solved by an implemen-
tation. A major issue is the e�cient dissemination of the decision to assistant
nodes. Dissemination can happen either in a controlled manner if the coordina-
tor tracks the assistant nodes that received the decision log or uncontrolled if
the decision log is disseminated within the network while the coordinator does
not receive any feedback which nodes have saved the decision log. Controlled
dissemination is either directed, if a dissemination plan is given or undirected
if assistant nodes are discovered �rst when the writeSLS operation is executed.
Uncontrolled dissemination is mainly considered as a fallback if a controlled
dissemination scheme does not reach enough participants within time ∆w.

While for the discovery of assistant nodes, a cross-layer approach would be
most feasible, failure probabilities of assistant nodes can yet be only acquired us-
ing a message-based discovery scheme. For the implementation of the SLS I have
proposed such a scheme that allows to transport information used for evaluating
the short-term reachability of discovered nodes. The short-term reachability can
be derived by considering position and speed information and calculating the
probability that a direct link exceeds before the writeSLS operation is executed.
This scheme is published in [31].

However, the major problem to be solved by the presented approach is to
calculate the availability of the decision log achieved by an assistant set. The
calculation model to estimate such availability is presented in the following sec-
tion.

5.5 Log Availability Model

While the short-term reachability describes the probability that an assistant
node de�ned in k can be reached by the coordinator when the writeSLS oper-
ation is executed, the long-term reachability describes the probability that an
assistant can be reached by a recovering participant, i.e. at the time the read-
SLS operation is executed. This probability is called long-term, because its

5.5. LOG AVAILABILITY MODEL 131

prediction horizon is tm and hence, reaches further into the future. The long-
term reachability is required to derive the probability of a restarting participant
to reach an assistant that holds the decision log. It is composed of two parts:
(i) the probability that at recovery time tres and tter,p respectively, the assistant
is present in A; and (ii) the probability of a communication path to be existent
between the recovering transaction participant and the assistant node.

By computing the probability of presence in A and Ppath, the long-term
reachability can be derived for an assistant node. This allows to calculate the log
availability LA(k, t) for a given k and therefore to evaluate whether a realization
of k meets Pret.

Calculations of the probability of node presence will be presented for di�erent
scenarios. First, I will assume common node failure probabilities for all nodes in
A, which is a signi�cant simpli�cation. These basic results are then enhanced
to consider individual node failure probabilities and recovery from node failures.
In the real world, nodes show individual probabilities of node failures. E.g. in
the disaster scenario, it can be assumed that some rescue units remain in the
disaster area longer than others, e.g. a truck dispatching supplies will not remain
as long in A as a command unit and will therefore show a lower probability of
presence in A.

In the following, I will �rst present how the probability of presence in A
can be computed and how individual node failures probabilities can be derived.
Afterwards, the calculation of path probabilities in A is discussed, and �nally,
formulae for LA(k, t) are presented and applied to the example scenario of this
work.

5.5.1 Node Presence in A
In the system model of this work, the presence of an individual node in A
depends on the probability of a node failure described by FN (t). I am interested
here in the probability that an assistant node de�ned in k survives tm in A
and can be reached by a recovering participant. It is desirable to choose the
nodes from kdis for k which show the highest probability to survive tm. This
results in a small set of assistant nodes and therefore in a more message-e�cient
dissemination and retrieval process.

In the following, I will �rst consider common node failure probabilities and
individual node failure risks afterwards. Finally, the log availability is calculated
when assistant nodes are assumed to recover from node failures.

5.5.1.1 Common Node Failure Probabilities

In the simplest case, the same probability for disconnection from A is assumed
for all assistant nodes. In this case, the probability that an assistant node is
present at time t is directly given by FN (t), as de�ned by the system model.
This is a major simpli�cation, because in the real world, nodes that disconnect
from A may reconnect later. This is re�ected in the system model by the rejoin
probability FJ(t). As the probability of presence is of interest for long peri-
ods (i.e. the mission time), it is likely that assistant nodes experience multiple
disconnection and reconnection cycles.

If a common node failure probability FN (t) is assumed, the probability that

132 CHAPTER 5. SHARED LOG SPACE (SLS)

at least l of #k assistant nodes are present at time t is given by Ppr(t).

Ppr(l, t) =

#k−lX
i=0

#k

i

!
· FN (t)i ·

ˆ
1− FN (t)

˜#k−i
(5.6)

5.5.1.2 Individual Node Failure Probabilities

To consider individual node failure probabilities, the system model is enhanced
by assuming an individual node failure pdf fi,N (t) and reconnection pdf fi,J(t)
for a node i. In this case, I assume that nodes show some advanced technical
con�gurations to learn about their individual failure and reconnection proba-
bilities and thus are able to communicate their individual failure characteristics
within a SARP message.

One approach to let nodes learn their individual node failure probability is
presented in Section 5.5.2. The probability of presence for such an assistant
node is then directly given by Fi,N (t) if recovery is not considered. To calculate
the probability of at least l of #k assistant nodes with individual node failure
probabilities to be present at time t, all possible combinations of assistant nodes
to survive t have to be considered.

To identify subsets of k, I use the following notation: I denote the j-th subset
of k with i elements by ki,j and de�ne k0,j=k. The probability of all nodes of
this subset to experience node failure until t is called FN,ki,j (t). By Fk\ki,j (tt) I
denote the probability that all nodes in the set di�erence k\ki,j disconnect from
A until t. The probability that all nodes of the j-th subset with i elements su�er
a failure until t, is given by the product of the individual failure probabilities
FN,ki,j (t) =

∏i
m=1 FN,ki,j,m(t), where FN,ki,j,m(t) is the probability of a node

failure of the m-th element of ki,j .
The probability that l of #k nodes with individual node failure probabilities

are present in A at t is now given by Ppr,ind(l, t).

Ppr,in(l, t) =

#k−lX
i=0

(#k
i)X

j=1

FN,ki,j (t) ·
ˆ
1− FN,k\ki,j (t)

˜
(5.7)

5.5.1.3 Recovery from Node Failures

If recovery from node failures is considered, each node i experiences a sequence
of failures and recovery events. The probability to be calculated here is the
probability that an assistant node is present in A at time t. This probability
is described by FN (t) and FJ(t) and can be modeled using a Markov chain, if
common failure and recovery probabilities are assumed.

To model the failure-and-recovery process as a Markov chain, the failure and
recovery pdfs fN (t) and fJ(t) must ful�ll the Markov property. The Markov
property states that given a system is in state i at time t, the probability for
a future state does not depend on any previous states1. Hence, the following
calculations only apply to node failure and rejoin pdfs that ful�ll this property.
Exponentially distributed FN (t) and FJ(t) as assumed by the system model of

1Note that here I consider a �rst-order Markov Chain only.

5.5. LOG AVAILABILITY MODEL 133

Figure 5.8: Transition diagram of #k -component system.

this work ful�ll this property. Note that FN (t) is exponentially distributed if en-
ergy related failures are considered to be exponentially distributed as described
in Section 4.1.1.

In the following, I will not consider an individual assistant node, but the
probability that at least l of #k nodes are present at time t. To model this
probability by a stochastic process, the state-space of the Markov chain is given
by the cardinality of k. Figure 5.8 depicts the transition diagram of the modeled
process with #k assistant nodes.

Initially, the system is in state 0 and all #k assistant nodes are connected to
A (no assistant has su�ered node failure yet). With proceeding time, assistant
nodes can fail and reconnect to A. A node failure of an assistant node in state
i brings the system into state i+1. For example, state 4 implies that 4 of #k
nodes are not present in A. A recovery event brings the system into the next
lower state, i.e. if the system is in state 5 and an assistant node reconnects to
A, the process is taken from state 5 in state 4.

The probability that at least one assistant is connected to A at time t is
given by the probability that the according Markov process is not in state #k at
time t. This probability is given by 1−P#k(t). Hence, with probability P#k(t),
recovery from blocking or extended uncertainty is not possible at t, because no
assistant is present in A that holds the decision log. In the following, the state
probabilities of the process are derived.

In the case of identical independently distributed failures and recovery prob-
abilities of the assistant nodes, the transition rates λi and µi of the Markov
chain are given by:

λi = (#k − i) · λ
µi = i · µ (5.8)

In the following, I call λi and µi transition rates. λi is derived by the
following consideration: for an in�nitesimally small time step ∆t, the probability
of a single assistant to experience a node failure is given by λ. Because all i
remaining assistants show the same failure probability, the probability that one
of i nodes su�ers failure2 within ∆t is given by iλ. µi is derived analogously.
The probability of transition from state i to state j within time interval ∆t is
described by the probability P (X(t + ∆t) = j|X(t) = i), which I denote by

2Note that it is assumed that within ∆t only one node can fail. Simultaneous nodes failures
in ∆t are not allowed.

134 CHAPTER 5. SHARED LOG SPACE (SLS)

Pij(∆t), where X is a random variable that takes the possible states as values.
The transition probabilities are then de�ned as:

aij = lim
∆t→0

P (X(t+ ∆t) = j|X(t) = i)

∆t
= lim

∆t→0

Pij(∆t)

∆t
= Ṗij(0) (5.9)

In the following, the time derivative is denoted by Ṗij(t) = d
dtPij(t). Using

the Chapman-Kolmogorov equation, it can be derived that

Ṗij(t) = −Pij(t) ·
#kX
k = 0
k 6= j

ajk +

#kX
k = 0
k 6= j

Pik(t) · ajk (5.10)

For a detailed description of the steps to derive Formula (5.10) I refer to
[84, 85]. As the initial state of the process is known to be 0 at t=0, For-
mula (5.10) can be simpli�ed by omitting the index i, which results in:

Ṗj(t) = −Pj(t) ·
#kX
k = 0
k 6= j

ajk +

#kX
k = 0
k 6= j

Pk(t) · ajk

P1(0) = 1, Pk(0) = 0 for k 6= i (5.11)

The state equation of Formula (5.11) can be written as

A · P (t) = Ṗ (t) (5.12)

with

A =

2666664
−a00 a10 a20 . . . a#k0

a01 −a11 a21 . . . a#k1

a02 a12 −a22 . . . a#k2

...
...

... . . .
...

a0#k a1#k a2#k . . . −a#k#k

3777775 ,

P (t) =

2666664
P0(t)
P1(t)
P2(t)
...

P#k(t)

3777775 and Ṗ (t) =

26666664
Ṗ0(t)

Ṗ1(t)

Ṗ2(t)
...

Ṗ#k(t)

37777775 (5.13)

The transition matrix for the Markov chain modeled here is given by ASLS :

ASLS =

266666666666664

−λ#k µ 0 0 · · · 0
λ#k −(λ(#k − 1) + µ) 2µ 0 · · · 0

0 λ(#k − 1) −(λ(#k − 2) + 2µ) 3µ · · · 0

0 0 λ(#k − 2) · · ·
.
.
.

0 0 0
. . . (#k − 1)µ 0

.

.

.
.
.
.

.

.

. 2λ −(λ+ (#k − 1)µ) #kµ
0 0 0 0 λ −#kµ

377777777777775
(5.14)

5.5. LOG AVAILABILITY MODEL 135

(a) Presence probability of at least l=2 assistant
nodes of k (#k=4). λ1 = 1800−1, λ2 = 18000−1,
µ = 5400−1, and k1 = {λ1, λ1, λ1, λ2}.

(b) Presence probability of at least l=2 assistant
nodes of k. λ1 = 1800−1, λ2 = 18000−1, µ =
900−1, and k1 = {λ1, λ1, λ2, λ2}.

Figure 5.9: Probability of assistant presence in A for the example MANET
scenario of this work.

Using: (i) the fact that
∑#k
j=0 Pj(t) = 1; (ii) the known initial states given

in (5.11); and (iii) the system of di�erential equations given by

ASLS · P (t) = Ṗ (t) (5.15)

The state probabilities Pj(t) for j = 0, 1, 2, . . . ,#k can be calculated by solving
this system. For the sake of clarity a detailed description of how to solve this
system of linear di�erential equations is omitted here.

In the context of the SLS, I am interested in the probability that one or l
nodes are present in A at any time during mission time tm. Given the calcula-
tions above, the probability that at least one node from k is present in A at tm
is given by 1− P#k(tm).

The probability that at least l of #k nodes are present in A calculates as
the complementary probability that the system is in none of the states where
more than #k − l nodes are not present in A, given by P

′

pr(l, t).

P
′
pr(l, t) = 1−

lX
i=0

P(#k+1−i)(t) (5.16)

5.5.1.4 Discussion and Conclusion

In the following, calculations developed above are applied to the example sce-
nario of this work de�ned in Chapter 4. The main objective here is to show the
dimensions of achieved node presence and to demonstrate the in�uence of the
model enhancements: (i) consideration of node recovery and (ii) taking individ-
ual node failure distributions into account. It has beed shown that especially (ii)
allows for high presence probabilities with small #k in the example scenario,
while (i) shows a stable probability of node presence for large mission times.
I will �rst analyze the probability of presence with the standard node failure
probabilities of the example scenario in Figure 5.9(a), before I vary #k as well
as node and recovery probabilities.

136 CHAPTER 5. SHARED LOG SPACE (SLS)

In Figure 5.9(a), the probability of two assistant nodes out of four to be
present at time tm is plotted for Ppr(tm), Ppr,in(t), and P ′pr(tm) for the example
scenario of this work. If a common node failure probability (with λ = 1800−1)
is assumed, the probability that two assistants carrying the decision are present
falls below 40% after 33.3min, as shown by Curve 1 in Figure 5.9(a).

If a particular stable node with λ = 18000−1 is in k, while the three other
nodes show an exponentially FN (t) with λ = 1800−1 (plan k1), the probability
of at least two nodes to be present after 33min increases to 65% as depicted
by Curve 3 in Figure 5.9(a). In the case where recovery from node failures is
assumed, the probability of at least two nodes to be present in A is higher than
88% for mission times smaller 33min, if assistant nodes are expected to remain
disconnected from A for 1.5 h. Additionally, the presence probability stabilizes
around 68% for large tm, as shown by Curve 2 in Figure 5.9(a).

The results presented in Figure 5.9(a) show that a high probability of assis-
tant presence (e.g. larger 90%) can only be guaranteed for short periods, i.e.
tm<800 s. Hence, such a period is su�cient to read the decision within a ter-
mination protocol at tter,pa, but not necessarily at tres. I therefore examine in
Figure 5.9(b) how the presence of assistants increases for large tm by (i) increas-
ing #k, (ii) including more stable nodes in k, and (iii) assuming longer sojourn
times in A and shorter expected disconnection periods.

Increasing #k to 12 nodes provides a presence of two assistant nodes above
90% for 40min, as shown by Curve 1 in Figure 5.9(b). In the scenarios with low
common node failures and a large #k, the probability of at least two assistant
nodes to be present in A decreases fast, e.g. after 2.2 h the presence probability
of at least two assistants is close to zero.

In case two of the four assistant nodes are less susceptible to node failures,
e.g. node failures are exponentially distributed with λ = 5400−1, a probability
of presence similar to the previous case with #k=12 above 90% is achieved
for 40min. However, the assistant presence decreases much slower as shown by
Curve 3 in Figure 5.9(b) and is above 40% for 2.2 h.

If recovery of node failures is assumed, decreased disconnection times allow
to preserve the probability of two assistant nodes to be present continuously at
levels above 90% at #k=4, as shown in Figure 5.9(b), where assistant nodes
are expected to remain disconnected only for 0.25 h, instead of 1.5 h as in the
previous situation.

The presentation above has shown that to provide a high probability of
presence for large tm, the most e�cient approach is to consider recovery of
assistant nodes as modeled in the AGB model.

In case recovery of assistant nodes is disregarded, the decision log dies out in
A if not redistributed subsequently. An e�cient scheme to increase the presence
probability at reasonable cost and to delay die-o� of the decision log is to choose
especially stable nodes that will most likely remain in A for long time. For the
example scenario, I showed that such a scheme achieved a higher probability of
presence with a third of assistant nodes compared to the case of low common
node failures probabilities. In other scenarios, the situation might be di�erent
and hence, calculations as presented here are required to predict the probability
for a speci�ed scenario.

Since considering individual node failure probabilities shows to be highly
e�cient, the following subsection presents an approach on how such probabilities

5.5. LOG AVAILABILITY MODEL 137

can be derived in practice.

5.5.2 Deriving Individual Node Failure Rates

For calculations above, I simply assumed that assistants can provide individual
pdfs fi,N (t). In this section, I show how this can be derived. The most decisive
factor for node failures in the system model of this work is movement between
clusters, i.e. transition of a node from A to another area B (see Section 2.3.1).
The basic idea to derive an individual node failure probability is to let nodes
measure their individual sojourn times within a cluster to derive fi,L(t) by sta-
tistical estimation. Therefore, nodes have to be able to sense disconnection and
reconnection events in di�erent clusters.

In the following, I brie�y describe the idea and some simulation results of this
approach. For a more detailed description of the implementation and additional
simulation results, I refer to [118].

From a node's perspective, a random sample {x1, x2, . . . , xn} of continuous
stays (in seconds) within a certain cluster is derived over time. Assuming that
an idea about the underlying parametric distribution is given, fL(t) and fJ(t)
can be approximated using statistical standard estimates. Additionally, the
precision of the estimate, which depends on the size of the sample set, should
be considered. As an exponential distribution with parameter λ is assumed
for fi,L(t) and fi,J(t), the parameter estimate λ′ can be obtained from a given
sample by calculating the value with the maximum likelihood.

The estimation of parameter λ for the node recovery probability fi,J(t) is
derived analogously using a sample of disconnection periods instead of sojourn
times.

The point estimate described above provides no information about the pre-
cision of the estimated parameter. But for the calculation of LA(k, t), the
con�dence of a node in its estimate should be considered. The con�dence in an
estimate depends on the number of samples used and the standard techniques
to describe the reliability of estimates are con�dence intervals. Con�dence in-
tervals enclose the desired parameter at a certain con�dence level 1 − ε, which
means that with a probability of ε the parameter is not contained in the interval.

The bounds of the con�dence interval provide lower and upper bounds for λ.
As λ can be thought of as the disconnection rate of mobile nodes, the secure
estimate is the upper bound λ′i of the con�dence interval. The real value of λ is
with probability (1− ε) higher than λ′i.

For the implementation of the SLS, I assume a constant con�dence level of
95%. By using the upper bound of the con�dence interval, nodes with little
con�dence in their estimate will report a larger value for λ than nodes with
higher con�dence in their estimate and the same real λ. Such nodes will therefore
be favored for k over nodes with less con�dence in their estimate. If a node
receives an SARQ message from a coordinator, it calculates its failure rate for
the current area with ε=0.05 and returns the derived value within a SARP
message to the requesting node.

To demonstrate the applicability of the approach, I present some simulation
results in the following to show that nodes can derive a good approximation of
λ after reasonable time in a MANET scenario. For two random nodes of the
example MANET scenario, Figure 5.10 shows how the estimation develops over

138 CHAPTER 5. SHARED LOG SPACE (SLS)

(a) Estimates of a random node a. (b) Estimates of a random node b.

Figure 5.10: Estimation process of λ at 95% con�dence level and λ=900−1.

time.
To simulate the estimation process, a mobility scenario with two clusters

A and B according to the AGB model is used. Nodes remain in A and B for
exponentially distributed sojourn times before transiting to the other area. The
duration for which nodes remain within each area is exponentially distributed
with parameters λA and λB .

The following behavior was implemented in the ns2 network simulator:
nodes check their positions every second and match it to the area they are
currently in. In case a node senses that it has left a cluster, it stores a new
sample with the measured sojourn time for the area it has left.

Figures 5.10(a) and 5.10(b) present the derived estimates over time for two
randomly chosen nodes.

The black dashed line represents the real λ (λ = 900−1), while the black
curve is the point estimate, and the green and red curves are the limits of the
con�dence interval at a con�dence level of 95%. The green curve presents the
upper bound λ′i of the con�dence used as conservative estimate for individual
node failure rates.

In case of the node observed in Figure 5.10(b), a good approximation is
reached after 5.5 h, while the node observed in Figure 5.10(a) derives less ac-
curate estimation. However, the simulation proves that for the purpose of this
work, a good estimation can be derived in reasonable time.

5.5.3 Path Probability

The probability of presence of an assistant node, as calculated in Section 5.5.1
is not su�cient to predict the probability of successful log retrieval. Partition-
ing of the MANET in A can prevent communication between the recovering
participant and an assistant node at recovery time.

To predict the probability that an assistant node is actually reachable, the
probability of successful communication between an assistant node and a recov-
ering node is required. This probability is given by the path probability Ppath
as introduced in Chapter 2.

At the time of writing this thesis, there is no analytical approach available

5.5. LOG AVAILABILITY MODEL 139

to estimate Ppath for multi-hop communication paths. Such values have to be
derived by simulation as I presented in Section 4.1.2. However, the probabil-
ity of one and two hop paths can be approximated analytically as shown by
Bettstetter in [17, 16]. Note that even if an analytical approach would exist to
calculate Ppath for 2+ hops in a geometric graph, communication in the real
world would still su�er from imperfect routing schemes, i.e. although a path
exists it is possible that it is not discovered by the routing algorithm.

One-hop path probability is especially of interest in scenarios where no multi-
hop routing is available. Here, Ppath is given by the probability that the Eu-
clidean distance between two randomly chosen nodes does not exceed the radio
range r0 of nodes. In [17] the Euclidean distance between two randomly chosen
nodes is interpreted as a random variable S. For nodes moving according to the
RWP mobility model on a square of size a ·b a pdf fS(s) can be derived as shown
in [17]. In the following, I denote the path probability for a direct connection as
Ppath,1−hop. Note that the approach described does not require any information
about the total number of nodes in A.

If the total or average number of nodes nA in A is known, the probability
that two random nodes can establish a two-hop path can be approximated. I
call this probability Ppath,2−hop. The approach is given in [16] and is based on
the idea to calculate the probability that a third node is in the intersection area
of radio ranges r0 of two other nodes that are in Euclidean distance S with
r0 < S < 2r0.

Figure 5.11 plots analytical and simulative derived path probabilities for the
example MANET scenario of this work for di�erent square sizes of A with a
constant number of 15 nodes. At a size of 1000m* 1000m, the probability for
a single or two-hop communication path between two random nodes is only at
5% as shown by Curve 3 of Figure 5.11.

For the example MANET scenario where a 500m* 500m area is assumed,
the probability for a one or two-hop path is slightly higher at 20%. The path
probability for arbitrary hop paths is considerably higher if AODV routing is
used, as shown by experimental results in Figure 5.11. The probability of a
working communication path between two random nodes is then given by ap-
proximately 70%.

5.5.4 Calculation of Log Availability

Given the probability of assistant presence and the probability for a communi-
cation path between two nodes, the availability of the decision log achieved by
a dissemination plan k for a recovering participant can now be calculated. The
log availability depends on the presence of assistants and that the recovering
node can reach at least one of the assistants present in A.

In the following, I will calculate the log availability achieved by a given plan if:
(i) common node failure probabilities are assumed; (ii) individual node failure
probabilities are given; and (iii) if recovery from node failures is considered.
Afterwards I apply the proposed availability model to the example scenario of
this work to demonstrate the log availability achieved for di�erent assistant sets.

140 CHAPTER 5. SHARED LOG SPACE (SLS)

Figure 5.11: Approximations for Ppath and experimental results for the example
MANET scenario with nA=15 and r0=100m.

5.5.4.1 Common Node Failure Probabilities

In case a common node failure probability fN (t) for all nodes in A is assumed,
the probability that l of #k assistant nodes are present at time t is calculated
by

`#k
l

´
· FN (t)#k−l ·

ˆ
1 − FN (t)

˜l. The decision log is available to the recovering
participant if communication with at least one of the l present assistant nodes
is successful. This probability is given by PA(l) = 1 − (1 − Ppath)l. Thus, the
log availability achieved by k denoted by LA(k, t) is given by

LA(k, tm) =

#k−1X
i=0

#k

i

!
· FN (tm)i ·

ˆ
1− FN (tm)

˜#k−1−i · PA(#k − i)

(5.17)

5.5.4.2 Individual Node Failure Probabilities

When assistant nodes in k can provide individual failure probabilities, the cal-
culation of the log availability has to consider the probability of presence for all
possible subsets of k, as calculated in Formula (5.7). For every set of assistant
nodes present in A, PA(l) has to be considered. Hence, the availability of the
decision log until time tm is given by LAin(k, tm), where the set notation as
introduced in Section 5.5.1.2 is used.

LAin(k, tm) =

#k−1X
i=0

(#k
i)X

j=1

FN,ki,j (t) ·
ˆ
1− FN,k\ki,j (t)

˜
· PA(#k − i) (5.18)

5.5.4.3 Recovery from Node Failures

If recovery from node failures is considered, the probability that l assistant
nodes are present in A at time t, is given by the state probability P#k−l(t) of

5.5. LOG AVAILABILITY MODEL 141

the Markov process presented in Section 5.5.1.3. Hence, the availability of the
decision log for a recovering participant is given by LA′(k, tm).

LA′(k, tm) =

#k−1X
i=0

Pi(tm) · PA(#k − i) (5.19)

5.5.4.4 Log Availability in the Example Scenario

In the following, I show how the log availability is in�uenced by the number
of assistant nodes and by their node failure probabilities. The objective is to
present the dimensions of Pret and tm that can be achieved by the lightweight
approach in the example MANET scenario of this work. It will be shown that
to achieve high values of Pret for large tm, either recovery from node failures has
to be considered, or especially stable assistants have to be used. For scenarios
where no multi-hop routing is used, the log availability achieved is low.

Log Availability with Common Node Failure Probabilities

Figure 5.12(a) depicts the log availability calculated by LA(k, tm) for di�erent
assistant sets if the same node failure probability is presumed for all assistants
and a path probability of 0.7 is given, i.e. multi-hop routing is used. For an
exponentially distributed fL(t) with λ = 1800−1 as assumed for the example
scenario, a plan with#k=4 results in a log availability close to zero after 2.7 h, as
shown by Curve 3 in Figure 5.12(a). In this setting, reasonable log availabilities
larger than 80% are only given for tm<0.5 h .

To provide a high log availability for large tm in the example scenario either
a higher number of assistant nodes is required, or more stable assistant nodes
are required, as depicted by Curves 1�2 and 4.

Curves 1 and 2 of Figure 5.12(a) depict the achieved log availability if the
sojourn time of nodes in A is distributed exponentially with λ = 5400−1, thus
nodes are expected to remain connected to A for 1.5 h. In this case, a dissemi-
nation plan with #k=4, provides an availability of the decision log larger than
80% for 1.1 h, while a plan with #k=15 achieves a log availability larger than
80% for 2.7 h.

Curve 4 depicts the situation where the number of assistants is increased to
15 but node failures are still distributed with λ = 1800−1. Here it showed that
the log availability only slightly increases compared to a dissemination plan with
#k=4.

If no multi-hop routing is used, Ppath is only 0.2 in the example MANET
scenario, i.e. 1�2 hop paths are assumed. In this situation, the availability of
the decision log is signi�cantly lower as shown by Figure 5.12(b). If #k=4 the
log availability achieved is always smaller 60%. In case of #k=15, Pret=0.8
is assured only for 0.4 h if node failure probability is high. With #k=15 and
λ = 5400−1 a log availability larger 80% is given for 1 h. Hence, if no multi-hop
routing is used in the example scenario, a high Pret can only be guaranteed for
relatively short mission times.

142 CHAPTER 5. SHARED LOG SPACE (SLS)

Log Availability with Individual Node Failure Probabilities

The motivation to consider individual nodes failures is to exploit special stable
nodes to assure a high Pret with a small assistant set for large tm.

Figure 5.12(c) shows the log availability for di�erent plans denoted by k1,
k2, and k3. The node failure probabilities assumed by these plans are described
in Figure 5.12(c). Curve 3 of Figure 5.12(c) con�rms the feasibility of this
scheme. Here, a plan with only two assistant nodes (plan k3) provides a high
availability of the decision log for large tm, while one node is extra reliable with
λ4 = 5 · 10−5. For example, k3 provides a log availability larger than 63.4% for
13.8 h. In case assistant nodes are considered in k that are slightly more reliable
than the common node failure probability, like in k1, the achieved log availability
is signi�cantly increased, as observed by comparing Curve 1 in Figure 5.12(c)
and Curve 3 in Figure 5.12(a). A low path probability in scenarios where no
multi-hop routing is used results in a low log availability. Path probability is
the main factor here, as shown by Curve 4.

Log Availability with Recovery from Node Failures

The log availability achieved in case recovery from node failures is assumed is
depicted in Figure 5.12(d). High values of Pret can be provided for large tm,
because the log availability does not converge to zero over time as in the situation
where no recovery is considered. If nodes are expected to remain connected to A
for long periods and disconnect only for short periods, log availability is nearly
certain even with a small assistant set, as shown by Curve 2. For the example
scenario of this work, a plan with four assistants provides a log availability larger
54% for any tm. This is depicted by Curve 1.

When no multi-hop routing is used in the example scenario, only a log avail-
ability of 34% for large tm can be provided, even in case the decision log is
stored on all 15 nodes of A at dissemination time, as shown by Curve 3. If only
four nodes are used as assistants, the predicted log availability is below 20% for
large tm (see Curve 4).

5.5.5 Summary - Log Availability

This section presented the calculation model to estimate the availability of deci-
sion logs to recovering participants in A. Such calculations are a central contri-
bution, since based on this probabilistic model the lightweight implementation
approach of the SLS predicts and controls the availability of decision logs and
therefore blocking risks.

The probabilistic model presented is based on the probability of node fail-
ures FN (t), probability of recovery from node failures FJ(t), and on the path
probability Ppath. I showed how FN (t) and FJ(t) can be derived by nodes au-
tonomously in A over time and presented some analytical approximations for
Ppath based on the dimensions of A and nA. Note that Ppath can also eas-
ily be obtained from the experiments proposed in Section 4.1.2 used to derive
FC(t). Hence, I showed that the prerequisites of my calculation model can be
established in practice.

Within this model, I considered di�erent scenarios: (i) a common node failure
probability is known; (ii) individual node failure probabilities have been learned;

5.5. LOG AVAILABILITY MODEL 143

(a) Log availability if common node failure probabili-
ties are assumed with λ1 = 1800−1, λ2 = 5400−1, and
Ppath=0.7 (multi-hop routing).

(b) Log availability if common node failure probabili-
ties are assumed with λ1 = 1800−1, λ2 = 5400−1, and
Ppath=0.2 (no multi-hop routing).

(c) Log availability if individual node failure probabili-
ties are assumed. k is given either by k1={λ1,λ1,λ3,λ3},
k2={λ3,14*λ1}, or k3={λ2,λ4}, with λ1 = 1800−1,
λ2 = 5400−1, λ3 = 12600−1 and λ4 = 500000−1.

(d) Log availability if recovery of nodes is considered.
λ1 = 1800−1, λ2 = 5400−1, µ1 = 5400−1, and µ2 =
900−1.

Figure 5.12: Log availability in the example MANET scenario.

144 CHAPTER 5. SHARED LOG SPACE (SLS)

Figure 5.13: Comparison of calculation schemes. With k1={λ1,λ1,λ3,λ3},
λ1=1800−1, and λ3 = 12600−1.

and (iii) common node failure probabilities as well as recovery probabilities are
known.

Figure 5.13 compares the log availabilities predicted for situations (i)�(iii)
if four assistant nodes are used. While in (i) and (ii) the decision log is dying
out over time, its availability in (iii) stabilizes at a constant level. Using extra
reliable nodes as considered in (ii) is a promising approach to assure high log
availabilities with small assistant sets.

5.6 Implementation of the SLS Operations

In the following, the implementation of the register, writeSLS, and readSLS
operations for the lightweight approach is described. The implementation is
based on the log availability and short-term reachability models introduced in
the previous two sections.

The implementation is described for di�erent variations of the system model
assuming: (i) common or individual node and communication failure probabili-
ties; and (ii) multi-hop or single hop communication within A.

If multi-hop routing is used, message-e�cient preservation and retrieval of
the decision log is achieved by placing the log on a prede�ned set of assistant
nodes known to transaction participants. Since assistant nodes can be addressed
directly, recovering nodes can contact these nodes at low message complexity.
If no routing is used, communication over multi-hop distance is expensive, as it
is only possible by using broadcast schemes. Low values of Ppath lead to a large
#k and hence to a wide dissemination of the decision log.

5.6.1 Implementation of register

An implementation of the register method has to derive a dissemination plan k
that provides availability of the decision log larger than Pret until tm at low

5.6. IMPLEMENTATION OF THE SLS OPERATIONS 145

P
ret

 > LA'*(n
A
,t

m
)

issue SARQ message
in br-range

rank by short-term rel.
(e.g. hop-distance)

calculate #k

set k={k
dis

, #k- #k
dis

}

return k

return null

(#k
dis

 > #k)

return k

(#k
dis

 < #k)

AND (br<=br

max
)

P
ret

 < LA'*(n
A
,t

m
)

 br++

(#k
dis

 < #k)

AND (br>br

max
)

set k={top #k of k
dis

}

 collect SARP
messages

Figure 5.14: register operation if common failure probabilities are considered.

message cost. The cost metric used here is #k, which is the main factor of
required messages if the plan is realized later.

To determine k, the nodes reachable by the coordinator have to be discovered
�rst. The methods to discover assistant nodes, (i) using a SARQ message, or (ii)
by routing-table lookup, have been described in Section 5.4.2. In the following,
I refer to the set of discovered nodes as kdis.

While node discovery using the routing table is generally preferable since no
additional message costs are induced, the message-based approach is mandatory
if individual probabilities for node or communication failures have to be collected
from potential assistants. In the description of the implementation, I follow the
approach of SARQ messages.

After kdis is derived, a dissemination plan k has to be found with
LA(k, tm) > Pret considering short-term and long-term reachability of nodes
in k.

Implementations of the register operation di�er for the situations where com-
mon failure probabilities are assumed and where individual failure probabilities
are known.

The main di�erence is that if individual failure probabilities are assumed, the
individual nodes in kdis have to be analyzed whether the required log availability
is achieved, while in scenarios with common failure probabilities the required
number of assistant nodes can be calculated in advance and only the number of
discovered assistants is relevant.

In the following, the implementations for the two di�erent situations are
described.

146 CHAPTER 5. SHARED LOG SPACE (SLS)

calculate smallest
subset k of k

pot
 with

LA''*(k,t
m
)>= P

ret

return k

(LA''*(k
dis

,t
m
) < P

ret
) AND (br<=br

max
)

rank nodes in k
dis

 by

 F
c
(t

cr
) and F(t

cr
)

LA''*(k
dis

,t
m
)>= P

ret

return null

set k={k
dis

}

return k

P
ret

 > LA'*(n
A
,t

m
)

P
ret

 < LA'*(n
A
,t

m
)

issue SARQ message
in br-range

 br++

 collect SARP
messages

(LA''*(k
dis

,t
m
) < P

ret
) AND (br>br

max
)

Figure 5.15: register operation if individual failure probabilities are given.

5.6.1.1 Common Failure Probabilities

If all nodes in A show the same distribution for node failures and the same
distribution for communication failures, the number of assistant nodes required
to assure Pret until tm can be computed before the discovery process of assistants
is initiated. This is feasible because every node is considered to be as reliable as
any other node. Figure 5.14 depicts the implementation of the register method
for this scenario.

First, it is checked whether the demanded log availability, given by Pret
and tm, can be provided at all in the current MANET scenario. This is done by
comparing the demanded log availability Pret with the maximum log availability
of the scenario. The maximum log availability is achieved if the log is distributed
to all nA nodes of A. Hence, the demanded log availability can be provided if
Pret < LA∗(nA, tm). Otherwise, a null value is returned and it is left to the
application to handle this situation. In contrast to the log availability calculated
in Section 5.5, the log availability calculated by LA∗ also considers the short-
term reachability of assistants and therefore plan aging of k.

The inequation Pret ≤ LA∗(#k, tm) is then used to calculate #k, while
LA∗(#k, tm) is derived by the following considerations. The probability that
a recovering participant can retrieve the decision log from an assistant node i
depends on the following events: (i) the coordinator can place the decision log
on node i at time tter,c; (ii) the assistant node is present in A at recovery time
(tres or tter,p); and (iii) a communication path between the recovering node and
the assistant node is available at recovery time (tres or tter,p).

Since the availability of the decision log is monotonically decreasing, it is
su�cient to calculate the log availability at time tm.

To derive the probability that events (i)�(iii) occur for at least one of #k
assistants, all relevant event combinations are enumerated using two nested sums

5.6. IMPLEMENTATION OF THE SLS OPERATIONS 147

in Formula (5.20). The outer sum selects i assistants from k that do not receive
the decision log at tter,c. From the #k − 1− i nodes that received the decision
log at time tter,c, j nodes are selected within the inner sum that are not present
at time tm. The #k − 1− i− j nodes that are present in A at tm are potential
partners of the recovering participant for successful recovery. The probability of
a communication path to be available with at least one of these nodes is given
by 1−(1−Ppath)#k−1−i−j . The probability of successful log retrieval for a given
k and mission time tm is then given by:

LA∗(#k, tm) =

#k−1X
i=0

#k

i

!
· F (tter,c)

i ·
ˆ
1− F (tter,c)

˜#k−1−i

·
#k−1−iX
j=0

#k − 1− i

j

!
· FN (tm)j ·

ˆ
1− FN (tm)

˜#k−1−i−j

·
ˆ
1− (1− Ppath)#k−1−i−j˜ (5.20)

If recovery from node failure is considered, the probability that #k − i − j
nodes are present in A at recovery time (tres or tter,p) is given by Pj(t) as
described in Section 5.5.1.3.

The availability of the decision log for an unrealized plan k is then simply
given by replacing

(
#k−1−i

j

)
·FN (tm)j ·

[
1−FN (tm)

]#k−1−i−j
in Formula (5.20)

with Pj(tm) resulting in LA
′∗(#k, tm):

LA
′∗(#k, tm) =

#k−1X
i=0

„
#k − 1

i

«
· F (tter,c)

i ·
ˆ
1− F (tter,c)

˜#k−1−i

·
#k−1−iX
j=0

Pj(tm) ·
ˆ
1− (1− Ppath)#k−1−i−j˜ (5.21)

After #k is calculated using Formulae (5.20) or (5.21), the discovery process
using SARQ messages is started in order to discover at least #k assistants in
brmax hop distance, as shown in Figure 5.14, where #kdis describes the number
of discovered assistants within a certain broadcast radius.

If #kdis<#k, k is given by kdis and the number of missing assistants is given
by nmis = #k −#kdis. Note that an unde�ned set of k such as nmis can only
be added if nA is approximately known. If nA is unknown and #kdis<#k, the
register method cannot safely provide a dissemination plan and returns null, as
it is not assured that nmis nodes can be found even if the complete network is
�ooded to realize k.

If the discovery process returns kdis with #kdis ≥ #k, a subset of kdis can be
chosen for k considering the individual short-term reachability of nodes in kdis.
While individual short-term reachability of assistant nodes is not considered in
(5.20) and (5.21), it can be regarded by ranking the nodes of kdis according to
their short-term reachability and choosing the top #k. Hence, assistant nodes
are chosen that are reachable for the coordinator at tter,c with higher probability.

5.6.1.2 Individual Failure Probabilities

If individual node or communication failure probabilities are given, the number
of required assistant nodes cannot be derived before the discovery process has

148 CHAPTER 5. SHARED LOG SPACE (SLS)

been started, but a given kdis has to be analyzed if the containing nodes provide
the desired log availability. Hence, besides calculations used to calculate the
log availability, the process of the register method also changes as shown in
Figure 5.15.

To assert that a log availability larger than Pret can generally be provided
until tm, the same calculation as in the previous section is used, while here an
average failure probability must be assumed.

If Pret can be provided until tm, assistant discovery is started immediately
using an iterative ring search similar to the situation with common failure prob-
abilities. In every iteration of the ring search, the log availability achieved by
the assistant nodes kdis discovered so far is analyzed and compared to the re-
quired log availability. If the log availability guaranteed by kdis does not meet
Pret, the search radius is increased successively. If the required availability has
been achieved, the smallest subset of kdis providing the desired log availability is
used as k. If the maximum broadcast range of the ring search has been reached,
kdis is used for k and it is left to the writeSLS operation to discover additional
assistants or fall back to �ooding.

In the following, I will present calculations to derive the log availability pro-
vided by a discovered assistant set kdis for the situations where (i) individual
communication failure distributions Fi,c(t) and common node failure distribu-
tions FN (t) are considered, and (ii) individual node failures Fi,N (t) as well as
individual communication failures Fi,c(t) are assumed.

Situation (i) uses schemes to approximate the short-term reachability as
presented in Section 5.4.3. These are either based on knowledge about position
and movement direction of individual nodes (see Section 5.4.3) or based on
information obtained from routing tables and in future, possibly through cross-
layer approaches that use link layer information etc. to validate the reliability
of paths. Note that the probability for a direct link break as derived in 5.4.3 is
a pessimistic approximation for the short-term reachability if multi-hop routing
is used.

If individual probabilities of communication failures are available, the indi-
vidual short-term reachability of assistant nodes is used to consider plan aging,
i.e. the probability that a discovered assistant is not reachable for the coordi-
nator when the writeSLS operation is executed. Recall that in the previous
calculations, Fc(t) was assumed to be equal for all assistants, while I showed in
Chapter 4 that this assumption does not hold for di�erent hop distances.

Assuming individual probabilities for communication failures Fi,c(t), leads
to an individual general failure Fi(t) of node i, calculated by

Fi(t) = 1−
hˆ

1− FN (t)
˜
·
ˆ
1− Fi,c(t)

˜i
(5.22)

To calculate the log availability of k, the probabilities of di�erent subsets
of k to receive the decision log have to be considered. I use the set notation
introduced in Subsection 5.5.1.2 to identify subsets of k in the following.

The availability of the decision log achieved by k is now calculated by
L̃A(k, tm) given by Formula (5.23). The only di�erence to LA∗(k, tm) (given
by Formula (5.20)) is that all possible subsets of k have to be considered in
L̃A(k, tm), as now the log availability depends on which nodes are in kdis. I use
nested sums in Formula (5.23) to enumerate the relevant events and subsets of

5.6. IMPLEMENTATION OF THE SLS OPERATIONS 149

k. The outer sum iterates the number i of failed assistants (node or communi-
cation failures), while the inner sum enumerates all

(
#k−1
i

)
subsets of k with

i nodes. The probability that at least one node of the #k − 1 − i nodes that
received the decision log is present in A is calculated as in Formula (5.20). The
log availability L̃A(k, tm) is now given by

fLA(k, tm) =

#k−1X
i=0

(#k−1
i)X

j=1

Fki,j (tter,c) ·
ˆ
1− Fk\ki,j (tter,c)

˜
·
#k−1−iX
m=0

#k − 1− i

m

!
· FN (tm)m ·

ˆ
1− FN (tm)

˜#k−1−i−m

·
ˆ
1− (1− Ppath)#k−1−i−m˜ (5.23)

If recovery of nodes failures is assumed, the probability that m nodes are not
present in A at time t is given by Pm(t), as calculated in Section 5.5. The log
availability is then derived by L̂A(k, tm).

cLA(k, tm) =

#k−1X
i=0

(#k−1
i)X

j=0

Fki,j (tter,c)·
ˆ
1− Fk\ki,j (tter,c)

˜
·
#k−1−iX
m=0

Pm(tm) ·
ˆ
1− (1− Ppath)#k−1−i−m˜ (5.24)

The discovery radius is incremented until brmax is reached, as shown in
Figure 5.15. If not enough assistant nodes are discovered within brmax distance,
either kdis is used as k or an unde�ned set of assistant nodes is added to kdis.
For an unde�ned assistant, the common failure distribution Fc(t) is assumed,
as in the previous scenario.

If kdis provides su�cient log availability, the smallest subset of assistant
nodes is derived by ranking nodes in kdis by Fi,c(tter,c) and successively comput-
ing the log availability of top-k subsets until the subset is found that guarantees
the demanded log availability.

In situation (ii), individual probability distributions for communication fail-
ures Fi,c(t) and also individual probability distributions for node failures Fi,N (t)
are assumed. The probability of assistant presence has now to consider all rele-
vant combinations of assistant nodes in k to derive the availability of the decision
log, while the general failure probability of an assistant node i is given by

Fi(t) = 1−
hˆ

1− Fi,c(t)
˜
·
ˆ
1− Fi,N (t)

˜i
(5.25)

The log availability at time t is given by L̈A(t). I used the following no-
tation to identify the di�erent subsets of k : I denote kl = k \ ki,j and the
h-th subset with m elements of kl by kl,m,h. The probability that all nodes
of kl,m,h su�er from a node failure until t is denoted by Fkl,m,h,N (t) and given
by Fkl,m,h,N (t) =

∏m
g=1 Fkl,m,h,g,N (t), where kl,m,h,g is the g-th element of set

kl,m,h. L̈A(t) is then given by

150 CHAPTER 5. SHARED LOG SPACE (SLS)

L̈A(k, tm) =

(#k−1)X
i=0

(#k−1
i)X

j=1

Fki,j (tter,c) ·
ˆ
1− Fk\ki,j (tter,c)

˜

·
(#k−1−i)X
m=0

(#k−1−i
m)X
h=1

Fkl,m,h,N (tm) ·
ˆ
1− Fkl\kl,m,h,N (tm)

˜
·
ˆ
1− (1− Ppath)(#k−1−i−m)˜ (5.26)

The process of the register operation for situation (ii) is equal to situation (i)
where only individual communication failures are assumed (see Figure 5.15).
The only di�erences are that di�erent calculations are used, i.e. Formula (5.26)
instead of (5.23) or (5.24).

However, to derive the optimal set k, a simple ranking as in situation (i)
according to Fi,c(t) is not enough, as the assumption of individual node and
communication failures now leads to an optimization problem. This problem is
not considered any further here.

5.6.2 Implementation of writeSLS

The writeSLS operation is responsible for implementing the dissemination of the
decision log and to assure that its availability is larger than Pret until tm. The
dissemination process of the decision log is time-critical, as a node failure during
execution of the writeSLS operation can result in a log availability smaller than
Pret.

Although the probability of a node failure is negligible for short time periods,
as shown in Chapter 4, it can take some some time until enough assistant nodes
are reached especially in sparse MANET scenarios. To control the probability
of a node failure to impede provisioning of the required availability of the deci-
sion log, I de�ned an upper bound ∆w for the execution time of the writeSLS
operation.

An implementation of the writeSLS operation has to guarantee termina-
tion after ∆w at the latest. Such a bound of execution time can generally be
implemented by using a fall-back mechanism from directed or undirected dis-
semination to a �ooding strategy.

The basic implementation of the writeSLS operation is simple: SLS log stor-
age (SLR) messages containing the decision log are distributed in a directed
or undirected manner. Assistant nodes receiving such a message store the de-
cision log locally and answer with a so-called SLS log saved message (SLSA).
Depending on the scenario an SLSA message can contain the individual node
failure probability of the node that stores the log. By collecting and analyz-
ing the SLSA messages, it can be decided, whether a su�cient log availability
is achieved or not. If a su�cient log availability is not reached within ∆w, a
�ooding-based dissemination is initiated.

This general behavior has to be implemented di�erently for scenarios with
and without multi-hop routing. When multi-hop routing is available, directed
dissemination in multiple hop distances is possible using a plan k, while without
multi-hop routing, directed dissemination is only feasible in a small hop range
and no precalculated plan is given. In the following, I describe the implementa-
tion for both situations in detail.

5.6. IMPLEMENTATION OF THE SLS OPERATIONS 151

extract k
def

, k
undef

from k;

set br=br
ini

;

broadcast SLR msg.
in br - hop range

send SLR msg. to all
nodes in k

def

wait for SLSA
messages

flood(log)

(#SLSA < #k)

AND

 (time < Δ

w
)

(#SLSA < #k)

AND

 (time < Δ

w
)

br ++

br<br
max

#SLSA >= #k

k
undef

>0 #k
def

 >0

br=br
max

Figure 5.16: writeSLS operation if common node failure probabilities and multi-
hop routing are assumed.

Multi-hop Routing

Figures 5.16 and 5.17 depicts the writeSLS operation if multi-hop routing is
used. First, the set of assistant nodes de�ned by their nodeId (in the following,
I call this set kdef) is extracted from k and an SLR message is sent directly to
all nodes in kdef . If k contains an unde�ned component (kundef > 0), an SLR
message is broadcasted additionally in brini-range.

The initial broadcast range brini is set to one or two, depending on the
expected number of direct neighbors in A.

Nodes that receive an SLR message answer with an SLSA message that con-
tains individual information about their probability of presence in A. Note that
such information is only included in scenarios where individual failure probabil-
ities are known. After the �rst round of SLR messages is issued, SLSA messages
are collected and analyzed.

If common failure probabilities are assumed, the number of received SLSA
messages is compared to the number of assistants required to achieve Pret. If
the required number #k = #kdef + kundef is not reached (#SLSA<#k), addi-
tional SLR messages are broadcasted with increased hop range to discover more
assistant nodes. Note that the required number of assistant nodes given by #k
was calculated by the register operation.

Figure 5.17 shows the writeSLS operation for the case where individual node
failure probabilities and multi-hop routing is assumed. In this scenario, SLSA
messages contain individual failure probabilities of assistant nodes and the cur-
rently achieved availability of the decision log is calculated using Formula (5.18).

If the achieved log availability does not meet Pret, the broadcast range is suc-

152 CHAPTER 5. SHARED LOG SPACE (SLS)

extract k
def

, k
undef

from k;

set br=br
ini

;

broadcast SLR msg. in
 br -hop range

send SLR msg. to all
nodes in k

def

wait for SLSA
messages

calculate achieved
LA(t

m
)

flood(log)

(LA(t
m
) < P

ret
)

AND (time > Δ

w
)

LA(t
m
)>=P

ret

br ++

br<br
max

(LA(t
m
) < P

ret
)

AND (time < Δ

w
)

k
undef

>0 #k
def

 >0

br=br
max

Figure 5.17: writeSLS operation if individual node failure probabilities and
multi-hop routing are assumed.

cessively increased by one, until the maximum broadcast range brmax is reached.
Broadcast of SLR messages is repeated until either (i) the required availability
of the decision log is reached or (ii) ∆w is exceeded. In case (i), the operation
terminates, while in case (ii), a �ooding protocol is initiated to �ood A with the
decision log using a so called SLS �ood log (SFL) message. Nodes receiving an
SFL message simply store the decision log, while no SLSA messages are issued.
The writeSLS operation terminates after initiating the �ooding protocol.

No Multi-hop Routing

In a scenario where no multi-hop protocol is used, no dissemination plan k is
provided and hence only undirected dissemination can be used. The implemen-
tation of the writeSLS operation in this situation is shown in Figure 5.18 for
individual node failure probabilities and in Figure 5.19 for common node failure
probabilities.

To disseminate the decision log broadcasting of the SLR message is repeated
until either the desired availability of the decision log is reached or ∆w is ex-
ceeded. The broadcast range can be increased until a certain brmax is reached,
while brmax should be set to smaller values than with multi-hop routing. How-
ever nodes receiving SLR message cannot acknowledge this message directly but
have to broadcast the SLSA message in the same hop distance to deliver their
SLSA message to the node executing the writeSLS operation. This results in
high message overhead.

In case individual node failure probabilities are assumed, SLSA messages
contain the individual node failure probability of the sender. Individual failure

5.6. IMPLEMENTATION OF THE SLS OPERATIONS 153

broadcast SLR msg.

collect SLSA messages.

calculate achieved log
availability

flood(log)

P
ret

(t
m
) < LA(t

m
)

AND

(time < Δ

w
) LA(t

m
) < P

ret
AND

(time > Δ

w
)

LA(t
m
)>=P

ret

Figure 5.18: writeSLS operation if individual failure probabilities and no multi-
hop routing are assumed.

probabilities are analyzed to compute the log availability achieved so far by
Formula 5.18, as shown in Figure 5.18. If common node failure probabilities are
assumed the number of received SLSA messages is compared to the required
assistants #k calculated by Formulae 5.17 or 5.19. When ∆W is exceeded,
a �ooding scheme similar to the previous situation with multi-hop routing is
executed.

The main di�erence in calculations of the log availability compared to the
situation with multi-hop routing is that Ppath for 1�2 hop paths is used and not
for n-hop paths. Hence, the number of assistant nodes required is much larger
compared to the multi-hop situation, and a fallback to �ooding is more likely.

5.6.3 Implementation of readSLS

The responsibility of the readSLS operation is to discover a node holding the
decision log and to retrieve the log item at low message expense. Generally, the
implementation of a readSLS operation has to be coordinated with the writeSLS
operation for high message e�ciency. In multi-hop scenarios this means that k
is considered by the readSLS operation, and if no multi-hop routing is used, the
broadcast horizon of the readSLS operation has to match the path probability
used in computations of the according writeSLS operation.

Successful retrieval of the decision log is a certain event if the readSLS op-
eration is executed often enough. However, the retrieval probability Pret is the
probability that the decision log is retrieved within the �rst recovery attempt.
The time to execute this �rst recovery process is denoted by ∆r.

In the following, the implementation of the readSLS operation for scenarios
with and without multi-hop routing is described. A distinction between sce-
narios with common failure probabilities and scenarios with individual failure
probabilities is not necessary here.

154 CHAPTER 5. SHARED LOG SPACE (SLS)

broadcast SLR msg.

wait for SLSA
messages.

flood(log)

(#SLSA < #k)

AND

(time < Δ

w
)

 #SLSA < #k

AND

(time > Δ

w
)

calc #k

#SLSA >= #k

Figure 5.19: writeSLS operation if common node failure probabilities and no
multi-hop routing are assumed.

Multi-hop Routing

If multi-hop routing is used, a dissemination plan k with a de�ned set of assistant
nodes is given and can be used for retrieving the decision log. Figure 5.20 depicts
this process. If k contains a de�ned set of assistant nodes (denoted by kdef), an
SLS search request (SSR) message is sent to every assistant in kdef .

An assistant node that receives an SSR message and holds the desired deci-
sion log answers with an SLS log answer (SLA) message containing the decision
log. If an SLA message is received, the readSLS operation returns the decision
log and terminates as shown in Figure 5.20.

If no SLA message is retrieved by contacting the assistants de�ned in k
(kdef), assistants holding the log have to be discovered. Whether a ring search
is used or the network is immediately �ooded with an SSR message using a
broadcast-in-space scheme depends on what path probability Ppath was used
in computations of the writeSLS operation. I propose to use a value for Ppath
describing the path probability of paths with arbitrary lengths if multi-hop
routing is used. In this case, immediate �ooding of the SSR message in A is
feasible. However, if a Ppath value for 1�2 hop paths is used in calculations of
the writeSLS operation, a broadcast of the SSR message in 1�2 hop distances
should return the decision log at probability Pret within ∆r. ∆r is given by the
time required to query all nodes in kdef , �ood the network, and to wait for SLA
messages. Note that the readSLS operation as shown in Figure 5.20 terminates
not before an SLA message is received, while such a message is received at
probability Pret within ∆r.

No Multi-hop Routing

If no multi-hop routing is used, the readSLS operation cannot use a plan k
and the only option to discover assistant nodes is to use a discovery message.

5.6. IMPLEMENTATION OF THE SLS OPERATIONS 155

extract k
def

, from k

Send SSR message to
all nodes in k

def

wait for SLA messages
answer received

return log

#k
def

> 0#k
def

= 0

flood(SSR)

no answer received

Figure 5.20: readSLS operation if multi-hop routing is used.

The maximal range in which the SSR message has to be distributed to discover
an assistant node at probability Pret depends on the path probability Ppath
used in computations of the writeSLS operation. For example, if the writeSLS
operation uses the path probability for 1�2 hop paths to derive the availability
of the decision log, then the SSR message has to be broadcasted in a 1�2 hop
range to locate the decision log at Pret. The initial broadcast range for the SSR
message is called brini. If the decision log cannot be located in distance brini,
the straightforward strategy is to successively increase the broadcast range to
discover remote assistants. However, the probabilistic guarantee provided by
the SLS is that the decision log is retrieved in brini range at probability Pret.
Hence, ∆r is given by the time required to broadcast the SSR message in brini
range and to distribute an SLA message in brini distance.

This process is depicted in Figure 5.21. In the implementation of this ap-
proach for evaluation purposes, I use an initial search range of 2 hops. The main
reason to use this value is that there is a simple analytical way to calculate the
probability for a 1�2 hop path, as presented in Section 5.5.3. In the implemen-
tation an upper bound for the distribution horizon of the SSR message is used
for preventing a complete �ooding of the network, which is not feasible if a 1�2
hop path probability is used within the writeSLS operation.

5.6.4 Summary - Lightweight Implementation

In this section, I have presented an implementation of the SLS operations based
on the calculation models developed in the previous sections. The general
approach followed by the implementation was a lightweight ��re-and-forget�
scheme, based on the idea of identifying a small set of nodes providing su�-
cient log availability without further maintaining the availability of the decision
log once disseminated.

The approach is lightweight in the sense that no additional overlay structure
is used to discover and choose assistant nodes and the log availability is not
maintained after the writeSLS method terminates. I will present a contrary
implementation approach of the SLS based on a logical overlay structure in

156 CHAPTER 5. SHARED LOG SPACE (SLS)

Broadcast SSR
message in br-range

wait for answers

answer received

return log

br++

br=br
ini

br<br
max

br=br
max

no answer received

Figure 5.21: readSLS operation if no multi-hop routing is used.

Section 5.8, where the log availability is constantly maintained and assistants
are chosen based on the overlay structure.

The internal work�ows of the register, readSLS, and writeSLS operations
presented above are tightly bound to the calculation model and whether multi-
hop routing is assumed or not. The basic di�erence between implementations
for scenarios with and without multi-hop routing is that no plan is prepared if
no routing algorithm is used, while the underlying calculations are similar in
both scenarios.

To show that the lightweight implementation approach is feasible in a real
MANET, it has to be shown that the underlying log availability model is a
feasible abstraction of the real world. In the following section, I will present
simulations indicating correctness of the models presented here.

5.7 Simulative Evaluation

For a simulative evaluation of the lightweight implementation approach and its
underlying calculation model I use the ns2 network simulator [2]. Simulation
results presented in the following show, that the computation model developed
to calculate availability of decision logs provides a precise approximation of the
real availability, and that blocking risks can be compensated for by the SLS as
predicted.

First, I will evaluate the calculation model of log availability by simulation as
this model is fundamental to the lightweight approach. Afterwards, I will present
simulation results showing that the predicted reduction in blocking risks with the
SLS can be actually observed in experiments for the example MANET scenario
of this work. To conclude the simulation-based evaluation of the lightweight
approach, I will brie�y present some simulation results taken from [118]. These
results demonstrate that Pret can be provided in a wide range of MANET sce-
narios. More precisely, the density of the considered MANET scenarios is varied
to observe the behavior of the SLS at di�erent network characteristics.

While other MANET research is often primarily concerned with reduction
of required messages (e.g. in routing, data dissemination, or service discovery)

5.7. SIMULATIVE EVALUATION 157

and therefore has to evaluate whether this objective is met or not, evaluation of
the message load caused by the lightweight SLS implementation is problematic
for di�erent reasons:

(i) To derive the message load induced by the SLS correctly, messages issued
on lower layers, e.g. on the routing layer, also have to be considered. It is
erroneous to count an SSR message sent directly to an assistant node as one
message, because on the routing layer a route to the receiving node possibly
has to be discovered by �ooding the complete network (see Section 2.1.3). The
message load induced by a reactive routing scheme (e.g. AODV) depends on the
general message load in A, i.e. if a lot of messages are transferred, the probability
of a route to be known already is higher compared to a situation where generally
few messages are transferred in A. Hence, to count messages by the allocation-
by-cause principle, an additional tra�c model is required describing the tra�c
caused by other applications and the transaction load processed in A. Given
such a model, the messages required to deliver a direct message over a known
route depends on the hop count of the communication path, which again depends
on node speeds, initiation distance in transaction processing, and network size.
The message load obtained by simply counting all messages transferred inA with
and without the SLS is therefore biased by the tra�c model of other applications,
by the transaction load, by node speeds, and also by the implementation and
con�guration of multi-hop routing and hence is hard to interpret.

(ii) Additionally, the message load induced by the SLS depends on the �ood-
ing scheme used. While in the implementation evaluated here a simple proba-
bilistic �ooding approach is used (see Subsection 5.4.1.3), more message-e�cient
schemes such as hyper-gossiping (see Section 2.1.4) have been proposed. More
e�cient �ooding approaches have not been used in simulations as their imple-
mentation is complex and out of the scope here. Hence, the number of messages
transferred is also implementation-dependent and therefore shows little signif-
icance for an evaluation of the general SLS scheme. I will therefore focus on
verifying the abstractions and applicability of the proposed schemes by simula-
tion.

In the following, I verify the log availability model and the predicted com-
pensation for blocking (i) and extended uncertainty (i) situations by simulation
for the example MANET scenario.

5.7.1 Evaluation of Log Availability

The implementation of the SLS as proposed in Section 5.6 assures a desired log
availability by determining the required assistant nodes based on the calculation
model proposed in Section 5.5 by Formulae (5.17)�(5.19). In the following, this
model is analyzed by simulation. As the lightweight approach is mainly based
on this model, correctness of this model is a strong indicator for the applicability
of the lightweight SLS implementation.

To derive a signi�cant number of tests within a feasible simulation time, I
created relevant blocking situations arti�cially by letting one participant ignore
the commit message. The uncertain participant then repeatedly initiates recov-
ery using the SLS and records time and success of each recovery attempt. Note
that cooperative recovery is not initiated by the recovering participant here.

While the implementation proposed in Section 5.6 di�ers depending on

158 CHAPTER 5. SHARED LOG SPACE (SLS)

whether multi-hop routing is available or not, the same calculation model (For-
mulae (5.17)�(5.19)) is applied in both situations. Simulations of scenarios with
AODV and without multi-hop routing schemes are used to prove that the cal-
culation model actually provides accurate results in both situations.

In a �rst step, I use the example MANET scenario of this work to simulate
scenarios where nodes are assumed to reconnect to A, i.e. recovery from node
failures is considered, and afterwards I simulate scenarios where extra stable
nodes are chosen as assistants.

5.7.1.1 Considering Recovery of Assistants

Figure 5.22 depicts the measured success rates of the readSLS operation within
its �rst internal message round.

For the situation where AODV is used at the routing layer (resulting in
Ppath=0.7), Figure 5.22(a) compares the predicted log availability computed
by LA′(k, t) with #k= 4 for two di�erent combinations of failure and recovery
probabilities. In both scenarios, a common node failure and recovery rate is
assumed. Figure 5.22(b) depicts results for scenarios where no multi-hop routing
is used.

Measurements depicted in Figure 5.22 are the proportion of successful recov-
ery attempts (where at least one SLA message was received in ∆r). The rates
are derived from 1000 tests initiated within a simulation period of 500000 s,
while for each test, 600 recovery attempts are initiated in intervals of 100 s.
Hence, each measurement in the diagram presents the proportion of successful
recoveries at recovery time t. The exact simulation parameters of the MANET
are given in Appendix B.1.1.1.

The prediction made by LA′(k, t) can be interpreted as the expected propor-
tion of successful recovery attempts, while measured values show a dispersion
around this value. The standard deviation of success rates presented in the di-
agram is calculated by the following considerations: The measured proportion
of successful tests is derived from nt=1000 tests, while the hypothesis is that
the rate of successful tests is given by LA′(k, t). The rate of successful tests can
then be described by a binomial distribution:

P (l) =
(
nt
l

)
· pl · (1− p)nt−l (5.27)

with nt=1000 (total number of tests at time t) and p = LA′(k, t). If LA′(k, t)
predicts the success rate, then measurements have to disperse around LA′(k, t)
with standard deviation σ given by

σ =
√
nt · p · (1− p) (5.28)

Hence, if LA′(k, t) is correct, the majority of measurements is expected to
occur in the interval

[
(LA′(k, t)−σ/nt) , (LA′(k, t)+σ/nt)

]
. In Diagrams 5.22(a)

and 5.22(b), the bounds of this interval are depicted by the green curves.
Results presented in Figure 5.22(a) show that measured success rates dis-

perse as expected within predicted intervals, while Curve 1 presents a situation
where nodes remain connected to A longer than disconnected (expectations of
exponential distributions are 1.5 h connected and 15min disconnected). Curve 2
assumes nodes to experience longer disconnection periods (expectations: 30min

5.7. SIMULATIVE EVALUATION 159

in A and 1.5 h disconnected). The other parameters of the simulation scenario
are described in Appendix B.1.1.1. It therefore follows that LA′(k, t) is a mean-
ingful prediction for the log availability in the two considered scenarios.

If no multi-hop routing is used, the recovering node cannot directly address
assistant nodes. Hence, repeated broadcast of an SSR message in 1�2 hop
distance is used to discover an assistant that holds the decision log. Discovery
of assistants in 1�2 hop distances results in a path probability of 0.2 used in
calculations for the example MANET scenario.

While the implementation of the readSLS operation is di�erent for non multi-
hop scenarios, i.e. when no plan k is used, the log availability is predicted simi-
larly as in the multi-hop case by Formula (5.19). Simulation results depicted in
Figure 5.22(b) con�rm the applicability of the proposed calculation model also
for single-hop scenarios. Curve 2 of Figure 5.22(b) presents the resulting log
availability for #k=4 at the same failure rates as of Curve 2 in the multi-hop
case (given in Figure 5.22(a)). It can be observed that the predicted decreased
log availability is re�ected by measured success rates in both scenarios.

Simulation results and predictions of Curve 1 in Figure 5.22(b) present the
log availability of a scenario where �ooding of the decision log to all nodes in A
results in a low log availability of only 54%. Hence, this scenario is an example
with a low Pret,max, requiring assertion whether the demanded Pret can be
provided at all (see Section 5.6.1).

Given the comparison of predictions and simulation results presented in Fig-
ure 5.22(a) and 5.22(b), I conclude that the proposed calculation model underly-
ing the SLS accurately abstracts MANETs with and without multi-hop routing
and common node failures.

5.7.1.2 Considering Individual Failure Probabilities

If individual node failure probabilities of assistant nodes are considered, and
recovery of assistants from node failures is not regarded, Formula (5.18) is used
to derive the log availability. In the following, predictions of this formula are
compared to simulation results. This evaluation is of special interest as it allows
scenarios to be analyzed where more reliable nodes, such as stable command
vehicles in the disaster setting, can be used to preserve a decision log. I consider
such situations to be especially relevant in the real world.

Figure 5.23 compares predictions by Formula (5.18) and simulation results
for the example MANET scenario. Simulation results are presented for two
di�erent settings: (i) two assistants are used, while one of the two assistant
nodes is quasi stable (e.g. a command truck) with an expected sojourn time in
A of 138 h; and (ii) four assistant nodes are used, two with an expected sojourn
time of 30min and the other with 3.5 h.

Measurements of the proportion of successful readSLS operations are again
obtained from 1000 arti�cially created blocking situations, while for each block-
ing situation 600 recovery attempts are initiated in intervals of 100 s. The exact
parameters of the ns2 simulation are given in Appendix B.1.1.1.

Curve 1 of Figure 5.23(a) shows the predicted success rate and measurements
for setting (i) (plan k1) if multi-hop routing is used. Here, analytical as well
as simulative results show a log availability higher than 60% over the complete
simulation time, while the measured success rates remain within the bounds of
the standard deviation.

160 CHAPTER 5. SHARED LOG SPACE (SLS)

(a) Simulation results of log availability for recovering nodes in
the example scenario with multi-hop routing.

(b) Simulation results of log availability for recovering nodes with-
out multi-hop routing.

Figure 5.22: Simulation results of log availability if assistants are assumed to re-
cover from node failures. Node failures and recovery is exponentially distributed
with parameters λ1 = 1800−1, λ2 = 5400−1, µ1 = 5400−1 and µ2 = 1800−1.

5.7. SIMULATIVE EVALUATION 161

Curve 2 of Figure 5.23(a) depicts experimental results and predictions for
setting (ii) with four assistants, while two assistants are slightly more stable
with λ3 = 12600−1 than the other two with λ1 = 1800−1 (plan k2). Considering
measurements and deviations, I conclude that Formula (5.18) accurately predicts
the real world.

If no multi-hop routing is used, the log availability is also predicted by For-
mula (5.18) and the expected decrease in log availability for plan k1 and plan k2

without multi�hop routing is again con�rmed by simulation results, as presented
in Figure 5.23(b) by Curve 1 and Curve 2 respectively.

I omit an experimental veri�cation of Formula (5.17) here, as scenarios with
common node failures and no recovery of assistant nodes are a special case of
the situation evaluated here.

5.7.1.3 Summary - Evaluation Log Availability

The simulation results presented above indicate that the proposed log availabil-
ity model accurately abstracts the real log availability in a MANET. Hence, I
showed that the proposed SLS implementation can increase the probability of
leaving uncertainty in a controlled way using the calculation model and the SLS
operations proposed.

To give an idea of the possible bene�t of the SLS in the example scenario, Fig-
ure 5.24 compares the probability for successful recovery with and without the
SLS. If successful recovery depends only on the availability of the coordinator,
the probability of successful recovery is 65% two minutes after the coordinator
decided on the global decision and decreases to 17.5% after 2.5 h. In contrast,
the probability for successful recovery remains at 58% after 2.5 h if the SLS is
used by the coordinator to preserve the decision log and six assistant nodes are
used.

5.7.2 Reduction of Blocking Risk

While in the previous subsection the calculation model of log availability was
evaluated, this subsection analyzes for an example scenario whether the pre-
dicted reduction in blocking risk is actually met when the SLS is used.

Hence, the situation I am interested in here is that: (i) a transaction partic-
ipant PA su�ers blocking situations addressed here, and (ii) the decision log is
not available to the recovering participant at recovery time.

The probability for (i) was calculated in Chapter 4 by Formulae (4.29)
and (4.28) for the strict transaction model, and by Formulae (4.45) and (4.44)
for the semantic transaction model.

The risk of PA to su�er from blocking and unsuccessful recovery at time
tter,p or tres if the SLS is used is now given by Pu,SLS(tp) for the strict model
(recovery of communication failures is not assumed):

Pu,SLS(tp) = Pu(tp) · [1− LA(k, tm)] (5.29)

The log availability LA(k, tm) is calculated as described in Section 5.5.4.
If recovery of communication failures is considered, the risk of PA to su�er

blocking is calculated by Formula (4.28) for the strict transaction model. The
risk of blocking if the SLS is used is then derived by P ′u,SLS(tp).

162 CHAPTER 5. SHARED LOG SPACE (SLS)

(a) Simulation results of log availability if multi-hop routing is
used.

(b) Simulation results of log availability if no multi-hop routing is
used.

Figure 5.23: Simulation results of log availability if individual failure probabil-
ities of assistants are considered but no recovery of assistant nodes is assumed.
k is given either by k2={λ1,λ1,λ3,λ3} and k1={λ2,λ4}, with λ1 = 1800−1,
λ2 = 5400−1,λ3 = 12600−1, and λ4 = 500000−1.

5.7. SIMULATIVE EVALUATION 163

Figure 5.24: Comparison of log availability with and without SLS.

P ′u,SLS(tp) = P ′u(tp) · [1− LA(k, tm)] (5.30)

To evaluate whether the predicted reduction in blocking risk caused by the
SLS can be observed in reality, i.e. in ns2 simulations, I simulated transaction
processing using the SLS for the example MANET scenario of this work.

For simulations, I assume exponentially distributed node failures and recov-
eries in A with parameters λ = 5400−1 and µ = 1800−1 for all nodes. The
measured rates of occurred blocking (i) situations is derived from 8000 transac-
tions processed for di�erent tp.

Figure 5.25 depicts measured blocking rates as well as predictions made by
Pu,SLS(tp) and by P ′u,SLS(tp) if cooperative recovery is not used but only the
SLS. Curve 1 of Figure 5.25 shows the probability for blocking without any
additional recovery scheme (i.e. only the coordinator is used), while Curves 2
and 3 depict blocking risks predicted by Pu,SLS(tp) and P ′u,SLS(tp).

It can be observed that predictions slightly overestimate the measured block-
ing risks, as shown by Curve 4. The main reason for this discrepancy is that
calculations of Formulae (5.29) and (5.30) assume the log availability given at
tm, which is a pessimistic assumption and hence also an upper bound for the
blocking risk. Nodes recovering early (at tter,p) bene�t from a higher log avail-
ability, because the log availability is monotonically decreasing over time as also
shown in the previous subsection and in Section 5.5.4. Since a majority of par-
ticipants recover after su�ering a communication failure at tter,p, the measured
blocking rate is lower than the upper bound calculated by Pu,SLS(tp) and by
P ′u,SLS(tp).

The simulation results demonstrate the e�ectiveness of the SLS approach,
and of the lightweight implementation presented in previous sections. For ex-
ample, the predicted probability of PA to su�er from blocking situation (i) is
reduced from 3.0% to 0.4% at tp=20 s in a controlled and predictable way.

164 CHAPTER 5. SHARED LOG SPACE (SLS)

Figure 5.25: Reduction of blocking risk with SLS in the example MANET sce-
nario if LA(k, tm)=0.8 and #k=4.

While the usefulness of the SLS is obvious, its bene�t was only shown for
the example scenario so far and not for a wide range of di�erent scenarios. Such
results are presented brie�y in the following.

5.7.3 Additional Results

In this subsection, I will summarize some results of an extensive ns2 simulation
study carried out in [118].

Practical applicability of the SLS is demonstrated by showing that the suc-
cess rate of readSLS operations executed by blocked transaction participants
observed in simulations meets Pret in di�erent MANET scenarios. Results are
obtained using ns2 and the SLS lightweight implementation of [118].

To vary MANET scenarios, the network density is changed by assuming
10�50 nodes inA, while the dimensions ofA remain constant with 500m* 500m.
Similar to the example MANET scenario of this work, nodes move according to
the RWP mobility model, while the speed of nodes is uniformly distributed in
an interval of 2�10mps. The most important simulation parameters are listed
in Table 5.1. For each network density, strict transactions with 1�8 participants
are simulated with and without the SLS. In scenarios where the SLS is used,
the success rate of executed readSLS operations is measured, while in scenarios
where no SLS is used the proportion of recovery attempts with the coordinator
that are successful within the �rst two message rounds is measured.

To measure a signi�cant number of blocking situations, abort of strict trans-
actions during the processing phase is arti�cially prevented, i.e. all transactions
entered the decision phase. For commit processing, a vote time-out of ∆vo=1 s
is assumed.

For simulations, the following failure characteristics of nodes are assumed:
node failures in A are exponentially distributed with parameter λN = λE + λT ,

5.7. SIMULATIVE EVALUATION 165

Parameter Values

Participants n 1, 2, 4, 6, 8

Time-out in voting phase ∆vo 1 s

Transaction initiation distance 1�2 hops

Node speed 2�10mps

Radio range r0 approx. 100m

Dimensions of A 500m * 500m

Total number of nodes nA 10, 20, 30, 40, 50

Parameter of fN (t) and fRE(t) λN = 31/111200, λRE = 3600−1

Table 5.1: Simulation parameters of the lightweight approach.

while energy-related failures are distributed with parameter λE = 3600−1 (bat-
teries are expected to hold for 1 h) and technical failures are assumed to be rare
with λT = 1000800−1 (devices are expected not to su�er a failure for 278 h).
Nodes recover from node failures after an exponentially distributed time with
parameter λRE = 3600−1. Hence, only recovery from energy-related failures is
considered for node failure recovery and nodes are expected to remain discon-
nected from A for 3600 s (e.g. to recharge batteries). Other parameters of the
MANET scenario, e.g. link model, MAC layer modeling etc. are chosen similar
to the example scenario of this work and are listed in Appendix B.1.1.1. For
transactions processing the SLS is asked to provide Pret=0.7 for tm=3600 s.

To verify that decision logs could be retrieved within tm=3600 s at least
at probability Pret, the rate of readSLS operations that have been successfully
executed within tm is measured.

In Figure 5.26, the measured rates of successful readSLS executions are de-
picted. While only Pret(tm)=70% was required, more than 90% of the recovery
attempts were successful. In contrast, when no SLS was embedded in trans-
action processing, the success rate of recovery attempts is smaller than 20%
and exceeds 10% only at high network densities, as shown in Figure 5.26 by
Curve 1. The reason for a higher success rate observed in simulations than re-
quired (Pret=0.7), is given by the fact that a majority of nodes recovers at the
beginning of tm, where the log availability is higher than towards the end of
the mission time. However, results show that the lightweight SLS implementa-
tion achieves the predicted log availability for blocked participants and therefore
support applicability of the SLS approach in MANETs. For a more detailed de-
scription of this simulation study and further results proving applicability of the
SLS in MANETs, I refer to [118].

5.7.4 Summary - Evaluation of the Lightweight Approach

In this section, I have shown by simulation that the probabilistic model under-
lying the SLS implementation accurately predicts the observed log availability
and reduction in blocking risks measured in simulations. I have also shown that
the probability of blocking (i) situations is reduced in simulations as predicted
by the log availability model underlying the lightweight SLS approach. Addi-
tionally, simulation results for MANET scenarios with di�erent densities have
been presented showing that an implementation of the SLS as proposed in Sec-
tion 5.4 compensates for blocking situations as predicted. I therefore conclude

166 CHAPTER 5. SHARED LOG SPACE (SLS)

Figure 5.26: Experimental results of Pret for di�erent network densities.

that the lightweight implementation is applicable in MANETs and allows to
reduce blocking risks as analytically predicted.

I argue that the general approach to using a small set of assistant nodes,
which is determined using the availability model, results in a message-e�cient
scheme. This argument is supported by the results obtained from a cluster-based
SLS implementation approach presented in the following section.

5.8 Overlay-based Implementation Approach

The implementation approach of the SLS presented above considers failure prob-
abilities of nodes to decide on which nodes a decision log is placed on to achieve
a desired log availability. The path probability Ppath is used to estimate the
reachability of an assistant node in the case of recovery. If a higher Ppath can be
assumed in a MANET scenario, fewer assistant nodes are required to guarantee
the desired log availability.

A higher path probability is given if assistant nodes holding the decision
log can be assumed to be in close hop distance (1�2 hops) to the recovering
node. This is achieved if assistants are equally distributed over the network, i.e.
assistant nodes are placed within A in a way that all areas and partitions are
uniformly covered by neighborhoods carrying the decision log. A recovering node
can then assume that at least one assistant resides in its current vicinity. Note
that such a distribution is not assured with a �ooding of A where a certain rate
of nodes saves the decision log, because here a more random and not a uniform
placement of the log is achieved, e.g. it is possible that all assistant nodes reside
in one part of A at a time. To maintain a uniform placement of the decision log
over time, the ��re-and-forget� approach of the lightweight SLS implementation
is not adequate. To achieve a uniform placement of the decision log, an overlay
structure is required allowing to control the dissemination of the decision log
in di�erent network areas and maintenance of its availability. Feasible overlay
structures for the purpose of distributing the decision log equally within A are
cluster overlays. Cluster structures are also used in MANETs for routing [156]

5.8. OVERLAY-BASED IMPLEMENTATION APPROACH 167

Figure 5.27: Cluster-based overlay network.

and for service discovery [95, 107].
In this section, I will present an alternative implementation approach of the

SLS using an overlay structure for preservation and retrieval of the decision log.
A calculation model to estimate the log availability achieved is not used, but
generally a log availability close to 100% is provided within tm.

The idea of the alternative SLS implementation approach presented here
is to use a cluster overlay to equally place the decision log within A, i.e. the
decision log is placed in a way that it uniformly resides in every part of A and
achieves a high log availability with fewer assistant nodes than the lightweight
approach.

The approach and its evaluation is described here brie�y, while for a detailed
description of the implementation and evaluation, I refer to [102]. I will show
that the message overhead to create and maintain the cluster overlay is high
and a �ooding scheme where all nodes of the network save the log is cheaper.
In fact this observation was a reason to primarily focus on the lightweight SLS
implementation in this work.

In the following, creation and maintenance of the cluster overlay is described
in short as well as the implementation of the writeSLS and readSLS operation.
Finally, some simulation results are presented showing the success rate of the
readSLS operation and the message load induced by cluster maintenance.

5.8.1 Creation and Maintenance of the Cluster Overlay

For the creation and maintenance of the cluster overlay, the well known cluster-
ing scheme presented in [159] is used. Every node within the network joins a
cluster that is managed by a so-called cluster head. A cluster head periodically
issues a beacon in single-hop range received by all cluster members. A node
that is not a member of a cluster and receives the beacon of a cluster head
informs the cluster head with a join message that it is now a member of its
cluster. Nodes always join the bigger cluster if multiple beacons are received; if
two cluster heads receive each other's beacons, the clusters are merged and the
head of the bigger cluster becomes the new cluster head of the newly merged
cluster. Nodes that receive beacons of two clusters can act as so-called cluster
gateways. A detailed description of initiation and maintenance of the cluster
overlay can be found in [102].

An example of the resulting overlay structure is depicted in Figure 5.27.

168 CHAPTER 5. SHARED LOG SPACE (SLS)

Figure 5.28: Basic scheme of the writeSLS and readSLS operation.

Based on this logical overlay, dissemination and retrieval of the decision log is
implemented as described in the following.

5.8.2 Implementation of writeSLS and readSLS

The dissemination of the decision log within the writeSLS operation simply
hands the decision log to the cluster head which the coordinator is currently
connected to. The cluster head stores the decision log and forwards it to all
other known cluster heads via its known cluster gateways. If a cluster head
learns about the existence of another cluster head, decision logs of both cluster
heads are synchronized. The distributed decision log contains the mission time
tm that terminates further log synchronization between cluster heads. In the
implementation evaluated here, the decision logs are simply deleted after the
mission time is exceeded. Figure 5.28 depicts the basic process of the writeSLS
and readSLS operation.

To retrieve the decision log for a transaction, the readSLS operation executed
by the uncertain participant simply sends an SSR message to its current cluster
head. If the cluster head holds the decision log, it directly answers with an SLA
message. If the cluster head does not hold the desired log, the SSR request
is saved and answered when the cluster head receives the decision log through
synchronization with other cluster heads. In this case, an answer is directly
sent to the requesting participant nodes using the underlying multi-hop routing
layer.

5.8.3 Evaluation

The SLS using a cluster overlay for dissemination and retrieval of the decision
log was implemented as OSGi [3] component within the CoCoDa project [1]
and evaluated using a MANET emulation system based on [12, 98] described in
Appendix B.2.

The overlay-based approach was evaluated in a MANET with dimensions
of 1000m* 1000m, while mobile nodes are assumed to move according to the
RWP mobility model with speeds of 1�15mps. Di�erent values for nA (20�70)
are used to vary the network density in A. Table 5.2 lists the most important
parameters.

5.8. OVERLAY-BASED IMPLEMENTATION APPROACH 169

Parameter Value

Routing algorithm DSDV

Dimensions of A 1000m * 1000m

Max. node speeds 1, 3, 6, 9, 12, 15

Number of nodes nA 20, 30, 40, 50, 60, 70

Radio Range r0 100m

Table 5.2: Simulation parameters of the cluster-based approach.

The overlay approach is compared to the probabilistic �ooding scheme, which
is also executed in the lightweight SLS implementation described in Section 5.6
if not enough assistant nodes are found until ∆W . A recovering node then
discovers the decision log at Pret,max. In the probabilistic �ooding scheme the
probability of a log to be rebroadcasted depends on the number of neighbors of
the receiving and sending node as well as on the network density as described
in [102].

The questions answered by the evaluation of the overlay-based approach are:
(i) whether this approach shows the same success rate as the approach based
on probabilistic �ooding; and (ii) whether the message overhead of the cluster-
based strategy is acceptable.

Results

To answer the question of whether the overlay approach achieves a comparable
success rate to the �ooding-based approach, the overlay approach as well as the
�ooding-based approach was simulated with the parameters of Table 5.2. A
retrieval operation is considered to be successful in the overlay approach if the
cluster head of the cluster the recovering node is connected to, holds the desired
decision log.

In the �ooding approach, the readSLS operation is assumed to be successful
if an SLA message is received after the SSR message is broadcasted in 1�2 hop
range for the �rst time.

Figure 5.29(a) plots the measured rate of successful tests in both approaches
for di�erent network densities, while tests are randomly distributed within 1 h
after execution of the writeSLS operation. It can be observed that both ap-
proaches show similar success rates, while the rate of the cluster approach is
slightly lower.

The distribution rate describes the fraction of nodes that store the decision
log. In the cluster-based approach, only cluster heads store the decision log,
while in the probabilistic approach, all nodes that receive the decision log pre-
serve the item. Figure 5.29(b) shows the distribution rate in the �ooding and in
the cluster approach. It is shown that the cluster-based approach achieves the
same success rate with half of the distribution rate compared to the �ooding
approach. For example, at nA=40, 92% of all nodes store the log item if the
�ooding approach is used, while only 41% are used in the cluster approach.
However, the lower distribution rate requires to maintain a cluster overlay.

In Figure 5.30(a), the total number of messages per node required to create
and maintain the cluster overlay within a period of 1 h is presented. It can be
observed that with increasing network density, the number of direct messages

170 CHAPTER 5. SHARED LOG SPACE (SLS)

(a) Success rate of di�erent distributions for
varying network densities.

(b) Distribution rate achieved.

Figure 5.29: Average success and distribution rates.

increases and a considerable message load of nearly 900 message for every node
is reached at nA=70. Although this number is in�uenced by the clustering
algorithm used, the basic rationale that increased network density requires more
messages to organize nodes in a cluster overlay has to be true for all future
clustering approaches. The reason is that every node has at least to announce
its presence and membership to a cluster.

In contrast, the messages required by the �ooding scheme are decreasing
or remain constant for increasing network density as shown in Figure 5.30(b)
by Curve 3. Here, the number of messages per node is always smaller than 8
for all network densities. The main reason for this e�ect is that to �ood an
area with �xed dimensions, a �xed number of broadcast messages is required
to cover it, independently of the total number of nodes in this area. With
increasing network density more nodes are reached by a single-hop broadcast and
the message e�ciency tends to increase, i.e. the e�ect of overhearing increases
message e�ciency. This e�ect should be observed with all �ooding schemes.

Since blocking and therefore the execution of the writeSLS operation is a
rare event as shown in Chapter 4, it can be concluded that the high message
overhead of clustering is not bene�cial in most MANET scenarios unless a cluster
overlay is available for free, e.g. because it is also used for other purposes.

Additionally, I have shown for the scenarios analyzed here that even log dis-
semination within the existing cluster requires more messages than the �ooding
approach as shown by Curve 1 and Curve 2 in Figure 5.30(b). However, these
results are mainly in�uenced by shortcomings of the underlying DSDV rout-
ing scheme used for simulation as described in [102] and therefore can not be
considered to be generally valid.

5.8.4 Summary - Overlay-based SLS Implementation

While the SLS implementation proposed in Section 5.6 is based on a probabilistic
model allowing for a ��re-and-forget� approach to preserve the decision log, the
approach I presented in this section is based on the idea to constantly maintain
the log availability within an overlay structure. In this approach, no calculation

5.9. SUMMARY AND CONCLUSION 171

(a) Messages required to create and maintain
the cluster overlay structure

(b) Messages required for log dissemination by
the cluster and �ooding�based approaches.

Figure 5.30: Message load in the cluster-based and �ooding approaches.

model is required because the distribution and maintenance scheme assures that
the decision log is available within every cluster and, hence, every recovering
node joining a cluster is able to retrieve the log.

The main advantage of the overlay-based approach is that a high availability
of a decision log can be assured without any knowledge of node failure proba-
bilities.

I showed that the overlay approach requires more messages than the worst
case of the lightweight approach where the network is �ooded. The high mes-
sage load caused by cluster maintenance increases with nA, while the message
e�ciency of �ooding schemes increases for higher network densities. I there-
fore argue that for most MANET scenarios the lightweight scheme will be more
message e�cient than an overlay-based strategy, unless an overlay is already
available, e.g. for routing or service discovery. In fact, these results support the
general observation in MANET research, where it is often found that lightweight
schemes outperform schemes based on overlay structures.

5.9 Summary and Conclusion

This chapter presented an approach to compensate for blocking (i) and extended
uncertainty (i) situations. With the SLS, I proposed an abstraction that is easy
to integrate in strict and semantic transaction models and allows to compensate
for blocking in a controlled manner. Two implementation approaches of the SLS
abstraction have been proposed to demonstrate its applicability in MANETs.

The main focus in this work was on a lightweight implementation approach,
which is based on a probabilistic model calculating the availability of a decision
log for a recovering participant. I showed how this availability can be controlled
by placing the log on a de�ned set of nodes within the network. Large parts
of this chapter have been concerned with the description of this model. The
model considers scenarios with and without multi-hop routing, individual node
failure probabilities, and recovery probabilities of node failures. In multi-hop
scenarios, a main idea is to precalculate the set of nodes the decision log is placed

172 CHAPTER 5. SHARED LOG SPACE (SLS)

on in case of failures. Recovering participant can then directly contact these
nodes, without being required to broadcast search requests within the network.
In scenarios without multi-hop routing the decision log is found in close hop
distance at a de�ned probability. Hence, only a limited part of the network has
to be �ooded with a search request by a blocked participant. Consideration of
individual node failure probabilities allows to exploit individual stable nodes,
which is of special interest in the real world. If recovery probabilities of node
failures are known, the churn rate of nodes can be considered to achieve a high
log availability with a small set of assistant nodes.

I showed that the calculation model of the lightweight approach accurately
predicts log availabilities observed in simulations and that an implementation
of this approach is straightforward. Additionally, I showed that the predicted
reduction of blocking risks can be observed in simulations. I therefore conclude
that the general SLS concept is applicable in MANETs and allows to reduce
blocking risks in a controllable manner.

In fact, the observed reduction in blocking risks with the lightweight imple-
mentation are slightly higher than predicted, since calculations provide a safe
lower bound for the probability of successful recovery from blocking. For more
accurate predictions the distribution of participant recovery within the interval
[tter,c, tm] has to be considered. I leave this enhancement of the prediction model
to future research.

The overlay approach was presented only in brief and showed to be less
message e�cient than the lightweight approach, because cluster maintenance
causes a high message overhead.

I argue that the general abstraction of the SLS, independently of its imple-
mentation is a useful contribution, since it allows to reason about the reduction
of blocking risks in a probabilistic manner. Future implementation approaches,
such as schemes based on cross-layer architectures are expected to integrate
seamlessly into this abstraction. Additionally, the SLS concept is not limited to
MANETs but can also be imagined in other dynamic environments where nodes
frequently leave the system, such as in peer-to-peer systems in �xed networks.

However, the compensation for blocking achieved by the SLS requires that
the writeSLS operation is executed. If the coordinator su�ers a node failure
before it is able to execute the writeSLS operation, the desired availability of
the decision log is not reached and the predicted reduction of blocking is not
met.

In the following chapter, I will present an approach on how to compensate
for such situations using a backup coordinator.

Chapter 6

Backup Coordinator

The Shared Log Space (SLS) allows to guarantee successful recovery from block-
ing (i) and extended uncertainty (i) situations at probability Pret. This guar-
antee is based on the writeSLS operation which has to be executed within the
termination protocol of the coordinator. Hence, a main assumption in the discus-
sion of the SLS and compensation for blocking (i) and extended uncertainty (i)
in the previous chapter was that the execution of the writeSLS operation is not
hindered by a node failure of the coordinator, i.e. the case of blocking or extended
uncertainty caused by a node failure of the coordinator was not considered. This
chapter is concerned with schemes to compensate for these situations.

In Chapter 4, I calculated the probability of blocking (ii) and extended un-
certainty (ii) by Formulae (4.57) and (4.61). Thus, these formulae describe the
probability of PA to su�er from blocking or extended uncertainty while no
writeSLS operation is executed.

In this chapter, I will analyze approaches to compensate for the situation
where a node failure of the coordinator completely removes the transaction
decision from A and causes blocking (ii) or extended uncertainty (ii). This prob-
ability mainly depends on the probability of the coordinator to su�er a node
failure. Hence, choosing a reliable node as commit coordinator is the obvious ap-
proach to decrease the probability of blocking (ii) and extended uncertainty (ii)
situations. In fact, this is the approach followed by the XOpen standard [40].
Here, the commit coordinator is a designated site, exclusively concerned with
commit processing, while the execution coordinator (the application) may reside
on an arbitrary site. In �xed networks, this is a feasible approach, since com-
munication between commit coordinator and execution coordinator is assumed
to be reliable. However, in a MANET this is not the case and the probability
of a communication failure between the commit coordinator and the execution
coordinator would signi�cantly increase the abort probability of a transaction.

In this work, I will not follow the approach to assign the execution role and
commit role to di�erent nodes. I will rather analyze the use of a second co-
ordinator, a so-called backup coordinator (BC), in addition to the execution
coordinator, henceforth called main coordinator (MC). If the MC su�ers a node
failure during commit, the BC would be able to terminate the transaction on
behalf of the failed MC. This reduces the situations where no writeSLS op-
eration is executed to the event where both coordinators su�er node failures

173

174 CHAPTER 6. BACKUP COORDINATOR

simultaneously.
The main problem in delegating the commit decision to a second coordina-

tor is that it induces an additional coordination problem. Agreement not only
has to be reached among participants, but now also the BC must agree on the
transaction outcome. Reaching agreement inevitably requires additional com-
munication inducing a new source of defect. Hence, the main question to be
answered is whether the increased reliability of coordinators actually results in
a reduction of blocking situations or whether the increased risk for communica-
tion failures overcompensates the bene�t of increased reliability of coordinators.
General results being valid for all MANET scenarios cannot be found, given the
the wide range of possible transaction and MANET scenarios. Again, a calcula-
tion model is the best contribution here to allow analysis of individual MANET
and transaction scenarios. I will present such a model in this chapter.

While ACPs integrating a BC are known from literature, the main contri-
bution of this chapter is: (i) the development of a calculation model estimating
the reduction of blocking risk achieved by such protocols in a MANET, and (ii)
enhancement of these protocols to use the SLS.

The chapter is structured as follows: as there exists some literature on backup
coordinator schemes, I will �rst give a brief overview of related work in the
�eld. Afterwards, I will describe a backup coordinator protocol which I will
later enhance with an escalation scheme that executes the writeSLS operation
in case of failures. The probability for the escalation scheme to be successful
depends on when the BC is selected and integrated in commit processing. I show
that in the strict transaction model, a BC is only bene�cial if the BC is selected
late, while early selection at time ts may even increase the risk of blocking (ii)
to occur in contrast to the situation where no BC is used. I show further that
the greatest reduction in uncertainty is achieved in the strict model when the
BC is selected late.

6.1 Multiple Coordinators

The approach to use multiple coordinators to increase the reliability of atomic
transactions has been investigated by several scholars. The fundamental prob-
lem to consider is the trade-o� between the increased reliability of coordination
entities, i.e. the probability that a coordinator is reachable for a participant,
and the induced message overhead to reach agreement among the group of co-
ordinators.

Published approaches using multiple coordinators can be classi�ed accord-
ing to the point in time when additional coordinators are integrated in com-
mit processing. They are either assigned to participants with the begin of the
transaction and each participant executes a commit protocol with its assigned
coordinator or additional coordinators are contacted as fallback only, if the main
coordinator is unreachable.

Schemes belonging to the �rst class are for example [29, 6, 126], while in
the protocols proposed in [82, 123, 124] participants execute the commit pro-
tocol with a single main coordinator, and additional backup coordinators are
contacted only if a failure occurs. The approach of a reliable coordinator group
proposed in [29] was already described in detail in Section 3.5.2.1.

6.2. SINGLE BC WITH VETO RIGHT PROTOCOL 175

In [6], a mechanism called delegation of commitment is proposed, which pairs
each execution coordinator with a reliable commit coordinator. The execution
coordinator prepares itself to commit the transaction and delegates the �nal
commit decision to a more reliable commit coordinator similar to XOpen. A
recovering participant can contact both coordinators to learn about the global
decision.

A similar idea is proposed in [126], where the risk of coordinator failures
causing permanent blocking of participants is reduced by using only designated
reliable hosts, so-called trusted hosts, as commit coordinators. The protocol
assures that every participant node participates in a commit protocol with a
trusted coordinator, which is not necessarily the initiating coordinator.

Hence, these approaches are based on the idea to exploit especial reliable
nodes as commit coordinator that are assumed not to fail. This is feasible in
a traditional mobile environment where base stations can be used as commit
coordinators. In MANETs it is a complex issue to discover stable nodes that
can serve as BC as shown in [31].

The protocol proposed in [82, 123] uses multiple BCs as fallback coordinators
if the MC fails and reduces to [124] when only a single BC is used.

However, none of the works cited above provides a calculation model that
allows to estimate whether the scheme is bene�cial in a certain transaction and
MANET scenario or not. In the following, I will develop such a calculation
model for the single backup coordinator with veto right protocol proposed in
[124]. The protocol is then extended to use the SLS by proposing two so-called
escalation strategies that trigger the writeSLS operation, while the probabilistic
model is enhanced to calculate the probability that no writeSLS operation is
executed.

In the following, the protocol proposed in [124] is described and compensa-
tion for blocking (ii) and extended uncertainty (ii) is analyzed in detail. After-
wards, the escalation strategies using the SLS are described.

6.2 Single BC with Veto Right Protocol

When additional coordinators are used to terminate a transaction, agreement
on the global outcome must not only be reached between participants but also
among commit coordinators. Therefore, the atomic commit problem has also to
be solved among commit coordinators, which requires the execution of an ACP
among them.

In the special case where only a single BC is used, 2PC allows for the last
agent optimization [122], reducing 2PC to a single message exchange between
the MC and the BC. This is the main idea of the single backup coordinator with
veto right protocol proposed in [124].

The protocol induces a third phase required to coordinate the decision of the
MC with the BC. The BC possesses a veto right and can therefore unilaterally
decide to abort the transaction if there is a failure and will then veto a commit
decision of the MC.

In the failure-free case, the protocol is processed as follows: similarly to the
2PC protocol, the coordinator initiates the protocol by issuing prepare messages
to all participants and enters the Collecting state as depicted in Figure 6.1(a).
Participants answer with vote messages and enter uncertainty. Note that in

176 CHAPTER 6. BACKUP COORDINATOR

Initial

Collecting

Aborted Decided_to_Commit

prepare

 all ok
send(decided_to_commit)

at least one no vote
send(abort)

 vote missing
execute(write2SLS)

 veto
send(abort)

Committed

recorded_decision
send(commit)

(a) State diagram of MC (2PC).

Initial

Decided_to_Commit Decided_to_Abort

participant request
send(abort)

 decided_to_commit
send(recorded_decision)

decided_to_commit
send(veto)

(b) State diagram of BC.

Figure 6.1: Single backup coordinator protocol with veto right protocol [124].

the semantic transaction model, the acknowledgments of the last operations are
interpreted as votes here. If all participants vote for commit, an additional
phase comes into action. Based on the received commit votes, the MC de-
cides on global commit. He immediately records its decision on its local stable
log, sends a decided_to_commit message to the BC, and transits into the de-
cided_to_commit state. The MC remains in the Decided_to_Commit state
until a recorded_decision or veto message is received from the BC. When he
receives a decided_to_commit message in Initial state, the BC saves this mes-
sage to its local stable log and answers with a recorded_decision message. With
reception of the recorded_decision message by the MC, both coordinators have
agreed on global commit and the MC informs the participants about the decision
for commit by issuing commit messages.

If at least one participant votes for abort, or more relevant in MANETs a
vote is missing, the additional phase is not required. The MC decides on abort,
preserves its decision on stable log, and sends abort messages to all participants.
If a vote was missing, the MC also executes a writeSLS message to preserve its
decision within the SLS as shown in Figure 6.1(a). An additional coordination
phase is not required, because the BC will abort the transaction if he is contacted
by a participant as shown in Figure 6.1(b).

From the participants view, the protocol behaves similar to 2PC, but the
termination protocol of participants is enhanced in the following way: if the
participant is uncertain and does not receive a �nal commit or abort message
from the MC during a time-out period, participants can contact the BC by
sending a participant_request message. Three situations can then occur:

• If the BC is in Decided_to_Commit state due to a decided_to_commit
message from the MC, a commit message is sent to the uncertain partici-
pant.

• If the BC receives this message while in Initial state, the BC makes use of
his veto right and aborts the transaction unilaterally. This is safe, since
the MC cannot have informed participants to commit the transaction, as
the recorded_decision message was not issued by the BC. The BC answers
with an abort message and the uncertain participant can leave uncertainty.

• If the BC does not answer due to a node or communication failure, the

6.2. SINGLE BC WITH VETO RIGHT PROTOCOL 177

participant remains blocked until the global decision can be obtained from
the SLS, the MC, or by cooperative recovery.

Hence, the protocol compensates for the failure situation not considered in Chap-
ter 5, where the MC su�ers a node failure before the decision log can be written
to the SLS. When the MC su�ers a node failure during the collection phase, par-
ticipants can contact the BC, who can then conclude the transaction by deciding
on abort. The BC can now also preserve the global decision to the SLS. I will
show in Section 6.3 how the writeSLS operation is integrated in the protocol.

However, while the protocol compensates for one blocking situation, it in-
duces another one. It is therefore of interest whether the probability of blocking
in this protocol is smaller than without a BC. To analyze these probabilities,
the restart and termination protocol of the MC have to be considered. During
restart or termination of the MC, the following situations can occur:

• Neither a decided_to_commit nor a commit or abort log is found. In this
case, it is safe for the MC to abort the transaction, since the BC cannot
have decided to commit but only on abort. If a recorded_decision log is
found, agreement on commit was established between the MC and BC on
the global commit decision.

• If a decided_to_commit message is found in the logs but no
recorded_decision log, agreement on the global decision between the two
coordinators was not reached. Depending on when the MC su�ered a
node failure, the BC either received a decided_to_commit message or
not. Hence, the MC has to communicate with participants or the BC
to learn about the state of the transaction, i.e. it is blocked. Note that
participants are not a�ected by this uncertainty of the MC, as they can
contact the BC right after the MC su�ered from a node failure and do not
have to await the restart of the MC.

From the perspective of a participant there are two situations, where a partici-
pant can su�er blocking (ii) or extended uncertainty (ii):

• If the MC and the BC su�er node failures simultaneously, i.e. no coordina-
tor is available to derive and deliver the global decision. In this situation,
participants remain blocked until the MC or BC becomes available again,
or cooperative recovery is successful.

• If the MC issues a decided_to_commit message but does not receive the
recorded_decision message from the BC, it cannot decide on the transac-
tion and blocks. Participants that can only reach the MC and not the BC
remain uncertain. The MC has to wait until communication with the BC
is possible again.

The second situation is a new blocking situation introduced by the protocol. The
probability of this situation to occur is mainly in�uenced by the probability for
communication failures between the MC and BC.

To evaluate whether a BC is bene�cial in a certain MANET scenario, it has to
be computed whether the additional blocking state caused by a communication
failure between the MC and BC overcompensates the decreased probability that
both coordinators su�er a node failure simultaneously.

178 CHAPTER 6. BACKUP COORDINATOR

6.2.1 Integration of a BC in Strict Transactions

While the description above sketched only the basic structure of the BC protocol
used, this section describes in more detail how the single backup coordinator
with veto right protocol is integrated into the strict transaction model. It is
described when and by which messages the BC is de�ned and made known
to participants. These de�nitions are important, because the time the BC is
selected signi�cantly in�uences the probability of the two blocking situations
described above.

In the strict model, the BC can be chosen and made known to participants
at two times: (i) the BC can be selected right at the beginning of the transaction
at time ts; or (ii) with the initiation of the commit protocol at time tp. I call
(i) early selection of the BC, while (ii) is called late selection of the BC.

The use of a BC lowers the probability of the situation that no coordinator
survives long enough to execute a writeSLS operation. The bene�t in coordina-
tor survivability is diminished by the need for a communication path between
the MC and BC. If such a path is not available, the new blocking situation
occurs and the bene�t of a more reliable coordination entity is jeopardized. The
risk of a communication failure between the MC and BC is especially high in
the early selection scheme.

To reduce the risk of a decided_to_commit message to remain unanswered
with early selection, I propose a reachability test to be integrated in the pre-
pare phase. Hence, the MC also sends a prepare message to the BC. If the
BC answers with an OK message, indicating its reachability, the probability
of the recorded_decision message not to be received by the MC, is given by
FC(tp..tp + ∆U). If the reachability test with the BC is omitted, the probabil-
ity that the MC will not receive the recorded_decision message and will therefore
block, increases by the probability that a communication failure occurs that does
not recover until tp. This probability is calculated by Pc,nr(tp), and by FC(tp)
if link recovery is not considered.

Since FC(tp..tp+∆U) < FC(tp), the bene�t of the reachability test is obvious.
The reachability test within the prepare round avoids that every communication
failure between the MC and BC that does not recover until tp blocks the MC.
The drawback of this approach is that every unsuccessful reachability test with
the BC causes an abort decision of the complete transaction, although it can
potentially be committed. Figure 6.2 depicts the integration of the proposed
reachability check within the prepare phase.

If the BC is discovered and selected late, i.e. at tp, the probability for a
communication failure between the MC and BC is given by FC(∆U), which
is considerably lower than in the early case. With late integration, the BC is
made known to the participants by sending the BC identi�er with the prepare
message. Hence, a participant that moves into uncertainty is assured to know
the address of the BC.

6.2.2 Integration of a BC in Semantic Transactions

In the semantic transaction model, the MC sends a decided_to_commit message
to the BC after it has received an acknowledgment for the successful execution
of the last operation of PAlast at time t′p+ ∆ex+ 2δm. When the MC receives a
recorded_decision message, participants are informed about the global decision.

6.2. SINGLE BC WITH VETO RIGHT PROTOCOL 179

C

BC

P P P P

prepare

C
vote

decided_to_commit

C

recorded_decision

P P P P

commit

BC

prepare

ok

(a) Failure-free case.

C

P P P P

prepare

C

vote

P P P P

abort

BC

prepare

com.
 failure

com.
 failure

ok

(b) Failure case.

Figure 6.2: Reachability test in the early selection scheme.

Hence, the protocol is similar to the strict case with the di�erence that no
explicit prepare messages are sent.

A late integration of the BC, as in the strict transaction model, is not possible
in the semantic model. The reason is that participants move into uncertainty at
individual times to in [ts, t′p], and for meaningful BC integration, a participant
must know the address of the BC before moving into uncertainty. As the BC
must be de�ned and made known to participants at ts, a reachability test as
proposed for early integration in the strict model described above is mandatory.
The probe message testing reachability of the BC is best sent in parallel with
the last operation of PAlast.

The blocking situations are the same as described above, while the probabil-
ities of the two blocking situations di�er in the semantic model. The probability
of the MC and BC to experience a simultaneous node failure while participants
are uncertain is signi�cantly higher than in the strict model. This is due to the
fact that the uncertainty periods of participants are considerably longer in the
semantic model as discussed in Section 4.6.

6.2.3 Blocking with BC in Strict Transactions

In the following, I will develop a calculation model to estimate the reduction of
the probability for blocking (ii) if a BC is integrated into transaction processing
for the strict model.

6.2.3.1 Early Integration of BC

With early selection, the BC is chosen at transaction initialization time ts. I
assume that a node in 1�2 hop distance to the coordinator and to all participants
is chosen as BC. In [31], I proposed several schemes how to discover a BC with
such properties.

180 CHAPTER 6. BACKUP COORDINATOR

To reduce the blocking risk of the MC, the reachability test is executed
as described above. I distinguish between standard blocking situations due to
a coordinator failure and the additional situation where the MC is alive but
blocked. Again, I calculate the probability of blocking from the perspective of
PA. Four cases may lead to a standard blocking situation:

(i) At least one unrecognized failure of a node in PAother occurred until tp.
Then PA is blocked if the MC and BC are unreachable at recovery time. As
the MC must have survived until tp, only a node failure within [tp, tp + ∆Umax]
needs to be considered. The link between the BC and PA may have been
broken within the whole interval [ts, tp + ∆Umax]. Then BC1e(tp) describes the
probability that PA blocks in case (i).

BC1e(tp) = PUmax(tp) · CFUmax(tp) · F (tp + ∆Umax) (6.1)

where PUmax(tp) is given by Formula (4.25), as introduced in Section 4.5.1, and
CFUmax(tp) is given by FN (tp..tp + ∆Umax), as described in Section 4.6.1.

(ii) No node in PAother fails, but the BC su�ers a communication failure
with the MC until tp. In this case, the reachability test fails and MC decides
on abort at tp + ∆Umax. PA is blocked if the MC fails in [tp, tp + ∆Umax] and,
additionally, the BC fails within [tp, tp + ∆Umax] or its link to PA breaks in
[ts, tp + ∆Umax]. This probability is given by BC2e(tp).

BC2e(tp) =
ˆ
1− F (tp)

˜n−1 · FC(tp) · CFUmax(tp)

·
ˆ
FN (tp..tp + ∆Umax) + FC(tp + ∆Umax)

˜
(6.2)

(iii) No node in PAother fails, but the BC encounters a node failure until tp.
Again, the reachability test fails and the transaction is aborted. A node failure
of the MC leads to blocking of PA, as the BC has already failed and is not
reachable. This probability is computed by BC3e(tp).

BC3e(tp) =
ˆ
1− F (tp)

˜n−1 · FN (tp) · CFUmax(tp) (6.3)

(iv) Neither a node in PAother nor the BC fails until tp. A coordinator's
node failure in [tp, tp + 2δm] leads to a blocking situation in the case that the
BC has also su�ered failure in this interval.

BC4e(tp) =
ˆ
1− F (tp)

˜n−1 · FN (tp..tp + 2δm) · F (tp..tp + 2δm) (6.4)

The MC is blocked if the recorded_decision message of the BC is awaited
but not received. A presumption for this to happen is that no failure of any
node has occurred until tp. I distinguish two cases that actually lead to blocking
of the MC.

In the �rst case called A, the BC encounters a node failure after sending the
acknowledgment of the reachability test and before sending its recorded_decision
message (within interval [tp + δm, tp + 3δm]). The MC is then blocked and the
BC is not reachable for PA.

In the second case called B, the BC su�ers a communication failure with the
MC in [tp + 2δm, tp + 4δm]. If additionally the communication link between the
BC and PA breaks until tp + ∆Umax, the MC is blocked and PA cannot reach
the BC. Since events A and B are not independent, the probability that either

6.2. SINGLE BC WITH VETO RIGHT PROTOCOL 181

A or B occurs has to be computed as P (A) + P (B) − P (A) · P (B). I therefore
derive BC5e(tp).

BC5e(tp) =
ˆ
1− F (tp)

˜n−1 ·
ˆ
1− FN (tp + ∆Umax)

˜
·
h
FN (tp + δm..tp + 3δm) + FC(tp + 2δm..tp + 4δm)

·FC(tp + ∆Umax)− FN (tp + δm..tp + 3δm)

·FC(tp + 2δm..tp + 4δm) · FC(tp + ∆Umax)
i

(6.5)

The resulting probability that a participant is blocked with early selection
of a BC is then given by Pv,BCe(tp).

Pv,BCe(tp) = PAUmax(tp) ·
ˆ
BC1e(tp) +BC2(etp) +BC3(tp)

+BC5e(tp)
˜

+ PAUmin(tp) ·BC4e(tp) (6.6)

where the probability that PA does not encounter any failure until tp + ∆Umin
is given by 1 − F (tp + ∆Umin) and denoted by PAUmin(tp). PAUmax(tp) is
de�ned analogously.

6.2.3.2 Late Selection of BC

With late selection, it is assured that the BC is in 1�2 hop distance of the MC
and participants at tp, because the BC is chosen at tp. Hence, the probability
that the BC is unreachable for PA in case the MC fails is lowered.

The computation of this probability is analogous to 6.2.3.1, with the di�er-
ence that cases (ii) and (iii) from above do not need to be considered, because
the BC is guaranteed to be available at time tp. The increased probability that
BC and PA can communicate has the greatest in�uence on the �nal result.

In case (i), only a failure of the BC in ∆Umax has to be considered:

BC1l(tp) = PUmax(tp) · CFUmax(tp) · F (∆Umax) (6.7)

The probability of simultaneous node failures of the MC and BC if all nodes
vote (case (iv)) is calculated by BC4l(tp).

BC4l(tp) =
ˆ
1− F (tp)

n−1˜ · FN (tp..tp + 2δm) · F (2δm) (6.8)

Blocking of the MC happens either if the BC su�ers a node failure within
2δm (situation A) or when a communication failure occurs until 4δm between
the MC and BC, while PA cannot reach the BC due to a communication failure
in ∆Umax (situation B). Again, the events A and B are not independent, and
therefore the probability of A or B to happen is given by BC5l(tp).

BC5l(tp) =
ˆ
1− F (tp)

n−1˜ · ˆ1− FN (tp + ∆Umax)
˜

·
ˆ
FN (2δm) + FC(∆Umax) · FC(4δm)

−FN (2δm) · FC(∆Umax) · FC(4δm)
˜

(6.9)

The probability of blocking (ii) with late selection of the BC is now given by:

Pv,BCl(tp) = PAUmax ·
ˆ
BC1l(tp) +BC5l(tp)

˜
+ PAUmin ·BC4l(tp) (6.10)

182 CHAPTER 6. BACKUP COORDINATOR

Figure 6.3: Blocking Probability with BC in the example MANET scenario with
n=3 and ∆vo=1.

6.2.3.3 Analytical Predictions

To demonstrate the reduction of the probability of blocking (ii) with a BC, I
present blocking risks with early and late integration of a BC as well as risks
without a BC for the example MANET scenario of this work in Figure 6.3. These
probabilities are also compared to the situation where no BC but cooperative
recovery is used to compensate for blocking (ii) as calculated by Formula (4.54)
in Section 4.6.1.

The interesting observation in the example scenario is that early integration
of a BC results in a higher blocking probability than predicted by Pv(tp), as
shown by Curve 3 in Figure 6.3. The lower blocking risk for tp<9 s with early
selection is diminished by an increased abort rate caused by an abort decision
if the reachability test is unsuccessful. Hence, early integration of a BC is not
bene�cial in the considered scenario, but even increases the probability of PA
to su�er blocking.

In contrast, late selection of the BC depicted by Curve 4 of Figure 6.3,
results in a reduced blocking probability compared to the situation where no
BC is used. The BC scheme with late selection shows a similar reduction of
blocking (ii) risks like cooperative recovery does, as shown by Curve 4.

Hence, for the example MANET scenario and similar scenarios it can be
concluded that early integration is critical for most scenarios where no extra
stable BC nodes can be assumed. Therefore late integration should be favored
if possible. The results also underline the importance of calculation models as
provided in this work, because each scenario shows di�erent characteristics and
the decision whether a scheme is bene�cial is hard if not impossible without
such a model. Such a model is particularly important if the behavior of the
approaches should be analyzed when more reliable nodes, such as base stations,
are available. I will analyze the use of an especial stable BC node below.

6.2.4 Blocking with BC in Semantic Transactions

For deriving the probability that PA su�ers extended uncertainty with a BC in
the semantic model, I again consider the intervals [ts, t′p] and [t′p, tu].

6.2. SINGLE BC WITH VETO RIGHT PROTOCOL 183

In the semantic model, only early integration has to be considered since late
integration is not reasonable. Extended uncertainty caused in [ts, t′p] can be
resolved by the BC if it is reachable for a participant PA at tu + δm. Hence,
for this interval I derive the probability that PA su�ers extended uncertainty
by BC ′1(t′p).

BC′1(t′p) = P ∗v (t′p) · F (tu + δm) (6.11)

where P ∗v (t′p) is given by Formula (4.61) describing the probability of extended
uncertainty (ii) without BC and without cooperative recovery.

In the second interval [t′p, tu], the reachability test has to be taken into ac-
count. The MC checks reachability of the BC by issuing a probe message at
time t′p. An answer is awaited until t′p + 2δm + ∆ex, while I assume a time-out
∆to = ∆ex. Thus, at tu the MC knows the global decision as well as whether
the reachability test was successful. To derive the desired probability for the
interval [t′p, tu], multiple situations for both outcomes of the reachability test
have to be considered. Like in Subsection 6.2.3, I distinguish between standard
extended uncertainty and the situation where the MC is reachable but blocked.
I �rst consider the three standard cases:

(i) If the reachability test fails because the BC su�ers a node failure during
[ts, t′p + δm], PA remains uncertain if the MC fails in the interval [t′p, tu + δm].
The probability of this event is given by BC ′2(t′p).

BC′2(t′p) =
ˆ
1− Po>f (t′p)

˜n−1 · FN (t′p + δm) · FN (t′p..tu + δm) (6.12)

(ii) If the reachability test fails because a communication failure occurs be-
tween the MC and BC in [ts, tp + 2δm], PA remains uncertain if the MC su�ers
a node failure in the interval [tp, tu + δm] and the BC is not reachable for PA
due to a node failure in [t′p, tu+ δm] or a communication failure between the BC
and PA in [ts, tu + 2δm]. This probability is calculated by BC ′3(t′p).

BC′3(t′p) =
ˆ
1− Po>f (t′p)

˜n−1 · FC(t′p + 2δm) · FN (t′p..tu + δm)

·
ˆ
FN (t′p..tu + δm) + Fc(tu + 2δm)

˜
(6.13)

(iii) If no failure occurs until t′p, PA remains uncertain if the MC su�ers
node failure in [t′p, tu] and the BC is not reachable because of a node failure in
[t′p, tu] or a communication failure with PA in [ts , tu+2δm]. The probability for
this situation to happen is calculated by BC ′4(t′p).

BC′4(t′p) =
ˆ
1− Po>f (t′p)

˜n−1 · FN (t′p..tu)

·
ˆ
FN (t′p..tu) + FC(tu + δm)

˜
(6.14)

The situation when PA remains uncertain although it can reach the MC but
the MC is blocked is derived by the same considerations as in Formula (6.5).
The MC is blocked if the recorded_decision message of the BC is awaited but
not received. This situation can only occur if all participants votes have been
received. This probability is given by

[
1− Po>f (t′p)

]n−1
. Again, two situations

can lead to blocking of the MC. In the �rst situation, the BC su�ers a node
failure in interval [t′p + δm, tu] and, hence, answered the reachability test but
could not send a recorded_decision message. The second situation leading to

184 CHAPTER 6. BACKUP COORDINATOR

blocking of the MC and PA occurs if the BC su�ers a communication failure with
the MC in the interval [t′p + 2δm, tu] and, additionally, with PA until tu. Since
probabilities of both events are not independent I derive BC ′5(t′p) as follows.

BC′5(t′p) =
ˆ
1− Po>f (t′p)

˜n−1 ·
ˆ
FN (tp + δm..tu)

+FC(t′p + 2δm..tu) · FC(tu)− FN (t′p + δm..tu)

·FC(tp + 2δm..tu) · FC(tu)
˜

(6.15)

The probability of PA to su�er extended uncertainty (ii) if a BC is used is
now given by P ∗v,BC(t′p):

P ∗v,BC(t′p) = BC′1(t′p) +
ˆ
1− F (tu)

˜
·
ˆ
BC′2(t′p) +BC′3(t′p)

+BC′4(t′p) +BC′5(tp)
˜

(6.16)

Analytical Predictions

Figure 6.4 depicts the probabilities of extended uncertainty (ii) with and without
a BC as predicted by P ∗u (t′p) and P

∗
u,BC(t′p). Additionally, the risk of extended

uncertainty (ii) with cooperative recovery given by P ∗v,cr(t
′
p), which was derived

in Formula (4.63), is presented.
Since only early integration of a BC is feasible in the semantic model, cal-

culations as presented here are required to decide whether integration of BC is
feasible at all.

Curve 2 in Figure 6.4 shows the probability of extended uncertainty (ii) if a
BC is used. It can be observed that an early selection of the BC results only
in a small reduction of extended uncertainty (ii) for some t′p in the example
MANET scenario of this work. Especially for t′p<30 s, a reduced uncertainty
risk is observed, e.g. 0.2% with BC, compared to 0.45% without a BC at t′p=16 s.
However, for transaction size t′p=28 s the blocking risks with BC is slightly higher
than without. Hence, semantic transactions require special caution and a model
as proposed here to decide whether it makes sense to integrate a BC for a given
transaction, i.e. to identify the spectrum of t′p where a BC is useful.

Generally, cooperative recovery shows to be more e�ective than a BC scheme
as shown by Curve 3 in Figure 6.4. Especially for short transactions with t′p<40 s
this scheme compensates for blocking more e�ectively than using a BC with veto
right in the example scenario of this work.

6.2.5 Summary - Blocking Risks with a BC

In this section, I showed how a BC is integrated in the strict and in the semantic
transaction model used in this thesis. I presented a calculation model to estimate
the reduction of blocking (ii) and extended uncertainty (ii) situations if a BC is
integrated in commit processing.

By applying the model to the example MANET scenario of this work, I
showed that a BC is not necessarily bene�cial if it is integrated early. For some
tp, early integration of a BC even increases the probability of blocking and ex-
tended uncertainty, because an additional blocking situation is induced by the
protocol. The probability of this new blocking risk caused by a communication

6.3. SLS ESCALATION STRATEGY 185

Figure 6.4: Probability of extended uncertainty (ii) with BC, n=3, and ∆vo=1 s.

failure between MC and BC can overcompensate the increased reliability of co-
ordinators with early integration. This is especially problematic in the semantic
model where early integration of a BC is the only option. Here, a calculation
model as presented in this work is crucial to identify the spectrum of t′p where
integration of a BC is bene�cial.

In contrast, late integration reduces the risk of blocking (ii) situations at a
similar rate as cooperative recovery.

However, this section dealt with the bene�ts of a BC for participants that
have not su�ered from a failure. To assure the availability of the transaction
decision at Pret as postulated in Chapter 5, the BC has to take over responsibility
to execute the writeSLS operation to preserve the decision log at Pret for possibly
failed participants.

The following section will enhance the BC commit protocol presented here
with an escalation strategy to integrate the SLS in BC commit processing.

6.3 SLS Escalation Strategy

While the BC protocol as discussed above compensates for the risk that a partic-
ipant su�ers blocking caused by a node failure of the coordinator, the protocol
is not related to the SLS. To completely take over the duties of the MC in the
context of this work, the BC also has to execute the writeSLS operation to
ensure that availability of the decision log is maintained at Pret.

In this section, I analyze the use of the BC to ensure the execution of the
writeSLS operation in case of failures. Hence, this section closes the gap for a
comprehensive probabilistic model by adding calculations to predict the prob-
ability that blocking (ii) or extended uncertainty (ii) occurs and no writeSLS
operation is executed. The resulting model allows to predict the probability
of the situation that an uncertain participant will not be able to retrieve the
decision log from the SLS in general, i.e. both blocking situations are considered
by the probabilistic model of this work.

Generally, execution of the writeSLS operation with an abort decision has
to be considered by the BC if no decided_to_commit message from the MC is
received. In this case, the MC has either su�ered node failure or communication
failure with the BC. In both situations, participants are uncertain and cannot

186 CHAPTER 6. BACKUP COORDINATOR

Initial

Decided_to_Commit Decided_to_Abort

 participant request
send(abort), execute(writeSLS)

decided to commit
send(recorded_decision)

decided to commit
send(veto)

Escalated_Commit

 participant request
send(commit), execute(writeSLS)

participant request
send(abort)

participant request
send(commit)

Figure 6.5: State diagram of BC in the participant-based escalation scheme.

learn the transaction decision from the MC and, more importantly, the MC
cannot execute the writeSLS operation, because he is either uncertain about
the decision (if commit was decided) or failed.

There are two options to trigger the execution of the writeSLS operation
by the BC: (i) based on a time-out on reception of the decided_to_commit
message and (ii) triggered by a request of an uncertain participant. I call the
�rst approach time-out-based escalation, while the second approach is called
participant-based escalation. In the following, I will describe both approaches
and provide a probabilistic model for the time-out-based escalation scheme.

6.3.1 Participant-based Escalation

If a participant request is used as failure indicator to execute the writeSLS
operation, the following modi�cations to the single backup coordinator with
veto right protocol are required.

When the BC is contacted by a participant, it responds to the participant
with its state information (commit or abort) and, additionally, executes the
writeSLS operation. A new state called Escalated_Commit is integrated, to
prevent the BC from calling the writeSLS operation multiple times if additional
participant requests arrive in the decided_to_commit state.

Figure 6.5 depicts the resulting protocol. I call this protocol participant-
based escalation strategy. The state diagram of the MC remains unchanged and
embeds the writeSLS operation as described in Section 6.2. The restart protocol
of the MC is now changed in the way that the SLS is used to learn about
undecided transactions, i.e. execution of the readSLS operation is embedded as
depicted in Figure 6.6.

The main drawback of the participant-based escalation strategy is that par-
ticipants must be able to reach the BC. This is not assured, as the following situ-
ation may occur: assume that the MC is blocked (it issued a decided_to_commit
message but did not received a recorded_decision message yet) or the MC suf-
fered a node failure during the collection phase, while the BC is isolated in
a partition. In this case, the BC cannot be reached by participants and will
therefore not execute the writeSLS operation.

6.3. SLS ESCALATION STRATEGY 187

get state of
unfinished TA

no decided_to_commit log found
 abort TA

send req. to BC

wait for answer

decision received

no decision received

readSLS

terminate
transaction

decided_to_commit but no
recorded_decision log found

decided_to_commit and
recorded_decision log found

 commit TA

Figure 6.6: Restart protocol of MC considering the BC and the SLS.

Another drawback of the participant-based approach is that a participant
that reaches the BC and learns about the abort decision does not need to query
the SLS anymore. Hence, the writeSLS operation is of bene�t only for other
uncertain participants that either cannot reach the BC or are disconnected from
A. In scenarios with one to three participants, the probability of the existence of
additional uncertain participants is low. Given these considerations, I will not
provide a calculation model for the participant-based escalation strategy and
refer to [24] for a simulative evaluation of this approach.

6.3.2 Time-out-based Escalation

If a time-out is used to trigger the writeSLS operation at the BC, I propose
the so-called time-out-based escalation protocol. The main problem to solve is
to initialize the time-out trigger securely. In the following, the time-out-based
escalation scheme is analyzed for strict and semantic transactions. For both
models, I will present a calculation model to estimate the probability of the
event that no writeSLS operation is executed by any coordinator while PA is
blocked.

6.3.2.1 Strict Atomicity

With late selection of the BC, the latest point in time to initialize the time-
out trigger securely at the BC is when the MC enters the collection phase.
Therefore, the prepare round is best used for initializing the time-out for the

188 CHAPTER 6. BACKUP COORDINATOR

Initial

Collecting

Aborted Decided_to_Commit

send(prepare) -> participants
send(prepare) -> BC

all commit votes and ok from BC received
send(decided_to_commit)

at least one no vote
send(abort)

 vote missing
send(abort), execute(writeSLS)

ok from BC missing
send(abort)

 veto
send(abort)

Committed

recorded_decision
send(commit)

decided to commit
recorded_decision

Figure 6.7: State diagram of MC with time-out-based escalation strategy.

Decided_to_Commit Decided_to_Abort

 participant request
send(abort), execute(writeSLS)

decided to commit
send(veto)

Escalated_Commit

participant request
send(commit), execute(writeSLS)

participant request
send(abort)

participant request
send(commit)

Initial

Time-out pending

 prepare
send(ok),initTimeout()

 timeout expires
execute(writeSLS)

decided_to_commit
send(recorded_decision)

decided_to_commit
send(recorded_decision)

Figure 6.8: State diagram of BC with time-out-based escalation strategy.

writeSLS operation. Additionally, the writeSLS operation can be triggered by
a participant request, if the prepare message of the MC did not arrive at the
BC. However, this event is negligible, since the BC is selected at tp in 1�2 hop
distance. The resulting protocol is depicted in Figures 6.7 and Figure 6.8 while
the restart protocol of the MC is the same as with participant-based escalation
depicted in Figure 6.6.

The described protocol obviously reduces the probability that no writeSLS
operation is executed if participants are uncertain. In the following, I will present
calculations to predict this probability for arbitrary MANET scenarios and strict
transactions, while the e�ect of more stable BC nodes is considered. Note that
these calculations are based on similar considerations as the derivation of the
blocking (ii) risks with late BC selection presented in Subsection 6.2.3.2.

To calculate the probability of PA to su�er blocking (ii) and that no writeSLS
operation is executed, the two standard blocking situations where the MC and

6.3. SLS ESCALATION STRATEGY 189

BC are not reachable for PA as well as the situation where the MC is blocked
have to be considered. The two standard blocking situations that may occur
are:

(i) If at least one node of PAother su�ers an unrecognized failure within
[ts, tp], PA blocks at recovery time if the MC and BC are unreachable. No
writeSLS operation is executed if both MC and BC su�er a node failure. Hence,
the probability of the situation where PA is blocked due to a node failure of the
MC and no writeSLS operation is executed is given by BF1(tp).

BF1(tp) = PUmax(tp) · CFUmax(tp) · FN,BC(∆Umax) (6.17)

(ii) The same situation has to be considered in case that all participants vote
and ∆U is of size ∆Umin, given by BF2(tp).

BF2(tp) = PUmin(tp) · CFUmin(tp) · FN,BC(∆Umin) (6.18)

For the situation where the MC is alive but blocked, no writeSLS operation
is executed: (i) if the BC su�ers a node failure while the MC is blocked (I
call this situation A), or (ii) if the recorded_decision message is lost, called
situation B. The probability of a node failure of the BC is given by FN (2δm),
while the probability for the recorded_decision message to be lost is given by
FC(2δm..4δm). In situation B, PA is only blocked if the BC is unreachable,
which is given by FC(∆Umax). Note that A and B are not independent. Hence,
the probability of either A or B to happen is given by BF3(tp).

BF3(tp) =
ˆ
1− F (tp)

˜n−1 ·
ˆ
1− FN (tp + ∆Umax)

˜
·
ˆ
FN,BC(2δm) + FC(2δm..4δm) · FC(∆Umax)

−FN,BC(2δm) · FC(2δm..4δm) · FC(∆Umax)
˜

(6.19)

The probability that PA su�ers a blocking (ii) situation and no writeSLS
operation is executed is now given by

PnowriteSLS(tp) = PAUmax ·
ˆ
BF1(tp) +BF3(tp)

˜
+ PAUmin(tp) ·BF2(tp) (6.20)

Predictions

Figure 6.9 depicts the probability calculated by (6.20) for the example MANET
scenario of this work.

While for Curve 1 in Figure 6.9, common node failure probabilities for all
nodes in A and therefore also for the BC node are assumed (with FL(t) to be
exponentially distributed with λ = 1800−1), Curve 2 depicts the situation where
a more stable node is chosen as BC with FL(t) exponentially distributed with
parameter λ = 5400−1. The expected positive e�ect of increased BC reliability
is clearly re�ected by the calculation results given in Figure 6.9. The decisive
factor for the situation that PA su�ers a blocking (ii) situation and no writeSLS
operation is executed, is the situation where the MC is alive but blocked and
the BC cannot execute the writeSLS operation due to a node failure. As with
increasing tp the probability that all participants vote becomes smaller, the
probability that commit is decided and the MC blocks also decreases.

The probability of the situation to occur where PA su�ers blocking caused
by a coordinator failure and no writeSLS operation is executed is in the 10−4

domain for the example MANET scenario and, therefore, negligible. However,
this probability might be di�erent in other scenarios.

190 CHAPTER 6. BACKUP COORDINATOR

Figure 6.9: Probability that no writeSLS operation is executed with BC and
time-out-based escalation in the example scenario (n=3, ∆vo=1 s).

6.3.2.2 Semantic Transaction Model

In the semantic transaction model, the time-out trigger for the execution of
the writeSLS operation by the BC has to be initialized at the beginning of the
transaction at ts, as participants enter uncertainty at a random time within
[ts, t′p]. This requires precise knowledge of t

′
p to prevent unnecessary transaction

aborts, which is a major disadvantage of this approach. This problem can be
approached by allowing a time-out extension scheme, for example as proposed
in the TCOT protocol [83]. If the MC recognizes that the t′p known by the BC
does not hold, because some operations took longer to execute than expected,
a new time-out is negotiated and the time-out is extended.

I will not consider such a time-out extension scheme here, but assume precise
knowledge of tu to be available. Figures 6.10 and 6.11 show the resulting protocol
assumed in the following calculations.

I calculate the probability of PA to su�er extended uncertainty (ii) while
no writeSLS operation is executed with the time-out-based escalation strategy.
Calculations are structured by considering the relevant situations in interval
[ts, t′p] �rst and in [t′p, tu] afterwards.

In the interval [ts, t′p], PA experiences an extended uncertainty (ii) situation
caused by a node failure of the MC if the MC su�ers a node failure within
[ts, t′p], while PA has already entered uncertainty. This probability is given by
P ′u(t′p) as developed in Section 4.6.2. If the BC su�ers a node failure before the
time-out for execution of the writeSLS operation �res and before PA contacts
the BC at tu + 2δm, PA is uncertain and no writeSLS operation is executed.
The probability for this event is given by BF ′1(t′p).

BF ′1(t′p) = P ′u(t′P) · FN,BC(tu + δm) (6.21)

If the MC does not experience a node failure within the processing phase
causing extended uncertainty, PA su�ers extended uncertainty (ii) and no
writeSLS operation is executed if the MC su�ers a node failure within [t′p, tu+δm]
and BC su�ers a node failure in [ts, t′p + δm] and, therefore, will not answer the

6.3. SLS ESCALATION STRATEGY 191

Initial

Collecting

Aborted Decided_to_Commit

send(last operation) → PA
last

send(prepare) → BC

positive ack from Pa
last

 and ok from BC received

send(decided_to_commit)

 negative ack from Pa
last

send(abort)
 ack from Pa

last
missing

send(abort), execute(writeSLS)
 ok from BC missing

send(abort)

 veto
send(abort)

Committed

recorded_decision
send(commit)

 ack for commit missing
execute(writeSLS)

 ack for abort missing
execute(writeSLS)

Figure 6.10: State diagram of MC with time-out-based escalation strategy.

Decided_to_Commit Decided_to_Abort

 participant request
send(abort), execute(writeSLS)

decided to commit
send(veto)

Escalated_Commit

participant request
send(commit), execute(writeSLS)

participant request
send(abort)

participant request
send(commit)

Initial

Time-out pending

 transaction_start
send(ok),initTimeout()

 timeout expires
execute(writeSLS)

decided_to_commit
send(recorded_decision)

decided_to_commit
send(recorded_decision)

 prepare
send(ok)

Figure 6.11: State diagram of BC with time-out-based escalation strategy.

192 CHAPTER 6. BACKUP COORDINATOR

reachability test. As both coordinators have failed, no writeSLS operation is
executed. This probability is given by BF ′2(t′p).

BF ′2(t′p) =
ˆ
1−Po<f (t′p)

˜n−2 ·
ˆ
1−F (t′p)

˜
·FN,BC(t′p+δm) ·FN,MC(t′p..tu+δm) (6.22)

A similar situation as above can occur if the BC and MC do not su�er a node
failure until t′p but within [t′p, tu]. PA is uncertain and no writeSLS operation
is executed at probability BF ′3(t′p).

BF ′3(t′p) =
ˆ
1− Po>f (t′p)

˜n−2 ·
ˆ
1− F (t′p)

˜
· FN,MC(t′p..tu) · FN,BC(t′p..tu) (6.23)

The event that the MC is alive but blocked and cannot execute the writeSLS
operation occurs in two situations: (i) if the BC su�ers a node failure after it has
answered the reachability test and before it sends the decided_to_commit mes-
sage (the probability of this event is given by FN,BC(t′p + 2δm..t′p + 2δm + ∆ex));
and (ii) if the BC is alive, but a communication failure between the MC and
BC in the interval [t′p + 2δm, t′p + 4δm + ∆ex] prevents the recorded_decision
message to be delivered to the MC, which then blocks. BF ′4(t′p) calculates the
probability of situation (i) or situation (ii) to occur.

BF ′4(t′p) = PUmin(t′p) ·
ˆ
1− FN (tp + ∆Umax)

˜
·
ˆ
FN,BC(t′p + 2δm..t

′
p + 2δm + ∆ex)

+FC(t′p + 2δm..t
′
p + 4δm + ∆ex) · FC(t′p + 5δm + ∆ex)

−FN,BC(t′p + 2δm..t
′
p + 2δm + ∆ex)

·FC(t′p + 2δm..t
′
p + 4δm + ∆ex) · FC(t′p + 5δm + ∆ex)

˜
(6.24)

The probability of PA to su�er extended uncertainty (ii) and no writeSLS
operation is executed within the BC protocol is now given by the probability
that either the MC su�ers node failure within the processing phase given by
BF ′1(t′p) or that a relevant blocking situation is caused during the decision
phase. This probability is now given by P ′nowriteSLS(t′p).

P ′nowriteSLS(t′p) = BF ′1(t′p) +
ˆ
1− F (t′p + 2δm + ∆ex)

˜
·
ˆ
BF ′2(t′p) +BF ′3(t′p) +BF ′4(t′p)

˜
(6.25)

Predictions

Figure 6.12 depicts the risk of PA to su�er extended uncertainty and no
writeSLS operation is executed for the example MANET scenario of this work.

As expected, this probability is higher than in the strict model, since with
semantic transactions extended uncertainty situations occur more likely as de-
scribed in Section 4.6.1 and, additionally, only early integration of the BC is
possible. However, the risk that no writeSLS operations are executed, while
PA is uncertain is still very low and does not leave the 10−3 domain in the
example MANET scenario of this work. For example, at t′p=20 s the probability
that the decision log is not preserved at Pret is 0.56%. A more reliable BC,
with an exponential cdf FL(t) with parameter λL=1/5400 reduces this risk only
slightly, e.g. at t′p=20 s this probability is reduced from 0.56% to 0.53% as shown

6.3. SLS ESCALATION STRATEGY 193

Figure 6.12: Probability of PA to su�er extended uncertainty and no writeSLS
operation is executed with n=3 and ∆ex=1 s.

in Figure 6.12. The maximum risk of PA to su�er extended uncertainty while
no writeSLS operation is executed is observed at t′p=23 s with 0.58%. Hence,
from the perspective of PA the chance to not su�er from extended uncertainty
or to su�er from extended uncertainty that can be recovered at Pret by using
the SLS is at least 99.42% in the example scenario.

6.3.3 Summary - Escalation Strategies

In this section, I proposed the enhancement of the BC commit protocol with
an escalation strategy, which assures that the decision log is preserved within
the SLS at availability Pret if the MC su�ers a node failure. The two escalation
strategies force the BC to execute a writeSLS operation either triggered by the
request of an uncertain participant or by a time-out.

However, a small risk that no writeSLS operation is executed must remain.
This situation occurs if both, the MC and BC su�er from a node failure simul-
taneously, or if the BC su�ers a node failure while the MC is blocked. For the
time-out based escalation strategy, I calculated these risks and showed that for
the example MANET scenario of this work, the probabilities of these events are
negligible in the strict transaction model and in the semantic transaction model.
For strict transactions and late integration of the BC, I showed that the deci-
sion log can be provided at Pret with a probability greater than 99.975%. Risks
are further reduced, if a special stable BC is available. Semantic transactions
show a slightly lower probability of at least 99.42% for the situation that PA
is uncertain and cannot retrieve the decision log from the SLS at probability
Pret in the example scenario. However, these risks can be further reduced in the
strict transaction model and in the semantic transaction model if cooperative
recovery is used.

194 CHAPTER 6. BACKUP COORDINATOR

6.4 Summary and Conclusion

In this chapter, I analyzed the use of a backup coordinator (BC) to compen-
sate for blocking (ii) and extended uncertainty (ii) situations. Additionally, I
integrated the SLS into the BC protocol by proposing two so-called escalation
strategies. These strategies trigger a writeSLS operation in case a failure is
detected either due to a time-out or the request of an uncertain participant.

The main contribution of this chapter is a calculation model to derive the
probability of blocking (ii) and extended uncertainty (ii) situations when a BC
is integrated in commit processing. The calculation model also considers the
time-out-based escalation strategy and therefore allows to calculate the risk of
a participant to su�er a blocking (ii) or extended uncertainty (ii) situation that
cannot be recovered by the SLS.

Together with the calculations presented in Chapters 4 and 5 it is now pos-
sible to calculate the total risk of a participant to su�er blocking or extended
uncertainty caused by a participant or coordinator failure that cannot be recov-
ered by the SLS. Hence, a comprehensive calculation model is given covering all
blocking situations that can occur in a MANET.

A calculation model predicting the bene�t of a BC is important as the use of
a BC introduces the disadvantage of a new blocking situation. In this situation,
the main coordinator (MC) is blocked due to a failure of the BC. This disad-
vantage can overcompensate the bene�t of increased coordinator reliability, i.e.
the integration of a BC can increase the blocking risks instead of reducing it.

I showed that the time when the BC is integrated in commit processing is
critical for whether blocking risks are reduced or not. I distinguish two general
schemes to integrate the BC in commit processing. In the early integration
scheme, the BC is selected at ts, while with the late integration scheme it is
de�ned at tp. In the strict transaction model, the late integration scheme is
generally bene�cial in the example scenario and results in a signi�cant reduction
of blocking risks. In contrast, an early integration of the BC is not necessarily
helpful, since it causes higher blocking risks for certain transaction sizes instead
of reduced risks. In the semantic model the risk for extended uncertainty is
generally higher, as uncertainty periods of participants are larger. Here, a BC
reduces risks for extended uncertainty only slightly for the example scenario.

It can be concluded that for strict transactions early selection of a BC is
generally not feasible, while for semantic transactions such a general statement
cannot be made.

In addition, the probabilistic model allows to consider individual failure prob-
abilities of BCs, i.e. particular reliable BCs can be considered in calculations. In
the strict model an especial reliable BC signi�cantly reduces the probability of
blocking (ii) that cannot be compensated by the SLS. For semantic transactions
an especial reliable BC reduces such risks only slightly in the example scenario.

The presented calculation models assumed that a BC is discovered in 1�2
hop distance to the MC and all participants. While I did not cover the problem
of discovering such a node here, I refer to [31] for a description on how discovery
of a BC in 1�2 hop distance can be e�ciently implemented in a MANET.

Chapter 7

Summary and Conclusion

In my thesis I presented several contributions in the area of distributed atomic
transaction processing in MANETs focusing on the prediction and compensation
of blocking situations.

The common approach to study the blocking problem is its analysis on an
algorithmic level, e.g. by proving that a commit protocol is blocking in a de�ned
system model or by deriving its message and time complexity etc. A protocol
is considered to be susceptible to blocking even if blocking situations occur at
negligible probabilities only. In contrast, this thesis analyzed the blocking prob-
lem from a probabilistic perspective. The presented probabilistic models allow
to analytically derive quantitative statements about abort and blocking risks for
basic transaction models. As a further step, recovery schemes to compensate for
blocking have been developed and integrated into these models, which allows to
quantify their bene�t analytically. Being able to predict the blocking risks of
a transaction and the bene�t of compensation schemes is essential to evaluate
whether the use of more reliable recovery schemes is indicated.

The three major contributions of this thesis are: (i) a comprehensive prob-
abilistic model to analyze abort and blocking risks of atomic transactions in
MANETs; (ii) the Shared Log Space (SLS) approach to compensate for block-
ing due to failures of participants; and (iii) a probabilistic model to calculate
the bene�t of a backup coordinator (BC) if blocking is caused by a node failure
of the coordinator. In the following, conclusions of (i)�(iii) are summarized.

Prediction of abort and blocking probabilities is complex, since every trans-
action shows individual risks that are in�uenced by numerous parameters, such
as number of participants, distribution of operations, and transaction size, just
to name a few. These parameters have been varied to analyze the abort and
blocking risks of di�erent transaction scenarios. In addition, simulation results
have been presented to support applicability of the calculation model. The
major conclusions applying the model to an example MANET scenario are:

• Generally, the abort probability of strict transactions and semantic trans-
actions is high. Only a small spectrum of transactions shows abort rates
that are small enough to be tolerated. For such transactions, blocking has
to be considered.

• In the strict model, low blocking probabilities are observed, since here

195

196 CHAPTER 7. SUMMARY AND CONCLUSION

blocking is a subsequent problem to abort. In fact for most strict trans-
actions showing a tolerable abort rate, blocking risks are found to be neg-
ligible in the example scenario.

• Semantic transactions show considerably higher blocking risks than strict
transactions. However, cooperative recovery can e�ciently compensate
for most blocking situations if multi-hop routing is available, reducing
blocking risks to a negligible level. If multi-hop routing is not available,
blocking occurs frequently.

• From the de�ned blocking situations, the situations caused by participant
failures are much more likely than the situations caused by a node failure
of the coordinator. In fact, the probability that a node failure of the
coordinator causes blocking of a participant is negligible for the scenarios
considered.

Hence, an important conclusion is that high blocking risks are not an inherent
problem of transactions in MANETs. Furthermore, critical transactions are
rare in the strict model and also in some semantic scenarios. Being able to
identify these critical transactions analytically in a MANET scenario is crucial
to manage blocking. Although numerous in�uences and relations make accurate
prediction of abort and blocking risks a complex problem, I have shown that
probabilistic models can be used to solve it. The probabilistic model proposed
to analyze abort and blocking risks has been presented in Chapter 4. I have
published parts of this model in [26, 25, 28].

As a next step, I proposed schemes to compensate for blocking in trans-
actions. A major requirement was that such schemes allow to quantify their
bene�t analytically. The main intention for this requirement was that a coordi-
nator predicting high blocking risks for a transaction is able to decide whether
integration of a recovery scheme meets a desired level of blocking risks.

In Chapter 4, I distinguished between blocking situations caused by partici-
pant and coordinator failures. For both situations, a compensation scheme was
proposed that allows to predict its bene�t. Regarding participant failures, the
major contribution was the Shared Log Space (SLS), while the backup coordi-
nator (BC) scheme was proposed to reduce the risk of blocking caused by a node
failure of the coordinator.

The SLS abstraction and its implementations described in Chapter 5 are
considered as central contributions of this work. The idea behind the SLS is
to establish a distributed shared storage that preserves decision logs at a de-
�ned availability for blocked participants. By controlling the availability of the
decision log for recovering participants, their probability to leave blocking is
increased to a desired level.

I presented two implementation approaches of the SLS to demonstrate its
applicability in MANETs: (i) a lightweight approach that disseminates the de-
cision log once and does not maintain its availability any further, and (ii) an
approach based on a cluster-overlay, where the availability of the decision log
is constantly maintained. The main focus of this work was on the lightweight
approach and its underlying calculation model. This model considered MANET
scenarios with and without multi-hop routing, individual node failure probabil-
ities, and recovery from node failures to predict the availability of a decision

197

log for recovering participants. From the �ndings presented in Chapter 5 the
important conclusions are:

• The general concept of the SLS is applicable in MANETs. Not only its pro-
posed lightweight implementation is straightforward to implement, it also
has been veri�ed that it allows to reduce blocking risks in a controllable
manner.

• The log availability model used in the lightweight approach allows for an
e�ective implementation of the SLS by considering individual node failure
probabilities and recovery from node failures.

• Embedding the SLS in recovery protocols of strict and semantic transac-
tions allows to provide a probabilistic guarantee for successful recovery of
blocked transaction participants.

I consider the general abstraction of the SLS, independently of its implemen-
tation, to be a useful contribution as it allows to reason about the reduction
of blocking risks in a probabilistic manner. While in this work the SLS was
only considered in the context of atomic transaction processing, it is useful in
numerous other settings as shown in [30, 65].

To compensate for the blocking situation caused by a node failure of the
coordinator, I proposed to use a second coordinator acting as a backup coordi-
nator (BC). While such schemes have been proposed by other scholars for �xed
networks, my main contribution is a calculation model to estimate the bene�t
of a BC and to integrate the SLS into the BC protocol. Investigation of the BC
protocol led to the following results:

• In the strict model, a BC compensates for blocking e�ciently if chosen
right before the commit protocol is initiated. An integration of the BC at
transaction start may lead to increased blocking risks.

• In the semantic transaction model, where a BC has to be integrated at
transaction start, only a small reduction in blocking risks can be observed
in the example scenario of this work.

• Integration of the SLS into the BC protocol allows to reduce situations
where blocking is caused by a node failure of the coordinator and cannot
be compensated by the SLS to a negligible level.

The result that blocking is possibly increased by the use of a BC underlines
the importance of a prediction model as proposed. I consider the calculation
model as generic enough to also be applied to other dynamic environments such
as peer-to-peer systems in �xed networks. The calculation model analyzing
reduction in blocking risks due to a BC in strict transactions and semantic
transactions has been published in [27].

This work analyzed blocking risks of distributed atomic transactions in
MANETs as well as methods to compensate for these risks from a probabilistic
perspective. I consider the models and methods developed as an important
contribution towards a better understanding of atomic transaction processing
in MANETs. Furthermore, I believe that the contributions of this work provide

198 CHAPTER 7. SUMMARY AND CONCLUSION

a basis for promising future research projects in adaptive risk management for
MANET transaction processing.

Appendix A

Symbols and Abbreviations

List of Symbols

A A denotes a MANET formed within a certain area, while A rep-
resents one vertices within a graph de�ned by the Area Graph�
Based Mobility Model (AGB).

b Considering a constant energy consumption, b describes the
maximum assumed battery life of a mobile node.

∆ex Time the coordinator will wait until the last operation of PAlast
is executed in the semantic transaction model.

∆vo Time the coordinator will waits for vote messages in the 2PC
protocol.

∆k Time since plan k was derived; also called age of k.

∆k,thr Allowed age of k before a k has to be revised.

∆U Duration of the uncertainty window.

∆Umin Minimum duration of the uncertainty window in the 2PC pro-
tocol (failure-free case).

∆Umax Maximum duration of the uncertainty window in the 2PC pro-
tocol (failure case)

∆w Time the writeSLS operation is allowed to execute.

∆r Time the readSLS operation is allowed to execute until a deci-
sion log is returned at probability Pret.

δm Assumed message delay in A.

δto Time a node will wait for a protocol message in commit pro-
cessing, e.g. in 3PC, Paxos Commit, etc.

fE(t),FE(t) Pdf and cdf of energy-related node failures.

199

200 APPENDIX A. SYMBOLS AND ABBREVIATIONS

fL(t),FL(t) Pdf and cdf of node failures caused by mobility between vertices
of the AGB model.

fJ(t),FJ(t) Pdf and cdf of the time nodes remain disconnected from A due
to mobility of nodes between the AGB clusters.

fC(t),FC(t) Pdf and cdf of communication failures.

fCR(t),FCR(t) Pdf and cdf of the time a failed communication path remains
dysfunctional.

fT (t),FT (t) Pdf and cdf of technical failures causing a node failure.

fN (t),FN (t) Pdf and cdf of node failures.

f(t),F (t) Pdf and cdf of the general failure, i.e. the probability that either
a node or a communication failure occurs.

k The de�ned or unde�ned set of assistant nodes the decision log
is disseminated to if a writeSLS operation is executed. Also
called dissemination plan.

kr Realized dissemination plan, i.e. the assistant nodes that actu-
ally received and stored a decision log.

#k Number of assistant nodes de�ned in k.

LA(k, tm) Availability of the decision log for recovering participants pro-
vided by plan k until tm if common node failures are assumed.

LAin(k, tm) Availability of the decision log for recovering participants pro-
vided by plan k until tm if individual node failure probabilities
are considered.

LA
′
(k, tm) Availability of the decision log for recovering participants given

by plan k until tm if common node failures and recovery from
node failures are considered.

λT Parameter of the exponential distribution describing node fail-
ures caused by technical failures. (Parameter of fT (t))

λL Parameter of the exponential distribution describing the sojourn
time of nodes in an area A. (Parameter of fL(t)).

λE If the probability of energy-related node failures is assumed to
be exponentially distributed, the parameter of fE(t) is denoted
by λE .

λT Parameter of the exponential distribution describing the prob-
ability of technical failures. (λT is a parameter of fT (t)).

nA Average number of nodes connected to A.

n Number of participants in a transaction.

201

o(t),O(t) Pdf and cdf of the event that the last operation of a participant's
transaction branch is received at (until) time t.

Pret(t) Probability of successfully retrieving a decision log at time t
within time ∆r.

Ppath Probability that a communication path between two randomly
chosen nodes in A exists. Also called path probability.

PA The participant from which perspective blocking risks are cal-
culated.

PAother The other participants of a transaction not including PA.

PAlast The participant that receives the last operation of the transac-
tion.

Po<f (t) Probability of an unrecognized failure, i.e. a participant su�ers a
failure after acknowledging the last operation of its transaction
branch.

Po>f (t) Probability of a recognized failure, i.e. the failure of a partici-
pant is recognized because it happened before the last operation
is acknowledged.

Po<fC (t) Probability of an unrecognized communication failure.

Po<fN (t) Probability of an unrecognized node failure.

Po<fC ,r(t) Probability of an unrecognized communication failure that re-
covers until t.

Po<fC ,nr(t) Probability of an unrecognized communication failure that does
not recover until t.

Pap(tp) Probability of transaction abort during the processing phase of
a strict transaction of size tp.

Pad(tp) Probability of transaction abort during the decision phase of a
strict transaction of size tp.

Pa(tp),P ′a(tp) Overall probability of transaction abort in the strict model.
P ′a(tp) additionally considers recovery from communication fail-
ures.

P ∗a (t′p) Overall probability of transaction abort in the semantic trans-
action model.

Pu(tp),P
′

u(tp) Probability of blocking situation (i) in the strict model. P
′

u(tp)
also considers recovery from communication failures.

Pc,nr(t) Probability of the event that a communication path between
PA and one node of PAother fails and does not recover until t.

P
′

u,cr(tp) Probability of blocking situation (i) if cooperative-recovery and
recovery of communication paths are considered.

202 APPENDIX A. SYMBOLS AND ABBREVIATIONS

Pu,cr(tp) Probability of blocking situation (i) if cooperative-recovery is
considered.

P ppu,cr(tp) Probability of blocking situation (i) if cooperative-recovery is
considered and Ppath is used to calculate the probability of com-
munication paths required for cooperative recovery.

P ∗u (tp),P
′∗
u (tp) Probability of extended uncertainty situation (i) in the semantic

transaction model. P
′∗
u (tp) additionally considers recovery of

failed communication paths.

P ∗
′

u,cr(t
′
p) Probability of extended uncertainty situation (i) if cooperative

recovery and recovery of communication paths is considered.

P ∗u,cr(t
′
p) Probability of extended uncertainty situation (i) if cooperative

recovery is considered.

P ∗ppu,cr(t
′
p) Probability of extended uncertainty situation (i) if cooperative

recovery is considered and Ppath is used to calculate the avail-
ability of communication paths for cooperative recovery.

Pu,SLS(tp) Probability of blocking or extended uncertainty if the SLS is
used

P
′

u,SLS(tp) Probability of blocking or extended uncertainty if the SLS is
used and recovery of communication paths is considered.

Pv(tp),Pv,cr(tp) Probability of blocking situation (ii) (blocking caused by a node
failure of the coordinator in the strict model). Pv,cr(tp) addi-
tionally considers cooperative recovery.

P ∗v (t′p) Probability of extended uncertainty situation (ii) (extended un-
certainty caused by a node failure of the coordinator in the
semantic model).

P ∗v,cr(t
′
P) Probability of extended uncertainty situation (ii) if cooperative

recovery is assumed.

Pv,BCe(tp) Probability of blocking situation (ii) with early-integration of a
BC.

Pv,BCl(tp) Probability of blocking situation (ii) with late-integration of a
BC.

P ∗v,BC(t′p) Probability of extended uncertainty situation (ii) with a BC.

Ppr(l, t) Probability of the event that l assistant nodes are present in A
at time t when common node failure probabilities are assumed.

Ppr,in(l, t) Probability of the event that l assistant nodes are present in A
at time t if individual node failure probabilities are assumed.

P
′

pr(l, t) Probability of the event that l assistant nodes are present in A
at time t if common node failure probabilities are assumed, as
well as recovery from node failures.

203

σ Parameter σ of log-normal distributed probabilities, e.g. fC(t).

tf Point in time a general failure occurs. tf is interpreted as a
random variable.

trec Point in time the recovery protocol of a participant or coordi-
nator is started.

tm Mission time; describes the duration until the availability of the
decision log should be provided at Pret.

tp Duration of the processing phase of a strict transaction.

t′p Duration of the processing phase of a semantic transaction.

ts Point in time a transaction is initiated and started.

to,ti,o Point in time the last operation of a local transaction branch is
issued to participant i.

tcr Point in time cooperative recovery is started.

ttr Point in time the register operation terminates.

tter,p Point in time the termination protocol of a participant is
started.

tter,c Point in time the termination protocol of the coordinator is
started.

tres Point in time the restart protocol of uncertain participants is
started.

µ Parameter µ of log-normal distributed probabilities, e.g. fC(t).

204 APPENDIX A. SYMBOLS AND ABBREVIATIONS

Abbreviations

2PC Two-Phase Commit Protocol.

AC Atomic Commit.

ACID Atomicity, Consistency, Isolation, Durability.

ACP Atomic Commit Protocol.

AGB Area Graph�Based Mobility Model (AGB).

AODV Ad-hoc On-Demand Vector Routing.

ATM Advanced Transaction Model.

BC Backup Coordinator.

cdf Cumulative Distribution Function.

DAC Dictatorial Atomic Commit.

DSDV Destination Sequence Distance Vector Routing.

DSR Dynamic Source Routing.

EC-SAC Eventually Certain Semantic Atomic Commit.

EC-WSAC Eventually Certain Weak Semantic Atomic Commit.

MC Main Coordinator.

NB-AC Non-blocking Atomic Commit

NB-WAC Non-blocking Weak Atomic Commit

pdf Probability Density Function.

RWP Random Way-Point Mobility Model.

RM Resource Manager.

SAC Semantic Atomic Commit.

Appendix B

Simulation Tools

The main simulation tool used in this work is the ns2 network simulator. An-
other evaluation environment developed within the CoCoDa project is the Mar-
NET emulator, that was used for evaluation of the cluster-based SLS implemen-
tation presented in Section 5.8. While both tools are completely independent,
the simulation and emulation processes share some tools developed within this
work. This Appendix gives a brief overview of the simulation and emulation
tools as well as the simulation and emulation process.

B.1 The NS2 Simulation Process

ns2 [2] is a discrete event simulator for network research. In MANET research,
ns2 is the by far most frequently used simulation tool [86]. The simulator
implements a large number of protocols such as TCP, UDP, and various multi-
hop routing schemes like AODV, DSDV, DSR, as well as tools to monitor and
to analyze MANET simulations such as the Network Animator NAM1.

Since ns2 is written in C++, new functionality and protocols have to be
implemented in C++ and are accessed from OTcl scripts through a C++/OTcl
linkage.

For simulation, OTcl scripts are used to initiate the event scheduler of ns2,
to con�gure network components, and to de�ne events such as initiation of a
transaction between a de�ned set of nodes. As thousands of transactions have
to be simulated with varying parameters, OTcl scripts have to be generated
automatically. In the following, the toolchain depicted in Figure B.1 used in
this work to generate OTcl scripts is brie�y presented.

In the �rst step, a MANET scenario is generated which describes the move-
ment for every node over the complete simulation time. Two di�erent tools
have been used: (i) the setdest tool from the ns2 suite implementing the RWP
mobility model and (ii) the AGB Model generator developed in [145] to create
AGB Mobility scenarios. However, there are numerous other MANET scenario
generators available that are compatible with the ns2 simulator such as Bonn-

1Network Animator for ns2: Nam
http://www.isi.edu/nsnam/nam/.

205

http://www.isi.edu/nsnam/nam/

206 APPENDIX B. SIMULATION TOOLS

setdest/
AGBgen

scenario
file

NS22Mctl
control

file

Mctl2Tir tir file

tclGenerator OTcl script

ns2

Tools

1. Movement and
 connectivity

2. Definition of
 transactions

3. Generation of
 tcl scripts and
 simulation

Figure B.1: ns2 simulation process.

Motion2 or the Important Mobility generator3 that can be used instead of (i)
and (ii) to test other mobility models, while the remaining toolchain remains
the same. The result of this step is a scenario �le which is directly interpreted
by the ns2 simulator (see Figure B.1).

To de�ne transactions processed in the simulation, an intermediate step is
required. The scenario �le is analyzed by a tool called NS22Mctl4 which com-
putes the connectivity among all nodes. The NS22Mctl tool creates a so-called
control �le that lists the loss rate for all node pairs for every point in time.

In the second step, the transactions to be simulated are de�ned using the
Mctl2Tir5 tool. The Mctl2Tir tool reads the control �le and identi�es groups
of mobile nodes where one node (used as coordinator) has communication paths
to all other nodes of the group not exceeding a given loss rate or hop distance.
Hence, this tool de�nes the the transactions to be simulated. Besides the link
quality between coordinator and participants, the frequency of transaction ini-
tiations can be customized to control the transaction load in the MANET. The
result of the second step is a so-called tir �le which lists all the transactions to
be processed within the simulation.

In the third step, the tir �le is used to generate the OTcl script. The
transactions de�ned within the tir �le are interpreted and the necessary events
(OTcl commands) to initiate a transaction at the de�ned time are created. The
resulting OTcl script is then interpreted together with the scenario �le by the
ns2 simulator.

2BonnMotion: A mobility scenario generation and analysis tool.
http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/.

3IMPORTANT: An evaluation framework to study the "Impact of Mobility Patterns On
Routing in Ad-hoc Networks". http://nile.usc.edu/important/software.htm.

4The source code as well as documentation of the NS22Mctl tool can be found at
http://www.cocoda.de/emulation/multiproject/ns22mctl/index.html.

5The source code as well as documentation of the Mctl2Tir tool is available at
http://www.cocoda.de/emulation/multiproject/mctl2tir/index.html.

http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/
http://nile.usc.edu/important/software.htm
http://www.cocoda.de/emulation/multiproject/ns22mctl/index.html
http://www.cocoda.de/emulation/multiproject/mctl2tir/index.html

B.2. MARNET EMULATOR 207

Listing B.1: Radio and protocol settings of mobile nodes for the example sce-
nario.

s e t va l (chan) Channel/WirelessChannel ;# channel type
s e t va l (prop) Propagation /TwoRayGround ;# radio−propagat ion model
s e t va l (n e t i f) Phy/WirelessPhy ;# i n t e r f a c e type
s e t va l (mac) Mac/802_11 ;# MAC type
s e t va l (i f q) Queue/DropTail /PriQueue ;# i n t e r f a c e queue type
s e t va l (l l) LL ;# l i n k l ay e r type
s e t va l (ant) Antenna/OmniAntenna ;# antenna model
s e t va l (i f q l e n) 50 ;# max packet in i f q
s e t va l (nn) 15 ;# number o f mobilenodes
s e t va l (rp) AODV ;# rout ing p ro toco l
s e t va l (l enx) 500 .0 ;# he igth o f sim−area
s e t va l (l eny) 500 .0 ;# length o f sim−area
s e t va l (stop) 500000.0 ;# c an c e l l a t i o n time

s e t p_rx 0 .3
s e t p_tx 0 .4

s e t i n i t i a l e n e r g y 9999999

Antenna/OmniAntenna s e t Gt_ 1 .5
Antenna/OmniAntenna s e t Gr_ 1 .5

w i r e l e s s range (c a l c . RXThresh with indep−u t i l s / propagat ion / thresh . cc)
Phy/WirelessPhy s e t RXThresh_ 1.42681 e−08
Phy/WirelessPhy s e t freq_ 9.14 e+08
Phy/WirelessPhy s e t Pt_ 0.281838

B.1.1 NS2 Simulation Parameter

In the following, the radio and protocol settings of ns2 simulations presented in
Chapter 4 and Chapter 5 are listed.

B.1.1.1 NS2 Settings of the Example Scenario

Most simulations in Chapters 4 and 5 have been done for the consistent example
scenario introduced in Section 4.1. In these simulations, I used the settings listed
in Listing B.1 for the MANET protocol stack and radio characteristics of mobile
nodes. Note that in the listing AODV is used as a routing protocol. If no routing
was simulated, �AODV� is replaced with �DumbAgent�.

B.1.1.2 NS2 Settings of Case Study

For simulations of the Case Study presented in Section 4.7, di�erent radio char-
acteristics where used. In these simulations, radio and antenna characteristics
of the 914MHz Lucent WaveLAN DSSS card have been used. Additionally, the
number of nodes is signi�cantly higher at 40 nodes and the dimensions of the
MANET area are 2000m* 2000m.

B.2 MarNET Emulator

As an alternative to the ns2 simulator, an emulation environment for MANETs
was developed within the CoCoDa project [1] and used for evaluation of the
overlay-based SLS implementation. While simulation accelerates the simulated

208 APPENDIX B. SIMULATION TOOLS

Listing B.2: Radio and protocol settings of mobile nodes in the case study of
Chapter 4.

s e t va l (chan) Channel/WirelessChannel ;# channel type
s e t va l (prop) Propagation /TwoRayGround ;# radio−propagat ion model
s e t va l (n e t i f) Phy/WirelessPhy ;# network i n t e r f a c e type
s e t va l (mac) Mac/802_11 ;# MAC type
s e t va l (i f q) Queue/DropTail /PriQueue ;# i n t e r f a c e queue type
s e t va l (l l) LL ;# l i n k l ay e r type
s e t va l (ant) Antenna/OmniAntenna ;# antenna model
s e t va l (i f q l e n) 50 ;# max packet in i f q
s e t va l (nn) 40 ;# number o f mobilenodes
s e t va l (rp) AODV ;# rout ing p ro toco l
s e t va l (l enx) 2000.0 ;# he igth o f sim−area
s e t va l (l eny) 2000.0 ;# length o f sim−area
s e t va l (stop) 500000.0 ;# f i n i s h i n g time
s e t p_rx 0 .3
s e t p_tx 0 .4
s e t i n i t i a l e n e r g y 9999999
s e t energymodel "EnergyModel"

unity gain , omni−d i r e c t i o n a l antennas
se t up the antennas to be centered in the node and 1 .5 meters above i t
Antenna/OmniAntenna s e t X_ 0
Antenna/OmniAntenna s e t Y_ 0
Antenna/OmniAntenna s e t Z_ 1 .5
Antenna/OmniAntenna s e t Gt_ 1 .0
Antenna/OmniAntenna s e t Gr_ 1 .0

914MHz Lucent WaveLAN DSSS rad io i n t e r f a c e
Phy/WirelessPhy s e t CPThresh_ 10 .0
Phy/WirelessPhy s e t CSThresh_ 1.559 e−11
Phy/WirelessPhy s e t RXThresh_ 3.652 e−10
Phy/WirelessPhy s e t Rb_ 2∗1 e6
Phy/WirelessPhy s e t Pt_ 0.28183815
Phy/WirelessPhy s e t freq_ 914 e+6
Phy/WirelessPhy s e t L_ 1 .0

B.2. MARNET EMULATOR 209

Figure B.2: CoCoDa Emulation Environment.

duration, emulation processes the behavior under observation in real-time, i.e.
emulation of transaction processed within a time frame of 500000 s also requires
an emulation time of 500000 s. The main advantage of emulation over simulation
is that schemes to be evaluated do not have to be programmed against a special
class hierarchy of a simulation suite, but the approaches to be evaluated can be
directly implemented for the target environment, i.e. the operating system the
software should later be deployed to. Hence, the development overhead with
emulation is lower and convenient software testing is also possible.

The emulation system was developed in the CoCoDa project and is based
on some components from the MarNET emulator [12, 98]. For a more detailed
description of the emulation system, see [1].

The basic idea of the MarNET emulation system is to use paravirtualization
to provide a complete independent virtual machine for each mobile node. Each
virtual machine provides a complete Linux system (this work used Tiny Linux)
which runs some additional components for emulation purposes.

In Figure B.26, the main components of the emulation system and their
relations are depicted using a block diagram in FMC notation. The main com-
ponents of the emulator are: (i) development environment (Developer), (ii) emu-
lation server (Xen Server), (iii) control node (Master), and (iv) emulated nodes
(Emulated Node). In the following, the di�erent components are described
brie�y.

6This �gure is taken from
http://www.cocoda.de/emulation/multiproject/xen/index.html

http://www.cocoda.de/emulation/multiproject/xen/index.html

210 APPENDIX B. SIMULATION TOOLS

B.2.1 Emulation Server (Xen) and Emulated Nodes

For emulation servers Xen Linux Workstations were used, while each emulation
server hosts a certain number of emulated nodes (Xen domU systems). The
number of emulation nodes is mainly limited by the emulation server's main
memory resources. Each emulated node requires 100MB RAM. Within each
emulated node, a small daemon (emulc) listens to time messages from a con-
trolling master node. The master node is either the developer's machine or any
dedicated virtual node.

At receipt of such a time stamp, directly reachable nodes are identi�ed by
emulc and a virtual network device is con�gured accordingly using the Net-
Shaper [99] kernel module. Packets sent to unreachable destinations are then
dropped by the network device. This device is used only for communication
among mobile nodes. Emulc identi�es reachable nodes by reading the control
�le of the MANET scenario (see Section B.1). Multi-hop routing on emulated
nodes is provided by the marnetd daemon described in [12].

On the controlling master node, a component called Fumul7 is running that
synchronizes the emulation process by sending time events to all mobile nodes
participating in the emulation. These messages are sent over a separate network
device that is connected to a virtual private network, guaranteeing message
delivery.

To control applications, e.g. to initiate transaction processing, a component
called TAI-Client is running on each mobile node. The TAI-Client listens to
messages from the TAI-Server that interprets a tir �le (see Section B.1) and
initiates transactions if a corresponding message is received. The TAI-Client is
implemented as an OSGi bundle and provides an application initiation interface.
This interface is used by most components of the CoCoDa project.

The OSGi framework allows for convenient deployment of the software under
investigation to emulation nodes though the OSGi http admin service. The
OSGi logging service and the log4j framework is used to send logs from emulated
nodes to central log appender, e.g. a log �le.

B.2.2 Emulation Process

A MANET scenario is described by a mobility de�nition given by a scenario
�le and by a control �le giving the hop distance or loss rate for all node pairs
at every time step of the simulation, and (iii) by a tir (transaction initiator
resource) �le. The tir and control �les are derived as described in Section B.1.

The relation of the di�erent components is presented in Figure B.38, which
shows the interaction of the Fumul, emulc, TAI-Server, and the TAI-Client as
a petri net in FMC notation. The Fumul server sends control messages used by
emulc to con�gure the network device of the node using NetShaper. Before the
emulation is started, a message containing the name of the control �le used in
this emulation is sent to each emulc.

The TAI-Server also receives the time messages from the Fumul server and
checks whether a transaction has to be initiated. If an entry for the actual time
is found in the tir �le, a message is sent to the nodes listed in this tir entry.

7Further information about the Fumul can be found at
http://www.cocoda.de/emulation/multiproject/fumul/index.html.

8This �gure is taken from [102].

http://www.cocoda.de/emulation/multiproject/fumul/index.html

B.2. MARNET EMULATOR 211

Figure B.3: Emulation Process.

212 APPENDIX B. SIMULATION TOOLS

Bibliography

[1] Cooperation communication data project. http://www.cocoda.de.

[2] Network simulator: Ns2. http://www.isi.edu/nsnam/ns.

[3] Osgi service platform release 3. http://www.osgi.org/Speci�cations.

[4] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. One-phase
commit: Does it make sense? In Proceedings of International Conference
on Parallel and Distributed Systems, pages 182�192, 1998.

[5] Maha Abdallah, Rachid Guerraoui, and Philippe Pucheral. Dictatorial
transaction processing: Atomic commitment without veto right. Journal
on Distributed and Parallel Databases, 11(3):239�268, 2002.

[6] Y. Al-Houmaily and P. Chrysanthis. The implicit-yes vote commit proto-
col with delegation of commitment. In Proc. of 9th Intl. Conf. on Parallel
and Distributed Computing Systems, 1996.

[7] Yousef J. Al-Houmaily and Panos K. Chrysanthis. Atomicity with in-
compatible presumptions. In PODS '99: Proceedings of the eighteenth
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 306�315, New York, NY, USA, 1999. ACM Press.

[8] Todd R. Andel and Alec Yasinac. On the credibility of manet simulations.
IEEE Computer, 39(7):48�54, 2006.

[9] N. Asokan, Matthias Schunter, and Michael Waidner. Optimistic protocols
for fair exchange. In CCS '97: Proceedings of the 4th ACM conference on
Computer and communications security, pages 7�17, New York, NY, USA,
1997. ACM Press.

[10] F. Bai, N. Sadagopan, and A. Helmy. Important: a framework to systemat-
ically analyze the impact of mobility on performance of routing protocols
for adhoc networks. In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies. IEEE,
2003.

[11] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla. Glo-
MoSim: A Scalable Network Simulation Environment. UCLA Computer
Science Department Technical Report, 990027, 1999.

213

214 BIBLIOGRAPHY

[12] O. Battenfeld, M. Smith, P. Reinhardt, T. Friese, and B. Freisleben. A
Modular Architecture for Hot Swappable Mobile Ad hoc Routing Algo-
rithms. Embedded Software and Systems, 2005. Second International Con-
ference on, pages 359�366, 2005.

[13] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concur-
rency control and recovery in database systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1987.

[14] Philip A. Bernstein and Eric Newcomer. Principles of Transaction Pro-
cessing. Morgan Kaufmann, 1997.

[15] Christian Bettstetter. Mobility modeling in wireless networks: categoriza-
tion, smooth movement, and border e�ects. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(3):55�66, 2001.

[16] Christian Bettstetter. On the connectivity of wireless multihop networks
with homogeneous and inhomogeneous range assignment. In Vehicular
Technology Conference, 2002. Proceedings. VTC 2002-Fall. 2002 IEEE
56th, Vancouver, Canada, 2002.

[17] Christian Bettstetter. On the minimum node degree and connectivity of a
wireless multihop network. In MobiHoc '02: Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, pages
80�91, New York, NY, USA, 2002. ACM Press.

[18] Christian Bettstetter. Mobility Modeling, Connectivity, and adaptive Clus-
tering in Ad-hoc Networks. Utz Verlag, 2004.

[19] Sven Bittner, Wolf-Ulrich Ra�el, and Manuel Scholz. The area graph-
based mobility model and its impact on data dissemination. In PER-
COMW '05: Proceedings of the Third IEEE International Conference on
Pervasive Computing and Communications Workshops, pages 268�272,
Washington, DC, USA, 2005. IEEE Computer Society.

[20] C. Bobineau, P. Pucheral, and M. Abdallah. A unilateral commit protocol
for mobile and disconnected computing. In Int. Conf. On Parallel and
Distributed Computing Systems (PDCS), 2000.

[21] Fatemeh Borran, Ravi Prakash, and Andre Schiper. Consensus problem
in wireless ad hoc networks: Addressing the right issues. Technical report,
Ecole Polytechnique Federale de Lausanne (EPFL), 2007.

[22] Y. Breitbart, A. Deacon, H.-J. Schek, A. Sheth, and G. Weikum. Merging
application-centric and data-centric approaches to support transaction-
oriented multi-system work�ows. ACM SIGMOD Record, 22(3):23�30,
1993.

[23] Lee Breslau, Deborah Estrin, Kevin Fall, Sally Floyd, John Heidemann,
Ahmed Helmy, Polly Huang, Steven McCanne, Kannan Varadhn, Ya Xu,
and Haobo Yu. Advances in network simulation. IEEE Computer,
33(5):59�67, 2000.

BIBLIOGRAPHY 215

[24] Jürgen Broÿ. An adaptive transaction manager for commit processing in
mobile ad-hoc networks. Master's thesis, Freie Universität Berlin, May
2006.

[25] Joos-Hendrik Böse. Abort and blocking risk of atomic transactions in mo-
bile ad-hoc networks. Technical Report B-08-07, Freie Universität Berlin,
ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-08-07.pdf, June 2008.

[26] Joos-Hendrik Böse and Jürgen Broÿ. Predicting the blocking risk of atomic
transactions in manets induced by coordinator failures. In WAC'08 Inter-
national Conference Wireless Applications and Computing, 2008.

[27] Joos-Hendrik Böse and Jürgen Broÿ. Using a backup coordinator to com-
pensate for blocking of atomic transactions in manets. In International
Workshop on Ad-hoc Ambient Computing (AdhocAmC). HAL - CCSD,
2008.

[28] Joos-Hendrik Böse, Jürgen Broÿ, and Heinz Schweppe. A probabilistic
model for blocking risks of atomic transactions in p2p networks. In Inter-
national Workshop on Databases, Information Systems, and Peer-to-Peer
Computing (DBISP2P), In conjunction with the conference on very large
database systeme., Auckland, 2008.

[29] Joos-Hendrik Böse, Stefan Böttcher, Le Gruenwald, Sebastian Obermeier,
Heinz Schweppe, and Thorsten Steenweg. An integrated commit protocol
for mobile network databases. In IDEAS '05: Proceedings of the 9th In-
ternational Database Engineering & Application Symposium (IDEAS'05),
pages 244�250, Washington, DC, USA, 2005. IEEE Computer Society.

[30] Joos-Hendrik Böse, Katharina Hahn, Lars-Christian Pelz, and Manuel
Scholz. Optimistic fair transaction processing in mobile ad-hoc networks.
Technical Report B-05-22, Freie Universität Berlin, 2005.

[31] Joos-Hendrik Böse and Andreas Thaler. Reliability evaluation of group
service providers in mobile ad-hoc networks. In Robert Meersman, Za-
hir Tari, and Pilar Herrero, editors, On the Move to Meaningful Internet
Systems 2006: OTM 2006 Workshops, volume 4278 of LNCS, pages 1540�
1550. Springer, 2006.

[32] T. Camp, J. Boleng, and V. Davies. A survey of mobility models for
ad hoc network research. Wireless Communications & Mobile Computing
(WCMC): Special issue on Mobile Ad Hoc Networking: Research, Trends
and Applications, 2(5):483�502, 2002.

[33] Julien Cartigny and David Simplot. Border node retransmission based
probabilistic broadcast protocols in ad-hoc networks. Telecommunication
Systems, 22(1-4):189�204, 2003.

[34] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos
made live: an engineering perspective. In PODC '07: Proceedings of the
twenty-sixth annual ACM symposium on Principles of distributed comput-
ing, pages 398�407, New York, NY, USA, 2007. ACM.

216 BIBLIOGRAPHY

[35] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest
failure detector for solving consensus. Journal of the ACM, 43(4):685�722,
1996.

[36] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225�267, 1996.

[37] Panayiotis K. Chrysanthis and Krithi Ramamritham. Acta: A framework
for specifying and reasoning about transaction structure and behavior.
In Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, 1990.

[38] PK Chrysanthis. Transaction processing in mobile computing environ-
ment. Advances in Parallel and Distributed Systems, 1993., Proceedings
of the IEEE Workshop on, pages 77�82, 1993.

[39] Brian A. Coan and Jennifer Lundelius Welch. Transaction commit in a
realistic timing model. Distributed Computing, 4(2):87�103, June 1990.

[40] X/Open Consortium. Distributed transaction processing: The tx (trans-
action demarcation) speci�cation. http://www.opengroup.org/, 1995.

[41] Eric C. Cooper. Analysis of distributed commit protocols. In SIGMOD
'82: Proceedings of the 1982 ACM SIGMOD international conference on
Management of data, pages 175�183, New York, NY, USA, 1982. ACM
Press.

[42] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Sytems
Concepts and Design. Addison-Wesley, 3 edition, 2001.

[43] Ravi A. Dirckze and Le Gruenwald. A toggle transaction management
technique for mobile multidatabases. In CIKM '98: Proceedings of the
seventh international conference on Information and knowledge manage-
ment, pages 371�377, New York, NY, USA, 1998. ACM.

[44] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the mini-
mal synchronism needed for distributed consensus. Journal of the ACM,
34(1):77�97, 1987.

[45] Margaret H. Dunham, Abdelsalam Helal, and Santosh Balakrishnan. A
mobile transaction model that captures both the data and movement be-
havior. Mobile Networks and Applications, 2(2):149�162, 1997.

[46] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2):288�323, 1988.

[47] A. Elmagarmid, Y. Leu, W. Litwin, and Marek Rusinkiewicz. A multi-
database transaction model for interbase. In Proceedings of the sixteenth
international conference on Very large databases, pages 507�518, San Fran-
cisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[48] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibil-
ity of distributed consensus with one faulty process. Journal of the ACM,
32(2):374�382, 1985.

BIBLIOGRAPHY 217

[49] Hector Garcia-Molina. Using semantic knowledge for transaction process-
ing in a distributed database. ACM Transactions on Database Systems
(TODS), 8(2):186�213, 1983.

[50] Hector Garcia-Molina and Kenneth Salem. Sagas. In SIGMOD '87: Pro-
ceedings of the 1987 ACM SIGMOD international conference on Manage-
ment of data, pages 249�259, New York, NY, USA, 1987. ACM Press.

[51] David Gelernter. Generative communication in linda. ACM Transactions
on Programming Languages and Systems, 7(1):80�112, 1985.

[52] Dimitrios Georgakopoulos, Mark F. Hornick, and Amit P. Sheth. An
overview of work�ow management: From process modeling to work�ow
automation infrastructure. Distributed and Parallel Databases, 3(2):119�
153, 1995.

[53] Jim Gray. Notes on data base operating systems. In Operating Systems,
An Advanced Course, pages 393�481, London, UK, 1978. Springer-Verlag.

[54] Jim Gray. The transaction concept: Virtues and limitations. In 7th Inter-
national Conference on Very Large Data Bases, pages 144�154, Septemer
1981.

[55] Jim Gray. A comparison of the byzantine agreement problem and the
transaction commit problem. In Fault-tolerant distributed computing,
pages 10�17. Springer-Verlag, London, UK, 1987.

[56] Jim Gray and Leslie Lamport. Consensus on transaction commit. ACM
Transactions on Database Systems (TODS), 31(1):133�160, 2006.

[57] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. The Morgan Kaufmann Series in Data Management Systems.
Morgan Kaufmann, San Mateo, California, 1993.

[58] IEEE 802.11 Working Group. Ieee 802.11. http://www.ieee802.org/11,
April 2008.

[59] IEEE 802.15 Working Group. Ieee 802.15. http://www.ieee802.org/15,
April 2008.

[60] R. Guerraoui, M. Larrea, and A. Schiper. Non blocking atomic commit-
ment with an unreliable failure detector. In SRDS '95: Proceedings of the
14TH Symposium on Reliable Distributed Systems, page 41, Washington,
DC, USA, 1995. IEEE Computer Society.

[61] Rachid Guerraoui. Revisiting the relationship between non-blocking
atomic commitment and consensus. In J.-M. Hélary and M. Raynal, ed-
itors, Proceedings of the 9th International Workshop on Distributed Al-
gorithms(WDAG95), volume 972, pages 87�100, Le Mont-Saint-Michel,
France, 1995. Springer-Verlag.

[62] Zygmunt J. Haas and Marc R. Pearlman. The performance of query con-
trol schemes for the zone routing protocol. IEEE/ACM Transactions on
Networking (TON), 9(4):427�438, 2001.

218 BIBLIOGRAPHY

[63] Vassos Hadzilacos. On the relationship between the atomic commitment
and consensus problems. In Proceedings of the Asilomar Workshop on
Fault-Tolerant Distributed Computing, pages 201�208, London, UK, 1990.
Springer-Verlag.

[64] Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys (CSUR), 15(4):287�317,
1983.

[65] K. Hahn, J. Böse, Birgitta König-Ries, and Philipp Obreiter. Robust and
fair trading in volatile environments - overcoming technical problems and
uncooperativeness. In 6th ACM international workshop on Data engineer-
ing for wireless and mobile access (MobiDE07) in Conjunction with 2007
ACM SIGMOD Intl. Conference on Management of Data (SIGMOD),
pages 33�40, Bejing, China, June 2007. ACM.

[66] Jörg Hähner, Christian Becker, and Kurt Rothermel. A protocol for data
dissemination in frequently partitioned mobile ad hoc networks. In Ahmed
Tantawy and Kemal Inan, editors, Proceedings of the Eighth IEEE Sym-
posium on Computers and Communications (ISCC 2003), pages 633�640.
Los Alamitos: IEEE Computer Society, Juni 2003.

[67] Yijie Han, Richard J. La, Armand M. Makowski, and Seungjoon Lee.
Distribution of path durations in mobile ad-hoc networks: Palm's theorem
to the rescue. Computer Networks, 50(12):1887�1900, 2006.

[68] Takahiro Hara and Sanjay K. Madria. Data replication for improving data
accessibility in ad hoc networks. IEEE Transactions on Mobile Computing,
05(11):1515�1532, 2006.

[69] Takahiro Hara and Sanjay Kumar Madria. Dynamic data replication using
aperiodic updates in mobile adhoc networks. Lecture Notes in Computer
Science, 2973:869�881, 2004.

[70] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adap-
tive protocols for information dissemination in wireless sensor networks.
In Mobile Computing and Networking, pages 174�185, 1999.

[71] Dirk Helbing. Tra�c and related self-driven many-particle systems. Re-
views of Modern Physics, 73(4):1067�1141, Dec 2001.

[72] Xiaoyan Hong, Mario Gerla, Guangyu Pei, and Ching-Chuan Chiang. A
group mobility model for ad hoc wireless networks. In MSWiM '99: Pro-
ceedings of the 2nd ACM international workshop on Modeling, analysis
and simulation of wireless and mobile systems, pages 53�60, New York,
NY, USA, 1999. ACM Press.

[73] Mohammad Ilyas and Richard C. Dorf, editors. The handbook of ad hoc
wireless networks. CRC Press, Inc., Boca Raton, FL, USA, 2003.

[74] D. Johnson, D. Maltz, and J. Broch. DSR The Dynamic Source Routing
Protocol for Multihop Wireless Ad Hoc Networks, chapter 5, pages 139�
172. Addison-Wesley, 2001.

BIBLIOGRAPHY 219

[75] David B Johnson and David A Maltz. Mobile Computing, volume 353,
chapter Dynamic Source Routing in Ad Hoc Wireless Networks, pages
153�181. Kluwer Academic Publishers, 1996.

[76] Goutham Karumanchi, Srinivasan Muralidharan, and Ravi Prakash. In-
formation dissemination in partitionable mobile ad hoc networks. In SRDS
'99: Proceedings of the 18th IEEE Symposium on Reliable Distributed Sys-
tems, page 4, Washington, DC, USA, 1999. IEEE Computer Society.

[77] Abdelmajid Khelil. A Generalized Broadcasting Technique for Mobile Ad-
Hoc Networks. PhD thesis, Universität Stuttgart, 2007.

[78] Abdelmajid Khelil, Pedro José Marrón, Christian Becker, and Kurt
Rothermel. Hypergossiping: A generalized broadcast strategy for mobile
ad hoc networks. In KiVS, pages 142�153, 2005.

[79] Sandhya Khurana, Neelima Gupta, and Nagender Aneja. Reliable ad-hoc
on-demand distance vector routing protocol. In Networking, International
Conference on Systems and International Conference on Mobile Commu-
nications and Learning Technologies, 2006. ICN/ICONS/MCL 2006. In-
ternational Conference on, volume 0, page 98, Los Alamitos, CA, USA,
2006. IEEE Computer Society.

[80] Michael Kifer and Arthur Bernstein. Database Systems: An Application-
Oriented Approach, Introductory Version. Addison Wesley, 2004.

[81] Henry F. Korth, Eliezer Levy, and Abraham Silberschatz. A formal ap-
proach to recovery by compensating transactions. In Dennis McLeod, Ron
Sacks-Davis, and Hans-Jörg Schek, editors, 16th International Conference
on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland,
Australia, Proceedings, pages 95�106. Morgan Kaufmann, 1990.

[82] P. Krishna Reddy and M. Kitsuregawa. Reducing the blocking in two-
phase commit with backup sites. Information Processing Letters, 86(1):39�
47, 2003.

[83] Vijay Kumar, Nitin Prabhu, Magaret H. Dunham, and Ayse Yasemin
Seydim. Tcot-a timeout-based mobile transaction commitment protocol.
IEEE Trans. Comput., 51(10):1212�1218, 2002.

[84] Way Kuo and Zuo Ming. Optimal Reliability Modeling: Principles and
Applications. Wiley, 2002.

[85] Way Kuo, V. Rajendra Prasad, Frank A. Tillman, and Ching-Lai Hwang.
Optimal Reliability Design, Fundamentals and applications. Cambridge
University Press, 2001.

[86] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso. Manet simula-
tion studies: the incredibles. ACM SIGMOBILE Mobile Computing and
Communications Review, 9(4):50�61, 2005.

[87] Richard J. La and Yijie Han. Distribution of path durations in mobile ad
hoc networks and path selection. IEEE/ACM Transactions on Network-
ing, 15(5):993�1006, 2007.

220 BIBLIOGRAPHY

[88] Leslie Lamport. The part-time parliament. ACM Transactions on Com-
puter Systems (TOCS), 16(2):133�169, 1998.

[89] Leslie Lamport. Paxos made simple.
http://research.microsoft.com/users/lamport/pubs/paxos-simple.pdf,
2001.

[90] B. Lampson and D. Lomet. A new presumed commit optimization for
two phase commit. In Proceedings of the 19th Conference on Very Large
Databases, Morgan Kaufman pubs. (Los Altos CA), Dublin. Morgan Kauf-
man pubs., 1993.

[91] Butler W. Lampson. How to build a highly available system using consen-
sus. In WDAG '96: Proceedings of the 10th International Workshop on
Distributed Algorithms, pages 1�17, London, UK, 1996. Springer-Verlag.

[92] W. H. O. Lau, M. Kumar, and Svetha Venkatesh. A cooperative cache
architecture in support of caching multimedia objects in manets. InWOW-
MOM '02: Proceedings of the 5th ACM international workshop on Wire-
less mobile multimedia, pages 56�63, New York, NY, USA, 2002. ACM.

[93] Eliezer Levy, Henry F. Korth, and Abraham Silberschatz. An optimistic
commit protocol for distributed transaction management. ACM SIGMOD
Record, 20(2):88�97, 1991.

[94] Eliezer Levy, Henry F. Korth, and Abraham Silberschatz. A theory of re-
laxed atomicity. In PODC '91: Proceedings of the tenth annual ACM sym-
posium on Principles of distributed computing, pages 95�110, New York,
NY, USA, 1991. ACM Press.

[95] J. Liu, B. Li, Q. Zhang, and W. Zhu. Service Locating for Large-Scale
Mobile Ad-Hoc Network. International Journal of Wireless Information
Networks, 10(1):33�40, 2003.

[96] Yenliang Lu, Huier Lin, Yajuan Gu, and Helmy A. Towards mobility-
rich analysis in ad hoc networks: using contraction, expansion and hybrid
models. In IEEE International Conference on Communications (ICC),
volume 7, pages 4346� 4351, 2004.

[97] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[98] B. Freisleben M. Smith, S. Hanemann. Coupled simulation/emulation for
cross-layer enabled mobile wireless computing. In Proceedings of the Sec-
ond International Conference on Embedded Software and Systems, Xian,
China, pages 375�383. Springer-Verlag, 2005.

[99] Ste�en Maier, Daniel Herrscher, and Kurt Rothermel. On node virtualiza-
tion for scalable network emulation. In Proceedings of the 2005 Interna-
tional Symposium on Performance Evaluation of Computer and Telecom-
munication Systems (SPECTS05), pages 917�928, Philadelphia, PA, July
2005. Universität Stuttgart, Fakultät Informatik, Elektrotechnik und In-
formationstechnik, Simulation Councils, Inc.

BIBLIOGRAPHY 221

[100] A. MCDonald and T. Znati. A mobility-based framework for adaptive
clustering in wireless ad hoc networks. IEEE Journal on Selected Areas
in Communications, 17(8):1466�1487, August 1999.

[101] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in
the r* distributed database management system. In ACM Transactions
on Database Systems, volume 11, pages 378�396, 1986.

[102] Stefan Murawski. Reliable data dissemination using a cluster overlay in
mobile ad-hoc networks. Master's thesis, Freie Universität Berlin, January
2007.

[103] A. Murphy, G. Picco, and G. Roman. Lime: A middleware for physical and
logical mobility. In ICDCS '01: Proceedings of the The 21st International
Conference on Distributed Computing Systems, page 524, Washington,
DC, USA, 2001. IEEE Computer Society.

[104] A. Murphy, G. Picco, and G. Roman. Lime: A coordination middleware
supporting mobility of hosts and agents. ACM Transactions on Software
Engineering and Methodology (TOSEM), 15:279�328, 2006.

[105] Sze-Yao Ni, Yu-Chee Tseng, Yuh-Shyan Chen, and Jang-Ping Sheu. The
broadcast storm problem in a mobile ad hoc network. In MobiCom '99:
Proceedings of the 5th annual ACM/IEEE international conference on Mo-
bile computing and networking, pages 151�162, New York, NY, USA, 1999.
ACM.

[106] Nadia Nouali, Anne Doucet, and Habiba Drias. A two-phase commit
protocol for mobile wireless environment. In ADC '05: Proceedings of
the 16th Australasian database conference, pages 135�143, Darlinghurst,
Australia, 2005. Australian Computer Society, Inc.

[107] J. Nuevo and J.C. Gregoire. Proposition of a Hierarchical Service Distri-
bution Architecture for Ad Hoc Networks based on the Weighted Clus-
tering Algorithm. Proceedings of the 5th European Wireless Conference,
Barcelona, Spain, 2004.

[108] Sebastian Obermeier, Joos-Hendrik Böse, Stefan Böttcher, Panos Kypros
Chrysanthis, Alex Delis, Le Gruenwald, Anirban Mondal, Aris Ouksel,
George Samaras, and Stratis Viglas. 06431 working group summary:
Atomicity in mobile networks. In Stefan Böttcher, Le Gruenwald, Pe-
dro Jose Marrón, and Evaggelia Pitoura, editors, Scalable Data Manage-
ment in Evolving Networks, number 06431 in Dagstuhl Seminar Proceed-
ings. Internationales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

[109] Katia Obraczka, Gene Tsudik, and Kumar Viswanath. Pushing the lim-
its of multicast in ad hoc networks. In Distributed Computing Systems,
2001. 21st International Conference on., pages 719�722, Los Alamitos,
CA, USA, 2001. IEEE Computer Society.

[110] Object Management Group (OMG). Object transaction service. OMG
Document, 2003. Version 1.4.

222 BIBLIOGRAPHY

[111] Prasanna Padmanabhan and L. Gruenwald. Managing data replication in
mobile ad-hoc network databases. volume 0, page 69, Los Alamitos, CA,
USA, 2006. IEEE Computer Society.

[112] Marc R. Pearlman, Zygmunt J. Haas, Peter Sholander, and Siamak S.
Tabrizi. On the impact of alternate path routing for load balancing in
mobile ad hoc networks. In MobiHoc '00: Proceedings of the 1st ACM
international symposium on Mobile ad hoc networking & computing, pages
3�10, Piscataway, NJ, USA, 2000. IEEE Press.

[113] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the pres-
ence of faults. Journal of the ACM, 27(2):228�234, 1980.

[114] Wei Peng and Xi-Cheng Lu. On the reduction of broadcast redundancy
in mobile ad hoc networks. In MobiHoc '00: Proceedings of the 1st ACM
international symposium on Mobile ad hoc networking & computing, pages
129�130, Piscataway, NJ, USA, 2000. IEEE Press.

[115] Charles E. Perkins, editor. Ad Hoc Networking. Addison Wesley, 2001.

[116] Charles E. Perkins and Pravin Bhagwat. Highly dynamic destination-
sequenced distance-vector routing (dsdv) for mobile computers. ACM
SIGCOMM Computer Communication Review, 24(4):234�244, 1994.

[117] Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance
vector routing. InWMCSA '99: Proceedings of the Second IEEE Workshop
on Mobile Computer Systems and Applications, page 90, Washington, DC,
USA, 1999. IEEE Computer Society.

[118] Petra P�edler. Simulative evaluation des shared log spaces (sls). Master's
thesis, Freie Universitaet Berlin, December 2007.

[119] Roberto De Prisco, Butler Lampson, and Nancy Lynch. Revisiting the
paxos algorithm. Theoretical Computer Science, 243(1-2):35�91, 2000.

[120] Krithi Ramamritham and Calton Pu. A formal characterization of epsilon
serializability. Knowledge and Data Engineering, 7(6):997�1007, 1995.

[121] T. Rapport. Wireless communications, principles and practice. Pentrice
Hall, 2nd edition, 2002.

[122] Yoav Raz. The dynamic two phase commitment (d2pc) protocol. In
Database Theory - ICDT '95, Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 1995.

[123] P. Krishna Reddy and Masaru Kitsuregawa. Blocking reduction in two-
phase commit protocol with multiple backup sites. In DNIS '00: Proceed-
ings of the International Workshop on Databases in Networked Informa-
tion Systems, pages 200�215, London, UK, 2000. Springer-Verlag.

[124] P.Krishna Reddy and Masaru Kitsuregawa. Reducing the blocking in
two-phase commit protocol employing backup sites. In Proceedings of the
3rd IFCIS International Conference on Cooperative Information Systems,
pages 406�416, Los Alamitos, CA, USA, 1998. IEEE Computer Society
Washington, DC, USA.

BIBLIOGRAPHY 223

[125] Kurt Rothermel, Christian Becker, and Jörg Hähner. Consistent update
di�usion in mobile ad hoc networks. Technical Report 2002-04, Depart-
ment of Computer Science, Department of Computer Science, July 2002.

[126] Kurt Rothermel and Stefan Pappe. Open commit protocols tolerating
commission failures. ACM Transactions on Database Systems (TODS),
18(2):289�332, 1993.

[127] E. Royer, P. Melliar-Smith, and L. Moser. An analysis of the optimum
node density for ad hoc mobile networks. In IEEE Intern. Conference on
Communications (iCC), Helsinki, Finnland, 2001. IEEE.

[128] N. Sadagopan, F. Bai, B. Krishnamachari, and A. Helmy. Paths: analysis
of path duration statistics and their impact on reactive manet routing
protocols. In Proceedings of the 4th ACM international symposium on
Mobile ad hoc networking & computing, pages 245�256. ACM Press New
York, NY, USA, 2003.

[129] Amit Kumar Saha and David B. Johnson. Modeling mobility for vehicular
ad-hoc networks. In VANET '04: Proceedings of the 1st ACM interna-
tional workshop on Vehicular ad hoc networks, pages 91�92, New York,
NY, USA, 2004. ACM.

[130] F. Sailhan and V. Issarny. Cooperative caching in ad hoc networks. In
Proceedings of the 4th International Conference on Mobile Data Manage-
ment, pages 13�28. Springer-Verlag London, UK, 2003.

[131] Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys
(CSUR), 37(1):42�81, 2005.

[132] P. Sens, L. Arantes, and M. Bouillaguet. Asynchronous implementation
of failure detectors with partial connectivity and unknown participants.
Arxiv preprint cs.DC/0701015, 2007.

[133] Patricia Serrano-Alvarado, Claudia Roncancio, and Michel Adiba. A sur-
vey of mobile transactions. Distributed Parallel Databases, 16(2):193�230,
2004.

[134] Amit P. Sheth and Marek Rusinkiewicz. On transactional work�ows. Data
Engineering Bulletin, 16(2):37�40, 1993.

[135] Dale Skeen. Nonblocking commit protocols. In SIGMOD '81: Proceedings
of the 1981 ACM SIGMOD international conference on Management of
data, pages 133�142, New York, NY, USA, 1981. ACM Press.

[136] Dale Skeen. A quorum-based commit protocol. Technical report, Cornell
University, 1982.

[137] Dale Skeen and Michael Stonebraker. A formal model of crash recovery
in a distributed system. IEEE Transactions on Software Engineering,
9(3):219�228, 1983.

[138] James W. Stamos and Flaviu Cristian. Coordinator log transaction exe-
cution protocol. Distributed Parallel Databases, 1(4):383�408, 1993.

224 BIBLIOGRAPHY

[139] William Su, Sung-Ju Lee, and Mario Gerla. Mobility prediction and rout-
ing in ad hoc wireless networks. International Journal of Network Man-
agement, 11(1):3�30, 2001.

[140] Masahiro Tamori, Susumu Ishihara, Takashi Watanabe, and Tadanori
Mizuno. A replica distribution method with consideration of the positions
of mobile hosts on wireless ad-hoc networks. In ICDCSW '02: Proceedings
of the 22nd International Conference on Distributed Computing Systems,
pages 331�335, Washington, DC, USA, 2002. IEEE Computer Society.

[141] Jian Tang and Jari Veijalainen. Transaction-oriented work-�ow concepts
in inter-organizational environments. In CIKM '95: Proceedings of the
fourth international conference on Information and knowledge manage-
ment, pages 250�259, New York, NY, USA, 1995. ACM Press.

[142] Andreas Thaler. Reliability evaluation of service providers in mobile ad-
hoc networks. Master's thesis, Freie Universität Berlin, 2006.

[143] Robert H. Thomas. A majority consensus approach to concurrency control
for multiple copy databases. ACM Transactions on Database Systems
(TODS), 4(2):180�209, 1979.

[144] Jing Tian, Joerg Haehner, Christian Becker, Illya Stepanov, and Kurt
Rothermel. Graph-based mobility model for mobile ad hoc network simu-
lation. In Simulation Symposium, 2002. Proceedings. 35th Annual, pages
337�344, Los Alamitos, CA, USA, 2002.

[145] Danny Tschirner. Experimentelle und analytische untersuchung des area
graph-based mobility models. Master's thesis, Freie Universität Berlin,
January 2006.

[146] Yu-Chee Tseng, Sze-Yao Ni, and En-Yu Shih. Adaptive approaches to
relieving broadcast storms in a wireless multihop mobile ad hoc network.
IEEE Transactions on Computers, 52(5):545�557, 2003.

[147] Je�rey D. Ullman, Jennifer Widom, and Hector Garcia-Molina. Database
Systems: The Complete Book. Prentice Hall, 2001.

[148] Jari Veijalainen, Frank Eliassen, and Berhard Holtkamp. Database trans-
action models for advanced applications, chapter 12 The S-Transaction
Mode, pages 467�513. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1992.

[149] Kumar Viswanath and Katia Obrazcka. An adaptive approach to group
communications in multi hop ad hoc networks. In ISCC '02: Proceedings
of the Seventh International Symposium on Computers and Communica-
tions (ISCC'02), page 559, Washington, DC, USA, 2002. IEEE Computer
Society.

[150] Helmut Wächter and Andreas Reuter. Database Transaction Models for
Advanced Applications, chapter 7 The ConTract model, pages 219�263.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.

BIBLIOGRAPHY 225

[151] G.D. Walborn and P.K. Chrysanthis. Transaction processing in pro-
motion. In Proceedings of the 1999 ACM symposium on Applied com-
puting, pages 389�398. ACM New York, NY, USA, 1999.

[152] Gerhard Weikum and Hans-Jorg Schek. Concepts and applications of mul-
tilevel transactions and open nested transactions. In Database Transaction
Models for Advanced Applications, pages 515�553. 1992.

[153] Gerhard Weikum and Gottfried Vossen. Transactional information sys-
tems: theory, algorithms, and the practice of concurrency control and re-
covery. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2001.

[154] B. Williams and T. Camp. Comparison of broadcasting techniques for
mobile ad hoc networks. In Proceedings of the ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing (MOBIHOC), pages
194�205, 2002.

[155] W. Wu, J. Cao, and M. Raynal. The eventual clusterer oracle and its
application to consensus in manets. Reliable Distributed Systems, 2007.
SRDS 2007. 26th IEEE International Symposium on, pages 23�32, 2007.

[156] K. Xu and M. Gerla. A heterogeneous routing protocol based on a new
stable clustering scheme. MILCOM 2002. Proceedings, 2, 2002.

[157] Liangzhong Yin and Guohong Cao. Supporting cooperative caching in
ad hoc networks. IEEE Transactions on Mobile Computing, 5(1):77�89,
2006.

[158] Aidong Zhang, Marian Nodine, Bharat Bhargava, and Omran Bukhres.
Ensuring relaxed atomicity for �exible transactions in multidatabase sys-
tems. In SIGMOD '94: Proceedings of the 1994 ACM SIGMOD interna-
tional conference on Management of data, pages 67�78, New York, NY,
USA, 1994. ACM Press.

[159] J. Zheng, X.C. Lu, and Y.J. Wang. Clustering-based data replication al-
gorithm in mobile ad hoc networks for improving data availability. In Par-
allel And Distributed Processing And Applications: Second International
Symposium, Ispa 2004, Hong Kong, China, December, 2004, Proceedings.
Springer, 2005.

[160] M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database
Systems. Prentice Hall, 1999.

226 BIBLIOGRAPHY

Appendix C

Anhang gemäÿ
Prüfungsordnung

227

228 APPENDIX C. ANHANG GEMÄß PRÜFUNGSORDNUNG

229

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig angefertigt
und alle verwendeten Hilfsmittel vollständig und genau angegeben habe. Die
Arbeit wurde bisher in dieser oder ähnlicher Form keiner anderen Prüfungsbe-
hörde vorgelegt.

Berlin, den 12. November 2008

(Joos-Hendrik Böse)

230 APPENDIX C. ANHANG GEMÄß PRÜFUNGSORDNUNG

231

Zusammenfassung

Mobile Ad-Hoc Netze (MANETs) sind drahtlose Kommunikationsnetze, die von
mobilen Geräten gebildet werden und ohne feste Infrastruktur wie z.B. Basis-
stationen etc. auskommen. Um die Kommunikation zwischen Knoten zu ermög-
lichen, die nicht in direkter Kommunikationsreichweite liegen, leitet jedes Gerät
Nachrichten für andere weiter. Der ständige Topologiewechsel, die beschränkten
Ressourcen (Systemleistung, Energie) der mobilen Netzknoten, mögliche Interfe-
renzen, etc. bedingen eine höhere Wahrscheinlichkeit für Kommunikationsfehler
als in festen Netzen. Die unzuverlässigere Kommunikation in MANETs wirft die
Frage nach der Datenkonsistenz und Datenintegrität in verteilten Anwendungen
in diesem Kommunikationsumfeld auf.

Konsistenz und Integrität verteilter Daten werden in festen Netzen mit Hil-
fe von atomaren verteilten Transaktionen gewährleistet. Die vorliegende Arbeit
überträgt diese Methode auf MANET-Umgebungen, analysiert die sich daraus
ergebenen Problemstellungen und diskutiert geeignete Lösungsansätze. Insbe-
sondere werden die Abbruch- und Blockierungsrisiken von verteilten Transak-
tionen untersucht. Dafür werden spezi�sche Wahrscheinlichkeits- und Simulati-
onsmodelle entwickelt.

Da es grundsätzlich nicht möglich ist, Blockierungssituationen vollständig zu
verhindern, muss das Blockierungsrisiko überwacht und gegebenenfalls mit ent-
sprechenden Methoden begegnet werden. Zur Lösung dieser Probleme werden
folgende Beiträge präsentiert:

• Ein Berechnungsmodell zur Bestimmung der Abbruch- und Blockierungs-
wahrscheinlichkeit von verteilten Transaktionen in MANETs für unter-
schiedliche Transaktionsmodelle.

• Ein Konzept - der Shared Log Space (SLS) - zur Aufhebung von Blockie-
rungssituationen, die durch Fehler von Transaktionsteilnehmern ausgelöst
werden. Der SLS ermöglicht es, den blockierten Knoten die Transaktions-
entscheidung mit einer de�nierten Wahrscheinlichkeit zu kommunizieren
und ihren Blockierungszustand zu verlassen. Zwei SLS Implementierungen
werden vorgestellt und diskutiert.

• Einführung eines Backupkoordinators zur Reduzierung des Blockie-
rungsrisikos durch Fehler des Transaktionskoordinators, wobei ein Wahr-
scheinlichkeitsmodell die Berechnung des Blockierungsrisikos bei dessen
Verwendung erlaubt. Zusätzlich werden Strategien vorgestellt, um den
Backupkoordinator mit dem SLS zu verknüpfen.

Diese Modelle und Methoden sind Vorraussetzung für ein adaptives Risikomana-
gement während der Transaktionsverarbeitung in MANETs. Die Einführung ei-
nes adaptiven Risikomanagements ist sinnvoll, da die Anwendung der in der Ar-
beit entwickelten Wahrscheinlichkeitsmodelle auf unterschiedliche Transaktions-
und Kommunikationsszenarien gezeigt hat, dass nur für ein bestimmtes Spek-
trum von Transaktionen ein signi�kantes Blockierungsrisiko existiert. Diese
Transaktionen zu identi�zieren und ihr Blockierungsrisiko zu kompensieren ist
der grundlegende Beitrag dieser Arbeit.

	Introduction
	Motivation and Problem
	Mission and Contributions
	Thesis Structure

	MANETs: Background and Preliminaries
	Principles and Enabling Technologies
	MANET Modeling and Simulation
	System and Failure Model
	Summary and Conclusion

	Atomicity: Background and Preliminaries
	The Transaction Concept
	Transaction Models
	Atomic Commit Problems
	Atomic Commit Protocols
	Commit Protocols for Mobile Environments
	Transaction Models of this Work
	Summary and Conclusion

	Atomic Transactions in MANETs
	MANET Parameters
	Transaction Parameters
	Preliminary Considerations
	Abort Probability
	Blocking caused by Participant Failures
	Blocking Caused by Coordinator Failures
	Case Study - Mission Coordination
	Summary and Conclusion

	Shared Log Space (SLS)
	Idea and Related Work
	SLS Architecture
	Integration of SLS in Recovery Protocols
	SLS Lightweight Approach
	Log Availability Model
	Implementation of the SLS Operations
	Simulative Evaluation
	Overlay-based Implementation Approach
	Summary and Conclusion

	Backup Coordinator
	Multiple Coordinators
	Single BC with Veto Right Protocol
	SLS Escalation Strategy
	Summary and Conclusion

	Summary and Conclusion
	Symbols and Abbreviations
	Simulation Tools
	The NS2 Simulation Process
	MarNET Emulator

	Bibliography
	Anhang gemäß Prüfungsordnung

