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Chapter 4

Numerical Experiments

4.1 Error estimators and adaptive refinement

Due to singularities the convergence of finite element solutions on uniform grids can
be arbitrarily low. Adaptivity based on a-posteriori error estimators overcomes this
problem. It may lead to convergence rates (measured in terms of nodes) as in the regular
case without singularities. Results in this chapter report the performance of the derived
error estimators applied to various problems. We include calculations done with 2D
model problems and real data as well as with 3D model problems.
Let us first discuss how to judge the performance of a-posteriori error estimators. A
proper criterion for the quality of the error estimator is the reduction of the error in the
course of refinement based on the estimator. As we are using piecewise linear Finite
Elements we expect a convergence rate of N−1/d, where N is the number of nodes. For
calculating the error one has to know the exact solution or one can get an approximation
calculating a so-called reference solution on a mesh that is much finer than the adaptive.
In the same way the estimated error should be reduced with the expected optimal order
O(N−1/d) in the course of the refinement. A decrease worse than O(N −1/d) indicates an
efficiency index not of order O(1) or a non-optimal refinement strategy. In contrast to
the error reduction of order O(N−1/d) for adapted meshes the reduction of the error on
uniform grids will in general be not better than O(N−λ/d), if the solution u has piecewise
H1+λ-regularity only. To see this in the 2D-case we refer to remark 3.1. In the 3D-case
extend the function mentioned in remark 3.1 constantly in z-direction. For a discussion
about 3D edge singularities see section 4.7.3.
An important reason of using error estimators is the wish to control the error. Hence a
criterion for judging an estimator is the efficiency index, that is the ratio

τ := η/ |u− uh|kH1(Ω)

which should be close to 1 or constant and problem independent.
From theory one can explicitly calculate the factors in the upper and lower bound of the
efficiency index. They depend only on the shape regularity of the family of triangula-
tions {Th}. However, these bounds may be to pessimistic. Doing calculations on a large
class of problems one can check constants for the lower bound τinf and upper bound
τsup of the efficiency index. Rescaling with 1/τinf an efficiency index greater than the
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error can be assured (at least for the range of the problems considered). We want to
mention that throughout the following numerical experiments we did no scaling of the
error estimators at all.
It would be desirable that τinf = τsup = 1 but this is not covered by the present theory.
For recent developments to overcome this difficulty see [3] [42].
However, it may happen that the efficiency index tends asymptotically to a problem
independent constant. This was observed in our numerical experiments for model prob-
lems independent of their regularity. Rescaling with this constant the estimator can be
improved. Obviously, the solutions used in numerical examples should have typical
properties of solutions of interface problems such as singularities.
It is known that the error reduction for regular solutions (that means piecewise con-
tained in H2) is of optimal order already for uniform refinement. Nevertheless, adap-
tive refinement for regular solutions can lead to lower errors than uniform refinement.
Such behaviour can be explained as follows. Suppose, that on the coarse mesh, the error
is not equally distributed. Refining parts of the domain with large errors, the error will
be reduced noticeable, whereas the number of nodes does not increase much.

4.2 Implementation issues

The whole code is written within the software package pdelib, which is de-
veloped at the Weierstrass Institute of Applied Mathematics and Stochastics (see
http://www.wias-berlin.de/˜pdelib/index.html) [27]. This package sup-
ports the idea of programming in a dimension-less manner. In such a way the error
estimators are implemented. Thus they work in 2D as well as on 3D grids.
The idea of the refinement procedure is to refine simplices with large error estimators
ηT . The first work dealing with error reduction rates [22] states that after reducing in a
pre-refinement step the data oscillation ‖f − fh‖L2(T ) , the error will be reduced with
geometrical order by realizing the marking strategy described below. This approach has
been extended to the case of varying coefficients under some regularity assumptions
[21]. For the Laplace equation it has been shown that reduction of data oscillation and
of the error estimators can be done simultaneously [41] [42]. As the right hand side f
vanishes in our numerical examples, data oscillation vanishes too.
We now describe the marking strategy following [22]. First we calculate the estimators.
We mark simplices for refinement where the estimator takes on the largest values until
the sum of the squares of the estimators on marked simplices reaches a certain threshold
θ (for instance θ = 20% = 0.2) of the square of the estimated global error.
The following pseudo-code is used to realize the marking strategy [22]). Given local
estimators ηT and given θ ∈ [0, 1] and 0 < ν << 1, for instance θ = 0.2, ν ∈ {0.01, 0.1},
perform

ηmax:=max(ηT ;T ∈ Th)
sum:=0
γ := 1
while sum ≤ θ η2

γ := γ − ν
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for all T ∈ Th

if T is not marked
if ηT > γ ηmax

mark T for refinement
sum := sum + η2

T

end if
end if

end for
end while

If θ = 1.0, refinement will be uniform and if θ = 0.0, no simplex will be refined.
Marked simplices will be refined by the adaptive kernel of the program kaskade from
Konrad-Zuse-Zentrum für Informationstechnik Berlin (http://www.zib.de/)[10]
which is called through to the grid interface of pdelib. The refinement is of red type
where a green closure [57] is applied. That means in 2D refined triangles are divided
into four equal triangles and if necessary neighbouring triangles are bisected. When a
part of a bisected triangle has to be refined, bisection is revoked and the triangle will be
divided into four similar ones. In this way degeneration of simplices in the course of
refinement will be prevented.
Although for model problems the solution u is known we have to apply quadrature
rules to approximate |u− uh|kH1(Ω) . We approximate |u − uh|kH1(Ω) by η̂ := |uQ −
uh|kH1(Ω) where uQ is a piecewise quadratic interpolation of u on a reference mesh. To
capture the behaviour of the singularity one has to take care to construct an reference
mesh which is fine enough.
The reference grid has been constructed as follows: Each adaptive mesh is 4 times glob-
ally refined. To those simplices with the singular point as a node we apply recursive
refinement up to a final minimum mesh width of 1e− 80. As the singular point was
situated at the origin the mesh was refined only there. In such a way grids with such a
small mesh width can be represented with double-precision arithmetic.
Simulations with reference meshes which were coarser or finer than the one described
above, indicated the reliability of the obtained results. For piecewise regularity greater
than say H1.2 one can rely on less refined reference meshes, but in case of deteriorating
regularity very fine reference meshes are indeed necessary.

4.3 Error reduction rates for an example with H 1+3/4 regularity

The solution of our model problem will be the singular function defined in example 2.1
from section 2.4.3. Dirichlet boundary conditions are given by the singular function. We
use the error estimators ηR, ηD and ηH which are defined in section 3.6.
In figures 4.1 and 4.2 we plot an adapted mesh for the case k2 ∈ {0.01, 100}. The initial
mesh is based on a 4×4 tensor grid with 16 squares, each subdivided into two triangles
in the same way. In case k2 = 100 we have u /∈ H2(Ωi), i = 1, 2, and the refinement takes
place mainly near the singularity. In the case k2 = 0.01 it yields u ∈ H2(Ωi), i = 1, 2,
and the refinement proceeds in the whole domain (although the mesh is finer in the
neighbourhood of the origin).
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Figure 4.1: k2 = 0.01, refined mesh for a
regular solution u ∈ H2(Ωi), refinement in
large areas

Figure 4.2: k2 = 100, refined mesh for a
non-regular solution u /∈ H2(Ωi), refine-
ment takes place at the singularity

In Figure 4.3 we plot the reduction of the error over the number of nodes for three
different estimators for k2 = 100. Our results show that all estimators reduce the error
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Figure 4.3: k2 = 100, solution u /∈ H2(Ωi), optimal reduction of the error for refine-
ment with ηR(
), ηH (+), ηD(✷) and non-optimal reduction for uniform(�) refinement;
triangle has slope −0.5

equally well and at least with the optimal convergence rate O(N−1/2). The depicted
triangle has a slope of −1/2. For comparison we have plotted also the reduction of the
error in the course of uniform refinement. Here one clearly sees the advantage of the
adaptive procedure. The same error is achieved on an adaptively refined mesh with 180
unknowns and a uniformly refined mesh with 1000 unknowns.
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Qualitatively the same results are obtained in the case k2 = 0.01 (see Figure 4.4).
Remember that in this case u belongs to H 2(Ωi). Again the depicted triangle has a
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Figure 4.4: k2 = 0.01, solution u ∈ H2(Ωi), optimal reduction of the error for refinement
with ηR(
), ηH (+), ηD(✷) and uniform(�) refinement, triangle has slope −0.5

slope of exactly −1/2. Thus we have a convergence rate note worse than O(N −1/2).
The uniform refinement reduces the error with an order not higher as the estimators do.
There is only little advantage of the refinement based on the estimators. The same er-
ror is achieved on an adaptively refined mesh with 850 and an uniformly refined mesh
with approximately 1050 unknowns. It seems that adaptive refinement will be ahead
also asymptotically.
The efficiency indices are plotted in figures 4.5 together with the efficiency index ob-
tained for other values of k2. We see that the efficiency index decreases moderately over
the number of unknowns by a factor of at most 1.5. For a discussion of the efficiency
index see the next section.

4.4 Robustness for an example with H1+3/4 regularity

The problem setting is as in example 2.1 in section 2.4.3. To confirm the-
oretically proved robustness we carried out numerical experiments with k2 ∈{
10−5, 10−3, 10−1, 101, 103, 105

}
. We observed for all values k2 and for all estimators

ηR, ηD, ηH a reduction of the error with order O(N−1/2). As depicted in Figure 4.5, the
efficiency index for ηR is not constant but there is only a moderate dependency on k2

and the number of nodes. The efficiency index takes on values between 2.6 and 3.8. It
seems that for the irregular case, that is for 1 < k2 and u /∈ H2(Ωi), it has larger vari-
ations than in the regular case k2 < 1. Note that asymptotically it takes on the same
value independent of the parameter k2.
For the estimators ηD and ηH the efficiency indices take on also asymptotically the same
values independent of the parameter k2.
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Figure 4.5: Efficiency indices for ηR and k2 ∈
{
101(
), 103(+), 105(✷), 10−1(×), 10−3(�), 10−5

}

4.5 Examples with deteriorating regularity

The continuous problem is chosen in such a way that the solution is the singular func-
tion from example 2.2 from section 2.4.3. Dirichlet boundary conditions are given by the
singular function. An adapted mesh is depicted in Figure 4.6. We see strong refinement
around the singular point.

Figure 4.6: u /∈ H1+0.1(Ωi), strong refinement around the singularity

Let us first present results obtained on uniform meshes. The regularity of u drops
down if λ decreases. With decreasing regularity also the convergence rate on uniform
meshes will be smaller, see remark 3.1. This is confirmed through calculations done
on uniform and subsequently globally refined, uniform meshes for different values of
λ ∈ {0.4, 0.2, 0.1, 0.05}
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theory λ numerics µ

0.4 0.405
0.2 0.22
0.1 0.15

0.05 0.12

Figure 4.7: Theoretically predicted λ versus observed convergence rate µ of η̂

In the Table 4.7 we compare the convergence rate µ of the reference error η̂ obtained
between the last two refinement levels with approximately 4000 and 16000 unknowns
with the predicted asymptotical convergence rate λ. We see that µ is greater than λ, but
we may expect that µ decreases further for subsequent refinement levels.
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Figure 4.8: Error reduction for λ ∈ { 0.2(+), 0.1(
), 0.05(✷) } with order O(N−1/2), tri-
angle has slope -1/2, refinement on the basis of estimator ηR

Note that in this example the diffusion coefficients kT are not quasi-monotonically dis-
tributed around the singular point. Recall that in this case we were not able to prove
robust reliability for the error estimator. That means that the error can be underesti-
mated if λ goes to 0. The resulting meshes may in turn lead to a non-optimal reduction
of the error. The reference error is calculated as before.
In Figure 4.8 we plot the reduction of η̂ over the number of unknowns in the course of
adaptive refinement. The approximation of the error η̂ is reduced with optimal order
O(N−1/2) for λ = 0.2, 0.1, 0.05. Here we marked only those simplices whose estimated
error made up θ = 2% = 0.02 of the global error.
In Figure 4.9 the approximated efficiency index is plotted. One sees that the approxi-
mated efficiency index becomes smaller for smaller λ but nevertheless approximately
the same asymptotical value 3.6 is reached as in subsection 4.4. A closer look onto the
refinement history reveals that the prominent kink at 211 nodes for λ = 0.2 coincides
with the first refinement of a simplex which has no node on the singularity. The same
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Figure 4.9: Efficiency index for adaptive refinement, λ ∈ { 0.2(+), 0.1(
), 0.05(✷) } de-
creases with decreasing λ, refinement on the basis of estimator ηR
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Figure 4.10: Minimum mesh size for λ ∈ { 0.2(+), 0.1(
), 0.05(✷) }, minimum mesh
size decreases with decreasing λ, refinement on the basis of estimator ηR

is true for λ = 0.1 and 435 nodes and λ = 0.05 and 771 nodes. We may say that at these
stages the singularity is resolved.
We notice that the efficiency index as a function of the number of nodes is not anymore
a monotone function as it was in the quasi-monotone case. We observe a local minimum
that takes on lower values as the regularity decreases. Although the efficiency indices
takes on moderate values from the interval [1.4,3.7] we do not know how they will
evolve for lower regularity than H1.05-regularity.
The refinement level where for the first time a simplex outside the singularity is refined,
is seen also on the next Figure 4.10 where the minimum mesh size is plotted. One sees
that the smaller the λ the more the mesh is refined. For λ = 0.1 and 650 unknowns the
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Figure 4.11: Different error reduction for θ = 0.2(
), θ = 0.02(+), λ = 0.1, error reduc-
tion with order O(N−1/2) in case θ = 0.02, triangle has slope -1/2, refinement on the
basis of estimator ηR

minimum mesh-size is 1e − 10. For the case λ = 0.05 with 9500 nodes we reached a
minimum mesh-size of 1e− 39.
If the solution u is obtained in the context of a physical model the validity of the model
could be exceeded by calculating on such fine meshes.
Experiments where θ = 20% = 0.2 of the error were refined have led to less refined grids
on which the error was reduced to a lesser extent when compared with the adaptive
strategy where θ = 0.02 (Figure 4.11).
Note that in the case θ = 0.2 the efficiency index has not achieved that asymptotic
value 3.6, Figure 4.12. We conclude that the experiments indicate non-robustness of the
derived error estimators in the case of deteriorating regularity. In the next section we
will further investigate this topic.
We want to mention that qualitatively the same results have been observed in the case
of a refinement procedure that started from an initial grid which was pre-refined near
the boundary. In such a way we can exclude possible additional errors caused by ap-
proximation of non-homogeneous boundary conditions.

The local efficiency index for deteriorating problems

For non quasi-monotonous diffusion coefficients with large variations we were not able
to bound the local error by the error estimators in a robust way. We do not know if this
is only a technical difficulty. In this section we will further investigate why the error
estimators fails to generate, in our adaptive procedure, efficient grids in case of θ = 0.2.
As in the previous section we choose u := ψ2 defined in example 2.2 as the solution of a
model problem. Recall that the singular point is located at the origin. Let us first make
the following observations.
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Figure 4.12: Efficiency index for adaptive refinement with θ = 0.2(
), θ = 0.02(+), λ =
0.1, refinement on the basis of estimator ηR

Remark 4.1 Calculation shows that

|u|kH1(B0(h)) ≈ hλ ,

where B0(h) is the ball with center at the singularity and radius h. Denote by hλ the radius
of the ball B0(hλ) where 50% of the global energy norm are attained. We calculate that hλ ≈
0.51/λ ≈ 1e − 3 if λ = 0.1 and hλ ≈ 1e − 6 (!) for λ = 0.05. That means that the solution u
has a highly non-uniform behaviour.

We define the discrete neighbourhood of the origin

ω0 :=
⋃

T�(0,0),T∈Th

T and η2
R,0 :=

∑
T⊂ω0

η2
R,T

the contributions of the local error estimators next to the origin.
The local efficiency index is defined as

τ0 :=
ηR,0

|u− uh|kH1(ω0)
.

In this section we use a initial grid which is refined near the boundary in order to reduce
a possible error caused by approximation of non-homogeneous boundary conditions.
On each side of the domain there are located approximately 100 equidistant nodes. The
initial grid has about 1900 nodes. We stop the adaptive procedure with a adapted mesh
with approx. 10000 nodes.
In Figure 4.13 we plot the efficiency index τ and the local efficiency index τ0 for λ ∈
{0.8, 0.4, 0.2, 0.1, 0.05} and θ = 0.01. In the course of refinement both τ and τ0 tend to
constant asymptotic values, which we denote by τ∞ and τ0,∞.
Comparing these values we see firstly that τ0,∞ is smaller than τ∞ and secondly that
asymptotically τ0,∞ depends on λ whereas τ∞ is asymptotically independent of λ. In
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Figure 4.13: Efficiency index τ (points) and τ0 (lines with points) for ηR and
λ ∈ { 0.8(�+), 0.4(✷), 0.2(+), 0.1(
), 0.05(×) }, τ∞ independent of λ, τ0,∞ decreases
with decreasing λ

other words, the local error in the discrete neighbourhood ω0 is really underestimated
by the error estimator and the ratio between τ0,∞ and τ∞ becomes smaller as λ → 0.
A closer look on the dependence of the asymptotic value of the local efficiency index
τ0,∞ reveals a behaviour like τ0,∞ ≈ cλβ , see the table in Figure 4.14. We calculate
c ≈ 2.678, β ≈ 0.38.

τ0,∞ 2.68 · λ0.38

2.46 2.46
1.89 1.89
1.45 1.45
1.11 1.12
0.83 0.86

Figure 4.14: Exponential dependence of τ0,∞ from λ

Implications for the error estimator

On the basis of remark 4.1 we conclude that, in order to equidistribute the error, the
finite element meshes should have simplices contained in the neighbourhood B0(hλ) of
the origin. Having in mind the low approximation order of Finite Elements for prob-
lems with low regularity we see that the simplices contained in the ball B0(hλ) should
be additionally strongly refined. We may then expect that for small λ an optimal refine-
ment strategy consists in subsequent refinement of the simplices which have the origin
as a node as long as the approximation error on the ball B0(hλ) is not small enough.
Underestimation of the local error influences the global efficiency index. This influence
becomes especially critical when the global error depends mainly on the local error
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|u − uh|kH1(ω0) , as we may expect. The effect of the underestimation of the local error
vanishes if the singularity is sufficently fine resolved.
The dependence of the adapted grids from the parameter θ is explained in the same
way. We know that the error estimator does not reflect the behaviour of the error, as
can be seen from the numerical experiment from section 4.5. Nevertheless, the error
estimators ηR,T attains its maximum in ω0. With the strategy where θ = 0.02 (section 4.5)
we marked in fact only those simplices with the maximum estimated error ηR,T and that’s
why we came to efficient grids. Choosing θ = 0.2 “too much” simplices away from
the singularity were refined what led to an insufficient resolution of the singularity and
hence to inefficient grids.

4.6 Examples with real data

In this section we will test the error estimators on more complicated geometries and
data. This data comes from groundwater flow simulation problems considered by the
WASY GmbH (http://www.wasy.de). In a soil saturated with water the flow of the
water is ruled by a diffusive law, called Darcy’s law. In this manner the solution of the
respective elliptic problem can be seen as the pressure of the water (after addition of
the pressure term caused by gravitation) and is known as hydraulic head. The gradient
of the solution multiplied by the diffusion is a measure of the flux of the water. The
transmissivity of the soil with respect to the water (that means the diffusion) differs for
different types of soil. For instance the transmissivity of clay is by a factor of at least
1.e6 smaller than that of sand.

4.6.1 Reliability of the reference error

For complicated real problems there are no analytical solutions known. To judge the
quality of the estimated error we have to calculate a sufficiently good approximation
uref,m of the solution of the continuous problem on a reference mesh. We then use
η̂m = |uref,m − uh|kH1(Ω) as the reference error. The reference mesh is constructed by
m times globally refining the finest mesh obtained in the refinement cycle.
Clearly the reference error will depend on m. In a first experiment we discuss the reli-
ability of the reference errors η̂m in an example where the analytical solution is known.
Here we take the setting from example 2.2 with k2 = 100. In Figure 4.15 we compare the
reference errors for different values of m = 1, 2, 3. Additionally we plot the error ob-
tained from the known analytical solution which is interpolated on a one time globally
refined grid with P2 elements.
Figure 4.15 a) shows that the error is underestimated by η̂1, η̂2, η̂3 and the smaller the
index m the larger the underestimation. Further for a constant index m the underesti-
mation of η̂ by η̂m is smaller at lower refinement levels.
The approximation η̂1 leads to the worst approximation of the error and one notices an
underestimation of at most 20% for a larger number of nodes.
In Figure 4.15 b) we depict the according efficiency indices, that is the ratios ηR/η̂m.
As the error is underestimated by η̂m we observe a higher approximated efficiency in-
dex ηR/η̂m for lower values of m and higher numbers of nodes. Doing in the following
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Figure 4.15: a) Reference error η̂m for m ∈ { 1(+), 2(✷), 3(×) } compared with reference
error obtained from analytical solution (
), little difference for higher refinement levels,
triangle has slope −0.5, b) according efficiency indices

calculations we can expect that the efficiency index is overestimated by the ratio ηR/η̂m,
especially if we observe for higher number of nodes a strong increase of ηR/η̂m. We con-
clude that η̂2 and under some restrictions η̂1 could be used to judge the error estimator.

4.6.2 An example with quasi-monotone diffusion

In a second example we use a more complicated geometry. The diffusion takes on two
different values that differ by the factor 1000. We depict the distribution of k in Figure
4.17 by different shadings of the simplices. In the darker part of the domain the diffusion
is smaller.
We set constant inflow Neumann boundary conditions on the upper side of the box and
Dirichlet boundary conditions on the right side. On the remaining part we impose ho-
mogeneous Neumann boundary conditions. Such an example is known as “hydraulic
window”. We know from theory (see chapter 2) that singularities occur at so called sin-
gular points, where the interface is not a straight line or where it intersects the boundary.
There are at least 10 such singular points. In Figure 4.16 we plot the numerical solution
together with the underlying adaptive grid.
Refinement of the grid on the basis of the residual estimator ηR leads to refinement in the
neighbourhood of some singular points but other simplices are refined too. This is seen
from Figure 4.17, where the adaptive mesh is depicted at different stages of refinement.
We observe that the singular points are not refined equally. For instance the singular
points on the left side of the boundary are almost not refined. The major refinement
happens around the connection of the upper and the lower part of the subdomain with
higher diffusion. This part can be seen as a “bottleneck” in a flux problem.
In Figure 4.6.2 a) we draw the reduction of the reference error η̂m for m = 1, 2, 3 and
the reduction of the error estimator ηR. We observe an optimal reduction of η̂m for m =
1, 2, 3. But keep in mind that the reference error will be very likely be underestimated
for lower values of m.
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Figure 4.16: Numerical solution and refined grid

Figure 4.17: Adaptive grid with a) 47 b) 145 c) 843 nodes

The according efficiency indices ηR/η̂m are shown in Figure 4.6.2 b). Again the efficiency
index ηR/η̂m,m = 1, 2, 3, is in the range [2.8, 4.2] and increases with the number of
unknowns from 2.8 to 3.57, 3.66, 4.2, depending on m ∈ {1, 2, 3}.
If the singularities were treated by a priori mesh refinement on the basis of the known or
approximated degree of the singularity the neighborhood of all singular points had have
to be refined, regardless of how much the according singular functions actually enter
in the solution. The determination of the real contribution of a singular function to the
solution would require additional computational effort. This example demonstrates
the superiority of the adaptive approach, where no knowledge of the degree of the
singularity is needed and where refinement takes place only where needed.

4.6.3 A coal mine

In a third example we use data from the WASY GmbH. The grid discretizes a cut
through a mine with small manholes. The ratio of the manhole diameter to the problem
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Figure 4.18: a) Reference error η̂m for m ∈ { 1(+), 2(✷), 3(×) } and ηR (line), triangle
has slope −0.5, b) according efficiency indices

size is about 1/500. We discretize the geometry with about 800 degrees of freedoms.
Here triangles with very small or very obtuse angles occur and the ratio of of height
versus length of a triangle reaches 1/30. In Figure 4.19 we plot the diffusion. Inside
the manhole (depicted in Figure 4.19 a) by thin black lines) the diffusion is higher by
a factor of 1.e5. We impose Dirichlet boundary conditions at the rightmost manhole
in the upper part and inflow Neumann boundary conditions at the leftmost manhole
in the upper side of the domain. In the remaining part of the boundary homogeneous
Neumann boundary conditions are imposed. Here singularities occur near corners of

Figure 4.19: a) Domain with higher diffusion coefficient in thin black lines and bound-
ary conditions indicated by small boxes in the upper part b) coarse grid and numerical
solution

the manhole. Since the geometry in the neighbourhood of interior singular points is
similar the singular solutions will have the same character and regularity. But due to
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boundary conditions their contributions to the solution will be likely to be larger in the
upper part of the domain and accordingly there they will cause a larger error. This ex-
pectation is confirmed by the fact that the gradient of the numerical solution uh is larger
in the upper part as seen in Figure 4.19 b).
In Figure 4.20 we depict the refinement history. We observe that at low refinement stages
refinement proceeds near singularities in the upper part of the domain. At later levels
refinement occurs also near singularities in the lower part and later near the boundary.
This is in agreement with our expectation, that the singularities in the upper part of the
domain yield larger contributions to the solution.

Figure 4.20: Refinement history, we depict simplices which were at least once refined
for refinement stages: 5, 11, 25 with 869, 1378, 7161 degrees of freedom; at the begin-
ning, only simplices in the upper part were refined

The estimated error ηR and the reference error η̂m for m = 1, 2 depicted in Figure 4.21
a). We see that η̂1, η̂2 are reduced again with order slightly better than O(N−1/2). We
observe that η̂1 has a stronger decay than η̂2 for a larger number of nodes which is
due to larger underestimation of the error by η̂1. The estimated error shows the opti-
mal behaviour O(N−1/2). Note that this is the case despite the presence of anisotropic
simplices. The efficiency index, that is the ratio ηR/η̂m, decreases with the number of
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Figure 4.21: a) Estimated error ηR (line) and reference errors η̂m (line with points) for
m = 1(
), 2(+), triangle has slope −0.5, b) efficiency index ηR/η̂m for m = 1(
), 2(+)
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unknowns only little ( by a factor of 2 ) as depicted in Figure 4.21 b). Remembering that
the error is probably underestimated by η̂m,m = 1, 2 we see that the original efficiency
index ηR/ |u− uh|kH1(Ω) will be smaller.

4.6.4 An example with heterogeneous data

Again we use data from the WASY GmbH but now the structure of the data is more
complicated. The coarse mesh has about 11000 degrees of freedom and the diffusion is
fairly heterogeneous, see Figure 4.22. The diffusion varies by a factor of 10. Further we
indicate Dirichlet and Cauchy boundary conditions with grey lines.

Figure 4.22: Domain with heterogeneous diffusion and boundary conditions

In Figure 4.23 a) we plot the isolines of the numerical solution. The solution has sev-
eral local maxima due to interior boundary conditions. The solution of the continuous
problem has several hundreds of singularities. As the structure of the diffusion coeffi-
cient is complicated, it is not obvious where to expect large errors. In Figure 4.23 b) the
refinement depth of the simplices is plotted for the adaptive mesh at refinement level 5.
By refinement depth we understand the number of refinements carried out to construct
the triangle under consideration. We see that refinement takes place in the vicinity of
interior boundaries and near heterogeneities.
The reduction of the estimated error ηR proceeds with order O(N−1/2) (Figure 4.24) a).
The reduction of η̂m with m = 1 is better but we remember that η̂m very likely under-
estimates the error. Note that in the beginning of the refinement the error estimator ηR

is reduced with higher order than the asymptotical order. This behaviour is typical for
problems with a large number of unknowns and a non-uniformly distributed error.
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Figure 4.23: a) isolines of numerical solution b) refinement depth of simplices with light
grey 0 (not yet refined) to black (5 times refined)
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Figure 4.24: a) Estimated error ηR(
) and reference error η̂m(+) for m = 1, triangle has
slope −0.5, b) efficiency index ηR/η̂m for m = 1
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In Figure 4.24 b) we draw the efficiency index ηR/η̂m. It takes on values between 3 and
4.5. We keep in mind that the error is likly to be underestimated by η̂m.

Note that in the so far presented examples a moderate overestimation of the error oc-
cured with more or less the same problem independent factor in [2.7, 6]. Thus, rescaling
the error estimator ηR we obtain an estimator that overestimates the error by a factor at
most 2.

4.7 Numerical examples in 3D

In 3D singularities occur along edges and at vertices of the interface (section 2.7). Denote
by (r, ϕ, z) cylindrical coordinates with respect to an edge of the interface. On the other
hand it is easy to see that multiplying a 2D singular function v(r, ϕ) with a suitable
function w(z) one can construct a 3D-edge singular function.
But if additionally vertex singularities arise, to our knowledge, there is no analytic rep-
resentation of the singular function, which is piecewise harmonic, available. This is
already the case for the Fichera corner (a 3D domain with a reentrant corner of a cube)
and the Laplace equation.
Therefore, we decided to compare the error estimator with a reference error that is ob-
tained on the basis of a reference solution calculated on a mesh that is finer than the
adaptive one.
In the 2D examples regarded so far, the space spanned by the singular function(s) was 1-
dimensional (or at least of finite dimension). In the 3D-problems regarded in [45] [17] 3D
edge singularities are 2D singular functions weighted by a function b(r, z) depending
on the position z on the edge (see section 2.7.3). The parameter b(r, z) may be very large
at some points on the edge and may vanish at other points on the edge. The adapted
mesh should then be more refined, where the parameter b(r, z) is large. In subsequent
examples we show that firstly, the mesh is refined around singularities and secondly,
that it is refined differently along the edge.
A-priorily refined grids can not make use of the, in general, unknown function b(r, z)
and may provide to an unefficient distributions of nodes along the edge. The follow-
ing examples will show the superiority of the refinement based on a-posteriori error
estimators over a-priori refined meshes.

4.7.1 An example with a box

We define the domain Ω := (−1, 1) × (−1, 1) × (−1, 1) that is divided into Ω1 :=
(0, 1) × (0, 1) × (0, 1) and Ω2 := int(Ω/Ω1). Set k1 = 10000 and k2 = 1. We impose
Dirichlet conditions on the upper and lower side of the box Ω: u|{1}×(−1,1)×(−1,1) = 1
and u|{−1}×(−1,1)×(−1,1) = 0. For the remaining part of the boundary we choose homo-
geneous Neumann boundary conditions.
We know that singularities arise at edges of Ω1 which are contained in Ω. Isoplanes of a
numerical solution are depicted in Figure 4.25.
Starting with a coarse grid we applied the error estimators ηR,T to this problem. Iso-
planes of the grid size of the adapted mesh are shown in figure 4.26. We see that the
mesh is most refined around interior edges of the cube Ω1. It is less refined away from
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these edges. The interior edge of cube Ω1 parallel to the z-direction is more refined near
the vertex (0, 0, 0) than near the vertex (0, 0, 1). This is in accordance with the observa-
tion that for the point (0, 0, 1) the contribution of the edge singularity vanishes due to
boundary conditions. Thus, we see that the grid is well adapted to the singularities.
A reference solution is calculated on a reference mesh that is obtained by refining glob-
ally two times an adaptive grid with approximately 2000 nodes. For comparison of
the quality of the reference error other reference solutions were calculated on reference
meshes obtained by one time globally refining an adaptive grid and using different pa-
rameters θ of the marking strategy. We see in Figure 4.27 a) an optimal decrease of the
reference error and the estimated error. There is no dependence on the parameter θ from
the marking strategy.
The efficiency indices calculated on the basis of the reference errors increase by a factor
at most 2 (Figure 4.27 b)).

Figure 4.25: Isoplanes of the numerical
solution

Figure 4.26: Isoplanes of the grid size
(wireframe) of an adapted grid (grid is
rotated about 90◦ with respect to Fig-
ure 4.25)

4.7.2 An example with a more complicated geometry

A more complicated geometry is used in the next example. It consists of a ball and two
cylinders. Its triangulation is shown in Figure 4.28. The grid was generated using the
grid generator NETGEN from J. Schöberl [54]. Outside the ball the diffusion is higher by
a factor 100. We impose constant Dirichlet boundary conditions on the plane faces of the
cylinders. For the rest of the boundary we impose homogeneous Neumann boundary
conditions.
The numerical solution is depicted in Figure 4.29. Singularities occur around the 1-
dimensional spheres S1, S2 that are given by the intersection of the surface of the ball
with the surface of the cylinders.
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Figure 4.27: a) Reduction of reference errors with order O(N−1/3) and for ηR with order
near O(N−1/3), triangles have slope -1/3, refinement on the basis of estimator ηR, b)
efficiency indices are moderately constant

Figure 4.28: Domain consisting of a ball and two cylinders

The numerical solution is depicted in Figure 4.29. As the geometry around the singular
edges is similar, the particular singular solutions will have roughly the same regularity.
But their contributions to the solution will be different and we expect that their contri-
butions are the larger the larger the gradient. Thus, we expect larger contributions from
the singularities where S1 and S2 are close together.
A look at some isoplanes of the grid size of the refined grid (Figure 4.30) shows refine-
ment around the spheres S1, S2. We see that the grid is indeed more refined on parts
where S1, S2 that are close together.
The reference errors are reduced with optimal order as shown in picture 4.31 a). The
reduction of ηR is a little bit worse but we may expect improvement on more refined
grids as the asymptotic stage may not yet been reached.
Comparison of the efficiency index depicted in Figure 4.31 b) shows that the error is
overestimated by more or less the same factor as in the example from subsection 4.7.1.
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Figure 4.29: Numerical solution Figure 4.30: Isoplanes of the grid size of
an adapted grid
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Figure 4.31: a) Reduction of reference errors (lines) with order O(N−1/3) and of ηR (line
with points) with order near O(N−1/3), triangles have slope -1/3, refinement on the
basis of estimator ηR, b) efficiency indices are moderately constant

This may indicate, in a certain range, a problem independent efficiency index, as ob-
served in the 2D examples.

4.7.3 Efficiency of isotropic grids for edge singularities

It is known that the edge singularities have an anisotropic nature (see [5] for the Laplace
equation): the singular solutions have a strongly varying gradient on lines perpendic-
ular to the edge but in directions parallel to the edge the singular solution is smoother.
Isotropic grids make no use of that anisotropy and therefore they may yield a non-
optimal relation between the error and the number of nodes. Here anisotropic meshes
can pay off [5]. Nevertheless, if the solution has H1+1/3-regularity at least there can
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be a-priorily constructed isotropic grids which yield an optimal error reduction rate
O(N−1/3) [6], and we may expect for a-posteriorily adapted grids an optimal error re-
duction rate too. For a-posteriori error estimators for anisotropic grids see [37] [38] [55].
In order to test the efficiency of adapted isotropic grids applied to edge singu-
larities we pose the following problem. We define a 2D singular solution that
will in a second step be extended to a 3D solution. Define the L-shaped domain
Ω′ := (−1, 1) × (−1, 1)/([0, 1] × [−1, 0]). Divide Ω by a line into equal parts Ω′

1,Ω
′
2,

where the diffusion coefficients k1 := 1, k2 > 0 are given (see Figure 4.32). Set ho-
mogeneous Dirichlet boundary conditions on the edge ED given by the points (0, 0)
and (1, 0). Homogeneous Neumann conditions are imposed on the edge EN given by
(0, 0) and (0,−1).
We take a 2D singular solution v = rλsλ(ϕ) which is piecewise harmonic and satisfies
the boundary conditions on ED, EN and the interface conditions on ∂Ω′

1 ∩ ∂Ω′
2. Here

(r, ϕ) are polar coordinates and 0 < λ < 1 depends on k2.

k2

k1

ED hom. Dirichlet BC

EN hom. Neumann BC

Figure 4.32: 2D domain Ω′

Now we extend the domain Ω′ and the function v in z−direction. We define Ω := Ω′ ×
(0, 2),Ω1 := Ω′

1 × (0, 2),Ω2 := Ω′
2 × (0, 2) and vE(r, ϕ, z) := v(r, ϕ). Dirichlet boundary

conditions are posed according to vE on ∂Ω except at EN × (0, 2) where homogeneous
Neumann boundary conditions are set.
Recall that for k1 < k2 the quasi-monotonicity condition is violated. Calculation shows
that in the quasi-monotone case λ ≥ 1/3 and otherwise 0 < λ < 1/3. We know vE ∈
H1+λ−ε(Ωi), i = 1, 2, for any ε > 0. There is a 1 − 1 relation between k2 and λ and we
will take λ as an parameter.
We use a reference solution which is an approximation of vE with quadratic elements
on grids which we obtained by refining one or two times globally the finest adaptive
grid.
As shown in Figure 4.33 the order of reduction of the reference error is optimal for
λ = 0.6. But for λ = 0.2 the error is reduced with lower order. These results are
in accordance with the expectation that on isotropic meshes the error is reduced with
optimal order as long the solution has regularity H 1+1/3. For lower regularity isotropic
grids (adapted with the error estimator ηR) are not suited because the reduction of the
error may not proceed with optimal order as seen in Figure 4.33.
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One may argue that the presented grids are non-optimal in the non-quasi-monotone
case and that there are isotropic grids with a smaller error and the same number of
nodes. But recall that we have seen in section 4.5 that the estimator may lead to efficient
grids also in the non-quasi-monotone case.

0.1

1

100 1000 10000 N

error η̂

λ = 0.6

λ = 0.2

Figure 4.33: Order of reduction of the refer-
ence error depends on regularity parameter λ ∈
{0.6(✷), 0.4(+), 0.2(
)}, triangles have slope −0.33

4.8 Example for a parabolic problem

The following example gives an impression how adapted grids in time look like. We
define the domain as in example 2.1 on page 15 with k1 = 1, k2 = 100 and pose Dirichlet
boundary conditions on the left side gD(x = 1, y, t) := max {1, 1e4 · t}, homogeneous
Dirichlet conditions on the right side and initial conditions u(x, y, t = 0) = 0. On the
remaining part of the boundary we pose homogeneous Neumann boundary conditions.
The adapted grids were constructed by refining in each time step the coarse initial grid
as long as the number of nodes did not exceed 300. The imposed boundary conditions
result on an inflow from the Dirichlet boundary. Due to higher conductivity in domain
Ω2 this domain is “saturated” faster and interior boundary layers arise at the interface.
As times gets large a singularity at the origin will arise as for the according stationary
problem.
In the transient process we differ between an initial, a transient and the stationary stage.
During the initial stage for about 0 ≤ t ≤ 1e3 the Dirichlet boundary conditions cause a
boundary layer. Figure 4.34 a) shows that the boundary layer is resolved on the adapted
grid. The singularity at (0, 0) has no large influence on the solution and the grid is
not refined there. In the transient stage the boundary layer vanishes and the solution
changes much in time on large parts of the domain. This is on our case measured by
the entry measuring the difference un

h − un+1
h of the error estimator. In Figure 4.34 b) it
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is shown that parts near the interface are stronger refined. There a new inner boundary
layer arises due to the higher conductivity in domain Ω2. At the transient stage the
influence of the singularity at the origin grows. The influence of the difference un

h−un+1
h

vanishes in the asymptotic stage for approximately t ≥ 10, where the solution does not
differ much from its stationary limit. Now the singularity dominates and we see in
Figure 4.34 c) stronger refinement around the origin.

Figure 4.34: Numerical solution at different time levels a) initial stage t = 3e−3, b)
transient stage t = 0.7, c) stationary stage t = 77

4.9 Conclusions for the numerical experiments

We have carried out numerical experiments for model problems as well as for problems
with real data. For model problems in the quasi-monotone case and for problems with
real data the obtained adapted meshes were refined around the singularities and have
led to an optimal reduction of the error with order O(N−1/2). There were no differences
concerning the error reduction between the estimators ηR, ηD and ηH . Further the effi-
ciency index has turned out to be moderately constant and independent of the investigated
problems in the range [2.5, 5.7].
For model problems in the quasi-monotone case we observed an asymptotical value of
approximately 3.6. Rescaling by this value one gains error estimators which are near to
be asymptotically exact, at least in the range of the regarded model problems. But as
the efficiency is in our experiments a monotone increasing function over the number of
unknowns the rescaled error estimator will underestimate the error. This is undesired
as one would rather prefer the error to be overestimated. The star-based error estimator
developed recently in [42] shows a similar behaviour: it seems to be asymptotically
exact but it underestimates the error at the preasymptotic stage. In distinction from the
problems considered in [42] we neglected the influence of the load function f on the
error estimators regarding only problems with vanishing f .
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Results obtained in non-quasi-monotone cases indicate dependence of the estimators on
the regularity of the problem and the grid. Nevertheless, we observed for sufficiently
fine meshes the same asymptotical efficiency index of approximately 3.6 as for quasi-
monotone problems and an optimal error reduction rate.
Results obtained in 3D showed an optimal reduction of the error as long as the piecewise
regularity is at least H1.5.


