
Chapter 3

Cascaded Ultrafast Energy

Redistribution of an Intramolecular
HB

The ultrafast hydrogen bond dynamics has been extensively studied in the last two

decades. Powerful IR lasers with a duration on a subpicosecond time scale facil-

itated investigation of vibrational motions and enabled to get an insight into the

strength of intra and intermolecular couplings, which is the key to understanding

the mechanisms of many processes occurring in nature. Experiments have proven

that the hydrogen bond dynamics is a multi-dimensional process ([19],[86]-[88]),

i.e., the hydrogen motion is coupled to the skeleton vibrations. Any theoretical

modelling has to account for this fact. While slow processes such as proton tun-

nelling are reasonably described within the Born-Oppenheimer scheme using an

adiabatic approximation to the multi-dimensional motion, ultrafast laser driven dy-

namics necessarily comes along with a complex behavior including nonadiabatic

transitions and related ultrafast IVR, for instance.

Coherent vibrational motion of a hydrogen bonded system had been observed

for the first time by Stenger et al. [19]: One - color pump - probe experiments on

Phthalic acid monomethylester (PMME) evinced coupling of the OH/OD stretch-

ing vibration to a low frequency mode which modulates the hydrogen bond length

(cf. Section 1.2 and Fig. 1.2). The observed quantum beats reflect the anharmonic

coupling between the two modes (see Fig. 1.1), since the excitation of the OH

stretching vibration is accompanied by vibrational transitions with respect to the

low frequency mode, giving rise to the oscillatory signal. Moreover, fast relaxa-

tion of the investigated mode indicated coupling to other degrees of freedom, and

the theoretical investigations were to throw light on the mechanisms of relaxation

processes.
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The theoretical study of the relaxation of the OH stretching vibration of HOD

in liquid D � O [89], [90] suggested that the relaxation in this system takes place via

the OH bending overtone, and the pathway to the ground state includes not just the

intramolecular, but also the solvent modes. This proved that the investigated pro-

cess is multidimensional, i.e., the coupling to other molecular modes is responsible

for the fast energy flow from the OH stretching mode.

Recent experiments by Heyne et al. [91] on PMME provided more understand-

ing of the deexcitation processes. They also observed oscillatory signal, Fig. 3.1

(a), which confirms intramolecular interactions. In a two - color experiment, the

pump pulse excited the OH stretching vibration and the probe pulse was tuned in

resonance with the OH bending mode, for instance. Those measurements proved

that the relaxation of the stretching mode occurs via the bending fundamental vi-

bration. In this section, we propose a mechanism for this process. Specifically, the

relaxation pathway for this intramolecular hydrogen bond is shown to be different

from the one which dominates the relaxation within the intermolecular hydrogen

bond network in water.

Figure 3.1: (a) Time dependent change of the OH stretch absorbance. (b) Normal-

ized Fourier intensity of the oscillatory signal. (c) Transients of the OH bending

absorbance after excitations of the OH stretching, CO stretching and OH bending

vibrations. Taken from reference [91].



3.1 PMME - a System with a Medium Strong Hydrogen Bond 55

3.1 PMME - a System with a Medium Strong Hy-

drogen Bond

The molecule we will focus on in this chapter is Phthalic acid monomethylester,

shown in Fig. 3.2. It contains a homonuclear medium-strong hydrogen bond.

The dynamics of the deuterated species, PMME-D, has already been studied in

the gas [92] and in the condensed phase [93], [94]. In the later case, a 3D rel-

evant system model was employed for clarifying the experimental data. It com-

prised the OD stretching vibration ��� , the OD out of plane bending vibration ���

and the low frequency hydrogen bond mode �����	� . Additionally, two normal mode

vibrations form the intramolecular bath which, together with the solvent modes

(external bath), enable relaxation of the stretching mode. The fast relaxation was

explained with a fourth order process that involves energy transfer from the �
� vi-

bration to two internal and one external bath mode. It is important to emphasize

that the suggested model was not backed by experimental observations of the re-

laxation path. Such data became available only recently, but for the protonated

species. However, although three significant degrees of freedom were sufficient

for describing the PMME-D dynamics, the protonated species (PMME-H) is char-

acterized by a different spectrum, and other modes are likely to be important for

the hydrogen dynamics. Since the energy levels of PMME-H are shifted upwards

compared to PMME-D, more normal modes can be combined to form Fermi res-

Figure 3.2: PMME molecule. The hydrogen bond is indicated with the dashed line.



56 Cascaded Ultrafast Energy Redistribution of an Intramolecular HB

onances with the OH stretching vibration. As will be shown in the following, five

degrees of freedom were needed for an adequate description of the hydrogen bond

dynamics in PMME-H.

As already mentioned, it was experimentally observed that the relaxation of the

OH stretching vibration proceeds mainly via the OH bending mode. In addition, an

oscillatory signal testified that the low frequency mode couples to the OH stretch-

ing vibration, giving rise to this signal. The low frequency mode actually modifies

the distance between the donor and the acceptor and influences the hydrogen mo-

tion. In this section we will propose a mechanism for the relaxation of the OH

stretching vibration, which includes the OH bending and the low frequency mode.

Although the size of the molecule suggests that this is probably not the only relax-

ation chanel, according to the experimental results it is the most important one.

AFF Method - Numerical Results

First, the molecular structure has been optimized with the B3LYP exchange cor-

relation functional and a 6-31+G(d,p) basis set, and the PES was constructed for

the vicinity of this stationary point. Since we want to study the dynamics of the

OH stretching vibration and this is a process that does not include large amplitude

motion of any atom, the Anharmonic Force Field approach as detailed in Section

2.2.1 should provide a good description. The quality of the calculated anharmonic

force fields with the B3LYP functional and a 6-31+G(d,p) basis set is discussed in

Appendix C.

Having chosen the procedure for generating the PES, we continue by calculat-

ing the anharmonic force fields in order to select the relevant normal modes. Fol-

lowing the previous discussion, the cubic and quartic anharmonic terms are cal-

culated according to Eq. 2.47 and 2.50, respectively. Since the force fields have

relatively small values comparing to the quadratic terms, it is desirable to obtain

them with high precision. The precision of the calculated anharmonic terms de-

pends on [47]:

(i) the accuracy of the optimized reference (in our case equilibrium) structure;

(ii) the accuracy of the second derivatives of the potential;

(iii) the step size of the displacement along normal modes.

The requirements in items (i) and (ii) are taken care of by employing an ultrafine

grid. Namely, the integrals given in Section 2.1.2 are solved numerically, so the

precision of the calculations depends on the number of grid points (for further in-

formation about the number of grid points see Reference [95]).
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Concerning the optimal step size, it depends on the accuracy of the second de-

rivatives [47]: ”For a given relative error � of the second derivatives, there is an

optimum step size
����

for the finite difference procedure such that the numerical

errors due to � (which decrease with increasing
� ��

) are equal to the truncation

errors due to the neglect of the higher derivatives (which increase with increas-

ing
� ��

)”. In order to find an optimal displacement for our system, we performed

a series of calculations for different displacements, Fig. 3.4. Panels (A) and (B)

correspond to cubic terms � � � � (for the bending mode � � , Fig. 3.3 right) and �
�	� �
(for the stretching mode � � Fig. 3.3 left), which are calculated according to Eq.

2.47. Comparing those two graphs, we see that the larger the numerical value of

the anharmonic term, the smaller is the influence of the step size. For the step sizes

0.030, 0.040 and 0.050 (in dimensionless normal mode coordinates), the difference

is approximately 1.5/2 cm ��� for the bending/stretching mode which corresponds

to the relative error of about 1/0.07 %. Focusing on the bending mode, the plot

suggests the step size between 0.030 and 0.040 to be optimal due to the change

of the trend - probably for lower and higher values, the errors accumulate, lead-

ing to lower values of this term. That is also the case for the stretching mode,

but one should keep in mind that the relative error for this case is rather small, so

for high frequency modes it does not introduce significant errors. Panels (C) and

(D) stand for the mixed terms � � � � and ��� � � . They describe the modification of the

bending mode due to its interaction with the stretching mode and vice versa. The

	�
 ��


Figure 3.3: The OH stretching, ��� , and the OH bending, � � , mode in PMME.
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Figure 3.4: Finding the optimal displacement for the calculation of the cubic force

fields for the (A) OH bending ( � ) and (B) OH stretching ( � ) vibration, as well as

the mixed terms (C) ��� � � and (D) ��� �	� . � �� is the dimensionless normal mode co-

ordinate. On panels (C) and (D), the solid and the dashed lines correspond to the

displacements along the bending and the stretching mode respectively.

former term has a value which is an order of magnitude higher than the latter due

to the Fermi resonance (the overtone of the bending mode lies close in resonance

to the fundamental stretching transition). Another interesting feature of � � � � is that

the calculation reveals a better convergence if the displacement is performed along

the stretching mode (dashed line) since the anharmonicity of the potential along the

stretching mode is more pronounced comparing to the one of the bending mode (cf.

Panels (A) and (B)).

As to the quartic force fields, the results are displayed in Fig. 3.5. Concern-

ing the diagonal bending �
� � � � and stretching �
�	� �	� terms, Panels (A) and (B), we

follow the same reasoning as for the cubic terms and conclude that the displace-

ment 0.040 is the optimal one. The relative accuracy for the OH stretching mode

is 2 % (for this comparison the result that correspond to
� ����������
	��

are not taken

into account). Concerning the �
� � � � term, low accuracy 20 %, suggests that the dis-
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Figure 3.5: Calculation of the quartic force fields: (A) � � � � � ; (B) ���	�	� � ; (C) ��� � � � .
The solid, dashed and dotted line correspond to the displacements along the bend-

ing mode, the stretching mode, and simultaneously along the bending and the

stretching mode, respectively.

placement
� �� ����� � � �

is not appropriate for calculating the quartic terms, since

the errors accumulate and lead to unreliable results. Again, the trend for the high

frequency term is more obvious. Concerning the mixed term � � � � � , Panel (C), we

note again that the accuracy of the calculated term is higher if the displacement is

performed along the ”more anharmonic” mode.

To summarize, for our calculations we used the displacement 0.030/0.040 for

the calculation of the cubic/quartic anharmonic terms according to Eq. 2.47/2.50.

In addition, it will be shown in the following that the couplings between most

strongly coupled modes have been treated exactly, i.e., by calculating the poten-

tial on a grid, since according to the values of the calculated force fields, the inter-

action between those modes is rather strong and probably would not be described

properly by two lowest anharmonic terms.
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Selection of Relevant Degrees of Freedom

Our goal is to model the relaxation of the OH stretching vibration, �
� . Before we

turn to a specific system, let us consider a general Tier model, Fig. 3.6. After an ex-

citation of the bright state, the energy is transferred to the neighboring states (that

form the 1 �
�

tier) to which it is coupled. Those states are coupled to the next man-

ifold of states (2
���

tier) and so on. The larger the system, the more complicated its

Tier model is.

Figure 3.6: The Tier model. After the excitation of the bright state, the energy is

transferred to the states forming the first tier, then further to the second tier, etc.

Turning back to our system, the bright state represents the � � mode and the first

task is to recognize the modes that form the 1 �
�

tier, i.e., the most strongly coupled

modes. It is known from the experiment that the OH bending mode, � � , and a cer-

tain low frequency mode, � ��� � with a frequency around 100 ��� ��� , take part in the

vibrational dynamics of � � . The next step is to identify this low frequency mode,

and in addition further degrees of freedom that couple to the hydrogen motion on

the basis of the quantum chemical calculations. Modes � � and � � are shown in

Fig. 3.3. Concerning the low frequency mode, there are two possibilities, Fig.

3.7. The harmonic values of the frequencies of ��� �	� and � � �	�	� are 39 ��� ��� and

72 ��� ��� , respectively. However, the anharmonic terms that correspond to � ��
 ��
 � �	�
and � ��
 ��
 ��� � � are -73 ��� ��� and 8 �
� ��� , and for ����
 ��
 � �	� and ����
 ��
 � �	� � , 15 ��� ��� and -5

��� ��� , respectively. In other words, mode � ��� � has much stronger influence on the

OH stretching and the OH bending mode than ��� �	��� . Additionally, the anharmonic

value �
�����
���	� is 65 ��� ��� (calculated from the uncoupled one-dimensional potential)

which leads to a conclusion that the experimentally observed mode is more likely

to be identified with � � �	� .

Having identified � � , � � and � � �	� , we checked how well the AFF procedure re-

produces the 1D potentials along those modes. The potentials that correspond to

the OH stretching and bending vibration are depicted on Fig. 3.8. The solid lines
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������� �	��
��
�

Figure 3.7: The two candidates for the low frequency mode.

stay for the potentials obtained on a grid by displacing the structure along the cor-

responding mode. The dashed lines are obtained from the AFF approach, i.e.,

��� ����� ����� � ���������	�� � 
 � � �� ��� � � 
 � 
 � ��!� � �	#" � � 
 � 
 � 
 � �%$� � (3.1)

The potential energy curve (PEC) for ��� is shown on Panel (A). Close to the equi-

librium, Eq. 3.1 represents a good approximation to the true potential. However,
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Figure 3.8: One - dimensional potentials along ��� and � � . The solid lines represent

potentials on a grid, and the dashed curves correspond to Eq. 3.1.
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Figure 3.9: One - dimensional potentials along ��� �	� . The solid/dashed line repres-

ent potentials on a grid/Eq. 3.1.

for large displacements the two curves start to diverge. Concerning � � , the anhar-

monicity of this mode is not very pronounced, so the model potential can describe

the system well even above 10
$

cm ��� .
The situation is quite different for ��� �	� , Fig. 3.9. The potential on a grid re-

sembles a square well potential. Its anharmonicity can not be described with the

two lowest anharmonic terms, even for very small displacements. That is, one

would have to compute higher order derivatives of the potential in order to obtain

reasonable results.

The next step is to examine the force fields that involve the above three modes

to find out which of the remaining intramolecular modes are strongly coupled. By

analyzing the cubic and the quartic anharmonic terms, we identified two normal

modes, � � and � � , shown on Fig. 3.10 that couple to the above mentioned degrees

of freedom, in particular to � � . They have an OH out of plane bending charac-

ter. The harmonic and the anharmonic frequencies (computed from
� � ��� � ����� ) are

given in Table 3.1, which confirm the marked anharmonicity along �
� and � ���	� .

Notice that the selection was also based on energetic arguments, a point which will

be explained in more detail below.

Some of the cubic and the quartic anharmonic terms are compiled in Tables 3.2

and 3.3, respectively.

Having chosen the relevant degrees of freedom, we proceed by calculating the

potential energy surface. It would be desirable to generate a potential on a 5D grid.
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����� �����

Figure 3.10: The two additional normal mode vibrations of PMME, �
	�� and ��	�
 .

�
� � � � � ���	� ��	�� ��	�


�
��

(cm ��� ) 3279 1446 39 682 785

�
��� ��

(cm ��� ) 3005 1485 65 685 788

Table 3.1: Normal mode vibrations of PMME: �
��

and �
��� ��

correspond to har-

monic and anharmonic values respectively.

�����
� � � � 
 ��
 � in cm ��� �����
� � � � 
 ��
 � in cm ���
� � � � � -2867 � ���������

� � -36

� � � � � 498 � ���������
� � 35

� � � � � 130 � ���������
� � 26

� ���������������
94 � � � �

�
� � 23

� ���������������
-93

���������������������
-20

� � � �
�

� � 76 � � � � � � -16

� � � ������� -73 � � � ������� 15

� ���������
� � -70

�������
� �

�
� � -13

� � � � � -62 � � � � � � -13

� � � � � � 50
���������������

� � -12

� � � � � � 46 � � � �
�

� � 11

� � � �
�

� � 43 � � � �
�

� � 9

Table 3.2: Significant cubic anharmonic terms that involve � � , � � and � � �	� .

However, that would require appreciable computational costs, so we are forced

to find an appropriate approximation to the exact five - dimensional hypersurface.
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�����
� � � � � � 
 ��
 �

 � in cm ��� �����
� � ��� � � 
 ��
 �

 � in cm ���
� � � � � � � 1853 � � � � � � � � -31

� � � � � � � -555
��� � ����� � �

� �
�

� � 30
�����������������������������

384 � � � ����� � ����� �
-30

� � � ���������������
-275 � � � ����� � �

� � -25

� � � � � � � 176
��� � ����� � ����� � �

� � -24

� � � ���������
� � 100 � ����� � ����� � ����� �

22

� � � � � � � 83 � � � ����� � ����� �
22

� � � � � �
�

� � -80
��� � ����� � �

� �
�

� � 21

� � � ���������
� � 74 � � � � � ����� � 20

� � � � � � � -73
��� � ����� � �

� �
�

� � 18
�����������������������

� � -51 � � � � � � � � -16

� � � � � ������� 50 � � � ����� � �
� � 14

� � � � � �
�

� � -47 � � � � � ����� � 14

� � � � � �
�

� � -35 � � � � � �
�

� � -13

� � � � � � � � -31 � � � � � � � � -12

Table 3.3: Significant quartic anharmonic terms that involve � � , � � and � ��� � .

Consider the following expression for the potential (cf. Eq. 2.37)

� � � � ���
�

� � � � � � � ��� � � � ��� � �%� � � ��� � � � (3.2)

where
�

comprises all five degrees of freedom.
� � ��� � ����� stands for the potentials

of the uncoupled modes, whereas
� � � � � describes the couplings between them.

The 1D potentials are easily obtainable. For the
	

- mode coupling potentials, we

decided to calculate them explicitly on the grid for those pairs of modes which are

most strongly coupled (i.e., ��� , � � and � ���	� ). Such a treatment has been suggested

by our attempt to obtain a converged force field (cf. Fig. 3.4 (D), for instance). All

other
	

- mode couplings as well as
�

- mode and
"

- mode couplings are included

via anharmonic force field terms. Hence, the total potential is given by

� � � � � � � � � ����� �%� � � � � � � �
� �

�
� � � � � �

� �
��� �
� � � � � �

� �
��� �
� � �

�
��� � � � � �

� ��� ��� � � � � � �" � � � ��� � �
� � � � �%� � � � � � � (3.3)

Note that the last two sums do not include terms which are already given by 2D

potentials ( � ��
 ��
 � , for instance).

In order to investigate the dynamics of the relevant system, the � - dimen-

sional Hamiltonian needs to be diagonalized. To this end we start by defining a
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basis of uncoupled anharmonic modes ����������
	�� , which are obtained by solving the

Schrödinger equation
 � ��� ���� 	 �����	� � � � ��� � ������� ��� ���� 	 ��� ���� ��� ���� 	 (3.4)

with the Fourier grid Hamiltonian method ([96]). Since the vibrational period of

the low frequency mode is much longer than for the other four modes, it will be

convenient to introduce a diabatic representation with respect to �
� �	� , i.e., a time

independent Schrödinger equation is solved�
� � 
 � � � � � � � ��� � ��� � � � �	�

� � ��� � � 	 ����� ��� 	 � (3.5)

level
�

(cm ��� ) (  � ,  � ,  �	 � ,  �	�
 ) ! � 
 � ��� �
1 0 (0,0,0,0) 1.000

2 693 (0,0,0,1) 0.997

3 799 (0,0,1,0) 0.997

4 1385 (0,0,0,2) 0.995

5 1455 (0,1,0,0) -0.991

6 1501 (0,0,1,1) -0.988

7 1601 (0,0,2,0) -0.994

8 2077 (0,0,0,3) -0.992

9 2149 (0,1,0,1) -0.987

10 2202 (0,0,1,2) 0.980

11 2253 (0,1,1,0) 0.988

12 2312 (0,0,2,1) 0.977

13 2406 (0,0,3,0) 0.987

15 2841 (0,1,0,2) -0.945

16 2853 (0,2,0,0) -0.817

(1,0,0,0) 0.486

18 2956 (0,1,1,1) -0.976

19 3022 (0,0,2,2) -0.960

20 3044 (1,0,0,0) -0.837

(0,2,0,0) -0.492

21 3054 (0,1,2,0) -0.962

Table 3.4: Energies of the selected diabatic states and assignment, expressed in

terms of the uncoupled anharmonic modes. The last column contains relevant ex-

pansion coefficients.



66 Cascaded Ultrafast Energy Redistribution of an Intramolecular HB

Figure 3.11: Energy levels of the diabatic states. The lines on the left stand for the

fundamental transitions of the fast modes: green - ��	 � , yellow - ��	 
 , red - � � , blue

- � � . The levels on the right side represent overtone and combination transitions.

with
���

� � � � � � �
� �

�
� � 	�� � � 	�
 � and the first sum runs over the fast modes. The

zero - order states ����� 	�� are further expanded in a basis of uncoupled anharmonic

modes

� � 	 � � � ��� � ! � 
 � � � � ��� � �� 	 ��� � �

� 	 ��� � � �� 	 ��� � � 

� 	 (3.6)

The leading configurations are compiled in Table 3.4. Note the presence of Fermi

resonance: ��� � �  	 and � � � 	�� 	 represent mixed states, although the former

corresponds dominantly to the bending overtone and the latter to the stretching

fundamental transition. Such strong interaction justifies an exact treatment of the

coupling between those two modes.

Some of the diabatic levels are shown in Fig. 3.11. The fundamental transitions

of the fast four modes are depicted on the left side. The overtone and the combina-

tion transitions of the two out of plane bending modes lie close in resonance to the

� � transition. On the other side, the first overtone of ��� , as well as the combination

of � � and the overtones of ��	�� and ��	�
 form the stretching band. These resonance

conditions have also been the guide for including the two additional modes into

our model. The scheme depicted in Fig. 3.11 already suggests possible relaxation

channels of the OH stretching and bending mode.

After defining the diabatic states, the total Hamiltonian in the diabatic repres-
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Figure 3.12: The diabatic potential energy curves. The black line corresponds to

the ground state, the lower red line stands for the state that has dominantly OH in

plane bending character, whereas the upper red curve represents its overtone. The

state marked with the blue color has mainly OH stretching character.

entation is given by
�� � � � � � ��� ��� ��� � � ��� � � ��� � � � � � � ���	�
��� � � ��� � ��� � � ��� � � � �	�

�
	 � � 	��
� �
(3.7)

with

� ��� � � � �	�
� � � � � � � ��� � � � �	�

� � � � � ��� � ��� � � ���	�
� � � � � ��� � ��� � � � �	�

� � � � � 	 � (3.8)

being responsible for the population transfer since it represents the coupling

between the diabatic levels.
� � � ��� � ��� � � ���	�

�
accounts for the coupling between

the four fast modes with the low frequency mode.

The diabatic potential energy curves,
� � � � � � �	�

�
, are shown in Fig. 3.12. Re-

call that each of the diabatic curves contains vibrational levels with respect to the

low frequency mode. In addition, the anharmonic value of � � �	� is only
 � cm ��� (cf.

Table 3.1), so by climbing along the energy scale, the density of states increases
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Figure 3.13: (A) Experimental spectra for PMME-H (black) and PMME-D (blue

line) (courtesy of K. Heyne). The arrows point at the OD and the OH stretching

band. (B) Experimental spectrum for PMME-H and the calculated stick spectrum.

considerably. The black line represents the ground state, the first red line the fun-

damental � � transition, and the next red line its overtone. The blue line stands for

the state that has dominantly OH stretching character.

Further, we calculated the stick spectrum according to
� � � � � � ��� � � � � ��� � � � � � � �

� � �
(3.9)

with
� �

being the distribution function and � ��� the transition dipole moment. The

results are shown in Fig. 3.13, Panel (B), together with the experimental spectrum.

The experimental spectra of the protonated and the deuterated species are given in

Panel (A), with marked bands that correspond to the OH and OD stretching trans-

itions. The broad band between 2750 and 3250 cm ��� corresponds to transitions
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that include the highest manifold of states depicted in Fig. 3.12. The interaction

of the bending overtone and the stretching mode is responsible for the appearance

of the double peak structure, which can be clearly seen in the stick spectrum as

well.

The model for the relevant system is now completely defined. Before proceed-

ing to the dynamics, we will discuss the interaction with the surrounding.

3.1.1 System - Bath Coupling

In order to model the fast relaxation of the ��� mode which was observed in the

experiment, we included two types of interaction with the bath, bilinear coupling

and third order coupling.

Bilinear coupling. If Eq. 2.109 is understood as Taylor expansion of the

PES, it is to be expected that the lowest order terms have the greatest significance.

Therefore, in order to study the interaction between the relevant system and the

solvent, we will consider first the lowest order term, i.e., linear term with respect

to the system � �� � and reservoir � �� � (external bath) degrees of freedom

Figure 3.14: Red line: spectral density obtained from the MD simulations. Black

line: ohmic spectral density. The arrow indicates �������	�

� (taken from Ref. [94]).
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�
 ��� ���� � ��
� �	�
�
�

�
� �	� ��� �� �
 � (3.10)

where ��� represents the coupling constant for the bath oscillator with frequency

� � . This quantity was obtained from classical molecular dynamics simulations of

PMME in CCl $ at 300 K (performed by H. Naundorf [65]). The spectral dens-

ity, calculated according to Eq. 2.128, is displayed in Fig. 3.14 with the red line,� ��
�� � � � � , and was approximated by the ohmic spectral density
� ����������� � � � � [67]

� ����������� ��� � � � ����� � � � � � � � ��� � � ��� � � � ��� � ��!"�$# (3.11)

where � � stands for the cut-off frequency. The step function
� � � � insures that the

spectral density is equal to zero for negative frequencies. The arrow in Fig. 3.14

indicates the anharmonic value of ��� �	� . It almost coincides with the maximum of

the spectral density, which means that the transfer of energy from this mode to the

solvent should be efficient. Starting from this expression the bath correlation func-

tion obtains the form

! ��� �� �	� � � � �&% � � �(' � � � � � � ��� � � � � � � ��� ��� � �
� 	

(3.12)

where
' � � � stands for the Bose-Einstein distribution function for the reservoir

modes.

Third order coupling. The linear coupling discussed above describes relaxa-

tion of the � ��� � mode. However, the other four modes have rather high frequencies

and cannot directly transfer the energy to the solvent. Therefore, it is necessary to

find another channel for their relaxation.

)+*-, .+/10

Figure 3.15: Modes � � � and � ��
 with frequencies 694 cm ��� and 795 cm ��� form the

intramolecular bath.
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Recall the Tier model which was introduced when selection of modes that form

the relevant system was discussed. The first tier for � � and � � is easily recogniz-

able from Fig.3.11, which suggests that the � � mode might relax by transferring the

energy to the other four modes, while ��� is coupled to three close lying levels cor-

responding to the overtone and combination transitions of �
	�� and ��	�
 . That is, the

energy ends up in the three modes having the lowest energy. In principle, one could

proceed further, and according to the calculated force fields identify other molecu-

lar modes that can accept the excess of energy from the two out of plane bending

modes. However, including additional modes into the relevant system would result

in a model of a rather high dimensionality, which would lead to a drastic increase

of the CPU time. Therefore, we included two additional modes of the PMME mo-

lecule, Fig. 3.15, � � � and � ��
 that form the internal bath and to which, according

to the calculated force fields, the energy should be efficiently transferred. Those

two modes are close in energy to � 	�� and ��	�
 , and the energy gap is bridged by the

solvent modes, as shown in Fig. 3.16. This 3 �
�

order coupling is given by

�
 ���1� �� � � �� 	 � � �
�
� �	� ���1� �	�� 
 � ��
 � �� � � �
 � � �� 	 
 � �

�
� � � ���1� �	�
 
 ��
�
 � �� � 
 �
 � (3.13)

with � �� � � being the coordinates of the internal bath modes. Notice that the solvent

mode is also necessary because there would be no 2
���

order coupling. Addition-

ally, we will assume the same coupling strength between the pairs ( �
	�� , � � � ) and

( ��	�
 , � ��
 ) which leaves us with a single parameter � ���1� �	 ��
 � ��
 � � � ���1� �	�
 
 ��
�
 ��� � ���1� � . The

reservoir correlation function reads [67]

Figure 3.16: Coupling of the system degrees of freedom to the internal and the

external bath, Eq. 3.13.
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! ���1� �� � � � � � % � � �(' � � � � � � � � �(' � � � � � � � �� � ���1� � � � � � � � � � � ���1� ��� � � � � � � � ��� 	� % ' � � � � � � � � ' � � �
� � � � �� � ���1� � � � �

� � � � � �����1� � � � � � �
� � � ���
	 (3.14)

with
�

= 1, 2. The off-diagonal terms ! ���1�1� �� � vanish, since for the harmonic oscil-

lator bath � � � � ��� � 
 � ��� � � ��
 � � � 
 � � � � 	 ���
.

It should be emphasized that this is not the only relaxation mechanism for � 	��
and ��	 
 . For example, there is a mode with frequency 337 cm ��� , whose overtone is

close in energy with the above two modes. However, the energy difference would

have to be compensated with a bath mode, which would result in a 4
� �

order pro-

cess. Most likely, this mechanism would be less efficient than the one we consider.

To summarize, the total system - bath Hamiltonian reads

�
 ��� � � � �	�
�
�

� ��� �� 
 � � � 	�� � �
�
� �	� ���1� �	 ��
 � ��
 � � � � 
 � � � 	�
 � �

�
� �	� ���1� �	�
�
 ��
 
 � � ��
 
 �

(3.15)

The first sum describes the relaxation of the low frequency mode, while the other

two terms allow relaxation of the two out of plane bending modes. The coupling

strength � ��� � is obtained from MD simulation, and the only parameter that needs to

be fitted in order to reproduce the experimentally observed IVR times for �
� and

� � is � ���1� � , which stands for the coupling between the system and the internal bath.

The internal bath consists of two normal modes, ��� � and � � 
 , which are close in

energy to ��	 � and ��	 
 .

3.2 Population Dynamics of the Cascaded Energy

Relaxation

In order to follow the system dynamics, we used the Redfield approach within the

Bloch limit, Section 2.3.2. The propagation of the reduced density matrix is per-

formed in the energy representation [67], i.e., the basis formed by the eigenstates

of the total Hamiltonian (cf. Eq. 3.7) ����� 	 �
 � � � � � � 	 � �
� ��� 	 � (3.16)

For the purpose of following the populations of the zero-order states, the ei-
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genstates of the full Hamiltonian are expanded in the basis of the diabatic states� � 	 � ��

 ���

! �� ��� ��� 	 � � � ��� 	 (3.17)

where � � � ��� 	 correspond to � ��� � , i.e., they are eigenstates of the uncoupled dia-

batic potential curves and ! ��

 ��� are the expansion coefficients. Hence, the rela-

tion between the density matrices in the eigenstate and the diabatic representation

is given by
� � � � ��


 ���
��

 ���

! �� � � � � � � 
 ��� � ! ���� � (3.18)

We will consider a Frank-Condon like transition that corresponds to a vertical

transition from the ground state to the state of interest (in our case those are the

states that describe the OH bending and stretching motion). Neglecting the diabatic

state couplings, the initial condition is given by [67]

� � � � 
 �	� � � � � � � � � � � � � � ��
�
 	�� ��
�
 � � �	� � 	 (3.19)

where � ��
�
 	 stands for the ground state. The equation of motion of the density mat-

rix (cf. Eq. 2.113 and 2.120) in the energy representation in the Bloch limit reads

 � � �


�
� �

� � � � � � � �
� �
���

� ��
 � � � � � � �
� �
�
�
�
��� 
 � � � � � � (3.20)

The elements of the Redfield matrix, Eq. 2.119, are calculated by inserting the

expression for
�
 � � , Eq. 3.15, into Eq. 2.118 for the damping matrix.

According to the established relation between the two representations (cf. Eq.

3.18), we are able to calculate the populations of the diabatic states

� � � �
���

� � � � 
 � � � (3.21)

As already mentioned, we aim at modelling the relaxation of the �
� mode.

Since the experiments showed that this process involves the ��� mode, we will study

its relaxation as well. To start with, we populated the states that have dominantly

OH bending and stretching character (states � � � � 	 and ��� ��	�� 	 , cf. Table 3.4)

by means of a Frank-Condon like transition. The relaxation takes place via:

(i) Internal vibrational redistribution, which is due to the coupling terms
� ���

that allow population transfer from � � 	 to � � 	 . According to the spectral

density shown in Fig. 3.14, the energy cannot directly be transferred from

� � and � � modes to the bath and therefore in the first step it is transfered to

states that form the first tier. Fig. 3.11 suggests the the first tier for the � � / � �

modes is formed by states ( ��� � " 	 � ��� �  	 and � � ��� 	 )/( ��� � � � 	 � ��� �
�  	 � ��� � � � 	 � ��� � ��� 	 � � � � ��� 	 and ��� ��	 � 	 ).
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(ii) Dissipation, which is accounted for through Eq. 3.15, i.e., via interactions

with the internal and the external bath. The coupling strength for the lin-

ear interaction has previously been determined by classical MD simulations

( � ��� � = 0.057), and the only parameter left to be determined in order to repro-

duce the experimentally observed relaxation time is the coupling strength for

the third order interaction, � ��� � � . For our calculations we used � ���1� � = 0.065.
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3.2.1 Relaxation Mechanism of ���

In order to study the relaxation mechanism of the ��� mode, we populated the state��� � � 	 (cf. Table 3.4) which has dominantly OH bending character by means of

a Frank-Condon like transition.

The diabatic state population dynamics is shown in Fig. 3.17. The blue line

corresponds to the OH bending vibration. It decays monotonically, so that after 2

ps the population of state ��� � � 	 was about 10%. The estimated IVR time �����	�
= 850 fs is in a good agreement with the experimental results [91]. The green line

represents sum of populations of the close lying states, which are essentially the

overtones of ��	 � and ��	 
 and their combination transition. The population is ini-

tially transferred to this manifold of states and it reaches the maximum after 400

fs. This population transfer is due to IVR, i.e., the energy stays within the system

but is redistributed among different modes. The decay of the green line is accom-

panied with the rise of the red line that stands for the fundamental transitions of the
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Figure 3.17: Population dynamics after a Frank-Condon like transition to the state��� � � 	 (blue line) which has essentially OH bending character. The green and the

red line represent sums of � � $ � ��
�� �
� �
and � �

�
� � ! � , respectively. The black

line stands for the ground state.
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two OH out-of-plane bending modes. This behavior is a consequence of the system

- bath coupling. After 1 ps, those states get depopulated owing to the dissipation,

Eq. 3.13. The ground state (black line) shows a uniform increase of population

throughout the propagation.

This population/energy transfer is schematically shown in Fig. 3.18. The col-

ors correspond to those of Fig. 3.17. It can clearly be seen that the system relaxes

to the ground state by loosing one quantum of ��	 � and ��	 
 , that further transfer the

energy to the bath.

Figure 3.18: Stepwise energy transfer during the relaxation of the � � mode. The

first step (1) is strongly influenced by the relaxation of the low frequency mode,

while the second step (2) requires the third order relaxation mechanism.
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Figure 3.19: Populations of the state ��� � � 	 after a Frank-Condon like transition

under the following conditions (from bottom to top): by using the total Hamilto-

nian; without the 3 �
�

order coupling; without the bilinear coupling; by neglecting

both the internal and the external bath.

In order to understand the role of the bath, we performed a series of calculations

under different conditions, Fig. 3.19. The Figure contains population changes

of state ��� � � 	 . The lowest curve is obtained by using the total Hamiltonian,

whereas for the next curve the 3 �
�

order coupling is neglected. The importance of

the intramolecular bath is apparent from Fig. 3.20 which contains changes of
���

(blue), � � $ � ��
�� �
� �
(green) and � �

�
� � ! � (red): The population is transferred

to the 1 �
�

tier (states marked with the green line in Fig. 3.18), but the system can-

not relax to the ground state, since further energy release which can proceed only

via the low frequency mode is too inefficient. Essentially, lower lying states do not

have any influence on the dynamics, due to the fact that the last step from Fig. 3.18

is missing. This results in a much longer IVR time, � ���	� = 1.5 ps.

The 3 �
�

curve from bottom, Fig. 3.19, corresponds to the case when the bilin-

ear coupling is neglected, i.e., the energy transfer from ��� �	� to the external bath

is not applied. The population basically remains within the � � mode. This con-

firms the importance of the low frequency mode which facilitates an equilibration
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Figure 3.20: Populations changes of
� �

, � � $ � � 
 � �
� �
and � �

�
� � ! � are rep-

resented with the blue, green and red line, respectively. For this calculation, the

internal bath is neglected.

between those diabatic potential energy curves which are close in energy. Finally,

the last curve in Fig. 3.19 describes the dynamics with no dissipation at all. Our

results show that in order to reproduce the experimentally observed IVR time, it

was necessary to introduce both the internal and the external bath.

3.2.2 Relaxation Mechanism of � �

We turn now to the investigation of relaxation of the OH stretching vibration. The

question arises whether we can use the same parameters as for the bending ex-

citation. Like in the previous case, the state that has dominantly OH stretching

character, � � � 	 � 	 is initially populated by a Frank-Condon transition, and the

population changes of the relevant states are depicted in Fig. 3.21. The nature of

states being (de)populated can best be viewed by comparing with the energy levels

sketched in Fig. 3.22. The population is directly transferred to the 1 �
�

tier, which

consists of states (0,1,2,0), (0.1,1,1), (0,2,0,0) and (0,1,0,2) (marked with a yel-

low color). The second step includes population transfer to (0,1,1,0) and (0,1,0,1),
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Figure 3.21: Population dynamics after a Frank-Condon like transition to the state��� � 	�� 	 (blue line) which has essentially OH stretching character. The yellow

and the green line represent sums of � �
�
� � �

�

 � �

� �
� �

� �
�

and � ��� � �
� �
�
,

respectively, whereas the red line corresponds to
� �

. The black line stands for the

ground state.

whereas in the next step the fundamental OH bending mode is excited, as well as

the close lying states. Further relaxation proceeds via the mechanism explained in

the previous section. In other words, the relaxation of the OH stretching mode is a

cascading process, which takes place via release of one quantum of energy of � 	��
and ��	�
 , in each step, Fig. 3.22. The estimated IVR time is � ��� � = 190 fs which is

in good accord with the experimental value [91].
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Figure 3.22: Cascaded energy transfer during the relaxation of the �
� mode. The

population is initially transfered from the state ��� � 	�� 	 to the closest states dis-

played with the yellow color. This manifold of states is composed from the bend-

ing overtone, as well as the combinations of ��� with the overtones of ��	�� and ��	�
 .
As in the previous case (relaxation of the ��� mode) this first step takes place due

to the presence of � ��� � . Further energy release proceeds via the internal bath.

Let us consider the effect of the bath in more detail, Fig. 3.23. If the internal

bath is not accounted for, 2
���

curve from the bottom, the relaxation time for the

� � mode is 200 fs, which still reproduces the experimental value well. That means

that 3 �
�

order coupling does not strongly affect population decrease from ��� � 	 � 	
state, since the energy is in the first step dominantly transferred to four neighbor-

ing states, Fig. 3.24. Due to the low � ���	� , the population is transferred to the first

tier (yellow line) formed by the closest states. According to Table 3.4, they in-

volve the overtone of � � , as well as the combination of � � and the overtones of ��	��
and ��	 
 . However, further energy release would include loss of energy that cor-

responds to the OH out of plane modes, and for this purpose the internal bath is

required. Since this channel for relaxation is not accounted for, those states do not

take place in the dynamics. In other words, fast relaxation of the ��� � 	�� 	 state

is due to IVR, i.e., strong coupling to the close diabatic levels that results in popu-
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Figure 3.23: Populations of the state ��� ��	 � 	 after a Frank-Condon like transition

under the following conditions (from bottom to top): by using the total Hamilto-

nian; without the 3 �
�

order coupling; without the bilinear coupling; by neglecting

both the internal and the external bath.

lation transfer. Those intramolecular couplings are stronger than the intermolecu-

lar with the internal bath, so the presence of the later is not necessary for getting

a crude explanation of this process. Nevertheless, the external bath plays again a

crucial role: The neglection of the bilinear coupling, 3 �
�

curve from the bottom,

leads to an extremely slow population decay.

Analysis of the OH stretching vibration of HOD in liquid D � O [89], [90]

showed that it takes place via the overtone of the OH bending vibration. Since the

PMME molecule is larger, more degrees of freedom take part in the dynamics, and

the mechanism includes in addition to the in plane bending overtone states formed

by combinations with the two OH out of plane bending modes. That is, due to the

greater complexity of the system, more resonance transitions appear, which results

in a different relaxation pathway.
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Figure 3.24: Populations changes of
�

� 
 , � �
�
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�

 � �

� �
� �

� �
�
, � ���	� �

� �
�

and
� �

are represented with the blue, yellow, green and red line, respectively. For this

calculation, the internal bath is neglected.

3.2.3 Concluding Remarks

We studied the relaxation mechanisms of the OH bending and stretching vibrations

in PMME. Both modes cannot release the energy directly to the bath, due to the

absence of resonant transitions of the bath modes. Therefore, they transfer the en-

ergy to the neighboring states. This step is supported by the low frequency mode,

which directly interacts with the external bath. The relaxation of the OH out of

plane modes takes place via a 3 �
�

order process, which includes both the internal

bath (which consists of two molecular modes) and the external bath. The coup-

ling strength for the relaxation of � � �	� was previously determined, and the only

parameter we introduced was the coupling strength for the 3 �
�

order process. We

used the same value for � ��� � � for modelling the relaxation of � � and � � . The present

model could be extended by using, for instance, full Redfield equations. Further,

the Frank-Condon like transition could be replaced by an excitation with an IR

laser pulse. Due to its finite width, the pulse would excite not just state � � � 	 � 	 ,
but the whole manifold.
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The proposed mechanism represents only one channel for relaxation. It was

experimentally observed that 30% of population of � � relaxes via � � . There-

fore, we focused our attention on the most important pathway, although a mo-

lecule that contains as many degrees of freedom as PMME, can probably relax

through different mechanisms. We believe that such cascading relaxation is not

a property of this specific molecule, but rather represents a generic behavior of in-

tramolecular hydrogen bonded systems. For example, � ���	� of the deuterated 2-(2’-

hydroxophenyl)benzothiazole is also estimated to be about 200 fs [97].


