Chapter 3

Cascaded Ultrafast Energy
Redistribution of an I ntramolecular
HB

The ultrafast hydrogen bond dynamics has been extensively studied in the last two
decades. Powerful IR lasers with a duration on a subpicosecond time scale facil-
itated investigation of vibrational motions and enabled to get an insight into the
strength of intra and intermolecular couplings, which is the key to understanding
the mechanisms of many processes occurring in nature. Experiments have proven
that the hydrogen bond dynamicsis a multi-dimensional process ([19],[86]-[88]),
i.e., the hydrogen motion is coupled to the skeleton vibrations. Any theoretical
modelling has to account for this fact. While slow processes such as proton tun-
nelling are reasonably described within the Born-Oppenheimer scheme using an
adiabatic approximation to the multi-dimensiona motion, ultrafast laser driven dy-
namics necessarily comes along with a complex behavior including nonadiabatic
transitions and related ultrafast IVR, for instance.

Coherent vibrational motion of a hydrogen bonded system had been observed
for thefirst time by Stenger et al. [19]: One - color pump - probe experiments on
Phthalic acid monomethylester (PMME) evinced coupling of the OH/OD stretch-
ing vibration to alow frequency mode which modul ates the hydrogen bond length
(cf. Section 1.2 and Fig. 1.2). The observed quantum beats reflect the anharmonic
coupling between the two modes (see Fig. 1.1), since the excitation of the OH
stretching vibration is accompanied by vibrational transitions with respect to the
low frequency mode, giving rise to the oscillatory signal. Moreover, fast relaxa
tion of the investigated mode indicated coupling to other degrees of freedom, and
the theoretical investigations were to throw light on the mechanisms of relaxation
Processes.
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The theoretical study of the relaxation of the OH stretching vibration of HOD
inliquid D, O [89], [90] suggested that the relaxation in this system takes place via
the OH bending overtone, and the pathway to the ground state includes not just the
intramolecular, but also the solvent modes. This proved that the investigated pro-
cessismultidimensiondl, i.e., the coupling to other molecular modesisresponsible
for the fast energy flow from the OH stretching mode.

Recent experimentsby Heyneet a. [91] on PMME provided more understand-
ing of the deexcitation processes. They also observed oscillatory signd, Fig. 3.1
(@), which confirms intramolecular interactions. In atwo - color experiment, the
pump pulse excited the OH stretching vibration and the probe pulse was tuned in
resonance with the OH bending mode, for instance. Those measurements proved
that the relaxation of the stretching mode occurs via the bending fundamental vi-
bration. In this section, we propose a mechanism for thisprocess. Specifically, the
relaxation pathway for thisintramolecular hydrogen bond is shown to be different
from the one which dominates the relaxation within the intermolecular hydrogen
bond network in water.
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Figure 3.1: (a) Time dependent change of the OH stretch absorbance. (b) Normal-
ized Fourier intensity of the oscillatory signal. (c) Transients of the OH bending
absorbance after excitations of the OH stretching, CO stretching and OH bending
vibrations. Taken from reference [91].



3.1 PMME - a System with a Medium Strong Hydrogen Bond 55

3.1 PMME - a System with a Medium Strong Hy-
drogen Bond

The molecule we will focus on in this chapter is Phthalic acid monomethylester,
shown in Fig. 3.2. It contains a homonuclear medium-strong hydrogen bond.
The dynamics of the deuterated species, PMME-D, has already been studied in
the gas [92] and in the condensed phase [93], [94]. In the later case, a 3D rel-
evant system model was employed for clarifying the experimental data. It com-
prised the OD stretching vibration v,, the OD out of plane bending vibration v,
and the low frequency hydrogen bond mode v,,,,,. Additionally, two normal mode
vibrations form the intramolecular bath which, together with the solvent modes
(external bath), enable relaxation of the stretching mode. The fast relaxation was
explained with afourth order process that involves energy transfer from the v, vi-
bration to two interna and one external bath mode. It is important to emphasize
that the suggested model was not backed by experimental observations of the re-
laxation path. Such data became available only recently, but for the protonated
species. However, athough three significant degrees of freedom were sufficient
for describing the PMME-D dynamics, the protonated species (PMME-H) is char-
acterized by a different spectrum, and other modes are likely to be important for
the hydrogen dynamics. Since the energy levels of PMME-H are shifted upwards
compared to PMME-D, more normal modes can be combined to form Fermi res-

Figure3.2: PMME molecule. Thehydrogen bondisindicated with thedashed line.
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onances with the OH stretching vibration. Aswill be shown in the following, five
degrees of freedom were needed for an adequate description of the hydrogen bond
dynamicsin PMME-H.

Asalready mentioned, it was experimentally observed that the relaxation of the
OH stretching vibration proceeds mainly viathe OH bending mode. Inaddition, an
oscillatory signal testified that the low frequency mode couples to the OH stretch-
ing vibration, giving riseto thissignal. Thelow frequency mode actually modifies
the distance between the donor and the acceptor and influences the hydrogen mo-
tion. In this section we will propose a mechanism for the relaxation of the OH
stretching vibration, which includesthe OH bending and the low frequency mode.
Although the size of the molecul e suggeststhat thisis probably not the only relax-
ation chanel, according to the experimental resultsit is the most important one.

AFF Method - Numerical Results

First, the molecular structure has been optimized with the B3LY P exchange cor-
relation functiona and a 6-31+G(d,p) basis set, and the PES was constructed for
the vicinity of this stationary point. Since we want to study the dynamics of the
OH stretching vibration and thisis a process that does not include large amplitude
motion of any atom, the Anharmonic Force Field approach as detailed in Section
2.2.1 should provide agood description. The quality of the cal culated anharmonic
forcefields with the B3LY P functional and a 6-31+G(d,p) basis set isdiscussed in
Appendix C.

Having chosen the procedure for generating the PES, we continue by calculat-
ing the anharmonic force fields in order to select the relevant normal modes. Fol-
lowing the previous discussion, the cubic and quartic anharmonic terms are cal-
culated according to Eq. 2.47 and 2.50, respectively. Since the force fields have
relatively small values comparing to the quadratic terms, it is desirable to obtain
them with high precision. The precision of the calculated anharmonic terms de-
pends on [47]:

(i) theaccuracy of the optimized reference (in our case equilibrium) structure;
(ii) the accuracy of the second derivatives of the potential;
(iii) the step size of the displacement along normal modes.

The requirementsinitems (i) and (ii) are taken care of by employing an ultrafine
grid. Namely, the integrals given in Section 2.1.2 are solved numericaly, so the
precision of the cal culations depends on the number of grid points (for further in-
formation about the number of grid points see Reference [95]).
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Concerning the optimal step size, it depends on the accuracy of the second de-
rivatives [47]: " For a given relative error e of the second derivatives, thereis an
optimum step size AQ for the finite difference procedure such that the numerical
errors due to e (which decrease with increasing AQ) are equal to the truncation
errors due to the neglect of the higher derivatives (which increase with increas-
ing AQ)” . In order to find an optimal displacement for our system, we performed
aseries of calculations for different displacements, Fig. 3.4. Panels (A) and (B)
correspond to cubic terms kg, (for the bending mode v, Fig. 3.3 right) and £,
(for the stretching mode v, Fig. 3.3 left), which are calculated according to EqQ.
2.47. Comparing those two graphs, we see that the larger the numerical value of
the anharmonic term, the smaller istheinfluence of the step size. For the step sizes
0.030, 0.040 and 0.050 (in dimensionlessnormal mode coordinates), thedifference
is approximately 1.5/2 cm~! for the bending/stretching mode which corresponds
to the relative error of about 1/0.07 %. Focusing on the bending mode, the plot
suggests the step size between 0.030 and 0.040 to be optimal due to the change
of the trend - probably for lower and higher values, the errors accumulate, lead-
ing to lower values of thisterm. That is aso the case for the stretching mode,
but one should keep in mind that the relative error for this case is rather small, so
for high frequency modes it does not introduce significant errors. Panels (C) and
(D) stand for the mixed terms &y, and k. They describe the modification of the
bending mode due to its interaction with the stretching mode and vice versa. The

Figure 3.3: The OH stretching, v,, and the OH bending, v, modein PMME.
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Figure 3.4: Finding the optimal displacement for the calculation of the cubic force
fields for the (A) OH bending (b) and (B) OH stretching (s) vibration, as well as
the mixed terms (C) ks and (D) ky,s. AQ is the dimensionless normal mode co-
ordinate. On panels (C) and (D), the solid and the dashed lines correspond to the
displacements along the bending and the stretching mode respectively.

former term has a value which is an order of magnitude higher than the latter due
to the Fermi resonance (the overtone of the bending mode lies close in resonance
to the fundamental stretching transition). Another interesting feature of &, isthat
the calculation reveal s a better convergenceif the displacement is performed along
the stretching mode (dashed line) since the anharmonicity of the potential aongthe
stretching modeis more pronounced comparing to the one of the bending mode (cf.
Panels (A) and (B)).

As to the quartic force fields, the results are displayed in Fig. 3.5. Concern-
ing the diagonal bending k,, and stretching &, terms, Panels (A) and (B), we
follow the same reasoning as for the cubic terms and conclude that the displace-
ment 0.040 is the optimal one. The relative accuracy for the OH stretching mode
is2 % (for this comparison the result that correspond to AQ = 0.020 are not taken
into account). Concerning the &, term, low accuracy 20 %, suggeststhat thedis-
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Figure 3.5: Calculation of the quartic force fields: (A) kupes; (B) kssss; (C) kppss-
The solid, dashed and dotted line correspond to the displacements a ong the bend-
ing mode, the stretching mode, and simultaneously along the bending and the
stretching mode, respectively.

placement AQ = 0.030 is not appropriate for calculating the quartic terms, since
the errors accumulate and lead to unreliable results. Again, the trend for the high
frequency term is more obvious. Concerning the mixed term k4, Panel (C), we
note again that the accuracy of the calculated term is higher if the displacement is
performed aong the ”more anharmonic” mode.

To summarize, for our calculations we used the displacement 0.030/0.040 for
the calculation of the cubic/quartic anharmonic terms according to Eq. 2.47/2.50.
In addition, it will be shown in the following that the couplings between most
strongly coupled modes have been treated exactly, i.e., by calculating the poten-
tial onagrid, since according to the values of the calculated force fields, the inter-
action between those modes s rather strong and probably would not be described
properly by two lowest anharmonic terms.
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Selection of Relevant Degrees of Freedom

Our goa isto model the relaxation of the OH stretching vibration, v,. Before we
turnto aspecific system, let usconsider agenera Tier model, Fig. 3.6. After anex-
citation of the bright state, the energy is transferred to the neighboring states (that
form the 1% tier) to which it is coupled. Those states are coupled to the next man-
ifold of states (2" tier) and so on. Thelarger the system, the more complicated its
Tier model is.

bright 15t tier
state

Figure 3.6: The Tier model. After the excitation of the bright state, the energy is
transferred to the states forming thefirst tier, then further to the second tier, etc.

Turning back to our system, the bright state representsthe v, mode and thefirst
task isto recognize the modes that form the 1% tier, i.e., the most strongly coupled
modes. It is known from the experiment that the OH bending mode, v, and a cer-
tain low frequency mode, v;,,, With afrequency around 100 cm !, take part in the
vibrational dynamics of v,. The next step isto identify thislow frequency mode,
and in addition further degrees of freedom that couple to the hydrogen motion on
the basis of the quantum chemical calculations. Modes v, and v, are shown in
Fig. 3.3. Concerning the low frequency mode, there are two possibilities, Fig.
3.7. The harmonic values of the frequencies of v;,,, and v,y are 39 cm~* and
72 cm™*, respectively. However, the anharmonic terms that correspond to & ¢ 104,
and ks s jonr @re-73cm ! and 8 cmt, and for ks 10w, @Nd kb p jour, 15 cm ' and -5
cm 1, respectively. In other words, mode v;,,, has much stronger influence on the
OH stretching and the OH bending mode than v,,,,». Additionally, the anharmonic
valuew{"" js65 cm™! (calculated from the uncoupled one-dimensional potential)
which leads to a conclusion that the experimentally observed mode is more likely
to be identified with v,,,.

Having identified v,, v, and v;,,,, we checked how well the AFF procedure re-
produces the 1D potentials along those modes. The potentials that correspond to
the OH stretching and bending vibration are depicted on Fig. 3.8. The solid lines
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Figure 3.7: The two candidates for the low frequency mode.

stay for the potentials obtained on agrid by displacing the structure aong the cor-
responding mode. The dashed lines are obtained from the AFF approach, i.e.,

1 1 1
VI(Qy) = Vg + §Kz’,iQ? + gkszf + ﬂ/ﬁz“fo (3.1)

The potential energy curve (PEC) for v, isshown on Panel (A). Closeto the equi-
librium, Eq. 3.1 represents a good approximation to the true potential. However,
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Figure 3.8: One- dimensional potentialsalong v, and v;,. The solid lines represent
potentials on a grid, and the dashed curves correspond to Eq. 3.1.
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Figure 3.9: One - dimensional potentialsalong v;,,,. The solid/dashed linerepres-
ent potentialson agrid/Eq. 3.1.

for large displacements the two curves start to diverge. Concerning v, the anhar-
monicity of thismodeisnot very pronounced, so the model potential can describe
the system well even above 10* cm~! .

The situation is quite different for v,,,,, Fig. 3.9. The potential on a grid re-
sembles a square well potential. Its anharmonicity can not be described with the
two lowest anharmonic terms, even for very small displacements. That is, one
would have to compute higher order derivatives of the potential in order to obtain
reasonabl e results.

The next step isto examine the force fields that involve the above three modes
to find out which of the remaining intramolecular modes are strongly coupled. By
analyzing the cubic and the quartic anharmonic terms, we identified two normal
modes, y; and 7,, shown on Fig. 3.10 that coupl e to the above mentioned degrees
of freedom, in particular to v,. They have an OH out of plane bending charac-
ter. The harmonic and the anharmonic frequencies (computed from V(1) (Q,)) are
given in Table 3.1, which confirm the marked anharmonicity along v, and v;,,.
Noticethat the selection was al so based on energetic arguments, a point which will
be explained in more detail below.

Some of the cubic and the quartic anharmonic termsare compiled in Tables 3.2
and 3.3, respectively.

Having chosen the relevant degrees of freedom, we proceed by calculating the
potential energy surface. It would be desirableto generate apotential ona5D grid.
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Figure 3.10: The two additional normal mode vibrations of PMME, v, and v, .

1 Vs Vp Viow | Uy | Vs
wh(em™1) | 3279 | 1446 | 39 | 682 | 785
wdmh (cm~1) | 3005 | 1485 | 65 | 685 | 788

Table 3.1: Normal mode vibrations of PMME: w! and w?™" correspond to har-

monic and anharmonic val ues respectively.

i, 7,k kijxincm i, 7,k kijrincm?
$,8,8 -2867 s, low, 1 -36
s,b,b 498 b, low, o 35
b,b,b 130 b, low, v 26
s, low, low 94 S, Y1, M1 23
b, low, low -93 low, low, low -20
S, Y25 V2 76 s, b, 71 -16
s, 8, low -73 b, b, low 15
s, low, vy -70 low, y1, 1 -13
s,8,b -62 S, b, vo -13
5,8, 50 low, low, v -12
5,8 M 46 b, Y1, Y2 11
571,72 43 b, 72,72 9

Table 3.2: Significant cubic anharmonic termsthat involve vy, v, and vy, .

However, that would require appreciable computational costs, so we are forced
to find an appropriate approximation to the exact five - dimensional hypersurface.
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i, 7, k.1 kijkgincm i, 7, k.1 kijx,incm 1
5,8,8,8 1853 S, 8,8, -31
$,8,b,b -555 low, low, Y2, Yo 30
low, low, low, low 384 b, b, low, low -30
s, 8, low, low -275 b, b, low, v, -25
b,b,b,b 176 low, low, low, v -24
s, 8, low, vy 100 b, low, low, low 22
5,8,8,b 83 s, b, low, low 22
858,72, 72 -80 low, low, v1, 7o 21
s, s, low, 11 74 S, S, s, low 20
s,b,b,b -73 low, low, vy1,m 18
low, low, low, o -51 b,b,b, 11 -16
s, 8,0, low 50 b, b, low, 11 14
$,8,%2, M -47 b,b,b, low 14
5,8,71, M1 -35 b, b, v1, M -13
$,8,8,72 -31 b,b, b,y -12

Table 3.3: Significant quartic anharmonic terms that involve vy, v, and v;,,,.

Consider the following expression for the potential (cf. Eq. 2.37)

V(Q) =) v(Q) = Z V(@) +Ve(Q) (3.2)

where Q comprisesall five degrees of freedom. V() (Q;) standsfor the potentials
of the uncoupled modes, whereas V¢(Q) describes the couplings between them.
The 1D potentials are easily obtainable. For the 2 - mode coupling potentials, we
decided to calculate them explicitly on the grid for those pairs of modes which are
most strongly coupled (i.e., v, v, and v,,,). Such atreatment has been suggested
by our attempt to obtain aconverged forcefield (cf. Fig. 3.4 (D), for instance). All
other 2 - mode couplings as well as 3 - mode and 4 - mode couplings are included
viaanharmonic force field terms. Hence, the total potentia is given by

V(Q) = D VI@)+ (V(Qs Q) + V(Qss Quow) + V(Qs, Quow)) +

% 3 kirQiQiQk + % > kin@iQ;QrQ (3.3)
ijk ijkl
Note that the last two sums do not include terms which are aready given by 2D
potentials (k .5, for instance).
In order to investigate the dynamics of the relevant system, the 5 - dimen-
sional Hamiltonian needs to be diagonalized. To this end we start by defining a
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basis of uncoupled anharmonic modes {|¢%) }, which are obtained by solving the
Schrodinger equation

Hlgwy = [T + VI(Qy)] |¢4) = EXi|ok) (3.4)

with the Fourier grid Hamiltonian method ([96]). Since the vibrational period of

the low frequency mode is much longer than for the other four modes, it will be
convenient to introduce a diabatic representation with respect to vy, i.€., atime
independent Schrodinger equation is solved

Y Hi+VO(Qast Quow = 0) | |a) = Eolay). (35)

level | E(cm™) | (vs5,06,0+,,0y,) | Casiji
1 0 (0,00,0) | 1.000

2 693 (0,00,1) | 0.997

3 799 (0,0,1,0) | 0.997

4 1385 (0,00,2) | 0.995

5 1455 (0,1,0,0) | -0.991

6 1501 (0,0,1,1) | -0.988

7 1601 (0,0,2,0) | -0.994

8 2077 (0,0,0,3) | -0.992

9 2149 (0,1,0,1) | -0.987

10 2202 (0,0,1,2) | 0.980
11 2253 (0,1,1,0) | 0.988

12 2312 (0,02,1) | 0977
13 2406 (0,03,0) | 0.987
15 2841 (0,1,0,2) | -0.945
16 2853 (0,2,0,0) | -0.817
(1,0,00) | 0.486

18 2956 (0,1,1,1) | -0.976
19 3022 (0,02,2) | -0.960
20 3044 (1,0,0,0) | -0.837
(0,2,0,0) | -0.492

21 3054 (0,1,2,0) | -0.962

Table 3.4. Energies of the selected diabatic states and assignment, expressed in
terms of the uncoupled anharmonic modes. The last column contains relevant ex-
pansion coefficients.
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Figure 3.11: Energy levels of the diabatic states. The lineson theleft stand for the
fundamental transitions of the fast modes: green - v,,, yellow - v,,, red - v, blue
- v;. Thelevels on the right side represent overtone and combination transitions.

With Qa5 = {Qs, Qp, @+, @, } @nd thefirst sum runs over the fast modes. The
zero - order states {|«) } are further expanded in a basis of uncoupled anharmonic
modes

@) =Y Caigual 67°)162) 16,V 6,72) (3.6)

ijkl

The leading configurations are compiled in Table 3.4. Note the presence of Fermi
resonance: |a = 16) and |o = 20) represent mixed states, although the former
corresponds dominantly to the bending overtone and the latter to the stretching
fundamental transition. Such strong interaction justifies an exact treatment of the
coupling between those two modes.

Some of thediabaticlevelsareshowninFig. 3.11. Thefundamental transitions
of the fast four modes are depicted on theleft side. The overtone and the combina-
tion transitions of the two out of plane bending modeslie closein resonanceto the
v, transition. On the other side, thefirst overtone of v, aswell as the combination
of v, and the overtones of v,, and v.,,, form the stretching band. These resonance
conditions have aso been the guide for including the two additional modes into
our model. The scheme depicted in Fig. 3.11 already suggests possible relaxation
channels of the OH stretching and bending mode.

After defining the diabatic states, the total Hamiltonian in the diabatic repres-
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Figure 3.12: The diabatic potential energy curves. The black line corresponds to
the ground state, the lower red line stands for the state that has dominantly OH in
plane bending character, whereas the upper red curve representsits overtone. The
state marked with the blue color has mainly OH stretching character.

entation is given by

Hdiab — Z [505 (,Tlow —+ Ea -+ Vaa(Qlow)) + (1 — 5aﬂ) Vaﬁ(Qlow)] |C¥> <ﬂ|

af
(3.7)

with
Vaﬁ (Qlow) = <C¥|V(1) (Qlow) + VC(Qfasta Qlow) - Vc(Qfasta Qlow = 0) |ﬂ> (38)

being responsible for the population transfer since it represents the coupling
between the diabatic levels. V¢(Q fast, Qiow) accounts for the coupling between
the four fast modes with the low frequency mode.

The diabatic potentia energy curves, Vi, (Qiow), &€ shown in Fig. 3.12. Re-
call that each of the diabatic curves contains vibrational levels with respect to the
low frequency mode. In addition, the anharmonic valueof v;,,, isonly 65 cm~1 (cf.
Table 3.1), so by climbing along the energy scale, the density of states increases
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Figure 3.13: (A) Experimental spectrafor PMME-H (black) and PMME-D (blue
line) (courtesy of K. Heyne). The arrows point at the OD and the OH stretching
band. (B) Experimental spectrum for PMME-H and the cal culated stick spectrum.

considerably. The black line represents the ground state, the first red line the fun-
damental v, transition, and the next red line its overtone. The blue line stands for
the state that has dominantly OH stretching character.

Further, we calculated the stick spectrum according to

I(w) =) Puldasl” 6(w — wpa) (3.9)
ap

with P, being the distribution function and d,, s the transition dipole moment. The
resultsare shownin Fig. 3.13, Pandl (B), together with the experimental spectrum.
The experimental spectra of the protonated and the deuterated speciesare givenin
Panel (A), with marked bandsthat correspond to the OH and OD stretching trans-
itions. The broad band between 2750 and 3250 cm~! corresponds to transitions
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that include the highest manifold of states depicted in Fig. 3.12. The interaction
of the bending overtone and the stretching mode is responsible for the appearance
of the double peak structure, which can be clearly seen in the stick spectrum as
well.

Themodel for therelevant system is now completely defined. Before proceed-
ing to the dynamics, we will discuss the interaction with the surrounding.

3.1.1 System - Bath Coupling

In order to model the fast relaxation of the v, mode which was observed in the
experiment, we included two types of interaction with the bath, bilinear coupling
and third order coupling.

Bilinear coupling. If Eq. 2.109 is understood as Taylor expansion of the
PES, it isto be expected that the lowest order terms have the greatest significance.
Therefore, in order to study the interaction between the relevant system and the
solvent, we will consider first the lowest order term, i.e., linear term with respect
to the system {Q} and reservoir {Z} (external bath) degrees of freedom
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Figure 3.14: Red line: spectral density obtained from the MD simulations. Black
line: ohmic spectral density. The arrow indicates w?"” (taken from Ref. [94]).
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ﬁé?z = Qow Z hwxg,(\l)z\ (3.10)
)

where g, represents the coupling constant for the bath oscillator with frequency
wy. Thisquantity was obtained from classical molecular dynamics simulations of
PMME in CCl, a 300 K (performed by H. Naundorf [65]). The spectral dens-
ity, calculated according to Eqg. 2.128, isdisplayed in Fig. 3.14 with the red line,
JM (), and was approximated by the ohmic spectral density .J(©"™i¢) (1) [67]

J(ohmic) (U)) — J(I) (w) — ‘g(1)|2®(w)w67w/wc (311)

where w, standsfor the cut-off frequency. The step function ©(w) insuresthat the
spectral density is equal to zero for negative frequencies. The arrow in Fig. 3.14
indicates the anharmonic value of v;,,,. It dmost coincides with the maximum of
the spectral density, which meansthat the transfer of energy from this mode to the
solvent should be efficient. Starting from thisexpression the bath correlation func-
tion obtains the form

C(I)

low

(W) = 7(1 + n(w)[JD(w) — JD (-w)] (3.12)

where n(w) stands for the Bose-Einstein distribution function for the reservoir
modes.

Third order coupling. Thelinear coupling discussed above describes relaxa-
tion of the v, mode. However, the other four modes have rather high frequencies
and cannot directly transfer the energy to the solvent. Therefore, it is necessary to
find another channel for their relaxation.

Up

1 Vbz

Figure 3.15: Modes v, and vy, with frequencies 694 cm~! and 795 cm~! form the
intramol ecular bath.



3.1 PMME - a System with a Medium Strong Hydrogen Bond 71

Recall the Tier model which wasintroduced when selection of modesthat form
the relevant system was discussed. Thefirst tier for v, and v, is easily recogniz-
ablefrom Fig.3.11, which suggeststhat the v, mode might relax by transferring the
energy to the other four modes, while v, is coupled to three close lying level s cor-
responding to the overtone and combination transitions of v.,, and v,,,. That is, the
energy endsup inthethree modes having thelowest energy. In principle, one could
proceed further, and according to the cal culated force fieldsidentify other molecu-
lar modes that can accept the excess of energy from the two out of plane bending
modes. However, including additional modesinto therelevant systemwould result
inamodel of arather high dimensionality, which would lead to adrastic increase
of the CPU time. Therefore, weincluded two additional modes of the PMME mo-
lecule, Fig. 3.15, v, and v, that form the internal bath and to which, according
to the calculated force fields, the energy should be efficiently transferred. Those
two modes are close in energy to v,, and v,,, and the energy gap is bridged by the
solvent modes, as shown in Fig. 3.16. This 3™ order coupling is given by

A = Qn Z hwxggfb)l 20y Zy+ Qy, Z thg§ﬁf32,Aq~b2 Z, (313
By X

with {g,} being the coordinates of theinternal bath modes. Notice that the solvent
mode is also necessary because there would be no 2¢ order coupling. Addition-
aly, we will assume the same coupling strength between the pairs (v.,, v;,) and
(Vs b,) Which leaves us with asingle parameter ¢'1) | = g{™")  — g0 The
reservoir correlation function reads [67]

v, fu, =1

A
system bath
'L;:I,:F,.IIII'U:'Il2 = 0 v Uh1fuh;‘ = 0

Figure 3.16: Coupling of the system degrees of freedom to the internal and the
external bath, Eg. 3.13.
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CU(w) = 7(14 n(w,))1+ n(w—wy,))
[T (w = wp) = ST (= (w — wp,))]
+rn(we, ) (1 + n(w + wy,))
[JID(w + wy,) — JID (—(w + wy,))] (3.14)

with i = 1, 2. The off-diagonal terms C;;"") vanish, since for the harmonic oscil-
lator bath (g, () Zx(t)gs, (0) Zx(0)) = 0.

It should be emphasized that thisis not the only relaxation mechanism for v.,,
andv,,. For example, thereisamodewith frequency 337 cm~! , whoseovertoneis
close in energy with the above two modes. However, the energy difference would
have to be compensated with a bath mode, which would result in a4 order pro-
cess. Most likely, thismechanism would beless efficient than the one we consider.

To summarize, the total system - bath Hamiltonian reads

Hsr = Qiow Y &7+ Q. > hw)\g»(yfgl,)\QM I+ QY hwxgiﬁ,’,,’z,wbz Zx
X X X

(3.15)
The first sum describes the relaxation of the low frequency mode, while the other
two terms alow relaxation of the two out of plane bending modes. The coupling
strength ¢(*) is obtained from MD simulation, and the only parameter that needs to
be fitted in order to reproduce the experimentally observed IVR times for v, and
v, 1S g1 which stands for the coupling between the system and theinternal bath.
The internal bath consists of two normal modes, v, and v,, which are close in
energy to v, and v,,.

3.2 Population Dynamics of the Cascaded Energy
Relaxation

In order to follow the system dynamics, we used the Redfield approach within the
Bloch limit, Section 2.3.2. The propagation of the reduced density matrix is per-
formed in the energy representation [67], i.e., the basis formed by the eigenstates
of the total Hamiltonian (cf. Eq. 3.7) {|a)}

H%\q) = E,|a). (3.16)

For the purpose of following the populations of the zero-order states, the ei-
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genstates of the full Hamiltonian are expanded in the basis of the diabatic states

= > Carlo)xan,) (3.17)
a, My
where |xqn, ) correspond to v, 1.€., they are eigenstates of the uncoupled dia-
batic potential curves and C7, ,, ~are the expansion coefficients. Hence, the relar
tion between the density matrices in the eigenstate and the diabatic representation
isgiven by
pas =Y > Clu PartasvsChn, (3.18)
a,M, 8,Mg
We will consider a Frank-Condon like transition that corresponds to avertical
transition from the ground state to the state of interest (in our case those are the
statesthat describe the OH bending and stretching motion). Neglecting thediabatic
state couplings, the initial condition is given by [67]

PaMa,ana (t = 0) = (Xam.|X00){Xo00|Xan.) (3.19)

where | xq0) Standsfor the ground state. The equation of motion of the density mat-
rix (cf. Eq. 2.113 and 2.120) in the energy representation in the Bloch limit reads

apab
ot

= wab (1 - 5ab)Rab abPab — ab Z Raa ,ccPec- (320)

The elements of the Redfield matrix, Eq. 2.119, are calculated by inserting the
expression for Hgg, Eq. 3.15, into Eq. 2.118 for the damping matrix.

According to the established relation between the two representations (cf. Eq.
3.18), we are able to calculate the populations of the diabatic states

Pa = Z PaMey,aMy (321)
M,

As aready mentioned, we aim at modelling the relaxation of the v, mode.
Since the experiments showed that this processinvolvesthe v, mode, wewill study
itsrelaxation as well. To start with, we populated the states that have dominantly
OH bending and stretching character (states |« = 5) and |« = 20), cf. Table 3.4)
by means of a Frank-Condon like transition. The relaxation takes place via

(i) Internal vibrational redistribution, which is due to the coupling terms V4
that allow population transfer from |«) to |3). According to the spectral
density shown in Fig. 3.14, the energy cannot directly be transferred from
vy and v, modes to the bath and therefore in the first step it is transfered to
states that form thefirst tier. Fig. 3.11 suggeststhe thefirst tier for the v, /v,
modesis formed by states (o = 4), |a = 6) and |a = 7))/(Ja = 15), |a =
16), |a = 17),|a = 18), |a = 19) and |« = 21)).
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(if) Dissipation, which is accounted for through Eg. 3.15, i.e., viainteractions
with the internal and the external bath. The coupling strength for the lin-
ear interaction has previously been determined by classical MD simulations
(¢'") = 0.057), and the only parameter l&ft to be determined in order to repro-
ducethe experimentally observed relaxation timeisthe coupling strength for
the third order interaction, ¢‘/2). For our calculationswe used ¢(!!) = 0.065.
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3.2.1 Relaxation Mechanism of v,

In order to study the relaxation mechanism of the v, mode, we populated the state
la = 5) (cf. Table 3.4) which has dominantly OH bending character by means of
aFrank-Condon like transition.

The diabatic state population dynamics is shown in Fig. 3.17. The blue line
corresponds to the OH bending vibration. 1t decays monotonically, so that after 2
ps the population of state |« = 5) was about 10%. The estimated IVR time myg
=850 fsisin agood agreement with the experimental results[91]. The green line
represents sum of populations of the close lying states, which are essentially the
overtones of v,, and v,, and their combination transition. The population is ini-
tidly transferred to this manifold of states and it reaches the maximum after 400
fs. This population transfer isdueto IVR, i.e., the energy stays within the system
but is redistributed among different modes. The decay of the green lineis accom-
panied with therise of thered linethat standsfor the fundamental transitionsof the

1.0 1 1 1 1

0.8 L

0.6 —

Population

0.4+ —

O . O T | T | T |
0 500 1000 1500 2000

Time (fs)
Figure 3.17: Population dynamics after a Frank-Condon like transition to the state
|a = 5) (blueline) which has essentially OH bending character. The green and the
red line represent sums of (P, + P + P;) and (P, + Ps), respectively. The black
line stands for the ground state.
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two OH out-of-plane bending modes. Thisbehavior isaconsequence of the system
- bath coupling. After 1 ps, those states get depopulated owing to the dissipation,
Eqg. 3.13. The ground state (black line) shows a uniform increase of population
throughout the propagation.

This population/energy transfer is schematically shownin Fig. 3.18. The col-
ors correspond to those of Fig. 3.17. It can clearly be seen that the system relaxes
to the ground state by loosing one quantum of v.,, and v.,, that further transfer the
energy to the bath.
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Figure 3.18: Stepwise energy transfer during the relaxation of the v, mode. The
first step (1) is strongly influenced by the relaxation of the low frequency mode,
while the second step (2) requires the third order relaxation mechanism.
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Figure 3.19: Populations of the state |o. = 5) after a Frank-Condon like transition
under the following conditions (from bottom to top): by using the total Hamilto-
nian; without the 3¢ order coupling; without the bilinear coupling; by neglecting
both the internal and the external bath.

In order to understand therole of the bath, we performed aseries of calculations
under different conditions, Fig. 3.19. The Figure contains population changes
of state | = 5). The lowest curve is obtained by using the total Hamiltonian,
whereas for the next curve the 37 order coupling is neglected. The importance of
the intramolecular bath is apparent from Fig. 3.20 which contains changes of P;
(blue), (P, + Ps + P;) (green) and (P, + Ps) (red): The population istransferred
to the 1°¢ tier (states marked with the green linein Fig. 3.18), but the system can-
not relax to the ground state, since further energy release which can proceed only
viathelow frequency modeistooinefficient. Essentialy, lower lying states do not
have any influence on the dynamics, dueto thefact that the last step from Fig. 3.18
iIsmissing. Thisresultsin amuch longer IVR time, 7vg = 1.5 ps.

The 3 curve from bottom, Fig. 3.19, corresponds to the case when the bilin-
ear coupling is neglected, i.e., the energy transfer from v, to the external bath
is not applied. The population basically remains within the v, mode. This con-
firms the importance of the low frequency mode which facilitates an equilibration
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Figure 3.20: Populations changes of Ps, (P, + Ps + P;) and (P + Ps) are rep-
resented with the blue, green and red line, respectively. For this calculation, the
internal bath is neglected.

between those diabatic potential energy curves which are closein energy. Finally,
the last curve in Fig. 3.19 describes the dynamics with no dissipation at all. Our
results show that in order to reproduce the experimentally observed IVR time, it
was hecessary to introduce both the internal and the external bath.

3.2.2 Reaxation Mechanism of v,

We turn now to the investigation of relaxation of the OH stretching vibration. The
question arises whether we can use the same parameters as for the bending ex-
citation. Like in the previous case, the state that has dominantly OH stretching
character, |« = 20) isinitially populated by a Frank-Condon transition, and the
population changes of the relevant states are depicted in Fig. 3.21. The nature of
states being (de)popul ated can best be viewed by comparing with the energy levels
sketched in Fig. 3.22. The population is directly transferred to the 1%¢ tier, which
consists of states (0,1,2,0), (0.1,1,1), (0,2,0,0) and (0,1,0,2) (marked with a yel-
low color). The second step includes population transfer to (0,1,1,0) and (0,1,0,1),
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Figure 3.21: Population dynamics after a Frank-Condon like transition to the state
la = 20) (blue line) which has essentially OH stretching character. The yellow
and the green line represent sums of (Pi5 + Pig + Pig + Po1) and (Py + Piy),
respectively, whereas the red line corresponds to Ps. The black line stands for the
ground state.

whereas in the next step the fundamental OH bending mode is excited, aswell as
the close lying states. Further relaxation proceeds viathe mechanism explainedin
the previous section. In other words, the relaxation of the OH stretching modeisa
cascading process, which takes place viarelease of one quantum of energy of v,
and v.,, in each step, Fig. 3.22. The estimated IVR timeis rryg = 190 fswhich is
in good accord with the experimental value [91].
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Figure 3.22: Cascaded energy transfer during the relaxation of the v, mode. The
population isinitialy transfered from the state |« = 20) to the closest states dis-
played with the yellow color. Thismanifold of statesis composed from the bend-
ing overtone, as well as the combinations of v, with the overtones of v, and v, .
As in the previous case (relaxation of the v, mode) thisfirst step takes place due
to the presence of v,,,,. Further energy release proceeds viathe interna bath.

Let us consider the effect of the bath in more detail, Fig. 3.23. If the interna
bath is not accounted for, 2°¢ curve from the bottom, the relaxation time for the
v, modeis 200 fs, which still reproduces the experimental value well. That means
that 34 order coupling does not strongly affect popul ation decrease from |o: = 20)
state, since the energy isin thefirst step dominantly transferred to four neighbor-
ing states, Fig. 3.24. Dueto the low v, the population is transferred to the first
tier (yellow line) formed by the closest states. According to Table 3.4, they in-
volve the overtone of 4, as well as the combination of v, and the overtones of v.,,
and v,,. However, further energy release would include loss of energy that cor-
responds to the OH out of plane modes, and for this purpose the internal bath is
required. Sincethischannel for relaxation is not accounted for, those states do not
take place in the dynamics. In other words, fast relaxation of the | = 20) state
isdueto IVR, i.e, strong coupling to the close diabatic level s that results in popu-
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Figure 3.23: Populations of the state |a. = 20) after a Frank-Condon liketransition
under the following conditions (from bottom to top): by using the total Hamilto-
nian; without the 3¢ order coupling; without the bilinear coupling; by neglecting
both the internal and the external bath.

lation transfer. Those intramolecular couplings are stronger than the inter molecu-
lar with the internal bath, so the presence of the later is not necessary for getting
a crude explanation of this process. Nevertheless, the external bath plays again a
crucia role: The neglection of the bilinear coupling, 3™ curve from the bottom,
leads to an extremely slow population decay.

Analysis of the OH stretching vibration of HOD in liquid D,O [89], [90]
showed that it takes place viathe overtone of the OH bending vibration. Sincethe
PMME moleculeislarger, more degrees of freedom take part in the dynamics, and
the mechanism includesin addition to the in plane bending overtone states formed
by combinationswith the two OH out of plane bending modes. That is, due to the
greater complexity of the system, more resonance transitions appear, which results
in adifferent relaxation pathway.
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Figure 3.24: Populations changes of Py, (P15 + Pig + Pis + Ps1), (Py+ P11) and
Ps are represented with the blue, yellow, green and red line, respectively. For this
calculation, the internal bath is neglected.

3.2.3 Concluding Remarks

We studi ed the rel axation mechanisms of the OH bending and stretching vibrations
in PMME. Both modes cannot release the energy directly to the bath, due to the
absence of resonant transitions of the bath modes. Therefore, they transfer the en-
ergy to the neighboring states. This step is supported by the low frequency mode,
which directly interacts with the externa bath. The relaxation of the OH out of
plane modes takes place viaa 3™ order process, which includes both the internal
bath (which consists of two molecular modes) and the external bath. The coup-
ling strength for the relaxation of v, was previously determined, and the only
parameter we introduced was the coupling strength for the 3™ order process. We
used the same valuefor ¢('!) for modelling the rel axation of 1, and v,. The present
model could be extended by using, for instance, full Redfield equations. Further,
the Frank-Condon like transition could be replaced by an excitation with an IR
laser pulse. Dueto its finite width, the pulse would excite not just state |a. = 20),
but the whole manifold.
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The proposed mechanism represents only one channel for relaxation. It was
experimentally observed that 30% of population of v, relaxes via v,. There-
fore, we focused our attention on the most important pathway, athough a mo-
lecule that contains as many degrees of freedom as PMME, can probably relax
through different mechanisms. We believe that such cascading relaxation is not
aproperty of this specific molecule, but rather represents a generic behavior of in-
tramolecular hydrogen bonded systems. For example, vy of the deuterated 2-(2’ -
hydroxophenyl)benzothiazoleis aso estimated to be about 200 fs[97].



