Chapter 2
Theoretical Concepts

This chapter contains an overview of the theoretical methods implemented in this
work. Quantum chemical methods, Hartree - Fock and Density Functional theory,
are reviewed in section 2.1. Section 2.2 is dedicated to anharmonicity: two ap-
proaches are introduced - the Anharmonic Force Field and the Cartesian Reaction
Surface method, the former being suitablefor describing small amplitude motions,
and the later allowing characterization of large displacements, including chemical
reactions. A closer look at quantum dynamics calculationsis given in Section 2.3
by describing the different treatments of isolated and open systems. The interac-
tion between the system of interest and an external electric field is addressed in
Section 2.3.3.

2.1 Quantum Chemistry

Theaim of thiswork isto describe the dynamics of hydrogen bonds. 1n order to set
up the Hamiltonian, quantum chemistry calculations have to be carried out. This
chapter contains an overview of guantum chemistry methods used for the present
model (for adetailed discussion see [30]-[36]).
By performing a quantum chemical calculation, we mean solving a stationary
Schrodinger equation:
Hnot|9)) = E1)) (2.)

with H,,,; being the molecular Hamilton operator. Although this equation has a
plain form, it can be solved anaytically only for ssimple systems, like the particle
in abox, harmonic oscillator, hydrogen atom, or one-electronions. A way to solve
this eigenvalue problem for a more complex system is not straightforward, but
rather comprises different approximate methods. To start with, one usually applies
the Born-Oppenhe mer approximation, which simplifiesthe problem by allowinga
separate treatment of electronic and nuclear motion. The next approximation con-
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cerns the ansatz for the wave function. The simplest form would be to describe
it with a single Slater determinant, as in the Hartree-Fock method (section 2.1.1).
Although thisis the least expensive method, the results are usualy not satisfact-
ory, so one hasto turn to more sophisticated approaches, like perturbational theory
or configuration interaction, that take into account electron correlation. Unfortu-
nately, high accuracy ispaid by high computational cost. The compromiseisfound
in the density functional theory, which will be sketched in section 2.1.2.

Born-Oppenheimer Approximation

As aready pointed out, solving the time independent Schrodinger equation for a
system containing more than two particlesisaformidabletask. In general, the mo-
lecular Hamiltonian describes the motion of N, electronsand N,,,. huclel, which
are treated as pointlike particles, whose position is defined by position vectors r
and R, respectively:

A

Hmol = 7Ajel(r) + Tnuc(R) + ‘A/elfel(r) + Vnucfnuc(R) + ‘Z:lfnuc(r, R) (22)

The first two terms represent operators of the kinetic energy of the electrons 7},
and the nuclel T,

1Qe
Tel = —5 ; EAi, (2-3)
N,
" 1 nuwc 1
Tnuc = -3 —A 24
> 2y I (24)

with m, being the electron mass, M; mass of the I** nucleus, and A; /1 the Lapla-
cian operator that contains second derivatives with respect to coordinates of the
corresponding particles.

The last three terms stand for the operators of the potential energy, and
since they describe charged particles, they contain Couloumb interactions which
are repulsive (for electron-electron and nuclear-nuclear interactions, V,; ., and
Viwe—nue) OF @tractive (electron-nuclear interactions Vi _,,.c)

Vaealr) = > he_—” (2.5)

~ Z]€2
V;zlfnuc(ra R) = - Z Z m (2-7)
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At this point we make use of the fact that the mass difference between elec-
trons and nuclel amounts to a few orders of magnitude. According to this, the
"light” electrons, which are assumed to move much faster, are able to adjust in-
stantaneously to each new arrangement of the sluggish nuclei. In other words, one
can solve the electronic problem for a certain ”frozen” configuration of the nuc-
lei. This separate treatment of electronic and nuclear motion is known as Born-
Oppenheimer approximation.

The electronic Hamiltonian describes el ectron motion in thefield of fixed nuc-
lel and contains the following terms

A

Hel = Tel + ‘A/el—el + ‘/};l—nuc- (28)
Solving the stationary Schrodinger equation

I:[elwel,n = Eel,nwel,n (29)

for the electronic problem isthe core of all programsthat perform quantum chem-
ical calculations. The electronic wave function 1,; ,, depends explicitly on elec-
tronic (r) and parametrically on nuclear (R) coordinates. The corresponding en-
ergy E., , aso depends parametrically on R. Thisprocedure hasto be repeated for
different nuclear configurations. Having calculated F,; for different values of R,
one arrives at the potential hypersurface for nuclear motion (skipping the index n
since we are dealing with the ground el ectronic state only):

V(R) = Eel(R) + Vnuc—nuc(R)- (210)
This means that the nuclei move in the average field of the electrons, modified by
the nuclear repulsion term. Finally, we can define the nuclear Hamiltonian and the
corresponding nuclear Schrodinger equation

TheBorn-Oppenheimer approximationiswell suited for caseswhen electronicand
nuclear Hamiltonians are well separated, i.e., when nuclear motion can not cause
achange in the electronic state. As mentioned before, processes described in this
work take place in the electronic ground state, that is (for the systems studied in
thisthesis) well separated from the excited el ectronic states, which justifiesthe use
of the BOA.

2.1.1 Hartree-Fock Theory

The BOA considerably simplified the problem of solving the molecular station-
ary Schrodinger equation by a separate treatment of el ectronic and nuclear motion.
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The next obstacle isthe el ectronic problem, since electronic Schrodinger equation
isin general amany-body problem. Therefore, the simplest form of awave func-
tion would be a product of functions, each of which represents one electron (those
one particle functions are usually denoted as orbitals)

Y(r1, ..., TN,) = G1(r1)d2(rs) - .- P, (Tn,)- (2.12)

Unfortunately, this wave function does not fulfill the basic requirements for an
electronic wave function, i.e., it is not antisymmetric with respect to the exchange
of two particles (which are indistinguishable). Additionally, the electron spin has
to be taken into account, leading to the definition of a spin-orbital

where ¢;(r) representsthe spatial part of the spin-orbital, that depends only on the
electron’sspatial coordinates, whereas o; (w) standsfor the spinfunction®. Inorder
to simplify the cal culation, the spin-orbital sare taken to be orthonormal, (¢;|¢;) =
dij-

We are now able to construct awave function, 1*°, that describes the electron
distribution
Pr(x1)  da(x1) ... on,(x1)

$1(x2)  @a(x2) ... o, (X2)

PP = (2.14)

¢ (XNel) ¢2(XN5-1) s ¢Nel (XNel)
Thisis the so-called Slater determinant, which fulfills the conditions of antisym-
metry and indistinguishability of the electrons. We restricted ourselves to closed-
shell systems, i.e. systemswith even number of electrons, which are paired.

Basis Sets

So far, it has been assumed that the spin-orbitalsare orthonormal. Since we are not
interested in relativistic effects, the Hamiltonian does not depend on the spin, so
the spin functions o;(w) do not have to be explicitly defined. They have just been
introduced in order to obtain a correct expression for the electronic wave function.

Concerning the spatial part of the spin-orbitals, the most natural choice would
be a Slater function

¢\
¢;(Cs, i, Ry) = (?) e~ SelriRi| (2.15)

1The spin spaceis spanned by two orthonormal functions o, and o5 that correspond to spin-up
and spin-down, respectively.
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sinceit represents an exact sol ution to the el ectronic problem of the hydrogen atom
in the ground state. The square of the above expression describes the distribution
of the i electron around the I*" nucleus, which depends on the Sater orbital ex-
ponent, (. However, it turns out that Slater functions are not suitable for further
calculations due to the complexity of the evaluation of the integrals they enter.
Therefore, they are (e.g., within the Gaussian program package [37]) substituted
with Gaussian functions

¢5(Cgori, Ry) = (%@) t Gl (2.16)

Here, (, is a Gaussian orbital exponent. Those functions are also centered at the
nuclel and are denoted as primitive gaussian functions or ’primitives. The last
equation describes an s-type function. A more general expression

¢%(Cor 1i, Ry) = kia®ybaceColriRil’ (2.17)

accounts for orbitals with higher values of orbital quantum number, ! = a + b +
c. In order to give the system more flexibility, we define linear combinations of
primitive functions, contracted gaussian functions,

l
OT = dind;. (2.18)
=1

Actual molecular orbitals ¢;(r;) are linear combinations of contracted gaussian
functions.

Fock Equations

Having built the el ectronic wave function, we turn back to the problem of the elec-
tronic stationary Schrodinger equation. Using the normalized wave function in
aform of a Sater determinant, Eq. 2.14, the stationary Schrodinger equation is
solved by applying the variationa principle which states that for the electronic
ground state

<wel |I:Iel|wel> 2 Eexact- (219)

Since, according to the variational theorem, the calculated energy isaways greater
or equal totheexact one (theequality holdsin case.; isidentical totheexact wave
function) the search for the sol ution of the electronic problemis performed by min-
imizing the calculated energy. The wave function depends on a set of coefficients,
which are optimized in order to givethe lowest energy. Thisprocedureleadstothe
set of Hartree-Fock equations

F, (x)di(x) = €:¢i(x). (2.20)
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¢; is the energy corresponding to the spin-orbital ¢;, and F;} is the Fock operator

~ Nel/2 ~ ~

Fi(x) = hiy(x) + Y (2J;(x) — Kj(x)). It isaone-electron operator, consisting
j=1

of three terms:

hx) =100 = 3 g (2.21)

isasingle electron Hamiltonian containing the kinetic energy of the electrons, as
well as Couloumb interaction with the (fixed) nuclel. The last two terms are two-
electron operators that is the Couloumb operator

Ji(x1) i (x1) = i(x1) / diy % (2.22)
and the exchange operator
K;(x1)¢i(x1) = ¢j(x1) / dzs % (2.23)

The Couloumb operator actually represents Couloumb interactions between elec-
tronsthat occupy orbitals ¢, and ¢ ;, whereasthe exchange operator hasno classical
analogue. It vanishes for electrons with opposite spins (due to the orthonormality
of the spin functions) and is a consequence of the requirement that the wave func-
tion must be antisymmetric.

Hartree-Fock equations are nonlinear equations, since the Fock operator de-
pends on its own eigenfunctions. Therefore, the equations are solved in a self-
consistent way: starting with thetria functions, the eigenvalue problemis solved.
The obtained single particlefunctionsare used for the construction of the new Fock
operator, etc. This procedure is repeated until the difference between two sets of
functions obtained in two subsequent stepsis negligible. The number of iterations
depends on the quality of theinitial guess. Finally, taking ”the best” single particle
functions, the energy is calculated according to

Nel/2 Nel/2
Ea=2) (¢ilhilé;) + D (2J;; — Kij). (2.24)
i=1 i,j

Ji; and K;; are matrix elements of the Couloumb and the exchange operator, re-
spectively.

In practice, the spin-orbitals are expanded in a certain fixed basis set (see Eq.
2.18) and the expansion coefficients are variationally optimized.

2.1.2 Density Functional Theory

Beyond the Hartree-Fock M ethod

At the beginning of this chapter, it was noted that the electronic problem consists
of solving the time independent Schrodinger equation. Nevertheless, it turned out
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that an analytical solution was not attainablefor systems containing more than one
electron due to the presence of the electron - electron interaction. The electronic
wave function 1 (x1,xs, . . ., xn,,) isafunction of 3N,; spatial and N,; spin co-
ordinates. Withinthe simplest approach, the Hartree-Fock method, the exact wave
function was approximated by a Slater Determinant, Eq. 2.14. This method is
computationally preferable, but the results are not satisfactory since the mutual in-
teraction between each two electrons is not adequately modelled. The antisym-
metric form of the Slater determinant disables two electrons with the same spin to
have identical spatia coordinates, which means that the motion of eectrons with
the same spin is correlated. However, wave functions corresponding to electrons
with the opposite spin are allowed to overlap, thereby increasing the cal cul ated en-
ergy.

A step forward represent the correlation methods, that approximate the wave
function by alinear combination of Sater determinants

Ve =Y Cmtbiy- (2.25)

The wave function is then variationally optimized. This approach improves the
quality of thewavefunction at the price of adrasticincrease of thenumerical effort.

Another possibility isto turn to perturbative methods. They rest on the parti-
tion of the Hamiltonian into apart than can be solved exactly, Hy (Hot? = E2¢P),
and apart that istreated asaperturbation, V, i.e. H = Hy+ AV. Thus, the eigen-
functions and the eigenvalues of the total Hamiltonian are given as perturbative
expansions

Un = fj A By = fj NE;! (2.26)
1=0 1=0

where the higher order terms are expressed as functions of the zero order terms,
¥2 and E?. The complexity of those functions increases with increasing the order
of expansion, which leads to a high computational cost.

Electron Energy asa Functional of the Electron Density

A search for an economical procedure that would give reliable results led to the
Density Functiona Theory (DFT). The key DFT quantity that takesthe role of the
wave function (that is, is able to determine molecular properties) is the electron
density pe(x, y, z), which depends on the coordinates of the real space. It repres-
ents the probability of an electron to be present at a given point, i.e. for the whole
space we have

/ dr pa(r) = Na. (2.27)
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To start with, the electron energy is written as a functional? of the total electron
density [36]

EeDl':r [pel(r)] =Ty [pel(r)] + Vel—nuc [pel(r)] +Vei—el [pel(r)] + Vae [pel(r)] .- (2.28)

Thefirst obstacleisto relate the kinetic energy 7., to the electron density. Since a
simple relationship could not be found, it has been proposed to introduce mol ecu-
lar orbitals, the so - called Kohn - Sham orbitals, that form the required electron
density

palr Z () (2.29)

which leads to the following expression for the expectation value of the kinetic

energy
ol KS 1 KS
T = Z/dr ¥;i°(r) (—2 Ai) ¥;(r) (2.30)
i=1 ¢

Kohn - Sham orbitals resemble the Hartree - Fock counterpart, a Slater determ-
inant. They represent a reference system of non-interacting particles. Although
the picture is unphysical, it was necessary to introduce this approximation in or-
der to determine T,;. The accuracy of the calculated kinetic energy term depends
on the quality of the electron density and corresponding molecular orbitals. Even
if the electron density were identical to the exact one, the kinetic energy as given
by Eq. 2.30 represents an approximation, since we are dealing with the imagin-
ary non-interacting reference system. Additionally, the Kohn - Sham orbitals are
not uniquely defined. Nevertheless, the difference between the exact and the true
kinetic term is supposed to be small and included into V..

The second and the third term on theright - hand side of Eq. 2.28 are classical
Couloumb electron - nuclear and electron - electron interaction, respectively

Nnuc

o prel
V;flfnuc - § / ‘I‘ — RI‘ (231)
‘/el—el — 1 /drdrl pel( )pel( ) (232)
2 r —r'|

Thelast term, the exchange - correlation energy V., takesinto account the ex-
change and the correl ation energy, but al so includes the self interaction correction
that arisesfrom theinteraction of each electron withitself, Eq. 2.32. Theexchange
- correlation functional isdefined as V,.(r) = 6Vac[p(r)]/dp(r). Itisoftendivided
into an exchange and a correlation part, V,.(pe;) = Vi(per) + Ve(per). Theformer
term correlates motion of electrons with the same, and the later with the opposite
spin. There are different types of exchange - correlation functionals:

2A functional is afunction of afunction. Electron energy is afunction of the electron density,
while the electron density is afunction of the real space coordinates.
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e Local Density Approximation functionals depend solely on the value of the
electron density at a certain point (and are, therefore, named as local), and
not on its behavior around it.

¢ Local Spin Density Approximation functionalsin addition take into account
the spin density.

e Gradient Corrected functionals are functions of both the electron density
and its gradient.

e Hybrid exchange functionals combine the Hartree - Fock (V) with the
Gradient Corrected (VS€) functional, Ywbrid = \PHF (A —1)VEC. Prac-
tice proved their good performance.

It isaso common to combine different exchange and correlation functionals. One
of themost popularisB3LY P (itiscomposed of Becke's 1988 exchangefunctional
[38] and Lee-Yang-Parr correlation functional [39]).

Having defined the exchange correl ation functional, we proceed by optimizing
the electron density. According to the Hohenberg - Kohn variational theorem [40],
theground state DFT electron energy ishigher than or equal to thetrue energy. The
equality holdsif the electron density corresponds to the exact one.

Optimization of the electron density is replaced by actual optimization of the
Kohn - Sham molecular orbitals. This procedure leads to a set of Kohn - Sham
equations

Qme Z|r—Rz| / d'|p( )|+V“(> Vie(r) = €°uie(r)
(2.33)

that resembl e the Fock equationswithin the Hartree - Fock procedure. Further, the
molecular orbitals are expanded in a certain basis set. Since the integralsin 2.33
are calculated numerically, the accuracy of the results depends on the quality of
the grid defined around the molecule.

The overall approach resembles the Hartree Fock theory, with the advantage
that the exchange - correlation term V. accountsfor correlation of motion of elec-
tronswith the opposite spin aswell. 1n addition, the Kohn - Sham potential islocal,
contrary to the Hartree - Fock procedure where the non - local character of the ef-
fective potential arisesfrom the presence of the exchangeintegral (detailed discus-
sion can be found in [36]).

The quantum chemistry calculations carried out in this work have been per-
formed using the Gaussian 98 program package [37]. In order to obtain reliable
results with moderate computational effort, we have applied Density Functional
Theory with the B3LY P exchange-correlation functional in combination with the
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6-31+G(d,p) basis set. The diffuse and the polarization functions should provide
the system enough flexibility for a proper description of the hydrogen bond. This
has been demonstrated, for instance, in the work of Tautermann et a. [41] who
computed energies for the proton transfer in malonaldehyde and showed that the
results obtained with B3LY P/6-31+G(d) and CCSD(T)/aug-cc-pV DZ are compar-
able. That is, the B3LY P functional and a small basis set give as plausible results
as more sophisticated methods, like CCSD(T), with alarger basis set. Further, the
calculation of the electronic energy barrier for the double proton transfer in the
formic acid dimer [42] showed that the combination B3LY P/6-311G(2d,2p) gives
abarrier which istoo low. Apparently, the B3LY P functional with asmaller basis
set givesreliable results most likely due to a cancellation of errors.

2.2 Anharmonicity

In the early days of quantum dynamics, scientists used simple modelslikethe har-
monic oscillator, for example, to describe vibrational motion. However, thisis
an oversimplification, since fully harmonic systems cannot be found in nature, al-
though often thisis areasonabl e approximation. Confirmation of anharmonicity in
spectroscopy are mode couplingsthat give rise to combination and overtone trans-
itions, accompanied by red/blue shifts of ”harmonically allowed” free vibrations.
Moreover, the later bands might become broader and get a substructure. In the
language of molecular dynamics, various couplings may lead to intramolecular vi-
brational redistribution, dissociative processes, etc. Ashasbeen emphasizedinthe
Introduction, IR spectra of hydrogen bonded systems verify that their potentia is
strongly anharmonic. Hence, for an investigation of such systems anharmonicity
must be accounted for.

Our aim is to describe the dynamics of molecules that contain intramolecu-
lar hydrogen bonds. In general, the Hamiltonian 2.11 that governs nuclear motion
containsthekinetic energy of thenuclel, aswell asthe potential they aremovingin.
In the case of an N-atomic system, the potential depends on 3N nuclear coordin-
ates. Three of them describe translation of the molecul e as awhole, while another
three (two for linear molecules) characterize rotational motion. This means that
the potential hypersurface is a function of 3N-6 (3N-5 in the linear case) nuclear
coordinates. Therefore, the total potential energy surface can be obtained only for
very small systems, dueto the high computational costs. In order to study the prop-
ertiesof polyatomic molecules, one hasto incorporate different approximationsfor
setting up the Hamiltonian, which depend on the phenomenon to be obtained. In
thiswork, two types of processeswill be considered - namely those that take place
inthe vicinity of the equilibrium, section 2.2.1 (Anharmonic Force Field method),
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and those that require to account large amplitude motions, section 2.2.2 (Cartesian
Reaction Surface method).

Choice of Coordinates

In principle, each set of coordinates that includes all degrees of freedom and does
not contain redundant coordinates can be used. However, thereare some properties
that can be (un)desirable.

Cartesian coor dinates seemto be appropriate, since each of them corresponds
to amotion of a certain atom in a particular direction. Another advantage is that
al couplings are part of the potential energy operator, which are much easier to
deal with than those in the kinetic energy. However, for an N - atomic system,
there are 3N cartesian coordinates, while a nonlinear molecule has 3N-6 internal
degrees of freedom. Thismeansthat 6 coordinates are redundant. In addition, mo-
lecular vibrations do not usually take place along straight lines, which means that
the coupling elementsin the potential might become larger than those including a
single mode, and al so more such couplings would occur. In other words, more an-
harmonic terms should be included. Also, since numerical wave packet propaga-
tion with a big number of parametersis difficult, some relatively important terms
would have to be neglected.

Internal coordinates comprise bond lengths and bond angles. They can be
easily connected with molecular vibrations and also the coupling terms are usu-
ally not larger than those including just one mode. The couplingsin the potential
energy part arein most cases small, thereby leading to better separation of nuclear
motion for large displacements. The drawback of usinginternal coordinatesliesin
the fact that curvilinear motion introduces strong couplings in the kinetic energy
operator, which can have arather complicated form for larger systems.

Normal mode coor dinates are obtained by alinear combination of cartesian
coordinates. Thus, there are no couplingsin the kinetic part, i.e. they diagonalize
the kinetic energy aswell the quadratic part of the potential energy operator. They
include simultaneous motion of all atoms during the vibration, which leads to a
natural description of molecular vibrations. Therefore, they are good candidates
for representation of the molecular Hamiltonian.

Since atransformation between different setsof coordinatesispossible, the an-
harmonic terms can be cal culated in one representation, and then transformed into
another one. However, the difficulty arises from the fact that by using a represent-
ation in internal coordinates, the vibrational motion cannot be completely separ-
ated from the rotational motion, which resultsin an effective Watson Hamiltonian
[43]. Because of the ssmple form of the kinetic energy operator and the fact that
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an analogy can be drawn between them and molecular vibrations that can be ex-
perimentally observed, we have used normal mode coordinatesin thisthesis.
The reference configuration for the normal mode coordinates Q is usualy
chosen to be the structure corresponding to the global minimum of the potential
energy surface. At thispoint, the Hessian matrix (i.e., the matrix of partial second
derivatives of the potential)
K. = o?V
OROR |g_gr

(2.34)

ref
is diagonalized and its elgenvectors are used for transformation from cartesian to
normal mode coordinates at each point of the PES

R — R, = m /2UQ (2.35)

where R stands for the cartesian coordinates and R.,.; are cartesian coordinates
at the reference configuration, while m and U represent the mass and the trans-
formation matrix. If not emphasized otherwise, it isassumed that the normal mode
coordinates are mass - weighted, as in the above formula. Also, dimensionless
normal modes Q are often used. They are connected to normal modes Q (with
dimensions bohr (am.u.)'/?) viarelation

Qi =Q, (2.36)

with v, = /\i% /h. \; isan eigenvalue of the Hessian at the reference configuration.

Form of the Potential Energy Operator

Having chosen the normal mode representation, we proceed by defining the po-
tential energy operator. Consider amode that includes, for example, four degrees
of freedom (in our case four norma modes), Q = {Q1, @2, @3, Q4}. For the po-
tential energy surface® the following form has been proven to be useful (see, e.g.,
[44])

V(Q) =VvW 4+ v® 4 yB Ly, (2.37)

The uncoupled motion of each mode is accounted for by the one-dimensional po-
tentials

v =3V (Q). (2.38)
Couplings between pairs of modes are contained in the two-mode potential

VE =3 "V(Q:, Q) (2.39)

i<j

3A "hat” label of the operators corresponding to the potential energy will be omitted in the fol-
lowing.
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Three-mode couplings are represented by

= D V(@i Q5 Qn), (2.40)
1<j<k
and four-mode couplings by
V(4) = V(Q17 Q27 Q37 Q4) (241)

Eq. 2.37 represents afull - dimensional potential. Naturally, one would try to ob-
tain an explicit potential on agrid. 1D and 2D potentials are routinely obtainable.
However, already calculation of 1) is computationally too demanding. For the
above model, by taking 10 grid points per mode, calculation of three 3D potentials
would require 3000 single point energy calculations, which is for large systems
and sophisticated quantum chemistry cal cul ations quite ambitious. This prompted
aquest for approximate methods, two of which will be described in the remainder
of this chapter.

2.2.1 Anharmonic Force Field Approach

In order to describe small changes of nuclear degrees of freedom, it is sufficient to
restrict investigationsto the vicinity of an equilibrium configuration of the PES. In
such situations, the potential can be expanded into Taylor series around an equi-
librium point, Q(®), according to

V(Q) = Z ov @ - ng)) N
i=1 ' |g-qo
1 N
2! Z 362 (@i~ @)@ — ) +
ij=1 J Q_Q(O)
N
0 0 0
oyt aQZaQ]an Qi = Q)(Q; — @)@k — Q©) +

3!
Q=Q®

(2.42)

where Q comprises all degrees of freedom. Since the expansion is performed
around a stationary point, thefirst derivativeis equal to zero. In principle, the ex-
pansiongiven by Eq. 2.42 containsaninfinite number of terms. Nevertheless, each
subsequent term can be expected to give smaller contribution. The convergenceis
usually fast, so it is often sufficient to include the elements up to the quartic term.
Thus, for setting up the potential energy operator, it is necessary to provide not
just the harmonic part, i.e. V(Q(©) and 62V /0Q;0Q);, but aso the anharmonic
contributions. This procedure is caled anharmonic force field approach, with
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anharmonic force fields being identified as higher order derivatives of the poten-
tial (cubic, quartic, quintic, etc).

The first and the second derivative of the potential energy can be calculated
analytically by most program packages, like Gaussian [37]. The third derivative
can a so be determined with lower level s of theory. For large molecules, thiswould
require alarge amount of computational time. A compromiseisfoundinanalytical
calculation of second derivatives, which are then used for numerical computation
of higher order derivatives. For example, with the collocation polynomials, deriv-
atives up to the 6" order have been obtained for H,O by Csaszar and Mills[45].
Thismethod rests on a search for an expression of afunction to be differentiated as
apolynomial, and its subsequent differentiation. Suppose thefunction f isknown
at collocation points zo, ..., z, and is approximated with the following interpol at-
ing polynomial [46]

f(@) = Pu(a) (2.43)
Thefirst derivative at point x;, can be estimated from
, d
f'(ax) ~ (= Palee) (2:44)

However, the interpolating polynomias might have rather complicated form.
Therefore, for a computation of the first two anharmonic terms, a finite differ-
ence approach seems to be more suitable. The simplest version of this proced-
ure would require calculations of the second derivatives for displaced geometries
along asingle coordinate, Qy,

*V kij — Ky
kg, = @) 2.45
50:00,0Qc "= 2ag, OV (2.49)
otV ki + ki — 2k

0Q:0Q;0QrIQk = K = (AQy)? +O(V™). (2.46)

k;; isthe second derivative at the reference point, while /@ and k;; correspond to
the displaced geometries along mode (), in the positive and negative direction re-
spectively (cf. Fig. 2.1). O standsfor the order of errors, i.e., EQ. 2.45 and 2.46
contain errors of the third and fourth order with respect to £;; (which means that
they are proportional to the fifth VV(*) and sixth V(%) derivative of the potential).
Schneider and Thiel [47] have applied this method for calculation of anhar-
monic force fields in CH3Br. Also, Breidung et a. [48] have used the same ap-
proach for HOF and F,O. In both cases, the calculations are in a good agreement
with the experimental values.
However, the derivatives can be cal culated with lower truncation error: A more
accurate calculation involves additional double displacements
—k5? + 8k — 8k; + ki

(vid)
1270, +O(V¥™) (2.47)

kiji =
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—-AQ, 0 +AQ,

Figure 2.1: One dimensional cut of the PES along mode ;. The second deriv-
atives for positive and negative displacements with respect to this mode are com-
puted, which enables cal culation of the third and fourth derivatives, &, and ki,
according to Eq. 2.45 and 2.46.

T —k;i? + 16k;5 — 30ks; + 16k;; — k2
12(AQk)?
Thus, the results are more accurate, at the price of higher numerical effort. Equa-
tion 2.48 enables calculations of quartic derivativeswith three different indices. In
order to obtain anharmonic terms with four different indices, displacementsaong
two modes have to be performed, as given by the following formulas

+ O(V i)y (2.48)

kbt — B — k) kT — kY — kY + 2Ky

I (vi)
kz]kl ZAQkAQl + O(V ) (249)

o = kb kT =k RS
4AQLAQ,
with the first superscript of the second derivatives corresponding to the displace-
ment along mode @, and the second along ;. The advantage of the second for-
mulais that it possesses correct symmetry properties [49] : the second derivat-
ives have been calculated symmetrically with respect to the point at which the
guartic term is searched for. The former formula lacks displacements along dif-
ferent modes with different signs (+-, -+), while in the latter case all parts of the
potential energy surface are treated democratically.
L et us see how those force fields are connected with the spectroscopically ob-
served anharmonicity. The Hamiltonian and the energy levels of a one - dimen-
sional harmonic oscillator are given by [50]

R* 0? 10%V

+O(V@) (2.50)

h v - 2

H = =55+ 590, @ (2.51)
Eh 1
L=t ) (2.52)

with the wavenumber & = v/c. The energy levels are equally spaced. Proceeding
to an anharmonic potential, which means the one expressed by Eq. 2.42 (in this
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case there is only one degree of freedom), presence of anharmonic terms leads to
amore complex expression for the energy
anh
Eh”—c=J)(n+%)+x(n+%)2+y(n+%)3+--- (2.53)
This equation is known as Dunham expansion [51]. It is obtained with a perturb-
ative approach, with the anharmonic terms playing the role of the perturbation.
The relationship between the anharmonic term z and derivatives of the potential
is given by
5 PV N ia‘*V
480 0Q® 16 0Q*
Thus, it can be expressed via cubic and quartic anharmonicities. Similar relation-
shipsexist for higher order termsalthough they are more complicated and less sig-
nificant, since each subsequent expansion coefficient is about two orders of mag-

nitude smaller than the previous one [49].

| /
/

(2.54)

xr =

V(Q)
/

Q 0-1 0-2

Figure 2.2: Left: Comparison of the harmonic (dotted) and anharmonic (solid) po-
tential energy curve. Right: IR stick spectrafor the corresponding systems.

The difference between aharmonic and an anharmonic potential isdisplayedin
Figure 2.2. Anharmonic terms are responsiblefor the deviation of the anharmonic
curve (solid line) with respect to the harmonic one (bluedotted line). Energy levels
of the harmonic curve are equally spaced, whereas the spacing between the energy
levels of the anharmonic curve decreases with the increase of the quantum num-
ber. Thisleads to the red shift of 0 — 1 transition, as depicted in the stick spec-
trum. Also, overtonetransitionsare forbidden in the harmonic picture (for adipole
moment linear in (), whereas such transitions appear in the anharmonic system,
although the intensity of the 0 — 2 lineis much lower.

As aready mentioned, this method may provide agood agreement with exper-
imental results for small molecules. However, thisrequires ahigh level of theory
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and ahugebasisset (for F,O, CCSD(T)/cc-pVTZ [48]). Withincreasing the size of
the molecul e, the number of anharmonic termsdrastically increases, which makes
it hard to accomplish both their experimental determination and theoretical calcu-
lation.

The Dunham expansion can be generalized for a multidimensional system

2 >l )+ > i )y ) +
he - : Wilmy 9 Z i\ Ny 5 n; 2
=1 i>j=1
1 1 1
Z yijk(ni+§)(”j+§)(nk+§)+--- (2.55)

i>j>k=1

Equations 2.42 and 2.55 contain all possible couplings, between different de-
grees of freedom. However, for moderate energies it is very seldom that many
modesare strongly coupled [52]. Therefore, after the anharmonic forcefieldshave
been calculated, only the most important termswill beincludedinthe” dynamical”
calculations. Thisis, of course, an approximation, since some transitions are im-
mediately ruled out.

The anharmonic expansion enables description of combination and overtone
bands. Combination transitions include simultaneous excitation of different de-
grees of freedom, while an overtone transition corresponds to an excitation of a
single mode, with the change of vibrational quantum number greater than one (cf.
Fig 2.3). Exemplarily, let ustake acloser look at theterm k;;;,(Q); @, Q5. 1t couples
the three modes, @;, Q;, and Q. If acertain transition is resonant, i.e. if for ex-
ample the following condition is met

Vg RV + U (2.56)

this interaction can be studied by examining the IR spectrum. The harmonic-
aly forbidden combination band (assuming there is no electrical anharmonicity)
centered at v; + v; will appear and will be influenced by the excitation of the Q)
mode. Theinteraction will lead to a separation between those two peaks, i.e. they
will not appear exactly at v, and v; + v;, but will be slightly shifted. In addition,
it will also affect the intensities, since the coupling may lead to oscillator strength
borrowing, thus allowing observation of a combination transition. Concerning the
dynamics, thisterm facilitates energy transfer between those three modes. For ex-
ample, in hydrogen bonded systems that contain an OH bond, the first overtone of
the OH bending mode is often close in energy to the OH stretching fundamental
transition, Fig. 2.3. Interaction between those vibrations, known as Fermi reson-
ance, is described by ki, Q2 Q) that couples the stretching and the bending mode
(thisisaspecia case of the previous, more general expression, with i = j).
Another well known resonance typeisthe Darling - Dennison resonance [51],
which describes coupling between two overtonetransitionsk ; ;; Q?Q?. Thequartic
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(A) (B)
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Figure 2.3: (A) Energy levels corresponding to the stretching and bending vibra-
tions. (B) Stick spectrum - fundamental transition of the stretching vibrationin the
harmonic picture. (C) Stick spectrum for the anharmonic potential energy surface;
left line, overtone of the bending vibration, arises as a consequence of anharmon-
icity. Duetoitscouplingto the stretching vibration, thelater undergoesablue shift.

force constantsusually have much smaller val uesthan the cubic ones, so theformer
peaks are characterized by alower intensity. Higher order terms (quintic, etc) usu-
aly have negligible importance.

During the discussion so far, the rotation of the molecule as a whole was not
considered. Inclusion of ro-vibrational coupling would further complicate al pre-
vious expressions. Nevertheless, larger molecules have high moments of inertia,
So rotations take place on a much longer time scale than vibrational motion. This
means that rotations are very weakly coupled to vibrations and can be safely neg-
lected for ultrafast condensed phase studies.

It has been shown how mechanical anharmonicity can be handled. The same
procedure can be used also for the electrical anharmonicity. Starting from the ex-
pansion of the dipole moment

N

0
m(Q) = m(Q?)+ Zagl' (Qi— Q) +
i=1 7' Q=qo
L\ 0%
2 24 5Q.00;| Q-Q)Q @) +... (257

the first and the second derivative can be calculated numerically. In Eq 2.57, p;
describes the three components of the dipole moment (x, 1, and 12,). The second
derivative represents the anharmonic term.
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The above method enables to explain the origin of the structure of IR spectra.
Moreover, thisapproach alows usto model dynamical processes, like energy flow
from the stretching towards the bending mode. Application of the present concepts
isgiven in Chapters 3 and 4.

2.2.2 Cartesian Reaction Surface Approach

If one would like to describe processes that involve large amplitude motions of
certain degrees of freedom, for example chemical reactions (photodissociation, hy-
drogen transfer reactions etc), it is necessary to provide a PES that covers alarge
region. This can be achieved in different ways, depending on the nature of the
system. As has been indicated before, it isnot feasible to obtain an exact potential
for large systemsin full dimensionality. In this section, an overview of afew ap-
proaches that deal with this problem will be given, while emphasis will be put on
the Cartesian Reaction Surface method.

In general, depending on the speed of the investigated process, we distinguish
two types of approximations to the reaction surfaces:

* relaxed potential surface requires partial geometry optimization at each
point. Thismeansthat the processtakes place very slowly, so thewhole sys-
tem alwayshastimeto find alocally relaxed configuration. Thedrawback of
this procedureisthat it cannot be used for fast processes or for those which
are characterized with strong anharmonic intramol ecular couplings between
more than, for instance, three coordinates. In other words, it is not very
likely that the system always has enough time to relax completely. In ad-
dition, geometry optimization makes this method computationally demand-

ing.

* |If the reaction takes place very fast, so that the ”lessimportant” coordinates
have no time to relax, the so called frozen geometry can be employed. This
meansthat after the global minimum has been found, the PES is obtained by
scanning along the important degrees of freedom while keeping the rest of
the molecule frozen at the equilibrium position. Thismethod gives meaning-
ful resultsin case the coupling between more and |less important coordinates
isnegligible, at least on the time scale of the investigated process.

On the other hand, both methods can be supplemented by harmonic degrees
of freedom for the less important modes to establish a full dimensional reaction
surface, aswill be discussed in the following.

A quantum chemical investigation starts with the optimization of the station-
ary points, i.e., the reactants, the products, and the transition state that connects
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them. One can proceed by implementing the reaction path method [53] - [57],
which rests on the fact that during the observed process the changes take place
in away that the system follows the minimum energy path which is constructed
starting from the transition state and going backward/forward towards the react-
ants/products, tracing the steepest descent line. It employs geometry optimiza
tion, so thisprocedureisrather expensive. The Hessian is calcul ated at each point,
which enables 3N-7 normal mode vibrationsorthogonal to the path to betakeninto
account*. Thefinal pictureisrather simple- itiseasy toimagineaone dimensional
course (influenced by other internal motions) leading the reaction in the desired
direction. If thereis only one atom that undergoes drastic changes, this pictureis
appropriate. Nevertheless, if more particles are strongly involved, the minimum
energy path might make many sharp curves, whilein redlity it is more likely that
the system would follow a smooth path, even if that would require slightly higher
energy. Therefore, itisrecommendabletoincludelarge amplitude motionsof more
degreesof freedom. Thisextension, known asreaction surface method [58]-[60],
gives an improved description, owing to the incorporation of the anharmonic cor-
rections whereby the kinetic couplings are on average not so strong. Here, one
needs to compute the Hessian at each point in order to get the normal mode vibra-
tions orthogonal to the " surface”.

As a starting point, one has to decide which degrees of freedom (DOF) will
be described exactly. This depends on a specific system. It is not likely that all
DOF are equally important. For example, if atransfer of alight molecule, like hy-
drogen, takes place between two subgroups of alarge molecule, probably only the
vicinity of the reactive site will feel the changes, leaving the rest of the molecule
unaffected. One possibility would be just to take into account the most important
coordinates, usually one - to - three. How the other DOF will be treated depends
on the properties of the system and the nature of the process. Concerning the reac-
tion surface method, the other degrees of freedom can be included by calculating
the Hessian and comprising the vibrations orthogonal to the surface, as has been
mentioned above. The choice of coordinates has already been discussed at the be-
ginning of this chapter. It was pointed out that although the internal coordinates
giveanatural description, thekinetic couplingsmight berather high and difficult to
deal with. On the contrary, amodel described with cartesian and normal mode co-
ordinates contains couplingsin the potential energy part, which makes them good
candidates for representing the model system.

41f the molecule contains N atoms, there are 3N degrees of freedom, 6 of which describe the
tranglational and the rotational motion, as has already been emphasized. Since one degree of free-
dom is used to describe the motion along the minimum energy path, there are 3N-6-1 modes that
would be neglected if only the minimum energy path would be considered.
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Cartesian Reaction Surface

The approach used in thiswork is the Cartesian Reaction Surface (CRS) method
[61], which alowsafull - dimensional treatment. After the geometry optimization
has been performed and the coordinates have been divided into reactive r and har-
monic R degrees of freedom, the former are allowed to undergo large amplitude
motions and are treated exactly, whereas the later are assumed to stay close to the
equilibrium values and are, therefore, described within the harmonic approxima:
tion®. In other words, for each value of the reaction coordinate, the potential is
expanded into Taylor series and truncated at second order

ov

V(e,R) = V(r,ROr)+ == (R —RO(r))
aR R(O)(r)
1 o2V
TR RO Y _ROG). (2
+ 2(R RO(r)) TRIR o, (R—RO(r)). (2.58)

This means that the first and the second derivative of the potential also have to
be calculated at each point. Concerning the reference configuration of the sub-
strate (the remaining degrees of freedom) R (r), two different cases can be dis-
tinguished:

1) If the harmonic coordinates do not undergo large changes throughout the
reaction, the skeleton can be considered to perform harmonic motionswith respect
to afrozen reference, the configuration that corresponds, for instance, to the global
minimumR© (r.,,). Themolecule PMME [62]-[65] (see also section 3) possesses
amedium strong intramolecular hydrogen bond, and has a single minimum aong
the OH stretching coordinate. The hydrogen atomishenceintheground electronic
state restricted to small amplitude motions, which are not accompanied by drastic
change of the molecular scaffold. This allowed the frozen substrate procedure.

2) If the potentia energy surface contains a double minimum, like in weak to
medium strong hydrogen bonds, the reactant and the product configuration differ
considerably, and it is necessary to allow the harmonic modesto relax in acertain
way along the whole reaction surface. This partial optimization can be done, for
example, by optimizing the stationary points, and performing linear interpolation
of the intermediate structures along the reaction path, Fig. 2.4. The rest of the
reaction surface can be obtained by moving the reactive coordinates and prescrib-
ing the molecular scaffold a structure that corresponds to the closest point which
lies on the reaction path [66]. Thereby, the configurations at the stationary points
would correspond to the optimized ones.

We areinterested solely in internal motions, thus the eigenvectors that corres-

SFor N, reactive degrees of freedom, there are 3N-6-N,. harmonic coordinates.
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TS

Figure 2.4. Generation of the PES by employingtheflexiblereference. Thismodel
contains two reactive coordinatesr = {x,y}. First, the stationary points are op-
timized (thereactant R, thetransition state TS, and the product P). Then the points
along the path are obtained by changing the coordinates of the skeleton atoms|lin-
early from R to TSand from TSto P. Therest of the surfaceis generated by taking
the structure of the skeleton and displacing the reactive atom.

pond to infinitesimal rotations and tranglations are projected out [53]
(1—-TI)m ?K,m ?(1 —I0) (2.59)

where K, represents the Hessian matrix at the equilibrium configuration, i.e., the
globa minimum of the PES, which will be used as a reference configuration for
the normal mode transformation. IT is the projector onto the rotational and trans-
lational degrees of freedom. An assumption is that the molecule does not rotate
during the reaction, so the same projection matrix is used for the points on the
whole grid. This requirement is fulfilled for processes involving light (reactive)
atoms moving with respect to alarge skeleton (harmonic). m isadiagonal matrix,
with diagonal elements corresponding to the atomic masses.

Since intramolecular motions do not take place rectilinearly, i.e., along the
cartesian coordinates, it is customary to perform norma mode transformation for
the substrate coordinates (cf. Eqg. 2.35)

R — RO (r) = m~/2UQ. (2.60)

RO (r,) isthe reference configuration and can be taken to be the structure at the
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equilibrium. The transformation matrix U diagonalizes the mass - weighted Hes-
sian. Therefore, the following transformation is performed at each point

R~ RO(r) = RO(re) - RO(x) + m UQ (261)

withR(%) (r) being the” partially relaxed substrate”, which depends on the reaction
coordinate. This givesthe following form of the potential

V(r,Q) = V() - £5)Q + ;QK()Q (262

The quantitiesin the above equation arise straightforwardly from the normal mode
transformation of Eq. 2.58

V) = VEROE®) - L1 RO®E) - RO(r)] +
aR R(O)(r)
1 82V
“IRO(r) - RO (z, RO(r) — RO(z,,
(2.63)
oV % 1
f(r)=¢ — = + ROr) = RO (r)] mne m U, (2.64)
(r) { OR | o [R(r) (vet)] 5RER ro
Y% )
K(r)=U"m™ m :U. (2.65)

V (r) contains the term coming from the normal mode transformation and repres-
ents the value of the potential energy for a given configuration of the substrate
along the reaction coordinate. It is the effective potentia felt by the reaction co-
ordinates. The second term, f(r), represents a force acting on the norma modes,
trying to push them back into arelaxed configuration for a given value of r. The
dependence of forces on reaction coordinates represents coupling between react-
ive and substrate degrees of freedom. Finaly, K(r) is the Hessian in the normal
mode coordinates. It has a diagonal form only at the equilibrium configuration,
due to the fact that thisisthe point at which the normal mode transformation mat-
rix has been defined. The coupling between different normal modesisgiven by off
diagonal elements of the Hessian. Again, the coupling among reactive and har-
monic coordinates is given by the fact that K is a function of r. Equations 2.63
- 2.65 are derived for the more genera case - flexible reference. For the limiting
case, of afrozen substrate, they get a ssimpler form by making use of the fact that
RO (r) = RO (r).
With this potential, the total Hamiltonian can be expressed as

Hers = [T+ V()] + 5 [P+ QK(NQ] ~F1)Q (260
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Vector P contains the momenta of the normal modes. The first bracket contains
termsthat govern the motion of the reactive DOF, whereas the second bracket de-
scribesthe normal modevibrations. Equation 2.66 hasaform of asystem (reactive
coordinates) coupled to a bath (harmonic coordinates). The last two terms would
correspond to the system - bath interaction. All couplings are contained in the po-
tential energy operator. Thisisabig advantage, sinceit is often difficult to handle
kinetic couplings, due to their complexity.

The difference between the energy at acertain point of the reaction surface and
the totally relaxed configuration is given by the reorganization energy

Fraors(r) = £ (0K (0] £(r) (267

As indicated above, subtraction of E,eq,(r) from V' (r) would give the fully re-
laxed PES, provided the harmonic approximation is valid.

So far we have outlined a procedure for obtaining the Hamiltonian in full di-
mensionality. However, treating al DOF is for large systems not feasible. Also,
not all modes couple strongly to the reaction coordinates. Hence, the next task isto
identify modes that will be taken into account. A useful quantity for this purpose
is the reorgani zation energy corresponding to a single mode, defined as

_ i@
Ereorg,i (I‘) - 2K” (I‘) (268)

Thisexpression, comparing to Eqg. 2.67 does not include the couplings among dif-
ferent modes. It tells us how much energy isrequired to shift the system along the
i"" normal mode coordinate into the configuration rel axed along that mode. Large
valuesfor E.qrg,; indicate strong couplingswith the reaction coordinate and imply
that the corresponding mode should be taken into account. Modes that have small
values for the reorganization energy do not change much during the course of a
reaction, so their inclusion would just increase the computational time, but would
not affect the final results.

CRS Method and Anhar monicity

As aready described, the Cartesian Reaction Surface approach treats the reaction
coordinates explicitly and the substrate coordinates within the harmonic approx-
imation. Normal mode coordinates are defined at the equilibrium configuration.
In order to account for the couplings, the forces and the Hessian are represented
as functions of reaction coordinates. This means that each displacement from the
equilibrium introduces changesin the Hessian and the magnitude of those changes
depends on the coupling strength between reaction coordinates and norma mode
vibrations. Were there no such couplings, the elements of the Hessian would be
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constants for all values of reaction coordinates. In other words, the matrix would
always have a diagonal structure, with diagona elements corresponding to the
squares of the frequencies of normal mode vibrations at the reference configur-
ation. The fact that this matrix is a function of reaction coordinates signifies that
interactions between reactive and harmonic coordinates do exist. This allows en-
ergy flow from reaction towards harmonic coordinates. In addition, appearance
of off diagonal elementsis a consequence of couplings between different normal
modes, which leads to energy exchange between them, as well as their simultan-
eous excitation. Dueto thefact that the force and Hessian are defined for all points
of interest, this procedure enables treatment of processes that take place far away
from the equilibrium. The drawback isthat one hasto perform quantum chemistry
calculations on the whole grid. Since the second derivatives of the potential have
to be computed for each grid point, this step might be limiting for large polyatomic
molecules.

It has been described how mechanical anharmonicity istreated within the CRS
approach. Yet, the electric dipole moment is a so affected by dynamical processes
that involve intramolecular motions. By generating adipole moment asafunction
of reaction coordinates, the el ectrical anharmonicity isincluded aswell. Sincethe
dipole moment is a vector, depending on the nature of the vibration that should be
excited different vector components have different contributions. This property is
important, especialy if amoleculeis excited with a sequence of pulses that have
different polarizations.

2.2.3 CRSversusAFF

Both methods, Cartesian Reaction Surface and Anharmonic Force Field, handle
anharmonicity, but in different ways. It has been shown that within the CRS ap-
proach the forces and the Hessian are functions of the reaction coordinates. For
simplicity, let us consider the case with only one important, » (cartesian), and one
harmonic, @ (normal mode), degree of freedom. The potential, theforces® and the
Hessian can be expressed as polynomial functions of the reaction coordinate

V() = Vo+Vir+Var? + Var® + Virt + -, (2.69)
fr) = fir+ for® + for® + far* + -, (2.70)
K(?") = K0+K1T+K2T2+K37”3+K47"4+"'. (271)

With these expansions, the potential 2.62 obtains the following form

Vers = (Vo+Var+Var? + Var® + Vyrt +--4) —

SNotethat f, = 0, since the expansion is performed around an equilibrium point.
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(fir+ for® + f5r° + far* + - )Q +

1
§(K0 +K17‘+K27’2+K3T3+K4T4+ )Q2 (272)

Suppose that within the AFF approach the model system also comprises two de-
grees of freedom, @, (the DOF of interest whose large displacements are con-
sidered) and @, (a substrate mode strongly coupled to Q). We assume that both
modes are normal mode coordinates. The AFF potential with (most important) cu-
bic and quartic anharmonicities can be written as

1
E(k'r'er + ksng) +

1 1
krer? + EkrrsQ?«Qs + EkrssQng) +

1
k'rrMQf« + EkrrrsQiQs + krrsstQg) (273)

Varr = Vo(Q, Q5) +

1

G

1

@

Theterm k,.,Q.,. Qs ismissing, sincein the norma mode representation the Hessian
isdiagonal, i.e. thereis no mixing of second order between the modes.

The difficulty in comparing the above two procedures arises from different
nature of coordinates. In order to make the cal cul ations feasible, reactive coordin-
ates in the CRS approach usually comprise cartesian coordinates of a single react-
ive atom. For an investigation of the dynamics of a hydrogen bonded system, this
would be the hydrogen atom which makes the bridge between the proton donor
and the proton acceptor. If @, from the AFF approach involves only (or mainly)
the motion of the” CRS reactive atom” , the (non) equivalence between these two
methods can easily be viewed, as will be shown in the following. For hydrogen
bonded systems, the vibrations of interest (stretching and bending XH vibrations)
mainly involve hydrogen motion which makes the two approaches for thisfamily
of systems comparable.

In order to simplify the comparison between the two methods, Eq. 2.73 can be
rewritten as

1
2-2!

1 1 1
VAFF = (%( :q’ Q?q) + EkTTQ? + gkrerE + Ekrm‘rQﬁ) +
1 1
(ikstg + ikrwsqs)Qs +

o0 (2.74)

1 1
(ikss + akrssQr + ﬁ

Analyzing equations 2.72 and 2.74, it is obvious that the former one is more
general - Vg containsall orderswith respect tor, while Vapr represents aspecial
truncation of Vrs. The coefficients in Vrs associated to high order terms usu-
ally have small values, so their importance becomes apparent for large Q- only, far
away from the equilibrium. They are negligible for small Q.. Hence, closeto the
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equilibrium Vgs can bereplaced with Vrr. Theanharmonicforcefieldis, there-
fore, alimiting case of the Cartesian Reaction Surface procedure. Note that some
termsin Eq. 2.73 areneglected, like @3, Q,Q3, Q*, because the division of modes
into reactive and substrateis donein away, that the later play amodest role inthe
dynamics, which allows exclusion of their high powers. Thisis adesirable prop-
erty concerning the numerical effort, but may be a disadvantagefor high precision
Spectroscopy.

According to the above discussion, close to the equilibrium the two approaches
should in principle give comparableresults, provided thelowest anharmonic terms
are sufficient for a reasonable description of the PES. Which method would be
preferable concerning the numerical effort depends on the character of the invest-
igated system. At first glance, the AFF approach seems to be less demanding.
However, owing to the fact that the CRS modes do not include the reactive DOF,
they might give amore compact picture. That is, the higher dimensionality of the
AFF model could make it less appropriate for certain systems (an example will be
given in Chapter 4).

In the following chapters, it will be shown how anharmonicity is utilized for
explaining IR spectra, aswell asintramolecular vibrational redistributionthat takes
place after illumination of medium sized molecules with ultrashort laser pul ses.

2.2.4 TheDiabatic Representation

As aready mentioned, we are interested in processes that take place in the elec-
tronic ground state that is cal cul ated according to the Born - Oppenheimer approx-
imation (cf. Section 2.1). It assumes that due to the mass difference between the
electrons and the nuclei, the former move much faster and are able to follow the
motion of the later. In other words - nuclear motion does not cause transitions
between electronic levels. The potential energy surfaces calculated employing
BOA are called adiabatic. However, if the surfaces exhibit, for instance, a con-
ical intersection, the adiabatic representation is not appropriate anymore, and the
kinetic couplings between el ectronic states must be accounted for. Within the dia-
batic representation, these couplings are shifted to the potential energy operator.
Which representation will be more useful depends on the nature of the system.
Similar reasoning can be applied to vibrational levels within a single elec-
tronic state (e.g. theground state). Different typesof vibrational motion take place
on different time scales. Addressing hydrogen - bonded systems, the vibrational
period of the XH stretching vibration vxy might be one or almost two orders of
magnitude lower than the one involving the movements of the heavy atoms, vyg,
thereby influencing the hydrogen dynamics. If those modes are coupled, the dy-
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namics of this system can be modelled in the spirit of the second BOA by treating
the excitations of the low frequency mode within each vibrational level of vxy, as
has been mentioned in the Introduction. Due to the relatively small gap between
the XH levels, it is likely that the coupling between them can be caused by the
heavy atom motion, vyg. Fig. 1.1 shows such situation: as the arrow indicates,
excitation from the overall ground state to vyg = 1 within vxy = 1 might cause
atransitionto vyg = 5 within vxy = 0. This suggests an employment of the
diabatic representation for modelling the hydrogen bond dynamics. Note that this
situation resembles that of electron transfer processes [67].

In additiontoitsnatural physical picture, the diabatic representation has an ad-
vantage concerning the numerical effort: it is computationally less demanding to
handle a limited number of states than to perform calculations on the whole grid
(the large grid is mapped onto a few states).

Anharmonic Force Fields and the Diabatic Representation

The diabatic representation can be applied within the AFF approach. Suppose the
model consists of n norma mode vibrations, but one DOF, () ;,, has much lower
frequency than the others, so that it is reasonable to employ the diabatic repres-
entation. The diabatic states {|«)} are obtained from the diagonalization of the
Hamiltonian at the equilibrium position of @,

H(Ql,...,Qn_l;QL=O)\a)=Ea|a). (275)

Those states can be characterized in terms of zero-order states, {|¢;)}, the eigen-
states of one-dimensional Hamiltonians
B? 02

+V(Q;) (2.76)

where the potential V(M (Q;) is constructed by displacing the structure along the
mode@; (: = 1,...,n — 1). Since al other coordinates are fixed at their equilib-
rium positions, there is no parametric dependence of {|¢;)} on @, which would
introduce the kinetic couplings. That is, al couplings are comprised within the
potential energy part of the Hamiltonian. The Hamiltonian in the diabatic repres-
entation reads

diab __ § :
HAFF -

af

bas (E +5PE+ vm(QL)) + me@wm] )8,

(2.77)
H g) isthe part of the Hamiltonian that contains the ;** derivative of the potential
with respect to Q.. For example, if # = 1 and one takes into account only the
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cubic terms that describe the modification of the motion of the j** mode dueto its

n—1

coupling to @), we would haveHg) => kijQﬁ. Asisusually the case, not all
7j=1

matrix elements of the Hamiltonian have the same importance, so it is possible to

select thetermsthat givelarge contributionsand neglect thosethat are, for instance,
off-resonant.

CRS Hamiltonian in the Diabatic Representation

Let us see how the diabatic representation can be incorporated within the CRS
method. First, one has to define certain diabatic states and perform an averaging
of thematricesthat enter Eq. 2.66. Those states can be chosen to be the eigenfunc-
tions of the potential for partially relaxed substrate

[T + V(r)]pa(r) = Eada(r) (2.78)

Since the CRS method rests on the harmonic expansion of the potential with re-
spect to the skeleton modes, Eq. 2.58, it isto be expected that far away from the
equilibrium the harmonic approximation would break down. The diabatic repres-
entation enablesto account for the pointsin therelevant region only, where the har-
monic approximation should be valid. Besides the fact that the accounted points
are reliable, an additional advantage is that the nature of the states being excited
is known, since they describe the motion of the important degrees of freedom, for
example, whether it is a certain bending/stretching vibration etc. In other words,
they can be used as zero-order states, e.g., for the assignment of spectra. The CRS
Hamiltonain in the diabatic representation obtains the following form

: 1
HES = 5PP+ ) [Ua(Q)das + Vas(Q)(L = dup)l [)(B]  (279)
’ﬂ
The diabatic potential energy curves U, (Q) are defined as

Ua(Q) = Ea - faaQ + %QKaaQ (280)

where the forces f,,, and the Hessian K, are the average values for the diabatic
state «, £, = (|f|a) and K, = (a|K|a). They describe normal mode vibra-
tionswithin acertain diabatic level. Thoseforces push the norma modesinto their
locally relaxed configurations. They cause vertical shifts of the potential energy
curves (cf. Fig. 2.5), given by Eq. 2.68, but also a displacement Q°

Q' = K 'f (2.81)

The existence of those displacements is a consequence of the dependence of the
forces on the actual position of the hydrogen atom (within the harmonic approx-
imation, the forces would be constant, equal to zero, as at the equilibrium). In ad-
dition, the curves are characterized by different curvatures, since the Hessian isa
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Figure 2.5: The two lowest diabatic levels |« = 1) and |& = 2) within the
CRS method. The dotted curve corresponds to the harmonic approximation. The
force fyy causesavertical shift of the higher level (characterized by energy change
FE,corg) and adisplacement 5. Thedifference between theforce constants K;; and
Ky, arereflected in different curvatures of the ground and the excited state. V1, is
the coupling between the states.

function of the reaction coordinatesaswell (were the potential harmonic, thediag-
onal elements of the Hessian would have the values at the reference configuration
for al displacements of the hydrogen atom). Owing to their shifts and different
curvatures, the curves cross each other, which might lead to a transfer of popu-
lation between the states. Thisis an important issue for the dynamics, as will be
shown in the next Chapter.

The coupling between the diabatic statesis given by

Vas(Q) = —1,5Q + %QKMQ (2.82)

Thus, the interaction between different levels is introduced through the matrices
f,s and K,g. This coupling alows transfer of population between the diabatic
levels.
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Finally we mention an additional numerical advantage of the diabatic repres-
entation. Having defined the CRS Hamiltonian and chosen the important normal
modes, it isin principle possibleto describe processesthat involve arbitrarily large
displacements of the reaction coordinates. However, it islikely that the harmonic
approximation would break down very far away from the equilibrium. This could
imply, for instance, that the reduced Hessian might have negative eigenvalues, so
the calculated points would be wrong. This problem is circumvented by employ-
ing the diabatic representation, since only thereliable pointsthat liein the relevant
region (where the harmonic approximation should be valid) are accounted for.

2.3 Quantum Dynamics

Depending on the nature of the system being investigated, there are different ways
for describing dynamical processes. If the process of interest takes place in the
gas phase, characterized by low pressure, each particle can be considered as be-
ing separated from the rest of the world. Such approach isjustified, since the pro-
cesses we are interested in (vibrational motions, intramolecular vibrational redis-
tribution, chemical reactions) take place on a sub-picosecond timescale, while the
average collision time amounts to microseconds, i.e,, it is a few orders of mag-
nitude longer. In other words, the dynamics of the relevant system is not influ-
enced by intermol ecular interactions, so adescription of such isolated systemwith
awave function is sufficient.

On the contrary, reactions taking place in the condensed phase must be mod-
elled by accounting for the influence of the solvent. Due to frequent collisions
between the particles, the system initially disturbed by some externa force can
exchange energy with the environment. The energy flow into the environment is
known as dissipation, and the systemsinteracting with the surrounding - open sys-
tems. In principle, if the environment is small, the energy can be returned to the
system. In certain cases the surrounding forms a so-called bath that is much larger
than the system, so theincrease in its energy arising from the coupling to the sys-
tem degrees of freedom is almost instantly redistributed within the bath, leaving it
in thermal equilibrium.

An example of an open systemisshownin Fig. 2.6. System’s degrees of free-
dom arelabelled as () and ¢, theformer being treated explicitly, and the latter only
approximately, by including them into the bath. Z stands for the solvent degrees
of freedom. The arrows indicate interactions. coupling of the important part of
the system, (@, and the internal bath, ¢, leadsto internal vibrational redistribution,
whereasinteraction between (Q and theexternal bath, Z, describes dissipation. Re-
lease of energy inthedirection Q — ¢ isfurther aleviated by the relaxation of the
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Figure 2.6: Coupling between the system and the reservoir. Q stands for system
DOF that play the mgjor role in the investigated process, while q comprises in-
tramolecular modes that influence the dynamics of the system through their coup-
ling to Q. The solvent DOF are labelled by Z.

latter viathelr coupling to Z. The multidimensionality isthe main feature of open
systems. The interaction between the system and the bath is usually described us-
ing the density matrix approach. The reduced density matrix allowsan exact treat-
ment of the system, while approximately incorporating the effects of the environ-
ment.

2.3.1 Isolated Quantum Systems

In order to follow the time evolution of an isolated system, one hasto find away
to solve the time dependent Schrodinger equation (TDSE) [68], [69]

Lo

zha
In the above equation, v is a wave function for the nuclear degrees of freedom
and H is a Hamiltonian. All properties of the system can be extracted from the
wavefunction. For example, thevalue of any observableisgiven by an expectation
value of the corresponding hermitian operator O

(0) = (¥|O[¥) (2.84)

Withincreasing the size of the system, solving Eg. 2.83 becomesademanding task
due to the exponentia scaling with the number of DOFs. Therefore, the goal isto
find amethod that would be suitable for treating large systems.

— Hy (2.83)
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The standard approach for solving the TDSE is based on the expansion of the
wave function in atime-independent basis, {x }

Ny Ny f
Q=D Ci i [P @) (2:85)
i1=1  ip=1 k=1
where Q comprisesaset of f degreesof freedom {Q}, and C aretime- dependent
expansion coefficients. Application of the Dirac-Frenkel variational principle

N
6V H — ifs ) =0 (2.86)

leadsto aset of coupled linear differential equations of motion for the coefficients.
Although solving this system of equationsis straightforward, computational |abor
increases exponentially with the number of degrees of freedom. That is, when
treating larger systemstherestriction to small number of basisfunctionsmight dis-
tort thereal picture.

For thisreason, it has been proposed to replace this exact propagation with ap-
proximate methods. The easiest way would be to represent the wave function as
a product of one dimensional time dependent functions, each of them describing
one DOF

f
$(Q,t) = C(t) H 0i(Qirt) (2.87)

The so - called single particle functions {p;(Q;, t) } are further expanded in atime

- independent primitive basis {x} adapted to the problem at hand. The expan-
sion given by Eq. 2.3.1 is denoted as Time Dependent Hartree, TDH [70], [71].
Application of the Dirac - Frenkel variational principle results in a set of coupled
equations of motion for the single particlefunctionsand the expansi on coefficients.
This approach has the disadvantage that the coupling between different degrees of
freedom is treated only in amean - field way. Thisis arather severe approxima
tion, in particular for proton transfer reactions [72]. Hence, it must be improved
by using alinear combination of TDH products, which is expected to give a better
description of correlation between different modes.

Multi Configuration Time Dependent Hartree

As has been indicated above, the limitations of the TDH approach can be over-
come by using more single particlefunctionsfor each DOF. Thisleadsto the Multi
Configuration Time Dependent Hartree (MCTDH) method [72]-[ 73], with thefol -
lowing ansatz for the wave function

ni ny !

i1=1 ip=1
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As before, Q stands for a set of f nuclear coordinates (modes), (pl(:”) aresingle -
particle functions (orbitals) for the x* mode and n,, is their number. The com-
putational effort strongly depends on n,. There are two extreme cases. if n,
equals1(N,), onearrivesat the TDH (standard) approach. By their proper choice,
MCTDH dlows more accurate description of mode interactions than the TDH
method, with much less effort than the one required for the standard scheme,
thanks to the time dependence of the single particle functions.

It goes without saying that the si ngle parti cle functi ons are kept orthonormal-
ized throughout the propagation, i.e., ( (¢ )\cpj (t)) = d6;;. The projector on the
space spanned by them is defined as

Z o) (). (2.89)

ie=1

The wave function given by Eqg. 2.88 can be written as
Y=Y CrP (2.90)
I

With the expansion coefficient Cr = Cj,, ;. and asingle Hartree product ®; =

H <pl"“ A single - hole function, i.e. a wave function with a vacancy (which

means it lacks description of one mode, @, for example) is defined as

Z Z Z ZCM A—1J%k+1-- ngpgl) ° QOEN 1 )(Pl(fill) : (pl(f)

e (2.91)
In the above expression, j can taken, values, which meansthat therearen, single
- hole functions corresponding to mode @,... Thereby, the total wave function is
aternatively given by i
o= el (292)
=1
Smgle hole functions can be used to define mean - field operators ( H )(“) =
( Y, |H|wj ) that act exclusively on one degree of freedom. Density matrices,
whose elements are given by p§;> = (wf” |¢§.")), define the one - particle dens-
ity of mode Q... Since different nuclear modes reflect different types of motion,
molecular modes are treated as distinguishable particles.
Having defined the basic quantities, we can employ the Dirac - Frenkel vari-
ationa principle, which brings us to the following set of equations of motion for
the single particle functions and the expansion coefficients [ 73]

iAp = (®|H|®L)AL
L

P = (L, ~ PW) (o) " (H)Vep (2,99
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with ¢ (k) = (g;g“), L wgg)T and I, & unit matrix of dimension n,.. The ex-
pansion coefficients A depend on the single - particle functions, entering through
the Hartree products ®. On the other hand, the single - particle functions depend
on the expansion coefficients viathe density matrix p. This makes the above set a
system of non-linear differential equations. In addition, the presence of the projec-
tion operator also introduces nonlinearity. The numerical propagation of MCTDH
wave packets is incorporated within the MCTDH program package [ 74].

From the last equation, it is obvious that in order to calculate the matrix ele-
ments of the Hamiltonian for a system with f degrees of freedom, it would be ne-
cessary to perform an f-fold integration. However, with a proper choice of the
form of the Hamiltonian, it is possible to reduce the numerical effort arising from
multiple integrations. Assuming that the total Hamiltonian A contains a part that
operates on a single degree of freedom, 1), and a residual part that describes
coupling between different modes, H, the total Hamiltonian can be written as

!
H=> h*+ Hp. (2.94)
k=1

Further, if the residua part can be represented as a sum of products of single -
particle operators
b /
Hp=> co ][ 2 (2.95)
a=1 k=1

the problem is simplified to a computation of the integral along one coordinate at
atime. Thus, the CRS Hamiltonian described in section 2.2.2 seems to be appro-
priate for combining with the MCTDH method [74], as will be shown in section
2.3.1.

MCTDH and the Diabatic Representation

TheMCTDH program package al so enablesanalysisof systemsinthediabatic rep-
resentation by introducing an additional degree of freedom, &, for labelling the dia-
batic levels. It can have only positive integer non - zero values, and the number of
single particle functions corresponding to this mode equals the number of states.
Thisway for describing the wave function is known as single - set formulation.
The number of included statesis not limited.

In the above example, one set of orbitalsisused for all states. In order to give
the wave - function more flexibility, different sets of single particle functions can
be employed for each level. This also increases the complexity of the working
equations, but leads to amore precise description of the process. For this purpose,
Eq. 2.88 isused for delineating one diabatic state. In this multi - set formulation,
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thezero - order states { |«) } are used as basis states for the expansion of the overall
wave function

T) => @ |a) (2.96)

where o denotes number of included diabatic states. The equations of motion now
take the following form [75]

AP = N (@ | H ) A7
=1 L

R = (1, = P (o) ST (2o
B=1

Therefore, contrary to the single - set formalism, one has to propagate separately
single particle functionsfor each diabatic state. Those equations of motion remind
of theset given by Eq. 2.93, being more complicated dueto the presence of another
degree of freedom. For example, the Hamiltonian matrix elements are given by

H = (o H|) (2.98)
and the mean - fields also include the diabatic degree of freedom,

( ﬁ>(qﬁ,k) = ¢z-(a’k)| ﬁ(aﬁ)w](_ﬂ,k)> (2.99)

)

Although it seems at first glance that the numerical effort is much higher for the
multi - set formalism, that is not necessarily the case: in order to achieve the de-
sired convergence, the number of single - particlefunctionsinthesingle- set form-
alism might be rather high. Since the effort scales exponentially/linearly with the
number of orbitals/states, implementation of the multi - set formalism isin many
cases encouraged. For the comparison of results obtained with the single and the
multi - set formalism, see Ref. [75]-[77].

Combining the CRS Method with the MCTDH Scheme

In order to make the propagation of the wave packet with the MCTDH method
efficient, it is necessary to provide an appropriate (product) form of the Hamilto-
nian, section 2.3.1. It will be shown in the following that the CRS approach can
be successfully combined with the MCTDH method.

Consider Eq. 2.66, the Hamiltonian for a single potential energy surface. Kin-
etic energy operators T, and 1/2P? act exclusively on one degree of freedom, the
reactive and the harmonic coordinates respectively. Thefunctions building the po-
tential energy part, the effective potential V', theforcesf aswell asthe Hessian K,
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can be expressed as polynomial functions of the reactive coordinates. Thiskind of
Hamiltonian possesses the required product form.

Inspecting the formulafor the diabatic system 2.79, we see that it also fulfills
the necessary condition, since the potential energy part has aform of a matrix. In
this case, the diabatic states correspond to vibrational states with respect to the re-
active coordinateswithintheground electroniclevel. Thatis, thediabatic statesre-
flect solely types of excitations of the reactive coordinates. In principle, one might
use either the single - set, or the multi - set formulation.

2.3.2 Open Quantum Systems

Isolated systems investigated in the previous section have been represented by a
wave function. This representation is not appropriate for open systems, since the
wave function that is supposed to describe the system and the environment would
depend on alarge number of variables. In principle, if it would be possible to in-
clude all degrees of freedom of both the system of interest and the surrounding,
the wave function approach as described in the previous section would be suffi-
cient. However, if the system of interest is surrounded with a macroscopic reser-
voir, the representation with awave function isimpossible. This suggests an exact
treatment of the system of interest and an approximate treatment of its coupling
to the environment. This approach provides all relevant information, since we are
not interested in the environment itself, but only on the influence it has on the dy-
namics of the system of interest. Thus, an interaction between the system and the
surrounding is often characterized by using reduced density matrices [78]. In the
following, we will only sketch the formalism for treating open systems, which is
otherwise fully devel oped.

Consider asmall system of interest S embedded in areservoir R. Suppose the
reservoir is much larger than the system, so when the system is driven away from
the equilibrium by acertain external force and startsinteracting with the surround-
ing, the excess of energy transferred to the surrounding is instantaneously redis-
tributed among its numerous degrees of freedom. Further, let us assume that this
excess of energy is negligible compared to the total reservoir’sinternal energy. If
all those conditions are fulfilled, the environment can be treated as a thermal bath,
that always stays in equilibrium. In the following, it will be shown how the dy-
namics of such systems can be studied with the help of density operators.

The Density Operator

Suppose we wish to investigate a certain system by representing it with a wave
function W, i.e., a corresponding state vector |¥). Let {«}, comprise a complete
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basisset. The calculationsare simplifiedif itischosen to be orthonormal, (a|a) =
daa- Sincethe basisis complete, each state of the system can be represented as a
linear superposition

T) =) cala). (2.100)

For a condensed phase system, a representation which rests on the density op-
erator is more appropriate

which is nothing but alinear superposition of projection operators on the quantum
states |¥,,), which are eigenstates of aset of commuting operators that correspond
to certain physical observables. Those projection operators describe the quantum
nature of the system. The expansion coefficientsw,, are the corresponding probab-
ilitiesfor thesystemtobeinastate| ¥, ). Thus, astatistical treatment isperformed,
for a genera case when the complete knowledge about the system is not obtain-
able. Thisapproach enablestheinvestigation of astatistical ensemble. If theabove
sum collapses into a single projector, say |V, ) (¥, |, the state of the systemis said
to be pure. Such situations can equally well be described by awave function. On
the contrary, if there exists afinite probability for more than one state to enter the
expansion 2.101, the state is referred to as mixed.

All information about the system are contained in the density operator. For
example, the expectation value of any observable can be expressed as

(O(t)) = tr {W(t)@} (2.102)
The time evolution of 1 is given by (cf. Appendix A)

W(t) = w,U(t to) L)L, [UT(t, 1) (2.103)

Theket vector is propagated with the time evolution operator U (¢, t,), and the bra
vector with the corresponding hermitian conjugate, U' (¢, ¢,). Taking the time de-
rivative of the last equation brings usto the equation of motion for the density op-
erator

Vi) = —% [H W(t)] (2.104)

This equation is known as Liouville-von Neumann equation. The change of
the density operator with time is proportional to the commutator of the overall
Hamiltonian and the density operator. A more compact form of the above equation
isobtained if itisexpressed inthe Liouville space. The Liouville spaceis, likethe
Hilbert space, alinear vector space. Its elements are the operators of the Hilbert



2.3 Quantum Dynamics 45

space, so they play the role of Hilbert space vectors. The operators defined in the
Liouville space are referred to as superoperatorsin order to distinguish them from
Hilbert space operators. Hence, the commutator in the Liouville-von Neumann
equation can be replaced with a superoperator £ acting on the density operator

ﬁW@:%FiW@] (2.105)

so the Liouville-von Neumann equation reads

9. e
2 W (1) = —iLW (1) (2.106)

The Liouville space is convenient for formal manipulations. However, al calcu-
lations have to be performed in the Hilbert space.

The Reduced Density Oper ator

The state vector, Eq. 2.100, and the density operator, Eq. 2.101, comprise all de-
grees of freedom of the system and the reservoir. If one would propagate the total
density operator, it would mean that all degrees of freedom of the reservoir are ac-
counted for. For large environments, thiswould make the cal culationsimpossible.
Therefore, it is convenient to introduce the so-called reduced density operator by
performing the trace of the total density operator over the reservoir’s degrees of
freedom

p) = D (anlW (B]ar) = tr {W (1)} (2.107)

QR

{ag} isacomplete basis defined in the space of the reservoir only. So trg {IW (¢)}
means that the integration affects only the reservoir degrees of freedom. In this
way, the important information about the system’s dynamics will be obtained,
while accounting for the influence of the environment [79]. The coupling to the
environment affects the state of the system. Since the reservoir is not treated ex-
actly, i.e., by including al its DOF, someinformation is missing. Suppose, for ex-
ample, that the system isinitially inthe pure state. If there is no coupling between
the system and the reservoir, the system will stay in the pure state throughout the
propagation and its evolution can equally well be described with a wave function.
However, if the system interacts with the environment, the coupling leavesthe sys-
tem in amixed state, which cannot be characterized by asingle state vector. In ad-
dition, thetotal wave function isnot obtainable dueto itshigh complexity and are-
duced wave function cannot be constructed, so the reduced knowledge can only be
obtai ned through the probabilities, which are comprised within the reduced density
operator.
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The total Hamiltonian can be written as
FI:FI5+EIR+FISR:H0+HSR (2108)

with Hs and Hy being the Hamiltonians that govern solely the dynamics of the
system of interest and the reservoir, respectively, and Hgx represents their coup-
ling. We will assume in the following that Hsr can be represented as

© is an operator that acts on system’s degrees of freedom, while T operates on
reservoir’s coordinates. g, is the coupling strength between the system and the
reservoir DOFs. Eq. 2.109 can be looked at, for example, as a Taylor expansion
with v comprising a set of parameters corresponding to different contributions.
Due to the presence of Hgp, it is not possible to construct a Hamiltonian which
describes the motion of the system of interest only without invoking further ap-
proximations, so the reduced density matrix cannot be obtained by performing a
unitary transformation of the reduced density matrix at the initial moment, 5(t,).
Inserting thetotal Hamiltonianin Eq. 2.104, the equation of motion for the reduced
density operator reads

0 . 0 . V2N PSS ) . .

Eﬂ(t) = &tf}t {W(t)} =~z [HS,P(t)}_ — 7R { [HSR(t)aw(t)]_
(2.110)
Owing to the fact that H z depends only on the reservoir’s degrees of freedom, the
trace of the commutator [H R, ﬁ(t)} vanishes. The commutator [ﬁSR, W(t)]
contains the total density operator, whose propagation isimpossible. Hence, it is
necessary to introduce approximationsthat lead to an equation of motion that con-
tains only the reduced density operator. A convenient approach would be to turn
from Schrodinger to interaction representation, asis given in Appendix B.

The Dissipative Dynamics

The equation of motion for the reduced density operator known as the Quantum
Master Equation isgiven by (cf. Appendix B)
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Cyy(t) isthereservoir correlation function. It provideswith information about the
dynamicsof thereservoir. It will be studied in moredetail in thefollowing section.
If weturn back to the Liouville space and introducethe Liouville superoperator

N N S
Lsp=1 |Hs.p| (2112)
the compact way of writing Eq. 2.111 would be
0 . s ~
5;P(t) = —iLsp(t) — Dh(?) (2.113)

Thefirst term on the right hand side —iL 55(t) according to Eq. 2.106 stands for
an evolution of a closed system. The dissipative superoperator D describes the
relaxation dynamics. Thisisthe part whichismissingin the Schrodinger equation.
It accountsfor anirreversible flow of energy from the relevant system towardsthe
reservoir.

We proceed by introducing the eigenstates of the system Hamiltonian Hg,
{]a)}. They form acomplete basisin the space of the relevant system. The matrix
elements of the reduced density operator and the system part of Hgp read

pas(t) = (al p(t)[b) 0% = (al6ulb) (2.114)

The diagona elements p,, represent probabilities of the state |a) to be populated
and are known as populations. Their sum should, therefore, be equal to 1. The
off-diagona elements p,;, the so-called coherences, describe a joined evolution
of the two states, |a) and |b). Coherences carry information on the relative phase
between the two states. If the experiment is performed in a way that the relative
phase between those two states is kept constant, the evolution of the systemissaid
to be coherent. Otherwise, if it evolves (decreases) in time, the processisincoher-
ent. Incoherence represents reduction of knowledge about the system.

Let E, and E, be eigenvalues of Hg corresponding to eigenstates |a) and |b).
Starting from EqQ. 2.111 we obtain for the dissipative part of p,, after somealgebra
(full derivationisgivenin[67])

t—to

(5/0;1;@))&58:_22/(17

C—UU(T)@E;;)GS? e poo(t — 7)

/N

cd wv
+Cu (T)@é?@i? 5T pay(t — T)
- {Cvu(_T)Ggé)@((i?ei%J
+ Cu(7) @S;)@Sé) ei“’d”} Pea(t — 7'))
(2.115)

with w,, being the transition frequency between the states |a) and |b). Thefact that
the elements of the density matrix in theintegrand depend on thevariable 7 (i.e,, it
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issaid that the system possess memory on the past) make the solution of the above
equation troublesome. However, our initial assumption was that the environment
ismuch larger than the system, so the reservoir reaches its equilibrium state within
ashort period of time, the correlation time 7.,,. For ¢t — 7 > 7.,,, the correlations
become negligible and the integrand approaches zero. That is, the significant time
for integrationist — 7., < 7 < t. On the other hand, the reduced density mat-
rix changes on atime scale larger than 7,,.. The fact that in the interaction rep-
resentation only the part of the Hamiltonian that describes the coupling, Hsg, IS
treated perturbatively suggeststo turn to the interaction picture, replace pq,(t — 7)
with pg (%), and get back to the Schrodinger picture. In addition, the upper bound
of integration can be set to infinity. This approximation is known as Markov ap-
proximation. Withinthe Markov limit, the dissipative part of the Quantum Master
Equation reads

(%) =% [ir {cum om0

0

- [Cvu(_T)Gua ﬁ(t)(—)z()l)(_T)} } . (2116)

Consider the integral

/ dr Cy(1)0,00 (—7). (2.117)
0
It isacomplex number whosereal part isresponsiblefor the dissipation. Theima-
ginary part modifies the distribution of the energy levels. Those modificationsare
usually small and do not alter the behavior of the system. Thereforewewill neglect
them in the following and define the damping matrix

Tapea(wae) =Re ) / dr Cuy(1)0W WD (—7) (2.118)

whichisactually responsiblefor theirreversible energy transfer. Further, using the
damping matrix, we can define the relaxation matrix

ab cd — 5ac Z 1—‘be ed wde + 5bd Z Fae ec <'L)ce) - l—\ca,bd(wdb) - de,ac (wca)
(2.119)
which enables to write the equation of motion for the matrix elements of the re-
duced density matrix in a compact way

Opas (t)
(752) =S Ruarat?) (2.120

Three cases can be distinguished: 1) a = b, ¢ = d. R4, describes population
transfer between different eigenstates of the Hamiltonian Hg; 2) a # b,a = c,
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b = d. Term R q» accounts for the loss of coherence; 3) transfer of coherences
(Rab,ca), transformation of populations into coherences (R, q) and vice versa
(Rab,cc)-

Eq. 2.120 includes mixing of different matrix elements of the reduced density
matrix. However, under certain conditions some of those couplings can be neg-
lected. In order to justify further approximations, let us rewrite the last equation
in the interaction representation[67]

(1)
(a%it(t)) . D Rapeae 000 1) (2.121)
If 1/|wap — wea| iSMuch smaller than the time step for which we need to know the
density matrix, the contribution of the corresponding term would be negligible,
and it can be disregarded. Thisis the Secular or Rotating Wave Approximation.
Further, if all couplings between the popul ations and coherences are ruled out, we
arein the Bloch limit. The Bloch approximation gives good resultsif it is applied
on anharmonic systems. Nevertheless, in order to be on the safe side, it isrecom-
mendabl e to check whether w,;, and w,, for the neglected terms are off - resonant.

The Reservoir Correation Function

In order to study the dynamics of an open system, it is necessary to calculate the
reservoir correlation function (cf. Eq. 2.111 and B.15). The correlations it de-
scribes are usually transient, surviving only for a short period of time, the correl-
ation time 7.,,.. In order to obtain the exact form of the reservoir correlation func-
tion, one would have to perform calculations in the space of the reservoir, which
is not viable. Hence, one has to turn to approximate methods.

If the reservoir forms aregular lattice, it iscommon to introduce the harmonic
approximation, i.e., itisassumed that itslattice atoms perform normal modevibra-
tions around their equilibrium positions and that those vibrations are uncoupled.
For weak system - reservoir couplings, often the linear coupling between the act-
ive system and the reservoir need to be taken into account. However, depending
on the problem at hand it might be necessary to takeinto account also the nonlinear
terms. For example, diatomicsin rare gas matrices can be investigated using this
approach. Rare gas atoms at low temperature form aregular lattice, whichisonly
marginally distorted by introducing a diatomic molecule, like hydrogen or fluor-
ine, due to their small radii.

If the environment is liquid, the harmonic approximation cannot be applied,
although there are attempts to describe the interaction in terms of instantaneous
normal modes for a given configuration of the solvent [80].
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Alternatively, thereservoir can be represented by fluctuating forcesfy it exerts
on the system DOFs [81]

2Q

It iscommon to assumelinear coupling with respect to system degrees of freedom,
that is (cf. Eq. 2.109)

fR(Z) = =

(2.122)

Q:Qeq

8(37@) =1 (2.123)

Q Q:Qeq

The reservoir correlation function is given by
C(t) = (tr(Z(t))fr(Z(0))) &- (2.124)

If in addition linear coupling with respect to a harmonic bath is assumed, i.e.,
T(Z) = g:7) (2.125)
A
SO we get [67]
h 7 Bw .
o) = / o J()feoth(%) cos(wt) — isinw)] (2.126)
0
with J(w) representing the spectral density

J(w) = % > b — ). (2.127)
A

Here g, isthe coupling constant for the bath oscillator with frequency w, and mass
my. Thesignificance of the spectral density liesinthefact that it isproportional to
the square of the coupling strength g, between the system and the bath and thereby
givesinformation on the probability of energy transfer from the relevant system to
the bath. Looking the other way around, by expressing the spectral density viathe
reservoir correlation function

o0

2
J(w) = —tanh hc;_ﬁ /Re C(t) cos(wt) dt (2.128)

0

we see that it depends on the real part of C'(¢) only, and can be replaced by an
appropriate classical correlation function, i.e.,

Re C(t) = Cupass () (2.129)

It can be shown [82] that in the limit of the linear response theory, the calcul ated
spectral density can be considered as corresponding to an effective bath which is
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harmonic, athough the true interactions entering C'.,s5(t) might be rather anhar-
monic. | other words, J(w) may be considered as being the spectral density of an
effective harmonic bath.

To summarize, classical molecular dynamics simulations give information on
the reservoir correlation function which is used for the calculation of the spectra
density. The spectral density itself provideswith the coupling strength between the
relevant system and the surrounding.

2.3.3 Interaction with an External Field

We are interested in the dynamics of asystem, initiated with an (infrared) electro-
magnetic field [83], [84]. In principle, both the system of interest and the ap-
plied field should be treated quantum mechanically. However, it iscommon toin-
voke a semiclassical approximation according to which the interaction between a
quantum system and a classical field is followed.

Although the electric and the magnetic component constitute the electromag-
netic field, the interaction of the magnetic component with the system will be neg-
lected in the following, since its contribution is a few orders of magnitude lower
than the term describing the interaction with the electric component. The electric
component has the following form

e(t) = eE,(1)S(t) (2.130)

with an envel ope and a shaping function £, and S respectively and a polarization
e. Assuming asin? form of theenvelopefunction, likeinFig. 2.7, thefield obtains
the form

e(t) = e O(t)O(r — t) ggsin®(nt/T) cos(Q) (2.131)

where 7 represents the duration of the pulse and ) the carrier frequency. In Eq.
2.131 we invoked the semiclassical dipole approximation [85].
The interaction Hamiltonian between the system of interest and the applied
field isgiven by
Hiny(t) = —&(t) - o (2132)

where u represents the dipole moment of the system. It can be expressed viaits
vector components
B = [1z€5 + [1y€y + [1,€,. (2.133)

e;, e, and e, are the unit vectors along the z, y and z axis.
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Figure 2.7: The parameters of the sin? pulseare: ¢, =4 x 103 E,/eag, 7 =200 fs,
and Q = 1200 cm~1.



