Styrene synthesis:
In-situ Characterization and Reactivity Measurements over Unpromoted and Potassium Promoted Iron Oxide Model Catalysts

By
Osama Shekhah
Styrene synthesis:
In-situ Characterization and Reactivity
Measurements over Unpromoted and Potassium
Promoted Iron Oxide Model Catalysts

Inaugural-Dissertation

zur Erlangung des Grades
Doktor der Naturwissenschaften
Am Fachbereich Biologie, Chemie, Pharmazie
Der Freien Universität Berlin

Vorgelegt in englischer Sprache

von

Osama Shekhah
Aus Jordanien
Berlin 2004
Gutachter:

Prof. Dr. R. Schögl
Fritz Haber Institute der MPG
Abt. Anorganische Chemie
Faradayweg 4-6
14195 Berlin

Prof. Dr. K. Christmann
Freie Universität Berlin
Fachbereich Biologie, Chemie, Pharmazie
Institut für Chemie-Physikalische und Theoretische Chemie
Takustr. 3
14195 Berlin

Tag der Prüfung: 06. Mai, 2004
Contents

Chapter-1: Introduction (styrene synthesis)

1.1 History ...2
1.2 Reaction thermodynamics ..3
1.3 Reaction kinetics and mechanism5
1.4 Industrial catalysts composition6
1.5 Catalyst deactivation ..8
 1.5.1 Coke deposition ..9
 1.5.2 Loss or redistribution of promoters9
 1.5.3 Oxidation state ...11
 1.5.4 Physical degradation11
1.6 Alternative processes for styrene St synthesis (oxidative dehydrogenation of EB) ..12

Chapter-2 Iron oxide model catalysts: A surface science approach to styrene synthesis

2.1 Introduction ...15
2.2 Preparation and characterization of iron oxide thin films16
 2.2.1 Geometric surface structures and stability ranges of iron oxides...16
 2.2.2 Potassium iron oxide compounds: Structure and stability ranges ...21
2.3 Surface and structure Characterization23
 2.3.1 LEED and STM ..23
 2.3.2 AES measurements ...26
 2.3.3 Adsorption properties (TDS, UPS and NEXAFS)28
 2.3.4 Low and medium pressure reactivity measurements30
2.4 Aims and work strategy ..33

Chapter-3 Experimental

3.1 Instrumentation setup ...36
 3.1.1 UHV analysis system36
 3.1.2 Sample transfer and heating37
 3.1.3 High pressure reaction cells39
 3.1.4 The reactor..40
 3.1.5 The laser heating system42
 3.1.6 The gas supply system42
3.2 Spectroscopic and microscopic characterization methods44
 3.2.1 LEED, TPO and AES44
3.3 Preparation of epitaxial iron oxide thin films44
3.4 Pressed powder samples of unpromoted Fe₂O₃

3.4.1 Preparation of the pressed powder samples

3.4.2 Characterization of the pressed powder samples (BET, XRD and SEM-EDX)

3.4.3 Cleaning of the pressed powder samples

3.4 Reaction experiments

Chapter 4 Results

4.1 Blank reactivity experiments

4.2 Unpromoted model catalysts

4.2.1 Dehydrogenation reaction on Fe₂O₃ (0001) and Fe₃O₄ (111) model catalysts in presence of steam (normal conditions)

4.2.2 Dehydrogenation reaction on Fe₂O₃ (0001) model catalysts without steam (reductive conditions)

4.2.3 Dehydrogenation reaction on Fe₂O₃ (0001) model catalysts in presence of steam and oxygen (oxidative conditions)

4.2.4 Dehydrogenation reaction on Fe₂O₃ (0001) model catalysts in presence of steam and oxygen, effect of oxygen concentration on the activity

4.2.5 Dehydrogenation reaction on Fe₂O₃ (0001) model catalysts in presence of steam. Oxygen on and off experiments

4.2.6 Dehydrogenation reaction on Fe₂O₃ (0001) model catalysts in presence of steam and oxygen at different temperatures

4.3 Promoted iron oxide (KFeₓOᵧ) model catalysts

4.3.1 Dehydrogenation reaction on KFeₓOᵧ model catalysts in presence of steam (normal conditions), effect of potassium content

4.3.2 Carbon formation from reaction on KFeₓOᵧ promoted and unpromoted catalysts (normal conditions)

4.3.3 The effect of reactivation with steam on the dehydrogenation reaction on potassium promoted (KFeₓOᵧ) model catalysts

4.3.4 Dehydrogenation reaction on KFeₓOᵧ model catalysts in presence of steam and oxygen (oxidative conditions)

4.3.5 Dehydrogenation reaction on KFeₓOᵧ model catalysts without steam (reductive conditions), effect of potassium promoting on the reduction of the catalyst
4.3.6 Dehydrogenation reaction on KFe₅O₇ model catalysts
in presence of steam. Oxygen on off experiments..................78
4.3.7 Dehydrogenation reaction on KFe₅O₇ model catalysts
in presence of steam and oxygen, effect of oxygen concentration ...78
4.3.8 Dehydrogenation reaction on KFe₅O₇ model catalysts
in presence of steam and oxygen at different reaction
temperatures. ...80
4.4 Pressed hematite (Fe₂O₃) powder samples
4.4.1 Reaction on pressed powder samples in fixed bed reactor81
4.4.2 Reaction on pressed powder samples in micro flow reactor82
 a) Reaction in the presence of EB and steam in the feed.85
 b) Reaction in the presence of EB, steam and oxygen in the feed........92

Chapter-5 Discussion
 5.1 Unpromoted model catalyst...98
 5.2 Promoted model catalyst..103
 5.3 Pressed powder samples..114
 5.4 Reaction model and mechanism...116
 5.5 Conclusions...119

References
Acknowledgement
Curriculum vita
Abstracts
Acronyms

AES Auger-Electron Spectroscopy
E_{ads} Adsorption energy
EDX Energy Dispersive X-ray Emission Analysis
EB Ethylbenzene
St Styrene
fcc face centered cubic
FID Flame Ionization Detector
hcp hexagonal close packed
ISS Ion Scattering Spectroscopy
k_i rate constant
K Equilibrium constant
LEED Low-Energy Electron Diffraction
ML monolayer
v frequency factor
NEXAFS Near-Edge X-ray Absorption Fine Structure
p gas pressure
PEEM Photoelectron Emission Spectroscopy
q_s Isosteric heat of adsorption
r Reaction rate
RDS Rate Determining Step
SEM Scanning Electron Microscope
SIMS Secondary Ion Mass Spectrometry
STM Scanning Tunneling Microscopy/Microscope
T Temperature
TCD Thermal Conductivity Detector
TDS Thermal Desorption Spectroscopy
TEM Transmission electron microscopy
TPO Temperature Programmed Oxidation
UPS Ultraviolet Photoelectron Spectroscopy
XPS X-ray Photoelectron Spectroscopy
XRD X-ray Diffraction

List of Schemes
Scheme (1) Reaction network (products and byproduct) in the dehydrogenation of ethylbenzene. Toluene and benzene are formed by (1) dealkylation reaction, (2) Hydrodealkylation reaction, (3) steam dealkylation, the Coke formation and gasification with steam are also shown in (4)......

Scheme (2) Schematic of the life cycle of styrene catalyst with potassium and no other promoter additives as found from in-situ and ex-situ characterization work on the working catalyst by Muhler et. al[74]...

Scheme (3) Schematic drawing of the catalytic oxidative dehydrogenation over carbon nanofilaments, (1) adsorption of ethylbenzene, (2) dehydrogenation at basic centers, (3) desorption of styrene, (4) adsorption of oxygen and reaction with oh groups, (5) desorption of water...

Scheme (4) An illustrative scheme for the main and side reaction pathways of the dehydrogenation of EB over the unpromoted Fe$_2$O$_3$ model catalyst...

Scheme (5) An illustrative scheme explaining the role of water in preventing the reduction of the catalyst and the gasification of carbon deposits........

Scheme (6) (a) The main and side reaction pathways over the potassium promoted iron oxide model catalyst. (b) The role of water in the gasification of carbon deposits and the acceleration of potassium loss

List of Figures

Figure 2.1 p(O_2)-T phase diagram of the iron-oxygen system. The ranges where Fe$_3$O$_4$ (A) and Fe$_2$O$_3$ (B) films were grown on Pt (111) are indicated...

Figure 2.2 Perspective side views of iron oxide crystal structures and top views cut parallel to the close packed oxygen layers. Bulk truncated (111) and (0001) surface structures terminated by outermost iron planes are shown. The surface unit cells are indicated. The top views are drawn with the full cation and anion sizes. In the side views the ionic radii were reduced by a factor of two..............................

Figure 2.3 Structure models and layer arrangement for the ternary compound K$_2$Fe$_{22}$O$_{34}$ (a) and KFeO$_2$ (b). K is the large gray balls, O is the small dark balls and the Fe atoms are located in the center of the octahedral and the tetrahedral...

Figure 2.4 LEED patterns at E=60 eV and top views of the corresponding surface structures of the different iron oxide films grown onto Pt(111). The unit cells in real and reciprocal space and the crystallographic directions in the cubic (a-c) and hexagonal crystal structures (d) are indicated. The epitaxial relationships between the oxide films and the substrate surface lattice are reflected in this figure...

Figure 2.5 a)AES spectra of epitaxial iron oxide films grown onto Pt(111). (1)α-Fe$_2$O$_3$(0001), (2) the Fe$_3$O$_4$(111) before reaction, (3)
Fe₃O₄(111) after reaction and (b) KFe₅O₇ films are at least 100 Å thick..............

Figure 2.6 Energetic and structural results for EB (filled symbols) and St (open symbols) adsorption on different substrate films. (a) Desorption energies from TDS [28] for chemisorbed (γ) and physisorbed (β) species and adsorbate arrangement at low coverages of the initially adsorbing species (β on FeO, γ on the others). Shown is adsorbed EB, the arrangement for St is similar. Adsorbate structure for Fe₅O₇ from NEXAFS measurements [11]. The arrangement on KFe₂₂O₃₄ is hypothetical. (b) Dependence of the desorption energy for the initially adsorbing species on the position of the first iron layer relative to the first oxygen layer.. 27

Figure 2.7 Mass spectrometer traces for EB and St under low pressure reaction conditions as indicated over poorly ordered and well ordered Fe₂O₃ samples. Water was admitted at t=0. The traces reflect the periods of EB admission.. 28

Figure 2.8 Mass spectrometric analysis of a batch reactor experiment at intermediate pressure conditions as indicated for three Fe₂O₃ model catalysts with differing surface quality. (1) well ordered, (2) intermediate order, (3) poorly ordered.. 32

Figure 3.1 Experimental setup, schematic, consisting of the preparation and analysis chamber (TDS) (1), PEEM (2) working at ultrahigh vacuum and the reactor chamber (3), working at pressures up to 1 bar. The sample on its support (figure 3) is moved by a magnetically coupled transfer rod. The transfer between the rod and the manipulator (M) or the reactor is accomplished by wobble sticks................................. 37

Figure 3.2 a) Schematic side view of the magnetic transfer rod, the wobble stick, and the heating-cooling station in the transfer position, b) Front view photograph of the sample heating-cooling station on the manipulator.. 38

Figure 3.3 A side view of the high pressure reaction cell with the flow reactor located inside. The sample is transferred from UHV chamber using magnetic transfer line. With the help of wobbelstick the sample is transferred and placed inside the reactor down in the chamber........ 40

Figure 3.4 Stagnation point micro-flow reactor for model catalysis at high pressure. 1: sample on sapphire support; 2: reactor cap; 3: fibber rods for coupling in laser irradiation; 4: thermocouple feed-through. (a) during insertion of the sample on a wobble stick, reactor cap withdrawn. (b) reactor cap closed, gas admission and analysis lines are schematically shown... 41

Figure 3.5 The gas supply system used for the investigation of the styrene synthesis reaction carried out over iron oxide based catalysts in the presence of steam. All tubes are 1/16 inch in diameter. Helium (5.0) is used as carrier gas. The helium passes a 0.5 µm filter located directly in front of mass flow controllers (Bronkhorst).......................... 43

Figure 3.6 Schematic representation of the preparation of epitaxial iron oxide
films Fe_3O_4 and KFe_3O_4 on $\text{Pt}(111)$, accomplished by repeated cycles of iron deposition and subsequent oxidation.

Figure 3.7
a) The pressed hematite (Fe_2O_3) powder samples in form of pellets.
b) A side view of the pressed pellet (1) mounted on a sapphire sample support with the help of Pt clamps (2) designed for this purpose, the thermocouple is mounted on the Pt holder. c) A heating homogeneity test for the sample holder using a laser source at 890K.

Figure 4.1. Time dependence of the St conversion rate at 870 K, normal conditions, EB and H_2O in the feed, over (a) α-$\text{Fe}_2\text{O}_3(0001)$. The labels A-C give the positions where sample characterization was performed (see table (4.1)).

Figure 4.2. STM images of unpromoted Fe_2O_3 model catalyst surface a) before, b) after 3 hours from reaction at normal reaction conditions, with the height profile along the indicated lines of each image is shown below.

Figure 4.3. Time dependence of the St conversion rate at 870 K, normal conditions, EB and H_2O in the feed, over Fe_3O_4. The label D and E give the position where sample characterization was performed (see table (4.2)).

Figure 4.4. Time dependence of the St conversion rate at 870 K, reductive conditions, EB and He in the feed, over Fe_3O_4. The labels F and G give the position where sample characterization was performed (see table (4.3)).

Figure 4.5 AES spectrum of Fe_2O_3 model catalyst after reaction at 870 K, reductive conditions, EB and He in the feed. Position G in Fig. (4.4).

Figure 4.6 Time dependence of the St conversion rate at 870 K, oxidative conditions, EB, H_2O and O_2 in the feed, over Fe_2O_3. The label H gives the position where sample characterization was performed (see table (4.4)).

Figure 4.7 a) Conversion dependence of the St conversion rate at 870 K, oxidative conditions, EB, H_2O and O_2 in the feed, over Fe_2O_3 on EB/O_2 molar ratio which is changed at the position labeled by numbers (1) 1:05, (2) 1:0.3, (3) 1:0.13, (4) 1:0.3 and (5) 1:0.13.
b) Dependence of the steady state rate after 50 min of reaction at constant O_2/EB molar ratio (r_{50}). The dotted line is the estimated O_2/EB molar ratio which is theoretically needed to stabilize the high initial St conversion (see chapter 5).

Figure 4.8 Deactivation dependence of the St conversion rate at 870 K, oxidative conditions, EB, H_2O and O_2 in the feed, over Fe_2O_3 after switching O_2 on and off. The label I and J give the position where sample characterization was performed (see table (4.5)). For comparison, the deactivation when starting with a well ordered Fe_2O_3 without O_2 in the feed (from Fig. (4.1)) is shown in (a).

Figure 4.9 The dependence of the St conversion rate at, oxidative conditions,
EB, H₂O and O₂ in the feed, over Fe₂O₃.................. 66

Figure 4.10 Time dependence of the St conversion rate at 870 K, normal conditions, EB and H₂O in the feed, over KFe₃O₉ with a (Iₖ/Iₚ~2.2). The lower cure shows the St conversion rate over unpromoted Fe₂O₃ for comparison................................. 67

Figure 4.11 Time dependence of the St conversion rate at 870 K, normal conditions, EB and H₂O in the feed, over KFeₓOᵧ with a) (Iₖ/Iₚ~ 0.9), b) (Iₖ/Iₚ~ 4.2).. 69

Figure 4.12 The build-up of carbon deposits over the unpromoted Fe₂O₃ and potassium promoted (KFeₓOᵧ) catalyst (Iₖ/Iₚ~2.7), expressed by the intensity ratios of the main Auger peaks of carbon to iron (I_C/I_Fe) with time on stream (normal conditions)................................. 71

Figure 4.13 Time dependence of the St conversion rate at 870 K, normal conditions, EB and H₂O in the feed, over a potassium promoted (KFeₓOᵧ) with (Iₖ/Iₚ= 2.2), a) before reactivation with water, b) after reactivation with water for ~15 min... 73

Figure 4.14 Time dependence of the St conversion rate at 870 K, oxidative conditions, EB, H₂O and O₂ in the feed, over a potassium promoted (KFeₓOᵧ) model catalyst with (Iₖ/Iₚ=0.9).. 75

Figure 4.15 Time dependence of the St conversion rate at 870 K, normal conditions, over KFeₓOᵧ with (Iₖ/Iₚ= 1.9), after 2 hrs H₂O was switched, and the reaction is run under reductive conditions 77

Figure 4.16 Conversion dependence of the St conversion rate at 870 K, oxidative conditions, EB, H₂O and O₂ in the feed, over a KFeₓOᵧ (Iₖ/Iₚ~2.7) after switching O₂ off and on. B) Conversion dependence of the St conversion rate at 870 K, oxidative conditions, EB, H₂O, and O₂ in the feed, over KFeₓOᵧ (Iₖ/Iₚ~2.7), on EB/O₂ ratio, (1) 1:0.5, (2) 1:0.3, (3) 1:0.13 and (4) 1:0.5. 79

Figure 4.17 The dependence of the St conversion rate at, oxidative conditions, EB, H₂O and O₂ in the feed, over a KFeₓOᵧ (Iₖ/Iₚ~2.8) on reaction temperature .. 80

Figure 4.18 Time dependence of the rate of St production (molecules. s⁻¹. cm² BET surface) over pressed pellets of Fe₂O₃ powder in a fixed bed reactor. Reaction temperature 895 K, atmospheric pressure. : 1) EB/H₂O = 1:6, 2) EB/H₂O/O₂ = 1:6:0.4. In region A the GC measurement was switched from fast FID analysis to the combined FID-TCD method. This caused a shift in the baseline......................... 81

Figure 4.19 SEM-EDX the pressed Fe₂O₃ powder of unused samples (a) and(b). (c) carbon contaminated part. (e) and (f) after cleaning treatment for 30 min... 84

Figure 4.20 a) St conversion over the pressed powder Fe₂O₃ pellets used in the micro flow reactor at the same conditions like the model catalysts of 870 K and EB and H₂O in the feed (normal conditions). b) XRD spectrum of the powder sample after reaction. The asterisk mark the positions of Fe₃O₄ related diffraction peaks................................. 87

Figure 4.21 SEM and EDX of the powder sample after reaction with EB and H₂O
in the feed. The dashed line separates the red from the black parts of
the sample.. 86

Figure 4.22 SEM and EDX of the powder sample after reaction with EB and H₂O
in the feed. The back was black (Fe₃O₄). The Image (b) shows also
small 0.1 μm particles... 89

Figure 4.23 SEM and EDX of the black part of the powder sample after reaction
with EB and H₂O in the feed (normal conditions). showing clearly
the carbon deposits after reaction.. 90

Figure 4.24 SEM and EDX of the black part of the powder sample after reaction
with EB and H₂O in the feed (normal conditions).................. 92

Figure 4.25 a) St conversion over the pressed powder Fe₂O₃ pellets used in the
micro-flow reactor at the same conditions like the model catalyst of
870 K and EB and water in the feed, normal conditions. b) in the
presence of oxygen in the feed, oxidative conditions..................... 94

Figure 4.26 SEM and EDX of the powder sample after reaction with EB and H₂O
in the feed. The sample was red (Fe₂O₃) and the EDX spectra shows
that the surface is almost clean from the carbon deposits.............. 96

Figure 4.27 SEM and EDX of the powder sample after reaction with EB and H₂O
and O₂ in the feed, oxidative condition)............................... 102

Figure 4.28 SEM and EDX of the powder sample after reaction with EB and H₂O
in the feed, oxidative conditions.. 112

Figure 5.1 Initial St conversion rate r_in ad time constant for deactivation τ_de for
samples with different initial K-content in terms of the Auger peak
height ratio I_K/I_Fe- The composition where the ordered (2X2)
structure is formed is indicated... 107

Figure 5.2 Temperature dependence of the rate of styrene formation over the
unpromoted and potassium promoted iron oxide model catalysts...... 109

Figure 5.3 EB dehydrogenation mechanism over the defects sites on the
unpromoted (Fe₂O₃) [54]. Step 4 was found not to happen in case of
reaction in presence of water alone. A side reaction (reduction of the
Fe₂O₃ to Fe₃O₄) also occurs.. 109

Figure 5.4 Reaction mechanism proposed by Muhler et. al. [74] proposed
reaction mechanism for the dehydrogenation of EB to St over
potassium promoted iron oxide catalysts..................................... 112

Figure 5.5 Comparison of the EDX C-K intensity peak between pressed powder
samples after different treatments. The unused fresh pressed powder
is also shown for comparison. The spectra are normalized to equal
Fe-L intensity... 112
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Partial pressures and molar ratios of reactive gases in the gas feed for the used standard reaction conditions. The rest to the working pressure of 1 bar is He. The standard reaction temperature is 870 k, the standard total flow 25 ml min(^{-1}).</td>
<td>46</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen and iron before and after reaction for the unpromoted Fe(_2)O(_3) model catalysts.</td>
<td>54</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen and iron before and after different treatments for the unpromoted Fe(_2)O(_3) model catalysts.</td>
<td>56</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen and iron before and after reaction (reductive conditions) for the unpromoted Fe(_2)O(_3) model catalysts.</td>
<td>58</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen and iron for the unpromoted Fe(_2)O(_3) model catalysts before and after reaction with water and oxygen in the feed.</td>
<td>60</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen and iron for the unpromoted Fe(_2)O(_3) model catalysts after oxygen on-off experiments (Fig. (4.8a,b)).</td>
<td>65</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen, potassium and iron before and after reaction with EB and H(_2)O in the feed (normal conditions) for the promoted (KFe(_x)O(_y)) model catalysts with different K-loading.</td>
<td>70</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen, potassium and iron before and after reaction with EB and H(_2)O in the feed for the promoted KFe(_x)O(_y) model catalysts effect of reactivation with steam.</td>
<td>72</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen, potassium and iron before and after reaction with EB and H(_2)O in the feed for the promoted KFe(_x)O(_y) model catalysts with (I(_K)/I(_Fe)~2.8), before and after reactivation with water for 15 min.</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen, potassium and iron before and after reaction with EB, H(_2)O and O(_2) in the feed (oxidative conditions) for the promoted KFe(_x)O(_y) model catalysts with (I(_K)/I(_Fe) = 1.0).</td>
<td>75</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>LEED patterns and intensity ratios of the main Auger peaks of carbon, oxygen, potassium and iron before and after reaction with EB and H(_2) in the feed over the promoted KFe(_x)O(_y) model catalysts.</td>
<td>77</td>
</tr>
</tbody>
</table>