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Abstract

Climate models and climate modelling are a central part of climate science with partic-
ular importance for long term prognoses of future climate development. In the context
of global climate change, which is a fact undoubted by climate scientists but sceptically
discussed in the public, their importance not only for climate sciences is increasing.
However, most findings of climate modelling approaches are highly uncertain and span
a very broad range of values for climate variables and impacts of climate change.
Climate models are different from experiments in physics, thus their results must be
valued accordingly. Furthermore climate models are epistemically very different from
physics theories, which are normally topic of the debate in the philosophy of science. In
this thesis climate modelling is analysed according to ascertain the epstemic status of
climate models and to discuss its consequences.

Climate modelling is not based on a comprehensive physics theory and is not analogous
to experimenting. Moreover, climate models play a double role as an outsourced human
brain and a copy of the earth and are thus something in between an experiment and a
theory in progress.
Due to this fact several problems of climate modelling result, two of which are funda-
mental and others are principally to overcome but practically pressing. The fundamental
problems of understanding the climate system are the nonlinearity of the system and
lack of observational data. The main practical problem of climate modelling is the prob-
lem of parameterisation, which is the need to represent processes of the climate system
in the modelling approach that are insufficiently understood or on a smaller scale than
the resolution of the model.
Parameterisations in nonlinear models make it nearly impossible to detect chains of
causes and effects in a climate model. Therefore an intransparent method of fitting
the model to data, which is called tuning, results in manipulated physics of the climate
model and prevents a meaningful analysis of the modelling results.
As a conclusion of this thesis certain rules are provided that could avoid abuse of climate
model tuning. Furthermore basic guidelines are provided to make the climate modelling
process more transparent in general and thus to refer to the main uncertainties integral
to climate modelling appropriately.
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Zusammenfassung

Die Klimawissenschaften erfahren in den letzten Jahren große öffentliche Aufmerksamkeit
aufgrund des sich zunehmend bemerkbar machenden anthropogenen Klimawandels. Die
Rezeption der Ergebnisse klimawissenschaftlicher Forschung ist dabei keineswegs nur
positiv. Im Gegenteil, viele Aussagen, die Wissenschaftler über die mögliche Entwick-
lung des Klimas, treffen, werden angezweifelt. Und zwar sowohl von Wissenschaftlern
anderer Disziplinen als auch von Vertretern politischer und gesellschaftlicher Instanzen.
Wenn diese Zweifel begründet werden, beruht diese Begründung häufig auf der An-
nahme, dass Klimamodelle, mit deren Hilfe Projektionen zukünftiger Klimate erstellt
werden, nicht die nötige Qualität aufweisen um ihre Aufgabe zu erfüllen.
In dieser Dissertation wird der wissenschaftstheoretische Status insbesondere komplexer
Klimamodelle analysiert und die Frage erörtert, ob Zweifel berechtigt sind.

Der anthropogene Klimawandel ist eine wissenschaftliche Tatsache, die ohne Zuhilfe-
nahme von Klimamodellen zu belegen ist. Für die Folgen der globalen erwärmung
spielen diese jedoch eine herausragende Rolle. Klimamodelle sind aus wissenschafts-
theoretischer Sicht grundlegend verschieden von wissenschaftlichen Theorien, die im
wesentlichen Gegenstand der Diskussion in der Wissenschaftstheorie sind. Einge klas-
sische Fragen dieser Disziplin stellen sich daher anders bzw. bedürfen anderer Ideen zur
Beantwortung der Fragen.
Nach einer naturwissenschaftlichen Einführung wird in der Dissertation gezeigt, dass es
keine Theorie der Klimawissenschaften gibt, ebenso wie Klimamodelle nicht analog zu
klassischen Experimenten verstanden werden können. Klimamodelle, wie andere Com-
putermodelle auch, nehmen stattdessen einen Status zwischen Theorie und Experiment
ein und sind eher als Ansatz ein bestimmtes Problem zu bearbeiten zu interpretieren,
als dessen tatsächliche Lösung.
Daran anschließend werden die Probleme im Zusammenhang mit Klimamodelierung
dargestellt, wobei zwei grundsätzlich nicht lösbare, prinzipielle Probleme einer Reihe von
Modellierungsschwierigkeiten gegenüberstehen. Eine der Hauptursachen für letztere ist
ein Skalenproblem, da wichtige Prozesse im Klimasystem auf räumlichen Skalen stat-
tfinden, die in den Modellen nicht aufgelöst werden müssen sie parametrisiert werden.
Viele Prozesse des Klimasystems sind bisher nicht, oder nur unzureichend verstanden,
ein Problem, dass durch die Parametrisierungen verstärkt wird. Ein prinzipielles Prob-
lem ist die Nichtlinearität des Klimasystems, die es einerseits nicht möglich macht das
System komplett zu verstehen und andererseits nichtlineare Modelle erfodert, in denen
es kaum möglich ist Kausalketten zu identifizieren.
Abgesehen von diesen systembedingten Schwierigkeiten erschwert die Tatsache, dass es
sich beim anthropogenen Klimawandel um ein singuläres Ereigniss der Klimageschichte
handelt, das Testen von Klimamodellen und erhöht damit die Unsicherheit der Klimapro-
jektionen.
Dass es trotzdem möglich ist Klimamodelle zu validieren und damit zu robusten Ergeb-
nissen der Modellsimulationen zu gelangen ist Gegenstand der weiteren Analysen in
der Dissertation. Dabei wird dargelegt, wie mit Hilfe von Klimamodellen insbesondere
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durch das modellierern ähnlicher Szenarien in ganzen Ensemblen von Modellen gute
Ergebnisse erzielt werden können. Diese Methoden erlauben es jedoch streng genommen
nicht, modellierte Klimavariablen so exakt zu prognistizieren, dass Wahrscheinlichkeits-
funktionenen angegeben werden können.
Anhand des Beispiels des Modelltunens werden im lezten Teil der Dissertation Regeln
entwickelt, deren Einhaltung einige grundlegende Fehler im Modellierungsprozess ver-
hindern kann. Die konkreten technischen Regeln lassen sich auf drei wesentliche Grund-
sätze reduzieren: Ein Messdatum nicht zweimal zu verwenden, alle bekannten theoretis-
chen Zusammenhänge im Modellierungsprozess zu berücksichtigen und keine Zusammen-
hänge, die durch das Tunen des Modells enstehen als Kausalzusammenhänge zu inter-
pretieren. Darüberhinaus werden Vorschläge zum Umgang mit Unsicherheiten im Modell
erörtert und anhand von Handlungsanweisungen des Weltklimarats ergänzt. Begrüdet
werden diese Regeln damit, dass sie zur Erreichung des Ziels, Modellierungsprozesse
und Ergebnisse von Klimasimulationen nachvollziehbarer und transparenter zu machen,
beitragen.
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Preface

This thesis is in the field of the philosophy of science but analyses the rather technical
practice of climate modelling in detail. The intention behind the writing is to contribute
to the philosophical discussion and at the same to provide something of interest to the
climate scientific community. It is thus comprehensible for readers who are experts
neither in climate modelling nor in the philosophy of science.
Throughout the argument several words used as philosophical and technical terms appear
again and again. Some of them are used in a specific way, which will be defined in the
context of the argument, others do not differ from the everyday language understanding.
The glossary provides short forms of the definitions and refers to the relevant sections
in the text.
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Introduction and Background
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1. Introduction

Climate science is a branch of science, the existence of was denied just a few years ago
by several physicists but which is now of increasing importance, the more that people
feel the impacts of climate change. Having made the leap from the realm of a small
crowd of reputed eccentrics to an influential science in the critical focus of the media,
the main tools employed in climate science, climate models, have also come under the
scrutinisation of the public.
Looking in the community’s most important publication, the latest Assessment Report
(AR4) of the Intergovernmental Panel on Climate Change (IPCC), released in 2007, the
model based projections of future global warming range from a 1.1◦C to a 6.4.◦C tem-
perature increase whereas more recent publications go even further to assign an increase
of more than 8 degrees if the world continues each year emitting more CO2 than the
year before at an accelerating rate. Such an enormous range sounds rather vague and
therefore implies an enormous uncertainty in climate modelling results. Additionally,
the term model allows people to suspect that a climate model is just a model and not
related to the real world. Both assumptions are true, as climate model projections are
highly uncertain and climate models do only represent the real world in very specific
aspects. Thus, two questions arise: why do we use climate models? And why do we
think they tell us something about the world?

The renowned climate scientist Veerhadran Ramanathan answered the first question on
his visit to the Potsdam Institute for Climate Impact Research in 2008 as follows: “We
do need climate models because it is the core of our thinking, we cannot think nonlin-
ear¡‘ He is perhaps not entirely correct in this answer but he brought up an important
problem of climate science, which is the nonlinearity of the climate system.
We can represent the climate system or aspects of it with the help of mathematical equa-
tions, which includes nonlinear equations. Hence nonlinearities can be grasped very well
by human minds, but we cannot solve these equations analytically, instead numerical
solutions must be found. There are many processes in the climate system which have
already been discovered but which are not understood or are too small to consider in cli-
mate models. In order to nevertheless represent them in models simulating the climate
they are displayed as parameters. Some parameter values can be assigned that have
counterparts in the real world but others result only from model fitting. This so-called
parameterisation is especially important as it is the only method to begin answering the
most pressing questions without fully understanding the system as a whole. The param-
eterisation and model fitting which is included in the process of climate model tuning is
crucial for climate modelling and represents very well what distinguishes climate science
from other branches of physics.
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1. Introduction

This difference between climate science and classical physics is certainly the impossibility
of performing controlled experiments, or indeed experiments at all. The only ’experi-
ment’ we perform is the modification of the climate of and life on the planet by the
current alterations to the atmospheric composition. Thus it is not possible to perform
experiments in earth science as the repetition of an experiment, which characterises sci-
entific experiments, is impossible. We have only got one Earth.
Since the role that experiments play in physics is so central also climate physics does not
work without it, despite the uniqueness of the earth, by replacing classical laboratory
experiments with climate model simulations. This is not a satisfying replacement but a
mimicry of experimenting with the climate system, and one that is inadequate for many
purposes but quite good for others.

We can think in a nonlinear way in terms of being able to set up nonlinear equations but
we cannot understand nonlinear systems if understanding is interpreted as computing
or even managing the system. On the other hand nonlinear systems are not intelligible
for us as it is impossible to know the causes of the effects we observe in general. Then
again there are correlations in the climate system we are perfectly able to understand,
which is due to the fact that the climate system is, in a manner of speaking, twofold
in thermodynamics and dynamics. The latter is what causes fundamental problems in
understanding the climate system, whereas the thermodynamic basis of the climate sys-
tem is computable and serves as fundamental for every climate model.

It is not only the nonlinearity of the climate system that prevents a thorough understand-
ing of the system but also the impossibility of observing all relevant climate variables
in the oceans, the atmosphere, and other spheres. This lack of data is a fundamental
problem and the most important one for climate modelling. The problem of little data
available to initialise the model, to find parameters, to tune it, and to validate the mod-
elling results, intensifies other problems that cause uncertainty in climate modelling.
These are crucial processes in model development and besides the initialisation and the
validation they are necessary due to the nonlinearity of the climate system and the
sparse observational data. Fundamental problems in understanding the climate system
thus result in modelling problems.

Besides these fundamental deficiencies it should be underlined that the basis of climate
modelling is physics, thermodynamics and several other important processes, which are
physics systems and therefore can be described accordingly in terms of equations of
motion and the accompanying equations of state. The impossibility of solving these
equations analytically is a characteristic the climate system shares with all other com-
plex mechanical systems. Several aspects of climate physics are also considered in fluid
dynamics or chaos theory. What sets climate science apart from such disciplines of
physics is the fact that the parts and aspects of the climate system, especially vulner-
able to human influence and thus of most concern, can only be considered by merging
chaos theory, statistical physics, and fluid dynamics, as well as chemistry and biological
research etc., and this would not include anthropogenic influences up until now. Taking
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1.1. The debate

them into consideration would require the additional implementation of socio-economic
aspects in the climate models which is additionally difficult due to different modelling
strategies in climate and economic modelling.
The climate system in its relevance for life on earth is a system of analytically unintel-
ligible interactions, they can therefore not be analysed separately without great loss of
realism. This is an important difference to other physical disciplines, without climate
models we would be unable to understand the climate system as a single, integrated
whole.

These are some basic arguments why we do use climate models and do think we can
learn something, as at least each model run is of value as it presents a ’what if’ scenario
from which we may learn about the model itself or the earth system (Stainforth et al.
(2007)). Nevertheless the value could be higher if some principal problems of climate
modelling were addressed more appropriately in terms of uncertainty.
The result of fundamental and current problems of understanding the climate system is
uncertainty in modelling the system. In almost every case the uncertainty is of such a
degree that the assignment of statistical probability density functions to model output
is impossible. It is thus very much a question of whether ”non-statistical“ probability
functions are really of value or if alternative measures of uncertainty are more appropri-
ate.
All these aspects taking climate modelling apart from classical disciplines of science begs
the question of whether these differences in the epistemic foundation lead not only to
problems in the practical approach of climate modelling but also reveal different epis-
temic questions. That this is indeed the case will be seen when trying to define the term
climate model and in particular in the concluding part of this thesis, which provides
some guidelines to improve climate modelling and also the communication of climate
modelling approaches between scientists but also to the public.
The approach of this thesis may be seen as a case study in the philosophy of science on
climate modelling.

1.1. The debate

The question of the epistemic status of climate models is interesting not only per se
but also in the context of some discussions in the philosophy of science which it touches
upon.
There is the debate about the realism of science and its success, which includes such big
names as Thomas Kuhn and Karl Popper, Imre Lakatos, and Paul Feyerabend, Larry
Laudan, Ian Hacking, Carl Hempel, Nancy Cartwright, and many more. This debate
is very much independent of climate science therefore it is not reconstructed at all in
this thesis but some arguments and some branches of the main discussions will provide
assistance in explaining the failure of climate models as well as their usefulness. The
epistemic status of climate science is very seldom addressed in philosophy, even less is
that of climate modelling but the probability aspect in particular causes more and more
interest for philosophers, for example, Wendy Parker.

9



1. Introduction

Climate models are based on spare data and first principles which come from theories
corroborated by a huge amount of data, such as Newton’s mechanics and fluid dynamics.
Building computer models and in particular climate models is a different undertaking
than theory building which is concerned with the main debates in the philosophy of
science. Therefore the epistemic questions related to computer modelling are being ad-
dressed increasingly by for example, Gabriele Gramelsberger and Paul N. Edwards.
The overall aim of this study is not to bring all this together in a very special case of
general circulation climate modelling but to analyse the epistemic status of such models
by analysing the the process of modelling. At certain steps in the process of model
building some questions arise which are the topics of prominent debates, only in such
cases some links are established to selected arguments in the discussion, of which the
most important are outlined below.

Philosophy of science is fundamentally concerned with scientific theories, how they come
into being, how they are confirmed and refuted, if they have something to do with truth,
and which of their properties deserve the label of ”scientific“ at all. Climate science and
especially climate modelling is not built on a comprehensive theory and many aspects
of the climate system lack of conceptual descriptions and ideas. Thus some classical
questions of the philosophy of science, which are central for widely discussed branches of
physics like quantum mechanics, but also for scientific theories in general, do not arise in
climate modelling contexts, nor are they central to the epistemics of climate modelling.
This lack of a comprehensive theory puts deduction and the deductive results of climate
scientific undertakings into marginal cases. However, it is important to highlight that
deductive findings are marginal but central for climate modelling since the fact of global
warming is to be deduced from very basic physics theories. But apart from that, the
debate around inductivism in scientific theories seems thus to be linked naturally to
some questions that climate modelling presents to the philosophy of science.
A very common view of how inductivism works (e.g. Chalmers (1999)) is that first the
principle of induction holds which demands a large number of experiments under a wide
variety of conditions and no exceptions to the observation for an inference to be drawn.
Secondly, the clue of inductivism is that if laws and theories are inductively derived from
experience, the predictions derived from these laws are deduced. Of course inductivism
is also used to confirm theories especially nowadays when observations cannot be done
straightforwardly. Traditionally, theories that were built as inductively correct were re-
garded as automatically justified. But there has never been an argument as to what
’inductively correct’ means.
It was this view that led David Hume (Hume (1993)) to come to the conclusion that
there is an unsolvable problem of justifying our theoretical knowledge. He was the first
one to characterise the problem of induction realising that inductivism does, from a
logical point of view, not provide any correct knowledge. The problem of induction is
not that inductively confirmed theories are not certain but that we have no reason to
believe that any of them deserves any confidence at all, as Hume famously stated. All
these interpretations of inductivism argue from the point of view of inductive theory
building or confirmation, which is not what climate modelling is about.
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1.1. The debate

In contrast to some other modern sciences some basic content of climate modelling can
be confirmed inductively by measuring for example, temperature or rainfall, whereas a
quark, in contrast, cannot be observed in such a way. This points to one of the most im-
portant problems for climate modelling, because inductive confirmation of some findings
would be possible, if reliable data was available, which is in principle a problem. The
problem is not that the data underdetermines the findings, which is the case in every
inductive argument according to Lipton (1998), but that there is no data with respect
to some crucial processes and variables in climate modelling.
Russell (1999) describes the problem of inferring from regularities to generalities with
the example of a chicken expecting to be fed by the farmer as it is every day which
one day finds the farmer breaking its neck. This example shows where arguments with
respect to inductivism may become of importance for climate modelling because the fact
of anthropogenic climate change is a singularity in the history of climate. How to infer
inductively and at all on such a soft basis is thus a crucial question.
The literature of the philosophy of science provides no comprehensive answer to the
problem of inductivism as is the case for most basic questions in the philosophy of sci-
ence. This thesis will certainly not change this fact but may show that in the context
of climate modelling the crux of some questions has shifted. An example is a topic
discussed in terms of inductivism under the phrasing ”new data“ and ”novel prediction“.
A very central guideline which prevents basic modelling errors is: never use a datum
twice. There is a controversy in climate science about whether or not data to confirm
a theory must be new, where new means not known by the scientists who are providing
the hypothesis to be confirmed. Opposing views are given by explanationists claiming
theories to be valid if they explain known phenomena and predictionists assigning this
potential only to newly predicted phenomena. There are several views between these
two extreme positions which are given as a paradox by Carl Hempel and contrasted by
Musgrave (1974) as logical versus historical confirmation. In climate modelling it is very
plausible to explain that the use of the same datum within the modelling setup and
the validation leads to circular reasoning, thus data for model evaluation must be new.
However, the crucial question now is what it means for the datum to be the same.
Nevertheless, predictions are one of the most important reasons to build climate mod-
els. A very central question is thus: how to identify a successful prediction? Is there
a demarcation line that can be drawn when the predicted climate and its confirmation
resemble each other enough to deserve the term confirmation. This line does not seem
to be easy to draw and the even more compelling question is that of how a prediction
could be identified as successful before the reality check is possible.
Climate models are built to predict global warming, and as this is a fact known inde-
pendently of models, the simple fact that they predict a warmer future is for practical
purposes a necessary condition but not very illuminative. However, the conditions for
predictions and successful predictions in the philosophy of science are basically discussed
in the context of the novel prediction debate. Within this context it is furthermore to
question of how hindcasting, which is the simulation of past climates with climate mod-
els, fits into the corroboration of models and their predictions. In the importance of
hindcasting it can be seen that prediction is not necessarily time dependent as the his-
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1. Introduction

torical view, Alan Musgrave (1974) discusses, implies. Menke (2009) concluded for the
methodological value of predictions that newness is vague in every case and needs further
refinement. For him predictions do have a methodological value because they refer to
other values especially to simplicity. However, he realises that simplicity is an equally
unsatisfactory, vague, ambivalent, and opaque term. All attempts to compile a method-
ological value of predictions show that it always goes with something owning its own
methodological value. Nevertheless there is some result, again from Menke, that at least
logical and historical values do not contradict each other. Climate modelling approaches
use old evidence, in the sense of knowing it, and build their models to represent it. Only
to use the exact data once either in building the model or in its validation transfers the
debate from newness to exactness or sameness.

Another very central wish in the discussions in the philosophy of science is to find crite-
ria and arguments to distinguish science and pseudoscience. There is no need to show
that climate modelling is pseudoscience since it is a branch of physics. However, some
important arguments to determine the epistemic status of climate models stem from this
discussion most prominently from Karl Poppers undertakings to reject positivism. Pop-
per’s intention was to be able to distinguish between science and pseudoscience (Popper
(1998)) by one demarcation criterion, with the aim of being able to label Marxism or
psychoanalysis as pseudoscience. We may find that he was a bit too rigorous in ex-
cluding disciplines because there is not much left but the pure natural sciences, such
as physics and perhaps chemistry, after applying his criteria. In my opinion and in the
debate following Popper’s ideas this strict classification of academic work into scientific
and not scientific by means of one criterion- the demarcation criterion as Popper (1959)
calls it - is not meaningfully possible. The possibility of logically falsifying scientific
findings, which is Popper’s demarcation criterion, is not given in climate modelling, but
this may also be the case for most theories. This is even if it may be arguable, if Nancy
Cartwright (1983) is right in claiming that the laws of nature are not even approximately
true but known to be false, that scientific work is successfully possible without logically
falsifiable theories.
However, Popper identified a very important aspect which indeed is a criterion of sci-
entific work: the critical and rational discussion. To be able to hold such discussion,
transparency of methods is necessary. It will be seen that climate modelling approaches
could do with some improvement in that direction.
Thomas Kuhn (1996) provided four criteria for a good scientific theory: accuracy, con-
sistency, scope simplicity, and fruitfulness. There is no comprehensive theory of the
climate system and the criteria are open for discussion but Kuhn himself also does not
regard them as demarcation criteria but rather in terms of norms or values, as they
influence theory choice but do not govern it.

It is also a controversial discussion in the philosophy of science whether or not normative
rules and methodological rules should govern scientific development. Paul Feyerabend
(2010) is the most prominent advocate of an ”anything goes“ point of view against
methodological rules for science.
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1.1. The debate

Nevertheless the conclusion of this thesis will include a set of guidelines for good climate
modelling practice. These are in particular rules that must be kept in order to avoid
typical mistakes. Rules are generally justified if they help to realise certain aims. The
aims of climate science are, among other things, to provide sound climate modelling
results. Therefore the models must be built accordingly. The rules that will be provided
to achieve this are very vague but nevertheless they help to concretise what is meant
by transparency. Working with these rules may furthermore enable a refinement. In
demonstrating that some rules have been adhered to, accusations of manipulation could
be rejected or justified.

Throughout this work the modelling processes are analysed and questions in need of
answers are outlined. However, as is quite common in philosophy there are no decisive
answers to be given, if an answer can be attempted at all. At a few points when not
only questions arise but answers are attempted they are of more of a technical nature
and, in the words of Alan Musgrave, when trying to find a position that is neither realist
nor antirealist, devoid of philosophical content. However, the questions are important
for the philosophy of science and may inspire new answers in the untypical context of
climate modelling.
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To examine the possibilities and limitations of modern climate models it is not only
necessary to know the basic facts about the climate system but also facts about its
representations- climate models. The following chapter gives the necessary background
knowledge for an understanding of the terms climate system and climate model and for
an examination of the question of whether there can be said to be a theory of the climate
system. A comparison between the latter and the former will allow an elucidation of the
epistemic status of climate models.
The following chapter is therefore dedicated to four main topics, the climate system,
climate change, climate modelling and its theory, giving the background knowledge
necessary to follow the arguments in this discussion of climate modelling.

2.1. Short introduction to climate science

To state the epistemic status of climate modelling it is essential to see the difficulties in
climate modelling and in understanding the climate system. The latter in particular is
more easily understood if a description of the climate system is divided into separate de-
scriptions of thermodynamics and dynamics, which is done in the following introduction
to the climate system. Furthermore, as all climate modelling is to some extent a math-
ematical operation the most basic set of climate system equations is briefly discussed.
The implications of the facts stated below are discussed in chapter II.

Traditionally climate is defined as the average weather over a period of time, ranging
from several years to millions of years, the usual period being thirty years. This defini-
tion is not exact, neither is that of weather. According to LeTreut et al. (2007), weather
is the fluctuating state of the atmosphere around us. It is characterised by weather
elements like temperature, precipitation, wind and clouds. It is the result of rapid de-
velopment and decay of weather systems such as pressure systems and frontal zones.
Climate is the average weather in terms of the mean and its variability over certain
time-spans and areas. Climate varies strongly from place to place and over time but
statistically relevant variations of the mean state of the climate system or its variability
occur only once in several decades or centuries. Using this definition the climate sciences
are confronted with a somewhat contradictory situation. On the one hand weather is a
chaotic phenomenon which we are able to predict for only one week into the future. On
the other hand, it is possible to predict global temperature development for the next
decades. As such prognoses are possible even if they cannot be called true predictions
(see section 3.8.1)the long-term behaviour of weather does not seem to be chaotic. Thus
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climate “may be taken as the distribution of states on some attractor of weather” (Stain-
forth et al. (2007)). The definition of climate as average weather is most common and
easy to grasp as weather belongs to our every day experience. The attractor definition
is not different from that but shows that the climate system belongs to the realm of
nonlinear dynamics. In dynamic systems an attractor is a time-invariant entity of the
phase space that attracts other points of the phase space so they tend to be part of
that entity too. Within this definition of climate, the fact that the climate system is
an inertial system is underlined. In this approach, as in every day experience, climate
means “average weather”.
The reason for our ability to predict a temperature development but not future weather
lies in the fact that temperature basically depends on thermodynamics, whereas weather
is a dynamic phenomenon. The thermodynamics of the climate system are quite well
understood, but the most important aspects of dynamics are not (see below).
The earth’s climate is the climate of a complex, nonlinear system consisting of several
complex and nonlinear subsystems. Thus, to enlarge the meaning of average weather,
climate refers to the state of the climate system as a whole, including a statistic de-
scription of its variations. Even if the definition by means of weather is most common
it is usual in climate science to approach the climate system as a system of subsystems.
This is therefore the approach that will be taken in the following discussion with an
emphasis on the openness of the climate system. To truly describe this system countless
subsystems should be taken into account. Not only the standard set atmosphere, oceans,
cryosphere but also biosphere, lithosphere and all other spheres and systems on micro
and macro scales form the climate system. There are no fixed boundaries of the system.
This fact is especially important when dealing with the modelling of the system, which
will be discussed further in section 3.3.
But the most important components of this system are the atmosphere, the hydrosphere,
the biosphere, the lithosphere and the kryosphere. Every part of this system is in itself a
complex system with internal feedbacks, with distinct characteristic time scales ranging
from days to millenia. Each subsystem is subject to forcing from other earth system
components and to external forcing. The basic external forcing for the climate system
is the incoming solar radiation.

2.1.1. Thermodynamics

The external forcing is normally given as an amount of energy per square meter per
second averaged over the entire earth. But due to the different distances between the
sun and points on the earth’s surface, the forcing is not at all homogeneous around the
globe. Approximately 30% of this energy is reflected back to space by clouds, aerosols
and the surface of the earth. Due to the reflecting properties of aerosols natural events
like volcanic eruptions or aerosol-containing industrial emissions may induce consider-
able changes to the earth’s energy balance. The remaining two thirds of this energy is
absorbed by the earth and, to achieve a balance, emitted back as longwave radiation. If
this longwave radiation was directly emitted to space the average surface temperature
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of the earth would be −19◦C which is 34◦C less than it actually is. However, only ten
per cent of the outgoing surface radiation goes directly into space. This is due to green-
house gases and some types of clouds that absorb a small part of the surface radiation
and reflect more than 80% back to earth. It is the same effect that the glass roof of a
greenhouse produces. The most important greenhouse gases are water vapour, existing
only for days, and carbon dioxide, which can survive for millenia.
These principles of thermodynamics, which form the basis of a climate system, are well
understood.

2.1.2. Dynamics

The most important origin of atmospheric circulation is the difference in incoming solar
radiation from equator to pole, leading to energy differences on the earth’s surface. This
difference caused by the spherical shape of the earth generates different temperatures
and therefore varying atmospheric pressure, the compensation for which induces wind
systems. Naturally the same is true for the oceans and their circulation systems.
Other important determinants of atmospheric circulation are the rotation of the earth,
the orography, and the location of continents and oceans and the latent heat. Approx-
imately one fourth of the incoming solar energy is used to evaporate water from the
earth’s surface. This energy is saved as latent heat which is released again when the
vapour condenses.
The earth’s rotation alters the circulation from the solar radiation-induced north-south
pattern to a more east-west directed circulation. The planet’s topography causes geo-
graphically stationary wave systems of low and high pressure on a planetary scale. Thus
changes in the structure of the surface cause changes in the dynamics of the climate
system. These changes are especially substantial if they involve positive feedback mech-
anisms which amplify the effects of changes. A well-known example of positive feedback
is connected to the melting of ice sheets. A warming of the polar regions induces their
melting. With this the colour of the surface in this region changes from white to the
colour of dark soil or water, which absorbs a larger fraction of the incoming sunlight
and therefore exacerbates the warming of the region, which in turn increases the speed
of the melting.
Besides this so-called ice-albedo effect, many other feedback mechanisms belong to the
climate system, positive as well as negative. Two positive mechanisms which are es-
pecially important in the context of global warming (see section 2.2) are firstly the
increasing inability of the oceans to assimilate carbon dioxide due to increasing ocean
warming and secondly the increasing ability of a warming lower troposphere to contain
water vapour which functions as a greenhouse gas. As the oceans are the natural CO2

sink and as water vapour is the greenhouse gas of the highest concentration in the at-
mosphere, these examples of feedback become more and more important with increasing
climate change.
Strong negative feedback mechanisms are not as easy to identify. One potential negative
mechanism is an increase in cloud covering due to increasing temperatures. The increased
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cloud thickness or extent could reduce incoming solar radiation and limit warming. But
this is only true if the emerging clouds actually have this ability. There are also clouds
that work in a similar way to greenhouse gases. Thus cloud mechanisms are an example
of an unsolved mystery of climate physics too, apart from poorly understood feedback
mechanisms.
So far the climate system is described as the more or less balanced interaction of the
earth system’s spheres. The balance depends on the steady continuity of external and
internal forcings, where the latter are especially positive and negative feedback mecha-
nisms.
It is important to state that thermodynamics and dynamics are not equally fundamental.
A climate system without any dynamics is still a climate system, whereas the dynamics
only emerge on a thermodynamic basis. As will be discussed in chapter II this classifi-
cation is mirrored in the different degrees to which thermodynamics and dynamics are
understood.

This conceptional differentiation has to be dealt with in modelling the climate system.
On the one hand the aim is to understand and simulate an equilibrium climate, on
the other hand it is to model dynamical climate development. The latter is not to be
confused with the dynamics of the climate system, but instead aims at understanding
transient climate phenomena such as anthropogenic climate change and processes of nat-
ural climate variability. A prominent example of a transient climate phenomenon is the
so-called el niño event, which causes abnormal warming of the south American Pacific
coast.
The simulation of an equilibrium climate is not concerned with such phenomena and
instead aims to provide an average climatology. Such a static picture of the world does
not only serve an understanding of the climate system in principle but is also important
in order to identify variabilities and to tell transient climate phenomena apart from av-
erage climatological behaviour.
Both concepts of climate simulation require different ways of thinking which have re-
sulted in diverse climate modelling approaches.

2.1.3. The primitive equations

Every subsystem of the earth’s climate system as well as the system as a whole is a phys-
ical system that can in principle be described by physics equations, which principally
allow for a reasonable computation of all temporal and spatial spheres of the climate
system. Unfortunately, an analytic solution of the equations is impossible. So it can be
said that they are basic to climate modelling but not to climate models.
There is nevertheless a set of equations, the so-called primitive equations, that is a ba-
sis for climate models. Within these equations the division between thermodynamics
and dynamics is represented. These equations are the basis for all sophisticated climate
models dealing with energy balance as well as equations of motion. Thus they are the
starting point for most dynamical studies, from day-to-day weather forecasts to complex
paleo climate reconstructions.
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Principally there are three governing laws framing the climate system: the continuity
equation, the Navier-Stokes equation, and the thermal energy equation. The continuity
equation grants the conservation of mass and constrains the mass field. The conserva-
tion of momentum is granted via Newton’s second law of motion. This law leads to the
equations of motion, normally given as the Navier-Stokes equation, with respect to all
occurring forces such as stress and friction. The second equation of state, next to the
continuity equation, which governs the internal energy balance evolving from the first
law of thermodynamics is the thermal equation which accounts for all system internal
fluxes of heat.
The Navier-Stokes equations represent the dynamics of the climate system, i.e. the
nonlinear part of the climate system. While the thermodynamics of the climate system
are in principle understood and can be given to a known degree of accuracy, i.e. it is
at least known what has been omitted, the latter cannot be said of dynamics. It is
possible to write the principally correct form of the Navier-Stokes equation but it is
impossible to solve it analytically or numerically. This is due to the fact that the dy-
namics of the climate system are not known on small scales and also poorly understood
on large scales. Therefore even the most basic set of equations needs approximations.
Differences in climate models are essentially differences in representations of dynamics
and approximations, which depend on the aim of the modelling approach as well as
on computational resources and numerical skills. The shorter the period one wants to
model, the more details can be represented, and the same is true for the regionalisation
of models. If only thermodynamics are represented the outcome will be a comprehensive
climate model. In contrast to that, the dynamics of the model need thermodynamical
triggering, without thermodynamics there can be no dynamics.
Thus, even if they are called primitive the basic equations are highly complex. They are
the basis of complex climate models but need several simplifications.

2.2. Basic knowledge of climate change

Besides the principal difficulties, which will be discussed in detail in the following chap-
ter II, the potential imbalance of the climate system places additional obstacles in the
way of computing the climate system. When understanding climate as average weather
bound to an attractor it is easy to explain why an increasing amount of carbon dioxide
in the atmosphere is of much greater consequence than the term global warming implies.
Due to the increasing amount of greenhouse gases in the atmosphere the distribution of
the climate system has moved from its initial attractor and is now in a transient state
instead of a stable one as before. What this means can be seen in the spatial description
of the climate system.
The increasing amount of carbon dioxide emitted into the atmosphere primarily from
fossil fuel combustion considerably modifies the chemical structure of the atmosphere,
with serious consequences for the climate system. Most obviously the fraction of reflected
long wave radiation which warms the surface increases. This is especially dramatic as

19



2. Basic knowledge

the energy of the climate system is now balanced. Thus every alteration of factors of
this system can unbalance it and force it towards a new balance which does not nec-
essarily include comfortable conditions for human life. Throughout the history of the
earth many such uncomfortable climates existed.
Therefore the man-made climate change we are confronted with reveals additional diffi-
culties in climate modelling in addition to illustrating principles inherent to the system
that prohibit a true understanding of the climate system. The next section briefly de-
picts the facts of climate change.

The facts of climate change are based on elementary physics and are thus nothing truly
new for the scientific community. What is indeed comparably new is the possibility
of using modelled experimenting to learn more about potential influences of climatic
changes caused by increasing atmospheric CO2.
The fact of anthropogenic climate change is undoubtable when the scientific evidence
is considered. The predicted and measured consequences are highly dependent on the
magnitude of climate sensitivity. This is the equilibrium change of the global mean tem-
perature under a doubling of atmospheric CO2

1, which is most probably 3± 1◦C. This
magnitude of climate sensitivity is the basis for all calculations of emission reduction
and its influence on the climate system. It is only if science had erred dramatically in
this assessment of climate sensitivity and found it much smaller, that climate change
would be a less worrying fact. As mankind has already increased the amount of CO2

in the atmosphere from preindustrial 280 ppmv to the current 387 ppmv and has ob-
served an increase in global temperature which accords with the projected magnitude
of climate sensitivity, such findings are highly unlikely. The opposite possibility, i.e. a
higher climate sensitivity than estimated, is not very unlikely and would imply a greater
process of global warming and more dangerous consequences. Our knowledge about cli-
mate sensitivity is independent of climate modelling, only the assumptions about future
changes in climatic behaviour are based on model simulations.
In the public debate about global warming and climate change, the subliminal assump-
tion that all we know about climate change is due to calculations and simulations of
climate models is discernable. In fact our knowledge about the connection between CO2

and temperature results from observational and paleoclimatic data and knowledge of
properties of greenhouse gases. In 1895 Svante Arrhenius had already suggested that
the increase or decrease of CO2 triggers glacial and interglacial periods (LeTreut et al.
(2007)). Even if we know today that historical climatic changes preceded the change in
CO2, the fact that CO2 is a greenhouse gas has been known since that time.
Thus climate models are not necessarily needed to state important facts of the climate
system and possible changes.
Climate sensitivity as a basis for our knowledge of the climate system and especially
of global warming is certainly the most important model-independent factor for public
discussion. But apart from that the observation and interpretation of climatologically

1As CO2 is not the only but the most important greenhouse gas except for water vapor, the influence
of all other gases influencing global warming are translated into equivalents of CO2.
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important variables during the last century was and is the grounding for our knowledge
and of course for the development of models.
During the 20th century we observed a temperature increase of approximately 0.6◦C.
From paleoclimatic data we know that the global temperature had a variability of several
degrees during earth’s history. But we can also observe that none of the known factors
that caused climate warming in the past is causing warming now. Thus only simple
observation gives reason to link the increased concentration of greenhouse gases in the
atmosphere to its warming, as researchers like Arrhenius did more then a century ago.
But observation alone was not the only key to learning about the climate system in
premodelling time. Of course, classical methods of physics and chemistry provided and
continue to provide an important part of our knowledge. As the pressing question today
is about the effect of CO2 and other anthropogenic greenhouse gases on the climate,
climate sensitivity is an example of the combined merits of physics and observation. As
a modified composition of greenhouse gases influences the amount of infrared radiation
warming the earth, the emerging question concerning these changes is twofold. Firstly,
how the radiation changes due to a higher CO2 concentration in the atmosphere? Sec-
ondly, what is the temperature increase caused by an increased radiation? Climate
sensitivity can be described as ◦C per unit of radiation or, more common, in terms of a
◦C temperature increase due to a doubling of CO2 concentration. This is equivalent to
a heightened radiation of 4 W

m2 .
According to Rahmstorf and Schellnhuber (2006), three methods are used to calculate
the magnitude of climate sensitivity. The first method uses only physics. With the
help of experiments a temperature increase of 1.2◦C is measured caused by a doubling
of CO2. As such experiments do not take into account any feedback effects, thus this
value is the lower limit of climate sensitivity. The only possibility of reaching a lower
climate sensitivity would be by a very powerful negative feedback mechanism, but as
the most potent known feedback effects, namely the ice-albedo-feedback and increased
water vapour, are positive, such a finding is highly unlikely.
The second method is based on observational data of past climate variabilities. These
data must be of high quality as they are used to separate the effects of single processes
and factors. The results are best if the concentration of CO2 in the data varies highly
but most other important factors, such as solar constants and land distribution, are
equal to today’s values. The best source for these data are ice cores from Greenland or
Antarctica. With this method a magnitude of climate sensitivity between 3◦C and 4◦C
is found.
Before being able to build climate models scientists must accumulate the necessary know-
how, mostly on the basis of the physics of fluid nonlinear dynamical systems. However,
next to this relatively young branch of physics lies some very basic physics research,
important for climate science. That is the theory of gases, starting with simple concepts
such as temperature and pressure, linking this to radiation absorption and emission char-
acteristics of different gases and fluids. Historically, after the general behaviour of gases
the first knowledge of turbulence was gained, which led to modern theories of chaos and
complexity. Apart from the latest findings in the latter field, all of them are perfectly
suited to computer modelling free research. The theoretical insights of these sciences are
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also fundamental to climate science. Only upon their findings and mathematical theories
of numerics do we have the possibility to start thinking about modelling. Before ever
thinking about model building we knew that the Navier-Stokes-Equation provides the
equations of motion for the climate. The development of physics and especially fluid
dynamics was necessary in order to be able to deal with subjects like the atmosphere,
and at the same time it underwent important further development with regard to the
study of weather and climate phenomena. As early as the 19th century Henri Poincare
was praised for his ansatz to find an answer to the question of whether the solar sys-
tem is stable. Similar stability analyses can be undertaken with regard to climate and
weather phenomena. Even if these equations were not solvable at the time, the possibil-
ity of writing them down required considerable insight into the internal dependencies of
weather and climate phenomena.
Apart from such theoretical understanding practical knowledge about the interrelations
of the climate system, especially the atmosphere, was also gained. In 1859 John Tyndall
identified the absorption of thermal radiation by complex molecules via laboratory ex-
periments. He drew the conclusion that changes in the amount of such atmospheric com-
ponents as H2O and CO2 may have caused historical and prehistorical climate changes.
The insight that thermal radiation does not pass through transparent material as easily
as solar radiation was already gained by Horace Benedict de Saussure in 1760.
Even if it has only been established recently that in prehistoric times the temperature
rise preceded the increasing concentration of CO2 in the atmosphere, the correlation
was posited almost 200 years before the very first climate model was invented. Before
this time attempts were also made to combine theoretical knowledge and the findings
of experiments with greenhouse gas absorption. Callendar (1938) found that a doubling
of the CO2 concentration will lead to a global warming of about 2◦C with the warming
being highest at the poles. He came to this conclusion by solving a set of simplified nu-
meric equations. His findings are still up to date as they compute a climate sensitivity,
without referring to it by this term, of 2◦C, which lies perfectly in the range of today’s
magnitude of 3±1◦C.
These historic findings underline the fact that the most important mechanisms trigger-
ing the climate system can be examined without the help of climate simulations. This
means that the principles of climate change can be studied on the basis of physics and
observation, thus providing qualitatively valid results. Quantitatively the picture that
can be drawn is much more vague. Of course, the magnitude of climate sensitivity is
computable without simulations but it is only one aspect of describing climate change,
and the most basic one. And when seeking an understanding of the climate system as a
whole, climate sensitivity alone is even less useful.
Considering that climate change is the most pressing question of public interest, it is
not about the magnitude of the global temperature rise resulting from a doubling of
CO2 concentration in the atmosphere. What interests people is whether there will be
enough rain to irrigate their fields, whether there will be more hurricanes, more floods or
whether the sea level will rise and endanger their home. The question is also of course
not only if this will happen but of when and where and if there will be areas where
the climate will change to be more suitable for habitation by humans. In short, what
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interests people outside of science are the impacts of climate change. In order to assess
these, the possible consequences of global warming, modelling is the most important
tool we have. Predictions are meaningful, if at all, only in modelling contexts. The only
prediction that can be made on the basis of climate sensitivity alone, without modelling,
is the fact that the global mean temperature is rising and will rise further.
Some aspects of these impacts can be assessed independently of modelling while com-
paring today’s observations with prehistoric data on climate changes. But as there never
has been a climate change that equalled the one we are witnessing today, this compari-
son can only give hints but never be sufficient. Especially if the impacts must be known
on regional scales the only possibility of learning about them before they occur is the
use of highly developed model simulation techniques.
But before being able to compute the possible effects of climate change, models are nec-
essary which allow us to be certain of the anthropogenic accountability of global warm-
ing. This is because “without a model of what would happen without anthropogenic
atmospheric change, scientists cannot separate out the effects of rising greenhouse gas
concentrations from natural climate variability” (Edwards (2001)).The most pressing
questions are not those of complex climatic feedback mechanisms and the chemical com-
position of the stratosphere but of temperature and water supply. The first goal of
numerical climate modelling is to find answers to the question of whether this planet
can continue to sustain life.
A comparatively difficult task is to link droughts or storms to man-made climate change.
As these phenomena emerge due to the high and chaotic internal variability of the climate
system their analysis calls for a coupling of statistical analysis and model simulations.
Therefore cleverly designed complex models are needed.
With regard to this topic another great challenge, apart from that of the impacts of cli-
mate change evolves. This is the internal climate variability. Changes in solar constant,
land use or other external and internal forcing factors can be detected when analysing
statistical records. But it is hardly possible to learn about variabilities generated by in-
ternal dynamical feedbacks without designing, or modelling, a system with comparable
internal feedbacks.

Besides this classical comprehension of the climate system and climate change as de-
scribed above, it is possible and perhaps more instructive for our purposes to approach
the topic from a system theoretical point of view.
According to a typical climate system description the earth is an complex sphere with
its many subspheres, hence the physical climate system. However, since the Romans al-
ready began to alter the environment by deforesting huge areas to build their naval fleets,
the influence of human activities on the ecosystem is not to be neglected. At least given
today’s knowledge of anthropogenic climate change, the interference of civilisation with
the ecosphere is significant. Thus the development of the climate system is dependent
on the evolution of the ecosphere and correspondingly on that of the anthroposphere as
strongly coupled factors.
The scientific discipline evolved from this important insight is Earth System Analysis,
which investigates how this interrelated complex of ecosphere and anthroposphere re-
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acts to certain disturbances and how their consequences can be dangerous to nature and
humankind. While the management aspect of this branch of climatology is essential, it
will not be considered in detail in this paper as it would bring up as many more complex
problems as we are already faced with. Nevertheless, the idea of managing the climate
system requires an even deeper level of understanding. It is not enough to simulate past
and present climate states correctly, rather a feasible prediction of future climate states
and their changes due to intentional and unintended human interference is also needed.
In this context of ’understanding’, only the ability to change the system according to
our conception is a true understanding, not the construction of model systems alone.
This means that the model system must be as reliable, in order to enable us to check
management strategies in the model system, the results of which will be equal to those
seen in the real world.
However, this is of course not the only way of defining understanding and it is certainly
not the one that can realistically be achieved in climate science. The next less deep form
of understanding would refer to the ability to compute the system, but even this cannot
be achieved realistically, as will be explained in chapter II.
On more superficial levels, it is hard to still use the word understanding, which seems
to imply some deep knowledge of the system. In my opinion the deepest understanding
that can be achieved in climate science is not to be surprised by the system’s actions and
reactions on larger scales. The reasons why this is not a modest aim and the possibili-
ties of reaching it within today’s research frameworks will emerge in the context of the
following chapters and will be the subject of the discussion of the concluding chapters 6
and IV.
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2.3. Defining climate model

As soon as we include the word model in the term climate model we are in the middle of
a much disputed field in the philosophy of science: the definition of the terms model and
theory and their demarcation from each other. Even if a detailed discussion of this issue
is of no further interest for the purpose of this paper the term climate model needs to
be delineated. This section attempts to provide a philosophical definition of these terms
which will be complemented by an overview of examples of actual climate modelling in
section 2.4.

2.3.1. Theory of the climate system

If the climate system was a simple physical system it could be described with a classical
physics theory, consisting, in the words of Ludwig (1974), of three parts: a mathematical
theory, a reality domain and an instruction for use. While the latter is the set of axioms
linking mathematics and reality, the mathematical theory is the straightforward part of
the physics theory. In principle the mathematical theory consists of axioms that allow
the production of proofs leading to true statements. The mathematical theory has to be
consistent and completely independent of the physics theory it is designed to constitute.
In Ludwig’s interpretation of theory building, the reality domain entails a part of reality
which we regard as given. It is the fraction of reality we perceive independently of the
physics theory. That does not mean that it is independent of any physics theory but
of the one in question. This basic domain of the reality domain can be explained using
an example from paleo-biology. Bones and fossils can be found according to which we
believe in the existence of dinosaurs. The bones are part of the basic domain of the
theory while the dinosaurs belong to the reality domain, and not to the basic one. The
prehistoric existence of dinosaurs is a fact only in the context of the theory, while the
bones can be found independently of it. In physics theories the basic domain of reality
is the domain of experiments.
To summarise Ludwig’s interpretation of physics theory building, physics theories consist
of mathematical theories, a carefully chosen section of reality and a set of axioms to link
both spheres, where the axioms as the essential part of the instruction for use are the
core and characteristic of the physics theory.
If we thus had an optimal climate system we would have these three parts and with
them a theory of the climate system. That is, we would have:

1. An empirically appropriate description of those rules and laws showing the causal-
ity of how the states of the climate system evolve out of each other.

2. A description of the system that is dense. That is, if D and D∗ are different data
we always find D1....Dn that D∗ can be deduced with the help of laws and rules
from D.

3. The rules and laws can be checked empirically.

4. There are no observations that cannot be explained via the known rules and laws.
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5. Data can be gained in arbitrary good resolution.

6. The rules and laws and data lead to good predictions.

For mechanical systems, for example, these conditions are met. As Ludwig (1974) gives
his definition of a physics theory in the introduction to his book on the fundamentals
of theoretical physics he had systems like that in mind. As has already become clear in
section 2.1, we do not have an optimal climate system. The main shortcomings are:

1. It is not possible to calculate states of the climate system using known laws of
physics as we do not know the causal mechanisms.

2. This is partially due to the fact that we do not have sufficient data whether in
spatial nor temporal resolution.

3. Experiments are impossible.

4. The interactions of the subsystems and subscales of the climate system are insuf-
ficiently understood.

5. Predictions of quality are impossible.

Thus we do not have a theory of the climate system. In this thesis the shortcomings
of the system preventing meaningful theory building will be discussed in detail. Nev-
ertheless we have a huge amount of climate models, most of which are epistemically
meaningful.

2.3.2. Climate modelling

Although the uses of climate models have only been touched upon so far, it has become
apparent that it is not a trivial matter to ask what is meant by the term climate model.
There are several possibilities of conceptualising climate models. The term is obviously
not synonymous to computer model or numerical model, although both of these notions
seem to be entailed in the concept of a climate model. But there is more to be subsumed
under the complex idea of a climate model. When reading the term in literature or us-
ing it, climate model also refers to a conceptual representation of the climate system
that is not only a set of equations but also contains a story behind it. Thus it must be
taken into account that the second part of the concept is the term model which is one of
the terms in scientific and popular history representing a particular broad set of ideas.
A model is a beautiful person that gets money for being beautiful. It is a miniature
airplane or the picture of it and my new kitchen on a computer screen. A model is an
idealised context in which simple laws of physics are true without further assumptions.
It is the relation between different quantities derived from observations. A model is a
set of equations implemented in machine code to solve them. And a model is a draft
of a theory that needs some finishing thoughts. All of these connotations are associated
with the term model and so they also accompany the term climate model.
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In analogy to the term theory as described above, a useful interpretation of the term
model can be given. The task of this section is to find a realistic definition of the term
climate model which makes the implicit meanings explicit without adding superfluous
content. For the main aim of stating the epistemic status of such models and ascertain-
ing crucial rules in the construction of climate models it is important to find out what
is really meant by the term in its every-day usage and not what would be convenient to
be meant by it. Thus the philosophical handling of the term is helpful for the finding
of implicit interpretations of the term but the governing discipline for interpretation
must be climate physics. Therefore, from paragraph 2.3.2 onwards the physical process
is analysed, whereas the previous paragraphs are dedicated to sharpening the abstract
term climate model.

In the words of Tetens (2003), the part of reality known as W serves as a model for
that part W∗ if and only if a representation or presentation of W is useful to discover
something about W∗, because W is in parts analogical to W∗. The presentation can
be direct observation, formal description, mathematical or in prose, or in short every
method commonly attached to the term model.
Important in this definition of model is the need for partial structural analogy. In this
way not every idea connected with the climate system that comes to mind becomes a
model. The definition covers two important aspects of modelling: representation and
interpretation. The former purpose of a model is given if the analogy is in the results,
i.e. the modelling results look similar to the reality part it represents. A good example
of representative parts of climate models are the parameterisations. The mechanisms
are not analogue to those in reality but the represented climate variables are comparable.

This is an important feature of climate models and is different from purely explanatory
and interpretative models as for example, billiard balls explaining molecule behaviour.
The representative character becomes especially evident in the common analysis of cli-
mate model data via graphical maps which look exactly the same as maps constructed
from observed data. This is not a random choice of representation or only for the pur-
pose of better comparison, but it is used because a climate model tries to simulate the
climate system, even if under deliberate or inevitable simplifications. Seen from this
point of view a climate model is an experimental setup.
The interpretative aspects of climate modelling are those involving physics theories. For
even if there is no theory of the climate system as a whole, parts of it are very well
covered by physics theories. These parts are not subsystems but physics theories of for
example nonlinear dynamics and thermodynamics. The primitive equations as shown
above (section 2.1.3) are based on these branches of physics.

Climate models as models in general serve representative and interpretative purposes.
Thus they can provide a better understanding of the climate system in terms of a better
knowledge of the interconnection of climatic processes and an explication of climatic
phenomena caused by the implementation of new processes. Apart from these two char-
acteristics of a climate model they can also have a predictive purpose. If models succeed
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in fulfilling this purpose it corresponds with another level of understanding the climate
system. Being able to predict the development of a system is arguably the deepest un-
derstanding that can be achieved for a system.
The climate system confronts us with a complexity of processes that are not open to
simple deterministic predictions. A climate model is an interpretation of this complexity.
This interpretation can be said to be a description of phenomena for practical purposes,
but not necessarily, for the purpose of predicting future climates. An aim of a climate
model is quite often to extract one or several influencing factors to connect them to pat-
terns in the variability of the climate. This aim is very practical but rather preparatory
for predictions.
While all models are representative as well as interpretative, only a certain class of mod-
els have this predictive character. It is only inherent in models simulating the transient
climate.
Coming back to the notion of a model as an experimental setup, it should be noted that
another specific characteristic of all climate models is that they are tools. Unlike in other
scientific disciplines, it is not possible to take parts of the climate system into the lab-
oratory and conduct experiments under controlled conditions. However, with the help
of climate models the climate system can at least be simulated. As experimental setups
climate models must be understood as having similar imperfections as other breadboard
constructions. Thus they are not fixed structures but setups that allow a huge range of
experiments to take place. Given the same initial conditions these experiments can be
repeated and will produce the same output. It has to be emphasised that a climate model
is an experimental setup or, even more basic, can be seen as a laboratory, but it is not
an experiment. Only a single simulation with a climate model under specific parameter
settings and initial conditions can be compared to an experiment. Both terms, experi-
mental setup and laboratory, do not fit exactly the experimental function of a climate
model. It is more than an experimental setup because, depending on the complexity of
the model, the parameter settings allow for a whole range of simulations, whereas the
notion of laboratory is not specific enough as a climate model limits possible simula-
tions through the considered processes, the way they are represented, the dimension of
the model, and the tuning specifications. A climate model, for example ECHO-G at the
Max-Planck Institut für Meteorologie in Hamburg, is an experimental setup with a large
tool box allowing simulations on very different scales and with different parameters.
However, besides the millions of potential worlds it offers, it is also common to say that
ECHO-G shows a much warmer average sea surface temperature for the next hundred
years than CM2.0 from the Geophysical Fluid Dynamics Laboratory at Princeton Uni-
versity (Randall et al. (2007)). Thus the term climate model refers not only to the
setup but also to the result of a special experiment. In both cases the average is taken
from a whole ensemble of model simulations, therefore the term climate model is used in
analogy to an experimental standard, and not to the single instance of an experiment,
with the standard here being the average resulting from several simulations run under
slightly varying conditions.
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Double role of climate models

Climate models are not only a special kind of model but something new to our conven-
tional way of regarding things. With the increasing use of computers not only our sci-
entific way of working, but also our conception of reality and its categorisations changes
and requires revisions and perhaps new categories.
Above I state that climate models are not physical in the same way as experimental
setups in classical physics are. But in another way they are very much physical. Ev-
erything in the process of climate modelling is information and information is physical.
Every piece of information is a state either of atoms in the outside world, or bits and
bytes in a computer, or synapses in our brain, providing thus three spheres wherein
information is processed.2
Looked at in this way, climate models can be seen as playing two roles, or better one
double role. A climate model is a copy of the earth even if it is a very bad one, which
allows us to experiment with the earth and its climate as if the climate model were a
physical model in a laboratory. A climate model is furthermore an ideal world. Since
we are unable to solve the equations analytically or numerically, results cannot be given
in reality. But the equations that are the basis for concrete climate modelling can be
solved because, within the simplified context of a climate model, the nonlinearities can
be handled.
The climate model thus exists in all three spheres of processing information: physically
it is a computer model, by implementation of theory it is related to our minds, the sphere
of thoughts and neuronal information processing, and by modelling, in terms of param-
eterisation and tuning, it is linked to the world of matter. Parameterisations are that
part of a climate model representing processes not resolved within the model. Tuning a
model is then done to adjust the parameters within the parameterisations, with the help
of observational data to get the model to simulate a realistic climate. Both methods are
critically discussed in chapter II, in sections 3.3 and 3.4 respectively. Figure 2.1 displays
this double role a climate model has within the three spheres of information.
Besides the aspects described above the diagram shows additional relevant links be-

tween the parts of the three spheres.
Basic physics denotes the basic equations used as model input, which are mainly the
primitive equations. The central Navier-Stokes equation describes the motion of par-
ticles or in other words micro physics, which is known to us due to classical physics
research.
As it is impossible to solve the basic equations, simplifications are made. However, with
the implementation of incomplete and simplified theoretical assumptions the world can-
not at all to be simulated. To be able to play its role as a model of the earth the climate
model must be completed with parameterisations and eventually tuned on the basis of
observed data to show a climate resembling more or less the real earth’s climate. Such a
complete climate model is now used as a copy of the world’s climate system. In simple
to intermediate climate models it is not only one copy but huge ensembles of possible

2Even though all of these three spheres are made of atoms the perception of information is threefold,
thus the distinction is meaningful.
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Figure 2.1.: Schema of the double role of a climate model as an outsourced brain and
a model Earth. The latter holds for the modelling of reality as well as
possible, whereas the model acts as an own brain in computing nonlinearities
incomprehensible for human brains. The colours denote the three spheres
of processing information. Human minds (red), computers (green) and the
real world (blue.)

worlds, whereas for a general circulation model, developed to represent the earth’s cli-
mate as true as possible, not more than ten different, complete model simulations and
thus worlds are created. The created world becomes manifest in the model output.
The model is only determined on the basis of the defined state variables, parameters
and model equations. When initial and boundary conditions are added the model will
be restricted to one model world. Thus the model output is not part of the formulation
of the climate model that can represent many different model worlds but represents one
of all possible model worlds. Thus the model output is part of the model only insofar
as it is part of one realisation of the modelling approach.
It is important to highlight this aspects of the output as the fact that it belongs to a
model world shows that it is a very big step to compare it with the real world we live in.
The model output can be analysed as if it were the result of a single experiment. Due
to the imperfections of the copies and the, in all probability, stochastic nature of the
climate system special care must be given to statistical analysis of model output (see
chapter 6).

The analysis of climate models as interpretative and representative models given at the
beginning of this chapter applies generally without limitations concerning the type of
model. Thus climate models as “interpretative models establish a link between abstract
theory and model, whereas representative models establish a link between model and
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world” (Cartwright (1999)). In this respect climate models can be taken as mediators
between reality and theory. Mediator is thus another term to clarify the double role
climate models play.
The distinction between representative and interpretative models is represented in the
scheme depicted in figure 2.1. The arrow between model and basic physics represents
the interpretational role a model plays whereas the linking of model and world gives the
representational role.
For Cartwright these two roles of models relate to different modelling approaches but
climate models represent both roles at the same time. Whether the interpretative or
representative character of a model dominates crucially depends on the type of model.
To fit these purposes, and additionally the role of prediction, a whole range of climate
models have been developed. This range is called the spectrum of climate models. An
overview of the spectrum is given in section 2.4 highlighting their advantages and short-
comings.

Story telling

Explaining the double role of climate models is epistemically fruitful for understanding
the different aspects of climate science subsumed under the term climate model, but
insufficient for understanding the process of climate modelling. Climate models are not
physical models in the way that laboratory experiments are but they are also not only
gedankenexperiments or theoretical models that exist inside our heads and on paper only.
On the one hand a climate model does not belong to one sphere or the other, on the
other hand it belongs to both, the sphere of laboratory experiments and that of the mind.

A climate model is a mathematical model consisting of equations. The results of simula-
tion runs are huge fields of numbers. In order to start a simulation the model of course
does need some input variables, the initial and boundary conditions as well as specific
parameters to represent physical processes (see section 3.3). The input consists not only
of measured values of observables and parameters but also of immeasurable values for
parameters. Those values are assumed but normally on the basis of solid scientific cal-
culations and advice. A climate model is furthermore nothing that one can touch like a
laser, but rather the computer model has a code which translates the whole modelling
setup into zeros and ones.
Throughout the modelling process we are confronted with many assumptions on very
different levels of uncertainty. There are the basic theories of physics as named above,
by means of which concepts of mechanisms in the climate system are constructed, which
in turn are corroborated by observational data and model simulation. The assumptions
made about climatic interrelations are considered part of the model, not a stand-alone
theory. That this approach is reasonable is best shown by considering the actual practice
of modelling in an example.
The every-day work of a scientist using any kind of climate model consists in improving
the model and thus our physical understanding of some small climatological process. Let
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us consider, for example, a scientist working in a group modelling atmospheric chemistry.
They have implemented a rudimentary scheme of chemistry in an atmospheric model.
Having made some simulation runs and compared them to observational data they dis-
covered that the chemistry scheme behaved rather poorly in terms of the stratospheric
transport of CO2. Therefore the scientists look back at the reaction equation and chem-
ical transport laws they implemented in their scheme. They compare their approach
with works of other modelers and reread theoretical papers on CO2 transport in gen-
eral, then make adjustments in the transport equation. After technical implementation
of the changes the simulation study can start again. Then, after some model runs the
output needs to be interpreted within the context of the previous general assumptions
concerning this atmospheric transport. Perhaps a consistent interpretation along the
lines of the previous assumptions is not possible, which means new assumptions must
be made. These new assumptions will be based at least partially on the output of the
climate model.

Gramelsberger (2006) explains this modelling process schematically by paraphrasing cli-
mate modelling as “story telling with code”, which has an underlying process of deriva-
tion from theory to mathematics, from mathematics to code and finally from code to the
’story’ about the climate system. Even if the accompanying text suggests an evolution-
ary process from theory to story Gramelsberger concludes her statement as a system of
equations:

Theory = Mathematics = Code(f90) = Story.3 (2.1)

If this process was not evolutionary there would be no difference between the theory and
the story. Because if the theory equals mathematics, which equals the story because the
code is also equal to the mathematics and to the story, then the theory as well as the story
is just the prose accompanying the mathematical equations. Only if the transcription
of the theory to mathematics and code added something new to it, would the resulting
story be unequal to the input theory and would thus deliver new insights. But this
is of course what happens, as modelling would be useless if it did not happen. Thus
the equals sign is false or at least misleading. The theoretical assumptions made about
the climate system comprise mathematics and the story around it. The formal theory,
the mathematics, is transcribed into numerically resolvable equations and afterwards
encoded to be implemented in a model. The single pieces of code forming the model
are programmed to exchange information. Thus they interact with each other in an
unforeseeable way because,although the existence and placement of nonlinearities are
known, their effect is not. Subsequently the interpretation of the modelling results
forms a new story.

Story ⇒Mathematics⇒ Numerics⇒ Code⇒ Story (2.2)

3f90 stands for the programming language FORTRAN in it’s 1990 version. FORTRAN was the first
programming language used for weather forecasting models and early climate models, thus it is still
used for complex modelling. Nowadays different programming languages are increasingly used.
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This diagram represents the processes of climate modelling along these lines. Even if the
climate model is only used to test if some theoretical assumptions are correct, the input
story would not totally equal the output story because the assumption has at least been
linked to a greater system. Normally the output will not be exactly as expected.
In light of the discussion of the double role of climate models another refinement of
the diagram seems advisable. The relationship between the left and right item of the
diagram is not a straightforward one-way relation from left to right, instead the right
item influences the left one as well. The need to solve the equation constrains the
mathematics used to formalise the initial idea. The translation into numerically solvable
equations, which can be implemented into code, is constrained by the computational
power at hand. The latter also influences the number of interaction steps within the
model code. Thus the relationship has to be seen as a two-way relationship as the equals
sign also suggests, but instead of equality the double-arrow symbolises that the modelling
parts influence and constrain each other. Furthermore it is necessary to mention that
the described process is repeatable and normally will be repeated several times. Thus a
diagram more closely representing the modelling process is:

Story ⇔Mathematics⇔ Numerics⇔ Code⇔ Story (2.3)

In these approaches theoretical assumptions exist and they contain mathematics as well
as implicit translation rules but they are part of an incomplete “theory-in-progress” of the
climate system. It is not only incomplete but varies, either slightly or more extensively,
from scientist to scientist. Thus the term story and its mathematical representation is a
more appropriate description of the loose beginning of modelling. The included mathe-
matics are led by ideas and not so much by computational needs that a further revision
to that end is needed. That is what the item numerics stand for. But in the described
modelling process the theoretical assumptions are additionally influenced, maybe some-
times even unconsciously, by computational needs. An equally appropriate term for the
beginning of a modelling process would be theoretical assumption but the term story
underlines the fact that the end of a modelling approach is very often the beginning of
a new one.
This paragraph shows the process of modelling whereas the paragraph on the double role
of such models gives the epistemic status of the result of such a process. To subsume
the discussion above the term climate model is to be interpreted as a climate modelling
approach.
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2.4. Spectrum of climate models

At the beginning of climate research it was unthinkable for one single model to simulate
the highly complex climate system with its several subsystems and many timescales,
so the concept of a hierarchy of climate models was invented (Schneider and Dickin-
son (1974)). This concept is much more than a relic of the beginning of computer use.
As computational power is still limited and different research questions require differ-
ent levels of complexity, a spectrum of climate models is essential for climate research.
Nowadays the term spectrum is commonly used instead of hierarchy as there is no hier-
archical order. More complex models are not generally superior to simple ones and vice
versa, complexity is thus not a criterion of quality for climate models. Moreover there is
no general criterion as there is no best climate model but the best climate model for a
certain research question. Nevertheless there are bad climate models for every purpose,
although their fault does not lie in conceptual discrepancies but in the modelling prac-
tice. These problems are the topic of the following chapters, especially chapter II.

The simplest possible approach to constructing a model of the climate system is to
balance, or very nearly balance, the incoming energy in the form of short wave electro-
magnetic radiation to earth with outgoing energy in form of infrared electromagnetic
radiation from earth. In all climate models this balance is considered, but even this
energy balance alone already offers a so-called-zero-dimensional climate model, where
the dimension represents the number of independent variables of space. Any imbalance
in the energy balance results in a change in the average temperature of the earth, which
consists of the effective blackbody radiation temperature of the earth plus the temper-
ature resulting from the greenhouse effect.
Simple energy-balance models without any spatial resolution are only thermodynamical
models. If supplemented by convective energy transport in the atmosphere (vertical
dimension) or by single grid boxes entailing the equations for different latitudes and lon-
gitudes (horizontal dimension) they are already dynamical models where the dynamic is
represented within the continuity equation. Models composed of two or more boxes can
also be used to represent oceanic flows. Models can be built for every component of the
climate system, with varying resolution of climatic processes, which in turn can be cou-
pled so as to represent the whole climate system and the interaction of the components.
The most complex models available are general circulation models which discretise and
numerically solve the full equations for mass and energy transfer and radiant exchange.
The more complex a model is the more unknown data and processes must be dealt with,
i.e. the more parameterisations are needed. Coupling of spheres is done via calculating
energy and mass exchanges between them, with the output of one sphere serving as the
input for the other at every time step in the process.
All of these model types have advantages and disadvantages concerning the represen-
tation of processes of the climate system and the need for computational power, thus
the whole spectrum of climate models is in use in modern climate science. The most
important types, in research and philosophical debate respectively, are briefly explained
below. It is important to underline that the hierarchy of models is not a historical de-
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velopment. Most kind of models started their development at the beginning of climate
research and all of them are constantly being improved.

The simplest models are zero-dimensional models. The following is an example from
(Ghil (2001)) of a zero-dimensional atmospheric model. The atmosphere consists of
only one equation linking the surface-air temperature to changes in the global radiative
balance.

c
dT

dt
= Ri −Ro (2.4)

Ri = µQo{1− α(T )}, Ro = σ(T )T
4
.

Ri refers to the incoming solar radiation while Ro represents the outgoing terrestrial
radiation. The heat capacity c is that of the atmosphere combined with that of the
upper layers of the ocean depending on the relevant timescale. Q0 is the incoming radi-
ation at the top of the atmosphere, σ the Stefan-Boltzmann constant, and µ is a factor
for the amount of incoming radiation which is 1 for present day conditions. α and m
represent the planetary albedo and a greyness factor in dependence on T , which is the
global mean temperature. Such a model reproduces a future evolution of global mean
temperature. It reproduces approximately the same global mean temperature a general
circulation model can do, quite well if the constants are adjusted accordingly. Models of
this complexity are easily solved analytically, as they do not represent the nonlinearities
of the climate system. As they are of such low complexity they can be used to test
more complex models. Those models can be expected to reproduce similar mean tem-
peratures, because the zero-dimensional model depicts the basic thermodynamics that
is to be represented by higher models too. In section 4 it will be discussed whether such
testing of complex models is one of the very few methods to gain confidence in a climate
model. To identify the thermodynamic development of the climate system it is impor-
tant to simulate it alone, because otherwise the influences of thermodynamics cannot be
isolated. As only thermodynamics are understood sufficiently this is very important.
The more complex type of an Energy-Balance-Model (EBM) is of one dimension be-
cause it additionally represents the horizontal heat fluxes. The simplest possible way
to develop such a model is to add a term referring to those heat fluxes to equation 2.4.
Alternatively, the height dependence of the radiation can be simulated using 1-d models
including vertical convection.
The next more complex type of model is a combination of a radiative-convective (RC)
model and a one-dimensional EBM. Another class of 2-d models is achieved by the ex-
tension of EBMs to zonal and meridional heat transport. Both kinds of two-dimensional
models are developed with reference to the earth’s dynamics or thermodynamics respec-
tively. Those models concentrating on statistical dynamics (SD) simulate especially the
interactions of stationary atmospheric waves and travelling weather systems.
The top of the hierarchy pyramid (see Claussen et al. (2002)) is occupied by general cir-
culation models (GCMs), which aim at representing all relevant phenomena, including
all spatial dimensions. Atmospheric GCMs typically consist of a grid resolution from 3◦

to 5◦ and up to forty vertical layers becoming broader at increasing height where the
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atmosphere becomes thinner and less turbulent. That means they fragment the earth
into boxes of 150 to 500 km length with height ranging from some meters above the
surface to several kilometers in higher layers, with the model equations being computed
at each node. For each grid box the equations of state and motion are computed for ra-
diation and convection and the dynamics of the system. Modern AGCMs also represent
aspects of land surface and oceans to compute their influence on dynamics. A GCM
can be made more complex by interactively coupling GCMs of different climatological
subsystems, typically atmospheric and oceanic GCMs.

Besides this straight-forward hierarchy a second branch of complex climate models has
been established during the last decades. Especially in the non-scientific community
GCMs are regarded as the most sophisticated and trustworthy models available, as they
aim at representing climatic processes as precisely as possible. This is true, but besides
the fact that such models require enormous computational power problems arise on the
conceptual level. As it is possible to truly model only climatic processes that are mea-
sured and more or less understood, the level of complexity of a GCM varies according
to our level of research. This leads to the somewhat paradoxical situation that some
small-scale processes are simulated but some highly complex ones on bigger scales are
not. They are only reproduced as parameters. In the view of many climate scientists
this lack of consistency may lead to at least as many errors as GCMs prevent due to
their high resolution.
To handle this lack of consistency some research centres concentrate on developing Earth
System Models of Intermediate Complexity (EMICs). These models can but need not
represent all spatial dimensions, but they use coarser grids and fewer vertical layers as
GCMs. Therefore they require less computational power and can be used for simulations
on longer timescales. Their conceptual advantage is that they aim at consistency, which
in this case means preventing errors due to wrong emphases on small-scale climate pro-
cesses.
A different approach to handling the conceptional problems regarding GCMs is the at-
tempt to interpret their output in terms of the understanding gained from low-dimensional
models or, most importantly, independent of models.

In addition to the hierarchy or spectrum of models, as this term also includes EMICs,
a classification distinguishing three model classes is given. Tutorial models are used
as ’geo-cyberspace toys’ (Schellnhuber and Kropp (1998)), which are invented to study
phenomena and mechanisms of various systems without claiming to mimic any system
of reality. A very famous example is the daisyworld model by Watson and Lovelock
(1983). To underline the gaia hypothesis that the earth could be understood in analogy
to a huge creature, they modelled a planet full of black and white daisies only. Black
daisies absorb sunlight whereas white ones reflect most of it, so - depending on start
temperatures - a temperature balance and thus a constant population of black and white
daisies establishes. It was the aim of this model to show the self-regulating mechanisms
of a planet.
In contrast, conceptual models as a second model class try to simulate the essence of
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aspects of the climate system but without representing the dimensions of the real world
processes. Apart from GCMs and perhaps some EMICs, all climate models fall into
this category. Conceptual models vary from zero-dimensional box models to relatively
complex more-dimensional models. The reduction of essential features often allows the
reproduction of important mechanisms like ocean circulations or atmospheric patterns
on large scales. Only analogical models, the third model category, try to simulate the
climate system’s dynamics as accurate as possible. Their purpose is the simulation of
past or future climates in order to make quantitative statements. They are not useful for
analysing basic mechanisms as they need enormous computational resources and pro-
duce a huge amount of data. Yet, models of this type are the only ones that enable us
to see effects and mechanisms not genuine to a special subsystem but instead evolving
from the interaction of different climatic subspheres.
All types of models within the spectrum vary very much within their category. The
spectrum only sketches the most important differences. The greatest variations in con-
ceptualisation are due to fundamentally different aims, either simulating an equilibrium
climate to understand principles or model transient climatological behaviour to under-
stand climate change.
One of the more advanced problems of all earth system modelling is the influences of
human activity on the climate system in the future, which includes not only carbon
dioxide use but more complex economic developments. Attempts to cope with them are
done via integrated assessment modelling, which is in principle conceptual but could
also be considered as a fourth type of modelling. The characteristic trait of this branch
of climate science is its interdisciplinary approach, including modelling concepts from
economic and the social sciences in climate models. Only such models will be able to
provide the broad basis of the scientific understanding of the ’world system’ that is
needed to make meaningful normative climate politics. A very deep understanding of
the interactions of the climate system, economy and other globally relevant factors is
the precondition for effective political interventions. Such integrated assessment models
do not include highly developed climate system dynamics as GCMs do, but are rather
energy-balance models or are based on aggregated GCM output. This is necessary as
their purpose is mainly to analyse possible impacts of different climate scenarios on var-
ious socio-economic future settings. Although the term assessment implies their aim is
the comparison of several scenarios to discover future trends, their outputs do not lead
to statistically significant predictions. Due to this fact their basic theories are much less
sophisticated than the basis of pure climate models. All deficiencies of climate modelling
are also found in economic climate models and only become worse as the problems of
economic modelling are added. As the aim of integrated assessment models is not to
understand the climate system but to analyse the impacts of climatic changes with an
emphasis on socio-economic dependencies, they are normally not considered in the hi-
erarchy of climate models. This is acceptable in the sense that they do not provide a
new level of complexity, however, due to their increasing importance, especially in public
discourse and politics, they should be included in the spectrum of models.
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A big advantage of simple modelling approaches is, as also sketched above, the knowl-
edge of the primitivity of such models that makes it easier to validate the models and
use their output. A zero-dimensional model that is able to simulate today’s and historic
energy balances can be used to gain knowledge about the earth’s energy budget under
changing conditions. Everything else the model might provide as well will not be taken
to have any scientific value. But of course, the statements gained in that process al-
ways have to be understood in light of the underlying assumption: ’if nothing else on
smaller scales happens’. These simple models do not seem to reveal very large epistemic
problems as their limitations are so overwhelming that they are not used for prediction
but instead to understand general processes in the climate system. Conceptual models
and models of limited complexity are normally not considered to represent reality but
to isolate aspects of climate processes.
An exception to this understanding - that they are not suitable for predictions - are the
EMICs, which are designed taking into account the demands of politics, which explicitly
requires predictions of climate development in view of specific socio-economic develop-
ment. Particularly concerning the atmosphere EMICs have only a very weak dynamical
basis as they mainly use parameterisations of zonally averaged fluxes in terms of aver-
age temperatures and winds (see Claussen et al. (2002), McGuffie and Henderson-Sellers
(2001)). Therefore they rely heavily on tuning parameters which may lead to unreliable
predictions of the earth’s climate on the whole.
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Part II.

Epistemic problems of climate
modelling
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3. Perfect climate modelling is
impossible

In chapter 2 it was shown how important knowledge of the climate system can be gained
without even having invented a single climate model. Therefore, even if climate mod-
elling was a completely impossible undertaking, there would be evidence of climate
change and knowledge of the climate system. However, it is difficult to draw a dividing
line between those modern scientific findings dependent on modelling the climate and
those independent of it. The global data sets which are available today are so enormous
that it is impossible to view and categorise them without the use of computers. In fact,
their analysis is not meaningfully possible without the help of reanalysis and interpola-
tion models. According to Edwards (2001), even their collection requires interpolation
modelling and model-based reanalysis of data sets. Thus climate science strongly de-
pends on climate modelling. Although reanalysis models are not intentionally the same
as climate models, many of the uncertainties to be found in climate modelling are also
problematic for reanalysis models. As Edwards (2001) defined the problem, “without
global data sets, modelers could neither validate nor parameterise their models. Without
computers and satellites, uniformly gridded global data sets could not even be created,
much less manipulated. Without numerical weather prediction models and GCMs, these
data could not be understood.” But the purpose, the object of a reanalysis model, is
different from that of a model to simulate future climate development, to understand
processes of the climate system or to predict future climate development.
The references above show the problem as it evolves in real life, but on a conceptional
level the difference in purpose is quite evident. If the intention behind the analysis is
the prediction of future climate development, based on knowledge of past and present
behaviour of the climate using empirical statistical methods only, we will not talk about
modelling but of extrapolation with the help of regression equations. If instead the
purpose is to make projections based on the physical, chemical and biological processes
we believe to govern the climate system, the result is a climate model. Thus the in-
tention behind climate modelling is the representation of the climate system based on
the “first principles” of the climate system. Another way of expressing the different
approaches to studying and predicting climate system development is to talk about
practical approaches when using statistical extrapolation and about a theoretical ap-
proach if the basis are governing equations. Purely empirical or statistical models based
on present-day observations cannot be expected to perform well for climates apart from
those existing today.
The criterion for considering a computer-based approach in a climate model must remain
unclear to some extent because of the mixing of both methods in most climate models,
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especially where parameterisations are concerned and on higher levels of the hierarchy
of models.
This is insofar important as observational data are extremely important for climate mod-
elling. They are used to gain knowledge of the climate system, to initialise models and
to validate the modelling approaches. Thus the interdependency of observational data
and model data is crucial to an understanding of climate models. This closeness reveals
many aspects that make climate modelling a tricky undertaking, far from representing
the world as it is.
Before I present the different arguments against perfect climate modelling in the follow-
ing sections, some more terms must be defined.

Apart from comparing modelling results with observational data the biggest part of
model evaluation is done via model intercomparison. To understand its meaning it is
important to distinguish between simulation and experiment. To draw this line is not a
simple task because a definition is never given explicitly but always assumed to be im-
plicitly clear. While it is commonly agreed that a simulation is a single model run with
fixed parameter values, boundaries and initial conditions, there is no such agreement
concerning experiments. In the context of the IPCC a model setup with fixed initial
and boundary conditions but variable parameters seems to be the best description of an
experiment. At least “experiment” is often used in this way. But strictly speaking it is
not possible to conduct experiments using models, at least if defining experiment in the
common context of the natural sciences. An experiment is the creation of a controlled
environment1 where an exactly defined cause is placed in a certain isolated environment,
via interconnection with the system, changes in system properties, application of fields
etcetera. The observables of this system can now be analysed as their changes can only
result from the prescribed cause, causality assumed. Postulated coherences can thus be
tested and falsified. In addition, probabilistic statements can be gained via the repro-
duceability of the experiment.
In contrast to that, a simulation is an imitation of an already known causality. Within
a simulation all implications of this causality law, including the inapparent ones, are
made explicit. Its effects can be seen in all observable and even non-observable vari-
ables, which makes it such a good tool.
The comparison of simulations and measurements of real world data can also be inter-
preted as an experiment of some sort but with the difference that the observed systems
are very complex and separability and repeatability are not guaranteed. Thus simu-
lations are used to make assumptions in a scientific frame where no consistent theory
exists, whereas classical experiments as described above are used to test theses evolving
from theories or theoretic models. In climate science theory building and derivations
of theses or prognoses are sourced out to computers as an experiment of some sort but
with the difference that the observed systems are very complex and separability and
repeatability are not guaranteed. Thus simulations are used to make assumptions in
a scientific frame where no consistent theory exists, whereas classical experiments as

1under the precondition of separability of physics via scales and exclusion of interconnections
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described above are used to test theses evolving from theories or theoretic models. In
climate science theory building and derivations of theses or prognoses are sourced out to
computers. Nevertheless “experiment” in the context of climate modelling is often used
synonymously with “parameter study”, which has fixed initial and boundary conditions
but varying parameters.
Of course, all measurements in physics are systematically inaccurate due to the instru-
ment calibrations, data reduction and addition of artificial distortions owing to labo-
ratory conditions. Enhanced computer modelling of data can provide a reduced and
interpretable data set as good as data from traditionally controlled experiments, or even
superior to them, but its setup and interpretation requires different skills and is accom-
panied by different systematic errors. Systematic errors in a complex, nonlinear system
are normally harder to detect and eliminate then those in classical systems.

3.1. Fundamental uncertainty versus model
uncertainty

In the following sections in this chapter different sources of uncertainties are discussed
and analysed with respect to their consequences for comprehensive modelling approaches
to predict future climate development.
These uncertainties are of two different categories on an epistemic level: fundamental

uncertainties and model uncertainties. While the latter uncertainties are to be over-
come by perfect climate models the former are not. In fact, both categories of models
constrain the quality of modelling results to a certain extent, as perfect climate models
are practically impossible. In principle, however, model uncertainties could be avoided
by unlimited computational power, resolution of the Navier-Stokes equation and the
availability of several different and comprehensive reanalysis data sets. Fundamental
uncertainties result basically from fundamental limitations of the human brain or the
world and are thus unavoidable.
While model uncertainties are manifold I could only detect two fundamental uncertain-
ties constraining climate modelling (section 3.2.1 and section 3.2.2). The causes for
model uncertainties are to be found at all stages of the modelling approach and are
thus for the modelling practice equally important and even bigger constraints in actual
modelling approaches.
In the context of this thesis many problems concerning climate models are discussed.
Some of them are really important and influence the quality of climate predictions in a
strongly negative way. Nevertheless they do not prevent meaningful climate predictions
in principle, which is also true for fundamental uncertainties. This is due to the fact
that basic aspects of the climate system are understood and understandable, namely the
thermodynamic basis of the climate system which is part of every modelling approach
and not to be questioned, taking model or fundamental uncertainties into account.
But some uncertainties do indeed prohibit the meaningful prediction of certain climate
variables, at least for the time being.
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The implications of theses categorical deficiencies in climate modelling are further dis-
cussed in the context of probabilistic modelling in section 6.

3.2. Fundamental uncertainty

There are two fundamental uncertainties in understanding the climate system which
result in fundamental uncertainties in climate modelling. These are the nonlinearities of
the climate system and the fundamental incompleteness in climate system observations
which will be discussed in the following two subsections.

3.2.1. Fundamental constraints in understanding the climate
system: nonlinearity

Being able to model something normally implies an understanding the model system
as well as the modelled system. For the climate system and its modelling approaches
both are impossible. There are two fundamental and principal constraints that prohibit
the exact computation of the climate system, its sound application to a model system,
and the comprehension of its relevant system components. Furthermore there are other
constraints: technical, physical, and philosophical.

Understanding

These last statements reflect an ambiguity in the meaning of the term “understanding”.
We can understand a written description of the known components of the climate sys-
tem provided we are familiar with the language. We can also understand a system of
differential equations, i.e. we understand a perfect model system described with the help
of these equations, whereas the precondition is the knowledge of all system properties
and possible states. Most real life systems will never be understood in such a way. We
can only describe them as model systems as every verbal description refers to a model
system as well as a description using sets of equations. Since we do not know all system
properties our modeled and computed systems are imperfect. Only model systems are
ready to be understood. If understanding is understood as computing this is a fact that
is easy to see but it is also true if understanding just stands for description since it is not
possible to describe a real life system in exactly the way it is in reality. There will always
be small processes or properties that escape our attention or are simply unobservable.
Every understanding will be the understanding of an approximation which means: un-
derstanding is simplifying.
All of these deficiencies in understanding are especially important in climate physics
where the underlying real life system is a very complicated nonlinear system.

Approximation As long as the approximation is a good one it is no principal con-
straint to understanding since we can only truly understand approximations instead of
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real life systems. A good approximation is one that includes important processes and
time scales. The crux of the matter is therefore the identification of important processes.
If understanding in the form of computing is desired, processes must not only be iden-
tified but also be mathematically described.
A really good approximation is a goal that will never be reached in climate science, at
least not for the system as a whole. This chapter will deal with the most important
reasons for this statement.
Until now an understanding of the climate system has not even been attempted for
good reasons. One always just tries to understand certain aspects of it, but there are
fundamental limitations to even this attempt.
That means we in fact simplify whenever we describe parts and aspects of the climate
system as a system itself. If this works we did indeed understand the system in a very
weak sense. But it would only be an extreme simplification and thus not even a fairly
adequate approximation. This weak understanding is possible if every working simpli-
fication is a form of understanding. Working in this context means that the simplified
system is consistent in itself2. Considering this, the impossibility of understanding the
climate system only holds for understanding in terms of computing and predicting. But
as the latter is especially requested by society it is important to analyse why this desire
must remain unfulfilled, at least with respect to accuracy.

Nonlinearity

When describing the climate system as explained above by describing the earth as a
system dividable into subsystems where different laws hold and several processes and
feedback mechanisms take place, do we understand it as a model system? Is the model
system a good approximation? Typically the quality of a model system can be checked
while carrying out experiments in the real system but due to its uniqueness and inte-
grated whole this is not possible in case of the climate system. Besides that, the fact that
the climate system is a nonlinear system makes it difficult to figure out the important
processes as they are often interactive feedback mechanisms between subsystems and
different scales. Nevertheless, our “resort to ’geo-cyberspace’, where virtual copies of
the ecosystem can be exposed” to virtual experiments (Schellnhuber and Kropp (1998)),
does not equal a computer game, as we have observed data to compare with virtual ones.
This permits an evaluation of our approximation. As the data are also used to develop
a climate system model such an evaluation is not without problems but definitely pos-
sible. But as we as human beings are unable to think in a nonlinear way we will not be
able to fully grasp a nonlinear system. Thus its nonlinearity is one of the fundamental
constraints in understanding the climate system.
In addition to the above, this notion of understanding is such that the fact alone that
we do describe the climate system is a form of understanding which avoids the somewhat
artificial differentiation between real world and the climate as a system. But this is of
course not the form of understanding needed to predict the future evolution of a system.

2This is not a claim for consistency with respect to established theories to which Feyerabend (2010)
for example objects, but for internal consistency. However, in chapter IV it will be argued that this
type of consistency is also desirable in climate modelling.
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Not being able to understand a system, as said before, prohibits its computation. In-
evitably this reveals uncertainties in handling models as well as the original system.
Our lack of understanding can be differentiated into three categories of uncertainty.
This is a more complex differentiation of uncertainties than the very rough one I give
in section 3.1. It sets a different focus in terms of understanding and accounts for the
relevance of human kind as part of the climate system. Basically the first two categories
correspond to fundamental and model uncertainty, respectively.
Using the terminology of Schellnhuber and Kropp (1998)3 there is removable cognitive
uncertainty, irremediable cognitive uncertainty and voluntative uncertainty. The first
category entails those gaps in our knowledge that are due to unrevealed facts but which
can principally be obtained with the help of better observation methods and modelling
skills. The second class of uncertainties contains final uncertainties, i.e. all aspects of
the climate system that are principally determined by natural laws but due to their
nonlinearity and complexity are not computable for a given point in time. These types
of uncertainty are fundamental and hold independently of civilization on Earth. But the
last and also irrevocable uncertainty is caused by the ’freedom of will’ that all actors
exhibit. The impossibility of predicting the behaviour of nations, companies and single
persons is a ’fundamental indeterminacy of future’ climate system dynamics.
The fundamental indeterminacy of the future is not limited to climate physics and only
becomes relevant insofar as this discipline is largely preoccupied with prediction. It is
no fundamental constraint in understanding the system. Thus I do not count it as a
fundamental constraint in the context of the climate system and its understandability.
But it is indeed important for conceiving climate prediction, climate change, and pre-
diction making in principle.

The nonlinearity of the climate system is accompanied by its enormous complexity, which
makes it even more disturbing. Many climatic processes originate in internal feedback
mechanisms of the system’s dynamics that interact in a nonlinear and thus unforesee-
able way. Nevertheless the climate system as a physical system can be described by
mathematical equations. As explicated in section 2.1 in more detail, the basic equations
are the equations of motion, the first law of thermodynamics as the principle describing
the conservation of energy, and the continuity equation representing the conservation of
mass. The equations of motions are represented via the Navier-Stokes equation which
arise from the application of Newton’s second law to fluid dynamics. There, in the dy-
namics, the nonlinearity is represented in the equations. The Navier-Stokes equations
are nonlinear partial differential equations, where the nonlinearities drive the turbulences
which are an essential driver of the climate system. But because of them it is impossible
to solve this equation analytically for the climate system or parts of it. Moreover, not
only the solution but also the correct setup of the equations is impossible because of the
enormity of influencing factors, such as e.g. the highly scale-dependent friction. Thus
many assumptions are necessary to simplify the Navier-Stokes equation and make it
numerically solvable.

3The following citations in this paragraph are also taken from Schellnhuber and Kropp (1998)
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Furthermore, some equations are not even known. It is for example impossible to give the
equations of motion concerning sea ice and also shelf ice is only included into modelling
using relatively crude approximations of equations of motion, namely the shallow shelf
approximation and the shallow ice approximation (i.e. Mangeney and Califano (1998)).
There are many such subsystems of the climate system that are at least mathematically
not adequately describable.
Nonlinearity is a limitation to understanding insofar as ’understanding something’ is de-
fined as ’the ability to compute it’. But our inability also to setup the equations shows
that the nonlinearity limits even our intellectual ability to grasp the single processes as
it principally prohibits a knowledge of at least their quantity, thus not only computation
but even more basic forms of understanding the climate system are limited due to its
nonlinearity.

3.2.2. Fundamental constraints in understanding the climate
system: observational constraints

The second fundamental constraint in understanding reveals itself again. In order to
understand or describe the climate system completely all factors that influence the en-
ergy balance must be known qualitatively and quantitatively. The latter in particular
is a very difficult task, as it would not only be necessary to know all components and
mechanisms but to have measured them in detail. The gaps in knowledge of quantities
are fundamental limitations to our understanding of the climate. An example are our
lacks of knowledge of the magnitude of the poleward atmospheric heat transport, con-
straining the understanding of large and small-scale processes related to the zonal heat
balance which is a key driver of the climate of mid latitudes.
Regarding the feedback mechanisms discussed above it becomes obvious how limiting
undetected or poorly understood climate mechanisms can be. In addition to these feed-
back mechanisms scientists lately published an overview of possible climatic tipping
elements (Lenton et al. (2008a)), which are discussed in section 3.8. The earth’s climate
system is a complex, nonlinear system, which means that even small disturbances in the
system, as for example caused by greenhouse gases, may lead to large effects. Within
the climate system there are some processes and regimes that are especially sensitive to
climatic changes. These so-called tipping elements can be disturbed in such a way that
they may ’tip’ into a completely different state. As these elements are related to impor-
tant processes within the climate system, their tipping over will have serious impacts
on the system as a whole. This includes the possibility of an irreversible shifting of the
system into a completely different state. Most tipping elements are likely (Kriegler et al.
(2009)) to play an important role if the global temperature increases by more than two
degrees.
The existence of such phenomena shows that a qualitative and quantitative comprehen-
sion of climate processes is required in order to prevent further dramatic anthropogenic
manipulation of the climate. But it also reveals the second fundamental limitation to our
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understanding, which is the restricted amount of observational data. This is especially
a limiting factor concerning the oceans and upper troposphere and stratosphere where
direct measuring is difficult and only intermittently possible at all. Observational data
are not only needed to investigate mechanisms of the climate system but also to tune
and evaluate climate models. Thus the impossibility of measuring data on a global grid
sets a fundamental limit to our understanding and to possible models.
To do this properly the purchase and interpretation of climate data is needed. Before
being able to simulate the climate system a huge amount of data is necessary to tune and
validate climate models. This task is especially difficult concerning prehistoric climate
data and oceanic and atmospheric data or data from uninhabited landscapes. Besides
the difficult observation the preparation for modelling purposes of these data is another
challenge not possible without computer simulations. Only via modelling can the data
be made comparable to modelling data and without complex computer programs the
amount of data would not be possible to grasp at all. As it is not possible now and for
the foreseeable future to measure all the needed variables on sufficient climate system
points, an analysis of the observed data to interpolate missing data is necessary. This
happens with the help of so-called reanalysis models. If carefully done the practices
do not necessarily lead to equal systematic errors in the reanalysed data and modelling
data. But due to this, climate physics must cope with an additional source of error
compared to observations in classical physics.
However, this is no replacement at all for truly measured data, as an interpolation can
only be as good as the knowledge of the mechanism. That in turn can only be good if
enough data exist. Thus the amount of observed data must be seen as a fundamental
constraint: sufficient measurement of all variables is impossible.

3.3. Boon and bane of parameterisation

The wide spacing of even the most ambitious regional GCMs (see section 2.4) creates
a problem of scale, as several important climatic processes occur on scales smaller than
model grids. The most famous example of such sub-scale processes are clouds. They
normally spread across a few kilometres whereas the typical length of a GCM grid box
is a few hundred kilometres. Furthermore, clouds highly influence the energy balance of
the atmosphere as they reflect or absorb radiation, depending on the cloud type. The
whole scale of convective motions is basically beyond the grid scale of models but on
that scale nearly all processes determining precipitation take place, which in turn is
not to be neglected when considering temperature development. Thus individual clouds
and other convective motions are important factors considering especially the impacts of
green house effect and temperature development but they are not resolvable in climate
models. Clouds are the most uncertain effects but their influence is small on a global
scale. Nevertheless clouds and convective-scale motions are essential in GCM modelling.
Other examples of processes in need of parameterisation are the transfer of radiation
into the atmosphere, transport processes in boundary layers, surface energy exchanges
and subsystem processes of neglected subsystems (Hack (1992)).
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To represent such processes they are modelled as a parametric representation, a param-
eterisation. The parameter which gives such representations their name is not a fixed
value, one for cloud and zero for clear sky, but rather a proportionality factor linking the
cloud cover to model computed variables like temperature or humidity. To find such a
factor several climatic variables resolved by the grid and their relations to non-resolved
variables determining or influencing the cloud cover are analysed statistically in observa-
tional and reanalysis data. Furthermore, relations known from theoretic fluid dynamics
are taken into account. The temperature and humidity over a grid box can now be
used to predict the average cloudiness of that box for given temperature and humidity
values. But this empirical method is not adapted for the prediction of individual clouds
(Schneider (1992)).
Thus parameterisation tries to express the contribution of sub-scale processes to the time
evolution of resolved motions on the one hand and on the other hand as functions of the
large-scale fields (Hack (1992)). The connection of resolved variables and non-resolvable
process variables is normally not a simple linear proportionality but a complex inter-
connection. Thus the parameter to represent this dependency can also vary from very
simple to highly complex. But a fundamental characteristic of parameterisations is that
the higher the level of physical sophistication, the higher the computational capacity
needed for the parameterisation technique in the model simulation process.
With the help of parameterisations it is thus possible to simulate the effects of small
scale processes on large scales. Modelled large-scale processes, theoretical knowledge of
analogue processes, and observed correlations in basic variables lead to simulated large-
scale effects of small-scale processes.
Figure 3.1 gives a simple graphic to show a parameterisation in principle. Tt+1 and

Tt symbolise observables resolved within the modelling approach. The graph f char-
acterises the relation between Tt and Tt+1 in the time evolution given by the physical
equations the model includes. The dots stand for observed data points. Obviously the
theoretical model output does not fit to the data. They would better be described with
a function similar to regression line g. If a modeller observes such behaviour when com-
paring model physics and observed data it is a sign of an unresolved small-scale process
that affects the large scale of model output observables. To better simulate the large-
scale effect the unknown small-scale process can be parameterised with the help of a
map, shifting f to g, displayed in figure 3.1 as arrows p(Tt). If the parameterisation
is successful the next time step of the model can be calculated fitting the observations
around g without knowing the physics or even the scale and sphere behind p. The next
step is then:

Tt+1 = g(Tt) = f(Tt) ◦ p(Tt);

The ◦ symbolises the fact that all mathematical operations are possible in this place.
Parameterisations need not be motivated by physics because the modelling approach
deliberately omits a known process. Parameterisations often only close a gap between
modelled equations and observed data.
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Figure 3.1.: Parameterisation in principle. T is an observable in time evolution; f stands
for its theoretic relation whereas the blue dots with regression g give the
observations. The arrows p(Tt) denote the parameterisation.

Another characteristic of parameterisations is the need for independent calculations of
every single parameterised process for every single vertical column on the basis of the
large-scale state information for that column. For serial computations this is a very time
and resource-consuming task, but the increasing use of parallel computing environments
fits to such tasks.
Nevertheless an ideal model would be a model without fixed parameters apart from

continental topography. Without fixed values besides the initialisation values the inter-
nal dynamic generated by the model alone from the represented physics of the climate
system would compute all variables. Nowadays even the most sophisticated GCMs de-
pend on fixed parameters somewhere in every represented physical process. Thus the
problem of climate modelling is parameterisation, which is the solution to the problem
of scale. All modelling attempts rely on the so-called “closure approximation”. This
is the postulate that “small-scale processes can ultimately be represented accurately in
terms of the large-scale variables available to the models” (Edwards (2001)). To what
degree this approximation violates reality is relatively unknown to us as our inability to
model small-scale processes corresponds with our lack of knowledge of their importance
for climate development.
The problem of scale is the central problem of climate modelling, but there are several
other problems that result from our lack of understanding as well as from the trade-off
between complexity, resolution and consumption of computational power.
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Even if they are referred to as primitive the equations in principle represent all important
aspects of the climate system. Their complete consideration for all spatial directions on
small grids consumes enormous resources. And these equations alone do not build up
the climate system. All the processes that are not represented here have to be considered
as well. Thus, depending on the desired complexity, a huge amount of parameterised
processes must be calculated as well. Therefore many models do not solve the whole
set of equations for all spatial dimensions in the atmosphere and the oceans but replace
or totally omit at least one dimension. Also the whole ocean or the whole atmosphere
respectively can be replaced by parameterised incoming fluxes to the remaining sphere.
Looking at the model spectrum it becomes obvious that the omission of a complete
set of equations is also an option to simplify the model and accelerate the simulations.
Studies that only represent the energy balance normally do not consider the equations
of motion.
But of course all these simplifications are paid for by the ’realisticness’ of the model. The
problem of such simplifications results from the interdependency of climate processes and
our lack of knowledge about it. The modeller knows which part of the climate system
is deliberately poorly represented, but what he does not know is which other processes
are affected by this simplification.
Uncertainties are of course nothing entirely unknown to physics as well as working with
already falsified theories and models in the classic meaning of this word4. And the work
with assumptions and approximations known to be incorrect is also a method often used
in the history of physics. The most famous example of a theory known to be false in
terms of being limited is Newton’s mechanics, which is still in use even if falsified by
quantum mechanics. But in this case the Newtonian way of calculating and predicting is
rescued for marginal cases of quantum mechanics which includes almost every mechani-
cal process beyond microscopic scales. Nevertheless the application of Newton’s physics
is always an approximation, as normally point masses are the replacement of real world
bodies.
Even if point masses are theoretical objects the situation is different to that in climate
modelling. We know that planets are bigger then point masses and we know with com-
parably high accuracy to what degree. Additionally we do have a theory about real
bodies even if we cannot compute it. However, in climate modelling the situation is
quite the opposite. We do not have a theory about the processes we replace with pa-
rameters in our models. In some cases we have some basic ideas but often we only know
the scale of the processes. The magnitude of the parameter is calculated numerically, by
trial and error, resulting in a small set of parameters to represent this one special pro-
cess. There are commonly accepted parameterisations widely used in different modelling
processes as well as specific parameterisations for specified models. As the former are
most important for this branch of science, finding new parameterisations is one of the
achievements in climate model development. Processes are not replaced by simplified

4Section 3.7 is dedicated to a detailed analysis of the problem and the meaning of falsification in
climate modelling.
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theoretical models where the simplifications are known and can be evened out to some
degree if necessary, but rather are replaced by numerical schemes and parameters which
are theoretically based or only motivated by the fact that they “work” in modelling se-
tups. Normally we do not know how realistic they are as experiments are impossible to
realise. Furthermore, the theory frame is not computable, at least for GCMs grounded
on the Navier-Stokes equations or the primitive equations (see section 2.1.3).
Experimental measuring and theoretical predictions of certain values are never identical
in classical physics, which is due to imperfect measuring conditions. Even such a dis-
crepancy is not existent to the same degree in climate modelling. As measured data are
not used directly to tune or validate climate models but edited in reanalysis models to be
comparable to model output, the modeling conditions of reanalysis models modify data
in a different way than “normal” measurement devices do. A reanalysis model suffers
basically from the same need for parameterising important climate processes as predic-
tion models, thus most of the general problems apply here as well. At least they entail
systematic errors from the computational setup that add up to biased measuring. The
basis of reanalysis models are numerical weather prediction models, fed with observed
data. After one time step of integration the output data are compared to observed vari-
ables and changed accordingly. This is possible as numerical weather prediction models
use statistical modelling approaches which allow for probabilistic variation of initial and
boundary conditions, as well as development paths of the model. This fact guarantees
at least a considerably large distance to deterministic GCMs.
Nevertheless agreements between climate model output and reanalysis data may par-
tially be due to equally biased modelling approaches to generate reanalysis data on the
one hand and the climate model data sets on the other hand. The most important source
of such biasing is again parameterisation.

3.4. Using and abusing model tuning

Model tuning is not calibrating the climate model and therefore not adjusting parameters
that are observationally well constrained. In contrast to that tuning is the adjustment
of internal model parameters which are not representations of physical parameters or
physical parameters without corresponding observations. Especially in economic mod-
elling the term tuning is not often used but internal parameter adjustment is called
either validation or calibration. With respect to the traditional use of these terms in the
history of science this is a rather misleading handling of words.
Every instrumental setup in the experimental sciences needs to be calibrated before
starting measurements to be able to analyse results in comparison to already gathered
data, thus to a norm. However, climate models “cannot be meaningfully calibrated be-
cause they are simulating a never before experienced state of the system” (Stainforth
et al. (2007)). Even if intended to simulate past climates, the model climate system is
necessarily extremely different from real climatic systems of the past. It is a different
nonlinear system. Calibrating a chaotic system would be senseless even if the model
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was a perfect model. This is due to the crucial role initial conditions play in nonlinear
systems. They are of central importance but cannot be known. Thus calibration is
practically impossible and theoretically senseless. A calibration is the standardisation
of an experimental setup in comparison to an accepted norm. Due to the very nature
of the climate system and nonlinear systems in general, a ’normal’ state of the system
does not exist. The motivation to tune climate models is thus different. In a manner of
speaking the running into a stable equilibrium state of a climate model could be taken
as finding a ’normal’ system state, but this is quite different from searching for a norm.
Nevertheless, tuning is an adjustment of model parameters to achieve agreement with
observations, which means that parameter values that are weakly restricted by obser-
vations are adjusted to generate good agreement with observations for those variables
that are better restricted or even known by observation (Bender (2008)). Parameters
are chosen in such a way that the simulated variables are fitted to observational data,
or, if not all important variables are known, they are chosen to simulate a process that
qualitatively represents an observed process. Or, if observations and understanding are
very limited the model is tuned to show more physically plausible behaviour, what-
ever that means.5 The more complex the model is and the more different independent
and dependent parameters it comprises the more necessary tuning could be for several
model parameters. Tuning is a task most important and especially difficult for mod-
elling approaches such as GCMs and EMICs. As general circulation modelling without
parameterisations is not possible (see section 3.3) it is just as impossible without tuning.
Tuning is necessary to represent observed climatic processes. But tuning climate models
is not an easy task in particular because of the interdependencies of different model
parameters.
An example of the influence of tuning as well as parameter choice is given by Bender
(2008). A GCM is tuned against two different satellite observation data sets to show
radiative balances at the top of the atmosphere in agreement with the respective data
set. The tuning is carried out through alterations of parameter values in cloud micro-
physics. As this is a field that is highly parameter-dependent and hardly restricted by
observations, parameters may be adjusted independently of ’physicality’.
The latitudinal distribution of surface temperature is hardly affected by the tuning
in both attempts. An (non)effect that counts as necessary condition for good tuning
because this variable is thoroughly restricted through observational data. In cloud prop-
erties the two approaches provide differences, which is not an unexpected behaviour as
the tuning was done through cloud parameters. The variations in cloud water paths are
significant but small compared to discrepancies in observations.

Figure 3.2 illustrates the example. The first graph shows two different sets of observed
data representing the radiative balance at the top of the atmosphere. The second dia-
gram displays the observable ’surface temperature’ of the same two different data sets.
The discrepancies in the observations give certain degrees of freedom for the parame-

5Tuning is a very crucial but subjective part of model development and will be put in a more philo-
sophical context in part IV.
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Figure 3.2.: Two different observables of two data sets are displayed. Observable one
varies heavily, f and f ′; whereas observable two seems to be good constraint
by observations (red), y and y′.

ter adjustment within the parameterisations defining the observable ’radiative balance
at the top of the atmosphere’. The graphs f and f ′ can be represented either with
parameter set p1 or p2:

[f ] = m(x, t, p1); [f ′] = m(x, t, p2).

m(...) displays the model dynamics given by physical model equations with initial and
boundary conditions x, time t, and the weakly constraint parameters p1 and p2. At the
same time the same relations must also be true for the observable ’surface temperature’
represented by the virtually identical graphs y and y′. Thus the parameter adjustment
is only meaningful if

[f, y] = m(x, t, p1); [f ′, y′] = m(x, t, p2)

holds as well. That is, the tuning must not effect good constraint parameters and
observables. This constrains the degree of freedom in parameter tuning. But there is no
decision criterion at all to decide between model set up [f, y] and [f ′, y′]. From the point
of view of all known physics and available data, both approaches seem to be ’optimal’.

In the two differently tuned modelling approaches the equilibrium of climate sensitivity
is calculated. It differs but the difference is of degree not of kind. But in a similar study
by Stainforth et al. (2005), where the tuned parameters are not only varied between two
different ’optimal’ setups but within the range of estimated uncertainty of the tuning
parameters, the resulting range of climate sensitivity is of several degrees Kelvin, which
means that different tuning of cloud parameters highly influences key variables of cli-
mate change in GCMs. And it is impossible to say which set of parameters is best.
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Tuning manipulates physics

Considering this example an apparent problem of tuning is its influence not only on the
varied parameter but on all directly and indirectly dependent parameterised processes.
An obvious impact of this fact is that the model output cannot be used to make strong
statements about the processes only represented due to tuning. This is a straightforward
implication but entails many consequences and is not always considered when analysing
model output. In particular, it is hard to detect whether a certain process shows sta-
bility due to parameter tuning or for dynamical reasons. For example, an ocean model
that is tuned to have a thermohaline circulation(THC) is likely to have such a THC
more stable than real oceans, thus the behaviour of the modelled THC cannot be taken
entirely seriously. This is a fact scientists developing the model are more or less aware
of but it is not published or discussed within the peer group, which raises profound
doubt whether scientists who are only using the model are equally aware of it. The only
model description briefly mentioning this problem is given by Weaver et al. (2001) in
the description of the UVic earth system Model of intermediate complexity.
An example is Hargreaves et al. (2004) where two ocean diffusivities, a sea-ice diffusiv-
ity, an Atlantic-Pacific moisture flux, two parameters controlling wind-driven circulation,
and six parameters controlling atmospheric heat and moisture transport, in total twelve
parameters are used to tune an EMIC to simulate realistic climate variables. The model
is furthermore used to examine among other things the stability of the THC under simple
global warming scenarios, which was found to break off in one third of the simulations.
The THC is to a great extent driven by heat and freshwater fluxes and dependent on
wind-driven currents. Of course these twelve tuned parameters influence everything
which is possible to find in the model. In examining and interpreting the model output
this fact must be included in model uncertainty analyses but disregarded otherwise. But
stability analyses of processes only occurring due to tuning seems overconfident concern-
ing tuning technics. Only those processes also occurring without the specific tuning are
meaningful to analyse according to their stability under climate change scenarios.

Considering these aspects of tuning it becomes clear that tuning is a tool to improve
model performance but can also effect the dynamics resulting from underlying equations
in an undesired way. And therefore tuning is a method that violates the physics of a
climate model. The difference between using and abusing tuning is a very small one.
And if abused in some way or other the tuning process forces the model to provide the
right results but for the wrong reasons. This is in the words of Collins (2007), who
argues that a model which has a good present day simulation of, for example, surface air
temperature trends, may have it owing to some cancellation of errors in closely related
parameters.
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3.5. The need for numerical solutions

Numerical algorithms are of interest in two cases: on the one hand if no explicit solution
for the the mathematical problem exists, and on the other hand if such a solution exits
but is complex to solve and prone to errors. There are also two methods of numerical
solutions: a direct one which provides an exact solution in finite time if calculation is
infinitely exact, and an indirect or implicit approach to get iteratively better approxi-
mations.
The analytical solution of the three dimensional Navier-Stokes equation belongs to the
millennium problems of mathematics, as declared by the Clay Mathematics Institute.
That is, as yet no exact solution is known. Analytical solutions only exist for special
cases, for example in two dimensions.
Thus fluid dynamics which is virtually based on the Navier-Stokes equations is in need
of numerical solutions for its problems. There are different methods to arrive at nu-
merical solutions, all of them with advantages for special problems and general disad-
vantages (Batchelor (1967)). Direct numerical solutions are only possible for problems
hardly showing turbulence which is only given on very limited spatiotemporal parts of
a climatic sphere. Thus numerical methods in climate modelling are indirect methods,
that is, approximations.
Most of the problems in climate science are fluid dynamical problems, as pointed out in
section 2.1. The solution of the equations affords a discretisation of the normally contin-
uous fluid. In climate models this is commonly done through the application of grids in
atmosphere and ocean. The nonlinearity of the equations requires that either the spatial
resolution is very fine or the time steps are small in order to get a meaningful numerical
solution. The former is hardly possible due to computational power limits and insuffi-
cient data on fine grids to initialise the model (see section 3.2.2). Thus climate models
including dynamics and hence numerical algorithms to solve them must be integrated
on small time steps to guarantee stable solutions. Again, due to computational limits
only short simulations with complex climate models are possible to run. Especially for
GCMs this comprises the risk of not reaching an equilibrium state. An equilibrium is
reached if all components and parameterisations of the climate model work together so
that a stable climate is simulated. As far as all processes are initialised and the model
and parameterised feedbacks co-operate as planned several decades of model years go
by. The shortness of GCM simulations is thus one of the major problems in handling
GCMs.
If a model did not reach equilibrium state before starting the real experiments a ’cli-
mate drift’ can be observed. Normally such a drift manifests itself in an artificial trend
within the modelling results. A prominent example of incorrect modelling results due
to a climate drift is unintentionally given by von Storch et al. (2004). They made a run
of 1000 years with the coupled AOGCM ECHO-G starting 1000 years ago and ending
with nowadays climate. Unfortunately, the model was originally initialised with present
day climate data, including a CO2 concentration of 372 ppmv. But to start a simulation
run in medieval times the concentration must be around 280 ppmv. Von Storch and
his team adjusted the CO2 concentration accordingly and started the simulation after a
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transition time of 50 years. Their published results showed a strong cooling trend in the
first few hundred simulation years. This caused a lot of political trouble as the results
suggested a stronger internal climate variability as all other simulations and temperature
reconstructions. Politicians used this pseudo-result not to act against climate change
as the human influence seemed to be less than it actual is. Osborn et al. (2006) could
easily show that these spectacular results are only pseudo-results as the trend was due
to a climate drift induced by a much too short transition phase. It was the same mistake
one would make if one took a thermometer from a warm room outside and immediately
started to measure the outdoor temperature. One would observe that the temperature
decreases, but only because the observation was begun before the thermometer was in
equilibrium rather than because of real cooling outside.
This example, which is discussed in detail on www.realclimate.org6, shows impressively
model simulations that are too short violate physics.

The need for numerical solutions are manifested in the scale problem. The scales where
climatic motions occur range from atomistic to global and from nanoseconds to millenia.
The energy transfer interacts between all these different scales and triggers climatic mo-
tions on any scale and may or may not lead to large-scale changes. Thus the internal
dynamics of the climate system show chaotic behavior which is the reason for the im-
possibility of predicting weather for more than 10 days in advance. A scale separation
is therefore impossible due to the nonlinearity.
But climate not only depends on internal dynamics but on forcing mechanisms and
feedback processes. While external forcing parameters such as the annual difference in
incoming solar radiation and the cyclic changes in the solar constant are relatively easy
to foresee, internal feedbacks are not. Additionally differences in land use or in the
chemical composition of the atmosphere caused by humans, or unforeseeable externally
modelled forcings like volcanic eruptions, are intrinsically unpredictable.
From a statistical point of view, Hack (1992) describes weather as the statistical noise
on the climate signal, whereas the climate signal is triggered from the above mentioned
forcing processes. But in contrast to other statistical processes the weather noise is not
to be neglected as a distracting signal. On the contrary, it is of great importance as it is
strongly interconnected to the climate signal. The weather noise also includes the inter-
nal dynamic of the climate system which often initiates changes in forcing parameters
as the dynamic is strongly coupled to the forcing mechanisms via known and unknown
feedback mechanisms.
Thus the second great challenge climate modelers face is the fundamental interconnec-
tion of short term weather with long-term variabilities in the climate signal. This too is
a manifestation of the scale problem but this time not in space, but in time.
Even if in principle the atmospheric or oceanic motions are to be described with the help
of fundamental laws of mechanics and thermodynamics, their solution is not analytically
possible and therefore poses many numerical problems.

6“A mistake with Repercussions” 27. April 2006
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3.6. Theory ladenness of climate models

In an inductive interpretation of theory building, generalisations and theories are drawn
from observation, from facts. But facts should be independent from theories. This is the
desired asymmetry for inductive theory building as described by e.g. Ludwig (1974),
but unfortunately it is not true. Without a hypothesis or at least an idea we would
not even know what kind of data to observe. Thus it is inevitable to invent hypothe-
ses before collecting data. This so-called theory ladenness of data is therefore a fact of
scientific research. This fact shows that pure inductivism seems not to be a grounding
for scientific theory building at all, which is in opposition to a branch of philosophy of
science and will be discussed in the following section.
Another aspect of theory ladenness is the charge against measuring devices. The accu-
sation is that all of them are constructed along the lines of the theory they are used to
confirm. Thus observed data is influenced at least twice by theories it should be the
basis of. Dependent on how narrowly the term theory is interpreted this charge holds.
Hence the question is not whether theory ladenness exists or not, but how strong it
is, and whether it is so overwhelming that meaningful experiments are impossible to
conduct. The fact alone of influencing measurements by structural theoretical ideas or
instruments does not mean automatically that it is impossible to make open-minded
observations. But it does mean it is necessary to be careful with data. As data and
observations are hard to get in climate physics theory ladenness seems to be a challenge
climate science has to face.
According to Ludwig (1974), theory ladenness is omnipresent in physics. He freely ad-
mits that the accusation of theory ladenness applies entirely regarding physics theories.
But in contrast to philosophers like Kuhn he does not see this as a problem. On the
contrary, he deplores the independence of some theories. Ludwig identifies the possibil-
ity of errors in the perception of the given phenomena as crucial. According to him it
seems not satisfactory to build the exact science of physics on the seesawing grounding
of the more or less given phenomena. He proposes two ways out of this dilemma. The
first one is to ignore it as it does not belong to the realm of physics to question the
abilities of our perception. Thus, it is not a physics problem. The second escape could
be to establish solid rules for the whole process of theory building.
If not for theory building, common sense7 rules for climate modelling will be given at the
end of this work. Some of the general accusations of theory ladenness can be omitted,
if such rules are taken seriously. However, as the following paragraphs will show, there
are principal problems in data assimilation and modelling that can be contained within
the concept of theory ladenness.

Of course the charge of theory ladenness as described above also applies in climate
physics but compared to other areas of physics it is less overwhelming. Climatology as

7This term is chosen to underline that no set of methodological rules could be meaningfully given for
climate modelling for very similar reasons as discussed for science in general in the introduction
(section 1.1). When discussing common sense rules in chapter 7 it becomes apparent that common
sense rules apply also and are very central to ethical standards.
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a field based on various theories of physics and chemistry uses a wide range of theories
and is not said to be emerging straightforwardly from few axioms.
In a different context of theory ladenness, the classical interpretation of theory ladenness,
climate physics and especially the modelling part of it, has advantages. The commonly
raised charge of theory ladenness, that theories or scientific frameworks are corroborated
with data gained with measuring instruments which are constructed on theoretical as-
sumptions from the theory to confirm, is relatively easy to refute. This is due to the
fact that the methods of measuring climatological data are far away from modelling
approaches concerning their theoretical equipment. Measuring instruments like a ther-
mometer and a measuring pitcher for precipitation use comparatively simple theories in
their construction, particularly the latter. But the data compares to data from climate
models.
So far theory ladenness seems to be no problem for climate physics. But most of the
data used today is not gained in such a way. Satellite data in particular has become
increasingly important since the 1970s. Satellites are, unlike a thermometer, dependent
on technical data processing. But in this there is no difference to other areas of physics.
The history of the spectrum of climate models should reveal the kinship between differ-
ent modelling approaches. This is the dependency of the models within the spectrum
which includes in particular the historical dependency of climate models. That is ex-
plicitly the question of whether there are relationships between the models which are
narrower than the theoretical origin alone provides.
The apparent horror scenario arising from this question would be that there was one
single historical climate model which serves as a mother of all today’s climate models.
As there are different approaches in modelling and at least two different lines of cli-
mate model development, there will certainly not be one model. But also three or five
would be a disturbingly small number. The philosophical disturbance is given only if
the kinship is close in theoretical and technical details. Of course theoretical closeness
is to be expected to some degree as global models are to represent the climate system in
total, which is grasped on an integrative theoretic approach. If this is really a problem
is challenged in the next subsection.
But even so, the danger of copying systematic errors is not only a technical matter as
the theory of the climate system is nothing fixed but a work in progress. The process of
modelling climate scenarios is the most important factor in analysing the climate. Thus
all consequences drawn from a climate modelling approach would be biased in the same
way.
It is indeed the case that we can find thirty-year-old pieces of code in today’s cli-
mate models. This is a fact that led science researchers like Gabriele Gramelsberger
in Gramelsberger (2006) to consider an archeology of climate modelling, using such
pieces of code as the origins of information.
Thus a very close kinship between different GCMs actually exists. But it is not a dis-
turbingly close one. This is due to the characteristics of code. The code is the most
exact part of a climate model, only code reveals all parameterisations and thus simplifi-
cations and assumptions made within the process of climate modelling. Therefore every
piece of code integrated into a new context of modelling obtains a new local value. The
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relationship between models is therefore a relationship in ideas and technical tricks as it
can be found in every history of experimentation. Their manifestation in code does not
add deeper interdependency.
Considering a procedure described for example by McGuffie and Henderson-Sellers (2001),
another aspect of the possibly problematic relationship within the spectrum of climate
models evolves. They describe an upwelling-diffusion energy budget model to evaluate
Kyoto Protocol implications on large scales. “[S]uch a simple climate model relies on
climate sensitivity and ice-melt parameters obtained from a full GCM ” (McGuffie and
Henderson-Sellers (2001))8. The dependency here is not in the theoretical setup of the
model but in the initializing and tuning of data.
In contrast to code based relationships of climate models this is a problematic approach
in climate modelling as the model output appears to be the result of an independent
approach but is not. With an addition of GCM data to a simple EBM the spectrum
of models will be violated as two types of models are merged together without calling
it by a name. Such an action would be rational only if the spectrum of models were a
true hierarchy with the best models at its top. But this is not at all the case. Models
of all levels of the hierarchy are constructed for different purposes and serve these well
or badly independently. GCMs do of course include most processes but they likewise
include parameterisations in need of heavy parameter tuning, have short simulation runs
which cannot guarantee that an equilibrium state will be reached, and are poorly val-
idated. Thus the hierarchy is not actually a hierarchy as such which is the reason for
starting to speak of a spectrum of climate models instead (Claussen et al. (2002)).
The same problem occurs not vertically in the model spectrum but horizontally if pa-
rameterisations are copied from one modelling approach to another. This is of course
not to be dismissed, as the community is lucky if there is at least one meaningful pa-
rameterisation. Nevertheless it adds up to the theory ladenness of climate modelling
approaches.
Despite these epistemically important reasons for not using GCM output to tune models
of lower resolution there are practical reasons to do so. GCM output can normally be
generated in exactly or nearly exactly the grid and format needed for the tuning. To get
observational data of the same quality is usually more costly and too often not possible
at all.

If such a practice is unacceptable or not, strongly depends on the purpose of the mod-
elling approach. If it aims at projecting future climates GCM data is not appropriate
to initiate the model. But if the model aims at understanding climate processes GCMs
can deliver good initiation data.
For future climate projections alternative sources of initial data must be used.

8Italics are from me.
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3.6.1. Reanalysis data

Reanalysis data is highly theory laden as the methods which comprise it rely solely
on modelling but the intention differs (see the beginning of this part). The modelling
approach is thus different which makes the data useful despite the theory ladenness but
basic modelling uncertainties are the same as well as parameterisations.
Observed data is available only for very specific observables, which must be at least

global and of good quality. Temperature and upper-air mass fields are of such high
quality. Others, such as the moisture content of air, are not that good and observables
like precipitation or surface fluxes are even worse. But even given that the measured data
is of good quality, such as temperature, an energy balance model can be compared to 300
years at the most, on exclusive grid points only: nothing more. Thus data used to develop
models, that is, to tune or validate, needs preprocessing before being complemented for
comparison. The process of gaining reanalysis data is called data assimilation. Observed
data from land surface, ship, radiosonde, balloon, aircraft, satellite and other sources
needs to be assimilated to a global data set (Kalnay et al. (1996)). To do this a fully
developed GCM is fed with this data and compared to it after every time step in the
model simulation. Before this procedure is meaningfully possible the observed data from
very different data sets must be put together into a single data format. Errors in dates
or longitudes must be eliminated and most importantly, gaps in the data must be filled
with other data or via interpolation. Not until then can the actual reanalysis model be
executed.
The reanalysis data later used in sensitivity studies with all kinds of climate models is
thus heavily loaded with theory. According to Kalnay et al. (1996), only these output
fields related to good quality data are reliable and give the state of the atmosphere.
Others are only partially defined by observations or completely dependent on the model
characteristics as no usable observations are available. To account for that fact reanalysis
data is classified according to its reliability. Temperature fields belong to highly reliable
class A while precipitation and most fluxes belong to class C, which is as good as the
data of a GCM can be, but does not give the true state of the atmosphere or any other
resolved sphere.
Researchers using reanalysis data must be aware of the fact that reanalysis data for
most system variables is of class C, which is the best data available, but it is GCM data
and not observational data. Of course it is not the very same GCM as they want to
test or tune but it is a GCM and the kinship between theoretic structures in GCMs is
strong enough to be identical in some parts, for example parameterisations. In particular
data assimilation models do suffer from the same shortcomings as poor validation and
parameter tuning as GCMs for other devices do.
Thus the degree of theory ladenness in reanalysis data depends on the data class the data
field in question belongs to. Class A data of reanalysis models, due to the additional
statistical interpolation, provide an even better estimate of the state of the climate
system as observations alone. But for data from other classes the charge of theory
ladenness is well-founded.
The quality of input data strongly determines the model output. Thus data classes
should be borne in mind for output data interpretation too.
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3.6.2. Paleo data

An alternative to the use of current data sets is to use historic and prehistoric data. The
situation is even worse for paleo data compared to modern data. Reanalysis data for
the last 30 years has many different radiosonde, aircraft, weather station, and satellite
measurements as a grounding, even if these observations are biased accordingly and the
data is modeled within the same framework of theory as GCMs used for climate pre-
dictions. A paleo historical data set mostly stands alone for its exact period and region
and most importantly does not contain temperature records but a certain concentration
of water and air ingredients if the proxy is an ice core. Preparation of paleo data thus
suffers from the same theory ladenness as reanalysis data, plus the theoretical input used
to compute central climate variables from the measured concentrations of air or other
available measurands. That is, in reanalysis data of historic and prehistoric periods a
good quality data class A is not existent.

Theory ladenness is therefore a central problem in climate modelling if we are concerned
with preprocessed observational data and modelling of higher complexity, which is is the
case nearly always and everywhere. Thus the climate modeller ought to take great care
not to exacerberate this problem through careless handling of data.
This means in particular not to using observed data from one source in more than one
step of model development, such as model validation, model tuning, parameterisations,
pattern analysis, and perhaps even more. It is a very hard task as there are many steps
in model development which depend on data but few data sets, at least few good and
complete sets of observed data.

3.7. The impossibility of falsifying climate models

Karl Popper gained fame for his insight that the verification of a theory cannot be
achieved. From a logical point of view only the falsification of scientific theories is pos-
sible.
In his famous work “The logic of scientific discovery”, Popper (1959) developed the term
falsifiable along the following lines. A scientific theories is falsifiable if a crucial test can
be made within the framework of this theory. The classical example for such a test is
the prediction of the existence of the planet Neptune and its detection (see Chalmers
(1999)). It was detected that the orbit of the planet Uranus was not as expected accord-
ing to Newton’s theory of gravitation. Instead of abandoning Newton it was predicted
that another planet, later identified as Neptune, disturbs the orbit of Uranus. With help
of the theory of Newton, the mass and position of Neptune could be computed. If no
other planet had been found Newton’s theory would have been falsified. As Neptune
was in fact detected Newton’s theory was corroborated.
Theories that lead to tests like that are falsifiable theories and thus scientific. Being
falsifiable or not is Popper’s demarcation criterion between scientific and not scien-
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tific theories. Deliberately Popper neglects the scientificness of huge fields of research,
among them most prominently economic sciences and sociology. Part of his motivation
to present a strict criterion was the possibility to declare theories of e.g. Marx as not
scientific. Popper’s intention was to be able to distinguish between science and pseudo-
science (Popper (1998)) in his interpretation of the latter.
Given this essence of Popper’s work, falsificationism in this logical sense has not lead
to a revolution in scientific work. Chalmers (1999) gives a concise definition of what
falsifiable means in context of Popperian falsificationism: “A hypothesis is falsifiable if
there exists a logically possible observation statement or set of observation statements
that are inconsistent with, that is, which, if established as true, would falsify the hypoth-
esis.” Being falsifiable is thereby a property of the theory. Thus he not only provides
a philosophy of the falsification of theories but he gives a definition of scientific. Only
theories containing that property are to be taken as scientific, according to Popper. Only
falsifiable hypotheses contain information about the world, if the world represented in
observational statements cannot falsify them, they cannot be about them. This latter
interpretation of his work is what makes it unfit for everyday scientific work.
Nevertheless, the idea that scientific assumptions should be falsifiable is important. Log-
ical falsifiability cannot not be aimed for but new ideas in science must be testable.
Otherwise the question of the scientificness would arise after all. That is, if no logical
or technical tests are to be conducted at least the ideas and assumptions resulting in
models and theories must be traceable for other scientists. With this consideration we
actually come back to Popper. Despite his demarcation criterion Popper denotes in the
preface of his “Logic of Scientific Discovery” rational discussion as the method of science.
This statement puts Popper’s whole theory in a completely different light, especially so
as he additionally claims the critical eyes of our peers in a scientific community to be
the only possibility of identifying errors in theories and gaining objectivity.
Interpreting falsifactionism in this weak way the falsifiability of scientific assumptions
should be given for these assumptions to be meaningful. If errors cannot be identified
models and theoretic assumptions are useless. With any common sense this claim is
obvious.
But there are parts of science where errors are hardly traceable, or not traceable at all.

Climate models belong to the realm of science not open to satisfactory falsification
mechanisms. This is not true for very simple, conceptual models consisting of analytical
equations only. But the more complex a model the less falsifiable it is.
This is not due to the nonlinearity of the climate system but due to the complexity and
the need to parameterise. That is, due to our lack of understanding, errors in modelling
are untraceable. Every climate model consists of physically meaningful equations which
we are able to test and a huge amount of assumptions are known to be insufficient. The
latter is the reason for the impossibility of falsifying them.
Nevertheless it is possible to test the performance of a climate model. Chapter 5.1 is
dedicated to the many different methods of climate model testing. There are several
approaches to check the reliability of climate models and climate projections but none
are able to identify the reason for bad performance. The source of errors may be any
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of the equally plausible parameterisations, just as it may be indistinguishable tuning
processes, or any other approximation within the modelling process. Due to the very
nature of their nonlinear interdependency, their influence is not possible to test.9

If we choose not to take Popper’s narrow definition of science into account, this fact
does not make climate modelling a useless or unscientific undertaking. However, it does
mean that modelling results are special scientific findings which cannot be interpreted
along the lines on which other physics findings are.
One way to deal with this deficit in the process of climate scientific work is to assign
probabilities to parameterisations and model output. How this is done and whether it
really solves a problem is discussed in chapter 6.
One conclusion of the impossibility of falsifying climate models that can already be
drawn at this step of analysing climate science is the absolute need to put one’s cards
on the table. Without knowing approximations and assumptions within the modelling
process no sensible interpretation of model output is possible. But this implies that
a meaningful interpretation is indeed possible, and we come back to Popper and the
scrutinisation of peers.

3.8. The singularity of anthropogenic climate change

Today climate science is a field of research highly and controversially discussed in poli-
tics and society. The reason for this high level of interest is an unprecedented fast and
global climate change caused by human fossil fuel burning. As described in section 2.2,
this anthropogenic cause is not reasonably subject to doubt and has serious impacts on
life on earth.
Climate change in general is nothing new in the lifetime of our planet but at least within
the last 800,000 years a comparable high CO2 concentration has not existed. It is also
very much worthy of doubt that the rapidity of today’s CO2 increase has prehistoric
predecessors. Thus today’s climate science is confronted with a singular climate change.
This singularity of current climate development highly influences research in climate
science and contributes to the list of difficulties in this field of research. It is not a new
fundamental problem of research as it somehow evolves from the fundamental problems
of nonlinearity and observational constraints. However, it is to be expected that such
a singular event leads to singular effects. That is, current climate development requires
research not only to understand equilibrium climates with their forcing and nonlinear
effects, but in particular to focus on singular effects and transient climate development.

In a nonlinear system like the climate system small disturbances within the forcing or
feedback mechanisms may have extreme impacts. During the Holocene, the warm period
we have been living in for 10,000 years, the climate has been extremely stable. But re-
cently a set of effects has been identified by Lenton et al. (2008a) which could potentially

9In the philosophy of science these problems are discussed under the topic “unrealistic assumptions”,
which will be briefly discussed in section 7.2.
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shift the climate system into instability. Thus especially the magnitude of this potential
is of great interest for politics and society. This is a heavy burden on climate scientific
research, as the assignment of meaningful probability distributions on climate change
impacts is hardly possible (see section 6). Nevertheless, the identification of possible
singular effects was a great success of climate science.
These processes that are particularly sensitive to (abrupt) climate changes are called
tipping elements. Climate change may disturb them to such a high degree that they
tip into a fundamentally different state. As the potential tipping elements are impor-
tant processes within the global climate system, their tipping would have serious effects
on the overall system. This includes the possibility of shifting the total system into a
different state. Besides its impact on the global system the existence of positive feed-
back mechanisms is a criterion for identifying tipping processes, at least according to
the paper of Lenton et al. (2008a). Recently the feedback mechanism was taken from
the list, to include all elements of the climate system with the potential of a sudden
change which has large impacts (see Lenton et al. (2008b)). Nevertheless, the existence
of feedback mechanisms increases the tipping, thus they are of importance in context of
tipping elements.
An important example for a positive feedback mechanism is the ice-albedo effect as de-
scribed above (section 2.1). Therefore the melting of ice sheets of Greenland and western
Antarctica belong almost certainly to the set of tipping elements. Sometimes the Arctic
sea ice is also taken as a tipping element, in particular one in which tipping has clearly
started already. Due to the ice-albedo feedback, among others, global warming is highest
at the poles and becomes even higher at the Arctic with proceeded melting of sea ice.
The system has tipped when summers are accompanied by an ice-free Arctic Ocean.
Among the obvious consequences for the Arctic ecosystem an ice-free ocean would lead
to heavy changes in global or at least hemispherical circulation, in particular, the North
Atlantic circulation changes that basically determines European and North American
weather. The changes are already observed today.
Another example for tipping elements already in the tipping process is the melting of
the Greenland ice sheet. Complete melting would cause a sea level rise of seven meters.
But this is also an example of the problem of assigning probabilities. Assessments of
the timescale of the melting, given a global warming of 2◦C, stretch from few decades to
a millennium. The probability problem increases with the uncertainty in the identifica-
tion of tipping processes and serves as an example of imprecise probability assessment
(Kriegler et al. (2009)) in section 6.
Even if several identified tipping elements are highly uncertain in terms of their tipping
potential and impacts, their existence and the fact that some have begun to tip are
indicators of the singularity of anthropogenic climate change. Whether this is truly ir-
reversible cannot determined yet but it is possible. Scientists such as the nobel laureate
Paul Crutzen (2002) proclaimed the beginning of a new aeon: the Anthropocene. That
we have indeed pushed the climate into an unprecedented state is beyond dispute.
If this change is irreversible it would have the incalculable consequences discussed in
section 2.2. A new climate will not necessarily be fit for human life.
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The described singularity of current climate development shows that climate modelling
is affected by a special aspect of the well discussed problem of induction. A problem
of climate modelling is not the confirmation of theoretical assumptions with observed
findings; even less inductive theory building. Especially the latter is almost irrelevant
for climate modelling in particular as observations are much too fragmentary. Also the
problems of confirmation in climate modelling are different from that as discussed in
classical inductivism. Chapter 4 is dedicated to the validation of findings from climate
models.
The aspect of classical inductivism which is indeed a problem in climate science is un-
derdetermination. The findings of climate science are underdetermined in every sense of
the term. The problem is less that inductive inference is by definition underdetermined
by evidence and rules of deduction as Lipton (1998) for example describes, but there is
almost an absence of inductive inference. Paleo data is rare and laden with theory as
explained previously and even nowadays observations are sketchy, but for almost every
question of research concerned with anthropogenic climate change answers must be given
without observed data. That is where climate models become of importance.
In section 2.2 the facts of global warming are presented. We do know with very high
certainty that our fossil fuel consumption and CO2 emissions lead to global temperature
increase, but the impacts of these facts are uncertain with few exceptions. That is, cli-
mate science is forced to simulate a climate with an extremely high and extremely fast
green house gas forcing in order to make realistic climate projections. Paleo data is only
available for climates that existed in the past. Thus it is not possible to validate climate
modelling results with observed data. There is paleo data for example of a melting of
the western Antarctic ice sheet which caused a sea level rise of 3.5 meters but it took
1000 to 7000 years. However, past temperature increases of 5◦C took around 5000 years,
triggered by changes in the earth’s orbit for example. If society does not act in emission
reduction we may witness such an increase in 100 years. In a nonlinear system cannot
be expected that impacts of changes in forcing are independent of the timescale of the
forcing. Validation of future climate projections must therefore be supported without
the help of comparable past climate changes, as there are none.

Even if anthropogenic climate change contributes to the problems of climate research it
is also the reason for society’s urgent need to get climate predictions. Politics and soci-
ety demand concrete predictions of climate change impacts. On the other hand climate
research would need a good idea of the future development of global emissions, at least
to be able to make realistic projections.
Society demands predictions but climate science delivers uncertain projections. To grasp
this dilemma the term ’prediction’ needs some refinement.

3.8.1. Prediction in climate science

A prediction in every day language is nothing more then a statement that a certain
event will occur in the future. In the etymology of the word it is nothing other than a
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forecast. In the context of mathematical probability theory a prediction is a very well
defined forecast of a future event insofar as a probability distribution of the event in
question can explicitly be given. In a sense this fact ends the prediction discussion for
climate modelling as true probability distributions are impossible to reach for future
climate states.
Eagle (2005) gives a definition for predicting processes:
“A prediction function ΨP,T (M, t) takes as input the current state M of a system de-
scribed by a theory T as discerned by a predictor P , and an elapsed time parameter,
and yields a temporally indexed probability distribution Prt over the space of possible
states of the system. A prediction is a specific use of some prediction function by some
predictor on some initial state and elapsed time, who then adopts Prt as his posterior
credence function.”
This definition represents in principle the prediction account of statistical mechanics. It
underlines that a prediction is, in contrast to common sense approaches, a clearly defined
forecast. Thus predictions by oracles are not predictions at all in this natural scientific
sense. Furthermore it shows that a prediction depends on several aspects, which are
the current state of the system M , knowledge about the system under consideration,
here denoted as theory T , and the predictor P , its relationship to the system and its
knowledge about it. Implicitly this definition also shows that the input state must be
so widely known that fixing of a posterior probability function is possible.
In other words the quality of the prediction depends crucially on the capacities of the pre-
dictor as the required theory is derived by the predictor and initial states are measured
by it. Therefore the prediction cannot be better than the observational capabilities of the
predictor and the theory it builds. The constraints of the prediction are thus those of the
predictor. Therefore predictions made in climatology suffer from the same limitations
as our understanding of the climate system. In addition to epistemic and computational
constraints our predictions are pragmatically constrained, which basically refers to the
insufficient theoretical assumptions we have about the earth system and technical limi-
tations of computing.
Within this context an important difference should be pointed out, the difference be-
tween qualitative and quantitative predictions. The latter is defined as depicted above
while the former is not that formally fixed. Quantitative predictions are what we are
longing for in climate physics. Even if it is at least a start to know that the climate will
change considerably in the near future, such a qualitative prediction is not fit to base
detailed decisions upon.
Quantitative predictions of density functions for future climate variables are impossible
to give with current scientific knowledge. However, fortunately, there are at least two
sorts of forecast that lie in between qualitative and quantitative predictions. That is
a trend or directional forecast which does not predict a density function for the future
evolution of a variable but forecasts if its magnitude will increase or decrease. We are
talking for very good reasons about global warming thus at least a trend forecast for
global mean temperature is possible.
The second kind of prediction in this context is not a mixture of qualitative and quanti-
tative predicting but can be either the one or the other. This is a conditional forecast. A
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conditional forecast is a prediction that something in the future will happen if a certain
condition applies.
Every statement of the future made with the help of climate models is if anything a con-
ditional prediction, where the conditions are that the assumptions made to initialise the
model apply. That is, according to Eagle (2005), a model prediction always entails the
presupposition of conditions, thus the assumption of a theory. The prediction includes
the second prediction that this theory which also includes background knowledge holds
in the future and leads to the conditions constraining the variable’s forecast.
Whether conditional forecasts reveal something about reality depends heavily on the
accompanying condition; they need not tell anything of the world at all.
In contrast to climatology, predictions considered by philosophers are not only quanti-
tative ones. In the context of theory testing, time independent qualitative predictions,
which are called ontological predictions (Betz (2006)), play an important role. An ex-
ample is the theoretically predicted existence of the planet Neptune as discussed above.
Such predictions are what Popper (1959) had in mind when highlighting their impor-
tance for theory falsification. In Popper’s opinion theory testing will be most successful
if the prediction is bold because a false prediction also allows us to learn a lot about the
theory under consideration, whereas bold in this context is a prediction that would put
the theory as a whole into question if it should proof false.
The fact that climate models, especially GCMs, are basically constructed to make ratio-
nal predictions, predictions to base decisions on, forbids such a theory testing practice.
It is not impossible to use models to forecast events hitherto unexplored. On the con-
trary, many models, in particular less complex ones, predict abrupt changes in climate
processes. For example, a transition of the the Indian monsoon cycle as found in a min-
imal conceptual model by Levermann et al. (2009) in which they showed that two stable
climate states in India exist, with one being unable to provide the monsoon rainfall
necessary for Indian agriculture and the threshold between both not far from the actual
climate. The disruption of the thermohaline circulation (Rahmstorf (1994)) with its
enormous consequences for life in Europe is another example of sudden climate change
and is thus bold in a Popperian sense. But such predictions of abrupt climatological
changes differ in an important way from the ontological predictions Popper referred to
since they are not time independent and depend on the very strong assumptions and
simplifications such models necessarily make. Thus they are useless for testing the cli-
mate models and when the model is proved correct concerning the predicted event it is
too late, in an extensive sense.
A more basic argument against the possibility of ontological prediction based theory
testing is the absence of theory in climate modelling science. The inconsistency and
incompleteness of the theoretical assumptions the models are based upon make it im-
possible to infer time independent ontological predictions. Thus for testing climate
models their predictions are of no significant use.

The success of a prediction depends very much on the circumstances in which the predic-
tion was made and on the type of prediction. Therefore the process of predicting depends
also on these circumstances and in particular on the reason for prediction making. Our
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reasons for making predictions should determine their type and outcome decisively.
Salmon (1998) shows three different reasons for making predictions. The first one is just
curiosity about the future without wanting to wait for it. The second one is the testing
of theories. The third one is the necessity of acting in a situation depending on the near
future: an example of this type of decision making is wagering. In classical physics the
reason for predicting is mostly a mixture of the first and the second, scientific curios-
ity and testing of theories. In today’s climate physics we are also confronted with the
necessity of decision making which takes into consideration prospective global warming.
Thus the necessity to act is clearly given, the question of how to act depends on the
outcomes of predictions. As the ability of making quantitative predictions is very low in
climate physics the need to make decisions which nevertheless exists, governs important
parts of climatological research. In particular the research field of integrated assessment
models the climate according to different natural scientific and economic developments
to provide grounding for political actions (see below). The task is to combine the quan-
titatively unpredictable future developments of the climate and the world wide economy
to give instructions for how to act in the near future to secure a future environment
worth living in for humans and as many other species as possible. Methods to cope with
this intractable task are manifold. Even wagering becomes important in that context.

Considering these different reasons it becomes apparent that not only the outcomes of
predictions are dependent on the reasons of their genesis but the whole process of pre-
dicting differs according to our reasons for predicting. Karl Popper suggested, e.g. in
Popper (1959) as mentioned above, that it is best to falsify and thus test theories by
making bold predictions. Therefore predictions to test theories will probably be such
that they concern fields other theories cannot talk about or predict behaviour contrary
to observation. If predictions are made instead to base decisions upon this method
becomes difficult as the future development depends on human actions and decisions,
which are in principle unpredictable.
Chalmers (1973) also identified a principal problem of Popper’s method of making bold
predictions in the context of theory testing. If we are busy making bold predictions and
disregard the testing of cautious predictions we are running the risk of taking too much
for granted. But if we test a very cautious statement evolving from a theory which was
regarded as unproblematically true and the test falsified it, we really learned much more
from the falsification as some wild guess. Chalmers also realised that the confirmation of
a bold prediction is always accompanied by the falsification of cautious statements. This
is due to the definition of the term bold. A bold prediction is one that is contradictory
to accepted knowledge, the background knowledge, which naturally collapses if a bold
prediction is confirmed by observation.
Interpreting bold predictions in such a way it becomes apparent that such a method is
of no significant use for climate physics. Besides, the theoretical framework of climate
physics is not sufficient to lead to meaningful bold predictions even if they were desired.
There is not that much background knowledge to contradict. If there was the theoretical
possibility and the will to do so the modelling know-how would be the limiting factor in
such a task.
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Bold predictions are of course not the only means of testing theories. Salmon’s reasons
second and third reasons for making predictions are therefore not as contradictory as
they may seem given Popper’s testing method.

If predicting the climate in order to make decisions leading to actions, the prediction
and thus the modelling setup is arranged to represent a climate leading to possible in-
terventions. That is, scenarios are modelled trying to represent possible worlds in a very
narrow sense. The climate models used to produce grounding for economic and political
decision making are integrated assessment models, which consist of climate as well as
economic components. In particular they represent CO2 emission forcing using different
mixtures of energy sources. The technologies included in these scenarios are those we
can now think of as available immediately or very soon (e.g. Meinshausen et al. (2009)).
This normally includes regenerative energies, fossil energies and nuclear energies but ex-
cludes technological hopes such as nuclear fusion. Most scenarios of this type available
today include carbon capturing and storage (CCS) as well, a technology not yet avail-
able. If it turns out that CCS is not ready for commercial use within the next decades
the very basis of many recent political decisions will prove much too optimistic if no
replacement of CCS shapes up alternatively.
Emission forcing of climate scenarios depending on energy use are extrapolated from
current usage for worst case scenarios and from ambitious political proposals for best
cases. In short, the scenarios are based on the current state of climate, economy, and
politics as they should be the basis for political decisions today.
Predictions, to have the possibility of being successful, are made not to base an urgent
far-ranging decision upon but are grounded on current knowledge, although not on to-
day’s possibilities of acting. Thus the range of outcomes of prediction scenarios is wider
as the input frame is not that limited.

Predictions of the latter kind could be those that test theories. That is, to be able to
speak of climatology, to test slightly different theoretical assumptions or to model pro-
cesses not yet modelled at all.
Generally predictions made in order to corroborate or falsify certain theoretical aspects
are set up with special respect to the process in question. A biasing towards that part
of the system will be hard to omit.
Nevertheless, that kind of prediction is important for scientific progress, at least if many
different theories are tested in a branch of science. Thus there is a variety of possible
worlds generated that may answer pressing ’what if?’ questions in that field.

In climate modelling sciences the making of predictions in order to test certain technolog-
ical assumptions generates very different climate scenarios, even if the term ’prediction’
in such cases is even less applicable than in climatology in general. To model a climate,
including a new theoretical conception of how a certain process’ physics could look, the
model at hand is tuned to show the process while the new physics is included in the
mathematical part of the model. This is a testing of this physics insofar as the tuning
process can appear impossible or the model output reveal a world so very different to
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the real world that the modelling setup is abandoned. But the tendency to show what
was hoped for is clearly given due to the tuning process. Other physical mechanisms
playing some role in context of the newly designed process in particular are very likely
to be underestimated in such a testing approach.
Such predictions are bold in the sense of being partly in contrast to background knowl-
edge but as their failure is relatively unlikely they do not serve as a crucial test for
theoretical input or even the model itself.

The first reason for making predictions identified by Salmon (1998) is curiosity, which is
very likely the motivation for predicting that least biases the outcome of the prediction
in some way or the other.
Not being willing to corroborate a certain theoretical assumption or needing to give
advice for a realistic action on the basis of the prediction allows for free choice of input.
The guide for setting the prediction up could then be trying to answer the questions of
what is possible and realistic as input knowledge. That is, the current state of the system
is assumed as realistically as possible and the describing theory is chosen to account for
all available theoretical knowledge.
Contrary perhaps to the term ’curiosity’, chosen by Salmon, this motivation for pre-
diction does not arise from science at all, rather all analysis conducted to understand
scientific correlations whether involving predictions or not, are based on scientific cu-
riosity. Curiosity and the will to understand is what drives science. And, if exploring a
new branch of science curiosity is the first reason leading to predictions. Only if there
is already some understanding do other reasons become of importance and actually be-
come possible. But not so in climate science, as anthropogenic climate change forces us
to act now and base our action on predictions.

To summarise this section the following can be said.
It is not only inherent to climate predictions that they exist on very small scientific
or inductive grounding. However, the whole problem of induction becomes pressing in
the context of climate modelling given the fact that we are confronted with a singular
global event, climate change. That is, even ignoring the fact that inductive inference
is philosophically questionable there is hardly any data for inductive inference in the
context of climate change. Ice core data reveals (Lüthi et al. (2008)) that at least during
the last 800,000 years there has never been a CO2 concentration in the atmosphere as
high as what we have reached today. Thus predictions, or better projections, made with
climate models cannot be grounded on some prehistorically comparable event.
To make an assessment of future climate development it is necessary to have future cli-
mate forcing as model input. Thus model simulations of the future are based on scenarios
of this forcing, whereas the most important forcing in times of climate change are CO2

emissions. It is thus only possible to make projections of future climate development
dependent of the scenarios. The projections strongly depend on the emissions suggested
for the future, which in turn depend on political decisions and corporate actions. There-
fore the uncertainties of the different scenarios change with every global conference,
national election, or economic development. The uncertainty of future emissions enor-
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mously increases the underdetermination of climate change research in comparison to
climate science considered with understanding of the climate.
The underdetermination of our knowledge of possible climate development, given the
fact of 380 ppmv CO2 and more is singular, since there has never been an identical situ-
ation in the known history of the climate. This singularity is thus a singularly pressing
problem, for our models and human race.
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The previous part of this work was dedicated to the problems the external and internal
features of climate science research is confronted with. Not all of these problems are
straight forward to identify. It is especially difficult to find out how they influence the
results within a modelling process, thus a comprehensive evaluation of climate models is
also a rather challenging task. Additionally, not only the model itself as represented by
the model output but also the input assumptions must be tested, which presents us with
a dilemma as the only method to test the theoretical assumptions of climate science is
to model them. It is therefore impossible to truly trace errors back to their source in
either the theoretical assumptions or model implementation.
Climate models, as defined in section 2.3, are not fixed entities but distinct and complex
processes captured within the term of a climate modelling approach. Testing of such an
approach is therefore testing predictions, numerics, theoretical assumptions, technical
approaches, programming skills, parameterizations, emission scenarios, tuning abilities,
and much more. While public attention is almost exclusively focused on forecasting,
scrutinizing is similarly important for all other aspects of climate modelling. Moreover,
only carefully evaluated climate models could provide successful predictions as described
below (section 4.1.2). The core of the problem concerning predictions in climate physics
or climate modelling is that climate models are not possible to falsify. This is due to the
fact that the hard criteria which a climate model must fulfil in order to either stand or
fail a test is lacking, as is discussed in detail in chapter 5. Every prediction is further-
more strongly dependent on highly speculative scenarios for the future development of
the world’s society, including CO2 emission paths. In this sense Thomas Kuhn’s analysis
(see below) of scientific practice also holds true for climate science.
Thomas Kuhn is different to his predecessors. In contrast to them he realized that what
he called “normal science”1 is considered with puzzle solving on varying scales, and to
cite Hacking (1983), is not in the “confirmation, verification, falsification or conjecture-
and-refutation business at all”. For Kuhn (1996) all theories are imperfect and thus
show anomalies and phenomena that are not covered by the theory. Of this category
are the puzzles scientists are normally occupied with solving. Only in those cases where
the puzzles remain unsolvable within the active theory frame and anomalies pile up does
the discipline get into a crisis which will likely result in a scientific revolution. Instead
of the imprecise notion of theory frame, Kuhn uses the term paradigm which is open to
even more varying interpretations. Therefore a scientific revolution is identified with a

1For Kuhn Popper’s description of science is merely a description of scientific revolutions but not of
scientific every day work. He uses the term “normal science” to describe the latter in contrast to
scientific revolutions when one paradigm is replaced by an other. It is used here accordingly to
depict what scientists, especially natural scientists, do in their every day work.
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paradigm shift which can be interpreted as the rejection of theory. But this rejection is
not the result of a severe theory testing process, it occurs as a necessity when too many
pieces are missing for the puzzle to be solved. In Kuhn’s opinion every theory contains
integral parts that will lead to its own destruction. Thus a scientific revolution is nothing
special, rather it is something that will happen sooner or later in every theory frame.
Following this train of thought, the testing of theories becomes not only superfluous but
also senseless. Every theory will be obsolete sooner or later. Thus a theory is good if it
serves one’s current needs consistently. This can be interpreted for climate modelling:
the core for their own destruction lies in the models as it does in Kuhnian theories.
What is different is that we put in place these cores deliberately without knowing their
effect. Nevertheless, perhaps even especially so, they do need validation, evaluation,
corroboration, or whatever term proves to be adequate in terms of a thorough judgment
of climate models. However, as even theories are not confirmed through strict tests, a
binary type rejection or even the term false in the context of climate modelling is inap-
propriate. Instead a confirmation on partial agreement between observation and model
output or probabilistic methods are the aim of actual climate model testing.
The following chapter shows that the different model testing methods used nowadays are
so comprehensive that they show many features modern climate models do have that
cope quite well with some of the epistemic problems. But before this is possible the
next paragraphs show that actual testing in physics is relatively far from philosophical
interpretation. It is thus a refinement of to what is captured by the term testing.
In the context of testing, predictions play an important role. At the same time predic-
tions are fundamental in climate modelling but for a different purpose. To distinguish
these prediction approaches from each other and discuss their relevance in climate model
evaluations section 4.1.2 discusses criteria of prediction making.

4.1. Testing in natural science

This section will not consider philosophical ideas of how to test scientific findings. First
of all as this is the subject of epistemology during the 20th century it would be far too
much to discuss. But second, and most important, it would not shed any light on what
scientists do, as the philosophical research on theory testing is very much independent
of actual climate modelling practice.

Nevertheless, the two already mentioned influential philosophers Karl Popper and Thomas
Kuhn identified crucial aspects of everyday research, although Popper in a footnote
rather than in his actual work.
In reply to Popper and in opposition to him, Kuhn worked out that testing of theories
or even just parts of them is impossible. It is merely the scientist who is tested instead
of the theory. A theory cannot be tested independently of its whole scientific context.
Another very important problem Kuhn (1998) refers to in examination of Popper is the
fact that testing in order to falsify is something that normally does not happen regularly
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and purposefully in normal science. This of course need not imply that it would not be
better if it happened but at least reveals that scientific practice can obviously do rather
well without. Therefore Kuhn moves Popper’s demarcation line so far as to lie between
natural and other scientific undertakings. The latter is open to testing while the former
is a puzzle solving business. But in the context of Kuhn, testing is interpreted very
differently than in Popper’s definition of scientific practice.
Looking at laboratory practice, theoretical and model based every day work, Kuhn’s
analysis seems correct. It is not the case that scientists are testing broad hypotheses or
even theories. Every day work is concerned with very small problems in neat contexts,
rather than with theories. Scientists try to implement new ideas in some context or the
other. These ideas if thoroughly analysed can be regarded as part of a hypothesis, but
normally they are not analysed at all but are attempted to be realised. This idea focuses
on a small aspect of a theoretical or technical problem. The solution of this problem
is guided almost completely by practical questions and possibilities. According to this
practice the idea might be refuted as impossible to implement or even false within the
current context. In a manner of speaking the impossibility to implement small ideas
in the wider context may lead to a refutation of this context and thus can be called
testing of hypotheses. But these kinds of hypotheses are not strictly theoretically de-
rived assumptions that e.g. Ludwig (1974) termed hypotheses. The every day work is
indeed concerned with refuting and corroborating ideas but they normally touch only
very small bits and pieces of the context, as is exemplarily shown in section 2.3.2. Thus
in every day work theories as whole coherent stories are not tested at all. They are not
even considered as framing the daily puzzling.
This fact shows that a purposefully undefined term like paradigm, which Kuhn uses in
22 different interpretations according to Hacking (1983), is meaningful to display reality.
If asked a scientist can hardly name one theory frame of his work but several physical
theories and assumptions effective for his specific questions.

Very similar to Popper’s note in the preface of his “Logic of scientific Discovery” that
rational discussion is the method of science, Kuhn identifies this discussion as testing
but only in non-natural sciences. Similar to Popper’s claim, he claims that the critical
eyes of our peers is the only possibility to identify errors in theories and gain objectivity.
For Kuhn such a discussion exists only within philosophical and sociological contexts
and within the humanities but works in a comparable way. In the natural sciences he
does not see that inter subjective control but collective and competitive puzzle solving.
This is how Kuhn comes to claim that Popper’s demarcation criterion is a line between
natural and other sciences.
Both philosophers made an important point here: Popper with the identification of
rational discussion as the method of science and Kuhn in claiming puzzle solving as
scientific practice. However, Kuhn is incorrect in his analysis that natural science is free
of intersubjective control, because not only does critical discussion exist within natural
science, but it is institutionalized in the peer reviewing practice of publishing scientific
papers.
In interpreting puzzle solving as the scientific method, Kuhn (1998) says that rules are
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needed according to which puzzles can be solved or regarded as solved. Only if such
rules are available within a field of research is scientific practice possible and is the very
field considered as science, although the rules are individual for each branch of science.

Looking at the interpretation of science of these two famous and influential philosophers,
more scrutinizing provides more ideas but no more consensus. Yet there are certain cru-
cial criteria marking scientific work, which are the critical discussion of scientific results,
a community of peers able to judge the results, the publication of methods and a precise
handling of data.
All of this exists in climate science. And given the fact of how important this branch
of science is for policy and society, most scientists are extremely careful in the interpre-
tation and publication of their findings. Additionally, the climate science community
is very heterogeneous as physicists, economists, mathematicians, sociologists and more
work together on one goal2. Thus the critical discussion takes place from different points
of view.
Nevertheless, Kuhn’s idea of individual rules for branches of science would be helpful
if given explicitly for climate modelling. The rules Kuhn that claims exist are hardly
explicit rules but there are specific implicit rules for several branches.
Whether such rules do explicitly or implicitly exist and what role they do play, could
play, and should play in climate science is the subject of the closing chapter of this work.

4.1.1. Climate models as experiments

In chapter 2.3 a climate model is defined in terms of a modelling approach. But it is also
explained that climate models belong to the category of experiment. They especially
belong there as they are similarly used to test assumptions. Their epistemic status in-
cludes the fact that climate models are not a one-to-one replacement of experiments in
classical physics. Crucial experiments are impossible to perform, because a consistent
chain of causes and effects is lacking. That is especially important on the input side
of the model which is not governed by a consistent theory or hypothesis, but depends
crucially on parameterizations and simplifications. A model experiment as a computer
experiment is often called an in silico experiment (Gramelsberger (2010)) which implies
a close relationship to an in vivo experiment which also lacks some criteria of scientific
experimenting. In computer experiments the modelling replaces the mathematical mod-
elling of an experimental setup, whereas the simulation is the experimental phase. The
implied analogy to in vivo experiments is misleading. For three main reasons model
experiments are not experiments in a traditional sense and also not analogous to them.
Firstly, the models contain parameters whose values are highly uncertain or not con-
strained by real world phenomena at all. Secondly, models are imperfect representations
of the underlying system and thirdly observational data measured in the real system used

2One goal is certainly not entirely true as will be discussed in part IV, but understanding the system
is the central aim to achieve others.
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to initialize and tune the models are imperfectly measured. Furthermore, the nonlinear-
ity of the model needs to be underlined as it prohibits in most models the identification
of a closed chain of cause and effect. But it is this cause and effect structure we capital-
ize on in traditional experimenting. Accordingly models cannot be used in analogy to
physics experiments which test theoretical assumptions. If anything a model experiment
can be compared to a statistical test which is discussed in section 6.2.
Besides the discussed shortcomings in climate modelling which prevent it being com-
pared to an experiment, the spectrum of climate models presents another dilemma.
Simple models show approximate causality but no resemblance to the world. Thus they
can be used to test the consistency of theoretical ideas but not whether such hypotheses
describe any aspect of reality. Complex models instead are inconsistent. Highly com-
plex climate models like GCMs are used in a more classical method of theory testing
via implementation of new ’spheres’, like stratospheric chemistry. Such a new sphere
comes as a new component of the model and is a model in itself. Coupling it to a GCM
is a kind of experimental theory testing insofar as the new part is added to an already
evaluated climate model. But using complex models as experimental setups the charge
of underdetermination holds even more than in traditional natural science. Thus, if a
newly developed coupled GCM fails to represent expected behaviour this failure could
be for a million reasons, and due to nonlinearity and complexity the reason cannot be
identified. Furthermore, such new components are developed with the aim of better
representing natural processes than older representations of the system component in
question. If and when such a component is implemented it is expected to be better than
its predecessor. Thus, also typical of underdetermination argumentation, other expla-
nations of unphysical model behaviour are exploited instead of questioning the newly
assumed theory.
To merge the findings from above models are essential for theory development and the
development of understanding theory, but not for theory testing. This underlines the
special status of climate science as there are several widely accepted theoretical assump-
tions but there is very poor knowledge of what this implies for the system they describe.
Climate models are crucial in enlarging this knowledge but not particularly in testing
it, which is also not their aim. Larry Laudans famously claimed that “accepting and
rejecting theories is a rather minor part of science” (in Hacking (1983)), which is all the
more true for climate physics.

4.1.2. Successful predictions

Whether a forecast is true or not will be seen when the predicted time is the present.
This is the ultimate reality check but if it were the only one, predictions could not be
meaningfully included in scientific work. However, the are. In the history of science
many predictions were made that were credible when they came into existence and be-
came true within the given error ranges. Thus there is a history of successful predictions
and most of them did not become true by mere chance.
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The identification of a successful prediction depends on the modality of the prediction in
question. Quantitative predictions bear other attributes than qualitative ones, although
all predictions have in common a fundamental dependency on the theoretical surround-
ings of their emergence. If the theory is weak the prediction can be everything. This is
comparable to the syllogism ex falso quodlibet. In contrast to this, predictions made in
the context of and that are consistent with a strong theory bear a high probability of
being successful. Most easily this is to be seen concerning ontological predictions. The
French mathematician Le Verrier calculated the position and magnitude of an eighth
planet from a disruption of Uranus’ orbit. Only taking the existence of Neptune into
account could the orbit be calculated exactly on the basis of Newton’s established the-
ory of mechanics (example from Hacking (1983)). The theory used to calculate Uranus’
orbit and predict Neptune’s existence was highly elaborated which made it possible to
calculate the orbits with high precision. Hence the prediction of the planet was a very
precise prediction. The success of a prediction depends on such precision since only
precise predictions contain information. This last point is an ultimate criterion for all
predictions. A prediction must entail new information to be successful. However, this is
of course not a sufficient condition as false information is new as well.
The demand for precision applies in particular to quantitative predictions whereas qual-
itative predictions contain information by definition. Neptune’s existence was, for ex-
ample, predicted with it’s precise orbit and mass, but qualitatively also the prediction
of the existence of a thus far unknown planet is informative.
A prediction is to be accepted as credible if it is consistent with its theoretic background
and with the data it was derived with. This implies that the data used for the pre-
diction is also reliable. Whether we trust the theoretical background or not will then
finally determines our judgment of the prediction at hand. This is especially true in the
case of qualitative predictions. If all this is given, we strongly believe in the theoretical
background, we have good data to base the prediction upon, and it fits consistently into
this background, it is possible that a qualitative prediction is so reliable that we can call
it successful even before being able to make the reality check. Such a belief is applied
to consistent theories with closed and solvable mathematical theories that have stood
the test of different testing methods. The scientific community believes in quantum
mechanics but also in Newton’s mechanics even if this is definitely not true, because it
describes our perception of reality.
The best example of a successful qualitative prediction in the context of climate sci-
ence is global warming. As described in detail in chapter 2.2 the predicted increase of
global mean temperature rests upon the very basic principles of physics which are not
reasonably questionable given the available knowledge. Therefore global warming is to
be taken as a successful prediction even if up until now empirical evidence for its truth
is small.
The case is completely different if it comes to quantifying global warming. To make
meaningful quantitative predictions a certain level of precision is needed as not to state
hardly more than that the variable will have any value, which is not a prediction but a
trivial statement and therefore not successful either.
This implies that the success of a prediction depends not only on the quality of under-
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lying theories and its precision but on the predicted subject as well as on the reason for
making a prediction. If our knowledge of a certain topic is already high, only narrow
ranges of values can be taken as new information and thus successful predictions. On
the other hand, there are branches of science and especially fields and subsystems of
climate science where the credible prediction of the order of magnitude of the value of a
certain variable will have is a great success. To apply an informative degree of precision
to climate predictions is thus a great goal of today’s climate modelling approaches, yet
a difficult balancing act. To accommodate the demand of new information predictions
of climate variables with confidence intervals or even probability density functions are
attempted, but at the same time the level of precision must be low to allow for the
fundamental and model uncertainties of climate modelling. In chapter 6 the assignment
of probabilities in climate modelling is discussed in detail.
Given the last paragraphs successful prediction making seems to be a very hard task
for climate system modelling as they can neither emerge from a strong theoretical back-
ground nor be given with precision. To nevertheless make meaningful predictions of the
future the prediction of past events has become established as a very fruitful method of
validating climate models. The hope of this so-called hindcasting is that climate models
able to represent past events contain correct theoretical assumptions which are therefore
applicable to predictions of the future. This concept of hindcasting is the most successful
tool of climate model testing and is further discussed in section 5.1.2, but an important
problem using successful hindcasting to forecast is mentioned here: there are only three
major climatic periods that we do have data for. There is considerably good data for the
last glacial maximum and for the post-industrial period, i.e. the present, furthermore
there is data for the Eemian, which was a comparable stable interglacial period starting
130,000 years ago. To truly test the climate model using data from these periods the
modeller must “forget” that they have this data and the information it contains in order
to avoid building the model in such a way that it will show the events portrayed by
the data. Otherwise the model needs tuning, which in turn needs data and as complex
models are unable to simulate several thousands of years tuning data and validation
data necessarily comes from the same period, which increases the difficulty of actively
forgetting about the data.3
Predictions of future climate development are thus biased towards a climate and show
perhaps more stable future climate as would be correct since the available data is of
stable climate periods.

To summarise, it can be said that predictions of climate change impacts are normally
extremely uncertain and hence imprecise and are built on uncertain data thus the cri-
teria for successful prediction cannot be met, whereas the forecasted global warming
fulfils every criterion for a successful prediction. But the fact that most impacts of this
warming are not exactly predictable does not mean that they are not true. It implies
that we have to live with high levels of uncertainty which makes climate projections

3This problem strongly relates to the philosophical discussion of new data as depicted in the introduc-
tion. In this context it will be discussed in part IV
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even more disturbing as we will never know in advance how bad it might get. To bet
on the low probability of harmless impacts would be an act of high levity which greatly
violates the precautionary principle.
Furthermore, the successful prediction of global warming can be used to corroborate cli-
mate modelling results insofar as climate model outcomes showing a global temperature
increase represent a future reality and are thus preferable to those which lack this ability.
It is even a better criterion than hindcasting ability since a model correctly representing
past climates need not be comparably good for the future. The ability to simulate global
warming is only a negative criterion to falsify climate models, but the next section shows
that it is one of very few, or maybe the only, hard criterion in climate model testing.
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The first vindication of climate modelling practice from the community itself is mostly
the argument that models are ’the best we have’ to answer scientific and societal ques-
tions; especially if confronted with deficiencies of modelling approaches. From an epis-
temic point of view this is no vindication at all, which is true for a natural scientific
view as well. But even if it is the case that the actual spectrum of climate models and
their handling is the best practice available there is no need to be so defensive, despite
the manifold problems discussed in part II.
Within scientific practice a lot of work and thought is put into validation and vindi-
cation of the models in use. There are several different methods to evaluate modelling
approaches and their performance. This chapter will show the range of actually applied
testing methods whereas the next part is dedicated to hint at methods of modelling and
model testing to improve modelling practice not comprehensively applied yet.

5.1. Model testing

The forth IPCC assessment report starts its eighth chapter on model evaluation (Randall
et al. (2007)) with the “confession” that only certain predictions can be demonstrated to
be right or wrong but the models themselves must always be regarded critically. That
means that we can gain at the most some confidence in a model but never any certainty
in advance whether the results from model simulations reflect reality. In short, model
testing seems to be impossible. Whether this interpretation proves to be the only pos-
sible one will be evaluated in the following paragraphs.
What is certainly true is the impossibility of verification or validation of a model. This
is due to the fact that model results are never unique and natural systems never closed
(Oreskes et al. (1994)). The former is a result of the underdetermination of models by
available data while the latter is quite obvious as only pure logical systems can be veri-
fied. This and the facts that models are normally too complex to grasp in every detail
and contain nonlinearities not open to human analysis make only partial confirmation
possible. But even such a corroboration is not to be gained easily.

5.1.1. Testing in general

The straightforward way to get confidence in a climate model is to successfully simulate
present and past climate states using the model in question, which is introduced above
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as hindcasting. The most common way of doing this is through modelling time series
comparable to observed data, reanalysis data, and paleo data.
A widespread method of hindcasting is to perform the same preprocessing with reanal-
ysis data as well as model output. An example is the calculation of climatologically
important fluxes out of state variables. Even more basic is statistical analysis of the
state variables directly. Time series of model output are compared to time series of
reanalysis data using statistical tools. Statistical methods are for example the principle
component analysis and computation of empirical orthogonal functions. This is just one
of several statistical methods but as it is very commonly used the method is described
here to illustrate the general principle.
The principal component analysis (PCA) allows us to structure, simplify, and visualize
huge data sets. A number of statistical variables, e.g. state variables of climate model
output, are approximated by a much smaller number of hopefully significant linear com-
binations (the principal components). Possibly correlated variables are thus transformed
into uncorrelated ones. The calculation of empirical orthogonal functions (EOF) is math-
ematically comparable but instead of PC analysis the computation of EOFs allows not
only time series in the data to be found but also spatial patterns. Therefore performing
of PCA and EOF is not only of statistical value but allows for the detection of typical
climatological patterns in model data. Such patterns are for example large atmospheric
circulation regimes such as the north Atlantic oscillation (NAO), which is basically the
interaction of Azorean high, Iceland, and Aleuten low, or the El Niño/ Southern Oscil-
lation (ENSO) phenomenon.
Statistics like this may thus also help to judge the performance of the model without
direct comparison to reanalysis data. It is equally useful in inter and intra model com-
parison. Tests of this sort are to be made on the component level as well as on the whole
coupled model.
The comparison of time series and EOFs is possible even by looking at them. This seems
to be an easy method but there is no common quality criterion governing which degree
of agreement is good, in which variables and on which time scales. Therefore it is al-
ways open to interpretation whether the inability to represent some pattern or the other
counts as a model failure. There will always be scales and variables that disagree and
there will also be agreement for the wrong reasons, namely the appearance of a certain
pattern due to parameterisation only. Such a simulated phenomenon is independent of
the model’s physics and thus carries no information concerning the ability of the model
to well represent such patterns in climate projections. This problem is quite common in
comparison with 20th century observations as especially GCMs are constantly fitted to
represent this very data and are too complex to trace the source of patterns.

In sophisticated evaluation processes the dynamics of the model data comparison is
used in addition to component analysis to analyse statistical errors. These errors are
calculated from different model variables and the matching observed variables and are
compared afterwards. This is basically done by calculation and comparison of absolute
error measures. The thus computed mean absolute error (MAE) is the error of the
model and not of a single simulation by summing up a sequence of errors ei from the
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comparison of single hindcast simulations for the predicted variable and measured data
for that variable.

MAE :=
1

n

∑
|ei|

But this error takes only the bias into account not the variance, thus every error counts
the same independently of its magnitude. To measure errors according to their weight
the mean square error (MSE) can be calculated.

MSE :=
1

n

∑
(ei)

2

The MSE can be seen as the variance plus the squared bias. As this is not of the same
magnitude as the underlying variable the generally computed statistical error measure
is the root of MSE the RMSE:

RMSE :=

√∑
(ei)2

n
.

Computing the RMSE larger errors have stronger weight than small ones thus the RMSE
seems to be an appropriate measure in the context of model data comparison. Math-
ematically the MSE and RMSE are the first two moments of the distribution of the
variable if the distribution can be approximated as Gaussian, which is often done, it is
sufficient to compute only the mean and its variance.

Besides these very simple and common but nevertheless most important statistical meth-
ods there are several approaches of model evaluation using standardized tests of nu-
merical methods within the model. Finding such testing methods and making them
comparable is undertaken for example in regular workshops. The huge amount of data
necessary to develop and conduct such tests is based on an enormous number of case
studies concentrating on parts of the system (e.g. Randall (2000)).

An example of an alternative measure that does not compare two states as the common
error measures is the metric relative entropy proposed by Shukla et al. (2006). This
entropy is a distance function between two distributions and is found to be smaller if
the model better represents present climate patterns and phenomena. Therefore Shukla
et al. (2006) suggest relative entropy as a metric to measure the reliability of climate
projections and applied it exemplarily to climate sensitivity projections. Since they
found that those projections with the highest values of climate sensitivity reveal the
smallest values of relative entropy they concluded that the actual climate sensitivity is
to be expected to lie near the upper boundary of the state of the art value from 3±1◦C.
There are comparable ideas of better metrics than those normally applied but as all
of them, including those of Shukla et al. (2006), are supposed to require more time
and effort and are not proved to be really superior to standard methods, they are not
comprehensively applied.
An exception is perhaps, as the near future will prove, a recently successfully applied
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metric to test and improve climate modelling using so-called transfer functions, a term
the authors took from control engineering literature. MacMynowski and Tziperman
(2010) show that this method improves GCM simulation of the ENSO cycle which is
unsatisfyingly represented in state of the art GCMs. The transfer functions are found
by dividing the ENSO model into simpler models, representing only some of the possible
drivers of the ENSO cycle, with separate input and output whereas the latter can be
traced back to dynamical processes in the simple model. The GCM is then retuned to
simulate not only observations but also the transfer functions which could omit the right
results for the wrong reasons in the GCM.

Conclusion for general model testing methods No matter how simple or elaborate
the mathematical methods and pattern detections are, they do not provide independent
criteria indicating which testing results count as passing the test and which as failing.
The latest IPCC report’s chapter on model evaluation addresses this problem of the
lacking criteria. The testing of model performance against observed data is only mean-
ingfully possible if practical adjustments are chosen in equal measure. The length of the
times series as well as the influence of forcing are mainly chosen due to the researcher’s
needs. That is, there are mathematical testing methods for model performance but their
results depend very much on the testing conditions and on the researcher’s personnel
demands. As the methods do not provide independent criteria there is no standard as
to the maximum of acceptable errors or minimal agreements between simulation and
observation.
A judgment about whether a simulation is to be accepted or not on the basis of com-
monly shared rules would be desirable but not comprehensively possible as becomes
clear in the discussion in the following chapters. An exception is the very weak rule that
climate models projecting the near future are to represent a global temperature increase
independent of the emission scenario to account for the inertia of the climate system
in response to the emissions already sent into the atmosphere. Yet there are scenarios
conceivable that must not fulfil this criterion, namely the simulation of a climate that is
engineered to have less radiative forcing than today’s natural conditions provide.

To nevertheless have some kind of common ground for model testing Randall et al. (2007)
argues for negative criteria instead of positive. That is, according to the IPCC there are
at least three common rules to identify differences between simulation and observation
which do not denote bad model performance. Climate models are not recommended to
reveal the following features in order to pass the test. These points are:

1. unpredictable internal variability,

2. expected differences in forcing,

3. uncertainties in the observed fields.

A model may be considered as performing well even if there is no commonness in pat-
terns concerning these fields and errors are huge.
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The first item refers to untypical events in observational data as the accumulation of
extreme events. The second point says that a model run from 1850 is obviously not going
to represent climate data from 1990 under CO2 forcing. Whether such a comparison is
meaningful at all is a different question. The last item is self-explanatory: if there are
uncertainties in data measurement it cannot be represented accordingly.
However, if the model is not expected to cover the climate states above climate models
also fail to reproduce past observations in detail (Stainforth et al. (2007)). Here detail
means to reproduce observed data within the observational uncertainties. As climate
models do not include many processes known to be important, this disability is not a
big surprise. But it leaves the decision to accept or disregard a model simulation to the
researcher alone.
Taking these facts into account we have to come back to the conclusion drawn from the
comparison of Popper’s and Kuhn’s analysis of scientific testing (see section 4). If there
is one method applicable it is the critical discussion in peer communities. So far it seems
to be necessary to find criteria for good model performance for single cases in presenting
the results of mathematical model testing to a review by peers, which is more or less
actual practice.

5.1.2. Paleo data

While the forcing is well known for the present day climate it is very uncertain for paleo
climates. Thus testing model performance against reconstructed paleo climate data has
greater limitations, yet to corroborate scenarios with fundamental climate changes a
paleo climate data comparison is the only possible data comparison.
Paleo climatic data has the great advantage of showing climate states generated under
different external forcings, such as a different angle of the earth’s rotation axis. The
external forcing factors of climate models can be tested in comparison. If they reveal
the ’right’ influence on the simulated climate system the paleo climate should be repro-
ducible. But due to the different system conditions results of such data comparison are
not fit to corroborate a model if the model and proxy data matches. Only the failure
of reproducing proxy data can give hints of modelling incapabilities. Mostly GCMs are
indeed able to qualitatively represent paleo climates but fail at quantitative representa-
tions. But inconsistencies in quantitative data reproduction is often not taken as failure
in the model but in the paleo data (Betz (2006) p75).
An additional problem of paleo data model data intercomparison is the time scale on
which historical climate changes occurred. This scale is normally longer as complex
models like GCMs can simulate with admissible computational cost in an acceptable
time. But the most important problem in using paleo data is its sparseness. The data
we have is gained from very few ice cores and tree rings from very few regions of the
world, thus time series from paleo data contain only sparse spatial information. As data
is also needed in the modelling and tuning process there is often no independently mea-
sured data left for comparison, which does not mean that scientists use the same datum
twice but rather that they have to split up the data set. The residual data set maybe
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very small and the question already asked in section 4.1.2 discusses whether this data is
really independent. Thus confidence in long-term behaviour of climate models can only
be gained through the internal consistency of the models and understanding of physical
processes.
As consistency in climate models is especially testable within small modelling approaches
on the less complex end of the model spectrum it is the more crucial for the model govern-
ing sets of equations. Modelling approaches do not result from coherent and complete
theories but of simplifications of equations of motion and thermodynamics. Whether
such simplified equations are consistent in themselves and when compared to accom-
panying conditions can best be checked by modelling them. If the resulting climate
variables bear any resemblance in magnitude and scale to climate observables, consis-
tency is given. Of course consistency checks like this are best conducted via models on
minor hierarchical levels. As consistency is a big advantage of conceptual models it is
also more important on that scale. For complex models consistency in the governing as-
sumptions cannot be checked via the model as the causes of unphysical model behaviour
cannot be identified thoroughly.
Thus at the lower end of the model hierarchy climate models are used to test theoretical
models and vice versa. This means that unexpected behaviour of the climate models
may lead to new theoretical models which, if consistent, may explain real world phe-
nomena and deliver a greater understanding of the climate system.

5.2. Model comparison

Apart from hindcasting with climate models, comparing models to present and paleo
data, comparing different modelling approaches is most important for model testing.
Comparing GCM model output with modelling results of an energy balance model is
exemplary for intermodel comparison. An intramodel comparison is given if only one
or a few parameters of a modelling approach are varied. But the border between both
approaches is not fixed. On the one hand both methods can be combined. And on the
other hand no criterion can be given as to how much model variation marks a different
modelling approach.
The main aim of model comparison studies is to understand differences in the mod-
elling approaches and to trace cause and effect chains. If such chains are identified and
demonstrated to hold true for repeated modelling approaches they become an important
criterion for the reliability of new climate models of the same level of the hierarchy.

Model comparison is normally not the comparison of two modelling approaches but of
model ensembles. Ensembles are large groups of parallel model simulations. The varying
results across the ensemble members give an estimate of the spreading of results. A very
common error of scientists is to take this spreading as the real uncertainty but it actually
represents the variability of the models. There is no such thing as the uncertainty of
a modelling approach, as the space of possibilities of variables is unknown. It is thus
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only possible to assess the uncertainty of certain aspects of climate modelling and some
variables.
Ensembles of models are used for studying the range of plausible climate responses
to a given forcing and can be generated either by collecting results from a range of
models from different modelling centres, so-called multi-model ensembles, or multiple
model versions within a particular model structure are generated. Variability result-
ing of multi-model ensembles refers to uncertainty in model internal climate variability
and modelling differences. An ensemble of several versions of the same modelling ap-
proach, a so-called perturbed physics ensemble, is generated by systematic variation of
internal model parameters within plausible ranges with the aim of estimating modelling
uncertainty. The uncertainty associated with model internal climate variability can be
analysed in particular if an ensemble is generated using the same model but under dif-
ferent initial conditions.
Comparison of large ensembles has only recently become possible as consumption of
computational power is high. Multi-model ensembles of computationally intensive mod-
elling approaches are still not possible for more then ten models at the most, which is
not enough for statistically relevant model testing.

5.2.1. Intramodel comparison

Apart from one-to-one model intercomparison within the spectrum of models the per-
turbed physics approach is a very commonly used method of model testing but as dis-
cussed below it is not a probabilistic method and thus not stochastic climate model
testing.
That is, different modelling approaches are not used within an ensemble but rather
slightly differing simulations of the same model and also model version. A perturbed
physics approach is an ensemble of one climate modelling approach with a range of
parameter values simulated. This multi-parameter ensemble allows for the detection of
good parameter values. The samples of parameters labeled as good are chosen according
to the physical consistency of the model and again in comparison to observed data. This
way it is possible to see which climate variables show the greatest uncertainty. Sampling
the whole range of physically possible parameters gives a comparable complete range of
possible values of state variables in the climate model and important climate variables
as climate sensitivity (see for example Schneider von Deimling et al. (2006)). That is,
in the first step parameters can be constrained to a physically meaningful range, while
in the second and most important step it is possible to show the range of uncertainty of
key climate variables, at least theoretically. In real life computational power and time
limits the actually sampled parameter ranges substantially.
A very famous approach to stating the parameter uncertainty in predictions of global
climate change was documented by Stainforth et al. (2005). It is so far the largest en-
semble of simulations of an individual modelling approach. The experiment allowing for
this huge ensemble is the ’climateprediction.net’. The model generating the ensemble is
a version of the Met Office Unified Model. It is a GCM based on the AGCM HadAM3
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developed at the Hadley Centre in the United Kingdom. With the help of many volun-
teers, allowing the model simulation to run on their private computers, it was possible to
obtain 2017 unique simulations, which is more than 100,000 model years up until 2005.
As the project still goes on there is data of 44,548,488 model years from seven different
ensembles available today. There are also other models included now but all based on
the Hadley Centre models HadAM3, HadSM3, and HadCM3.
Stainforth et al. (2005) show how very important large ensembles are to really check out
the range of model uncertainty taking climate sensitivity as an example. In the ensem-
bles with physically meaningful parameters the climate sensitivity ranges from 1.9◦C to
11◦C within the confidence interval between 5 and 95%. This is much broader than the
usually given range, e.g. from IPCC, of 1.5◦C to 4.5◦C. Even if the mean value in this
perturbed physics approach lies at 3.4◦C there is no physically valid reason for assigning
a higher uncertainty to a high value of climate sensitivity, at least within this ensemble
study. Knutti et al. (2006) suggested in a study of the influence of seasonal cycles in
this perturbed physics project that modelling approaches with high climate sensitivities
overestimate the amplitude of these annual cycles. Knutti et al. (2006) additionally
analysed the results of the perturbed physics ensembles comparison in sensitivity stud-
ies. Only the combination of both testing methods allows for a redirection of likelihood
towards the IPCC climate sensitivity of 3± 1◦C.
This example shows that one testing method alone is not sufficient for a meaningful
assessment of variable and parameter ranges. And it also illustrates that the term like-
lihood, used for want of a better, is misplaced. Perturbed physics ensembles cannot
provide objective probabilities for climate projections and even less for model parame-
ters. Whether subjective probabilities could result from such an approach is the topic
of chapter 6.
Even in this ensemble the parameter ranges are not so broad that all possible values for
all important parameters are included. On the contrary, a few parameters are perturbed
within a range the modeller thinks more or less likely. That is even if a comparably
small field of parameter uncertainty is checked within this approach the uncertainty it
reveals for climate projections is enormous.
This fact illustrates the dilemma climate science is confronted with. Ensemble runs suf-
ficiently large to test parameter uncertainty are impossible to carry out for large GCMs.
Thus the projections given with the models have unknown parameter uncertainties.
One way to make the dilemma less pressing is to test the parameter uncertainty with
respect to key variables as the climate sensitivity and to consider the resulting range
within future GCM approaches. Testing of these models will then include a broader
range of parameters. The next chapter will show that this is especially hard to consider
if using deterministic climate models, which is usually the case. This is not to speak of
the additional amount of time and power consumption.
The second way is to use less complex models within the ensembles to quantify param-
eter uncertainty and compare them to more complex models. The following section is
mainly dedicated to this topic.
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5.3. Model intercomparison

In model intercomparison studies different models and model versions of the same hi-
erarchical level are used as an ensemble to provide a range of simulations for an ex-
periment. A very famous way of getting really big ensembles is done in the project
climateprediction.net where single simulations of different model versions are sampled.
The boundary between intra and inter model comparison is not fixed here. But as the
aim of this study is not a perturbed physics ensemble but to collect a huge amount of
distributions of model futures it may count as an inter-model comparison project. The
resulting distributions are scattered around a mean value for each variable. But they
do not provide probability ranges of variables as ensemble means have no connection to
the real world as they are inter-dependent and all do suffer from systematic errors.
The range such model intercomparison ensembles provide is the lower boundary of the
maximum range of uncertainty (Stainforth et al. (2007)). Thus multi-model ensembles
do not provide a method of labelling models as superior or inferior as they are all em-
pirically inadequate. Such studies do not compare models to reality but provide insights
into model performance and are thus an important mean of understanding differences
in models. For example, models can be judged according to their representation of the
physical processes they are designed to represent, as model ensembles run with compa-
rable physics can reveal inconsistencies in their approach if simulated distributions are
inconsistent with respect to important variables. Right results for wrong reasons can
also be identified in such studies if models represent patterns they are not expected to
show given their physical basis.
Model intercomparison projects are especially suited for identification of systematic er-
rors in climate modelling approaches describing the range of uncertainty. Systematic
errors are basically differences in statistics of model variables compared to observations
of that variable, that is, e.g. a significantly higher or lower simulation of state variables
like surface temperature. Intermodel comparison allows for detection of systematic er-
rors in single modelling approaches as well as in all models. In single models the source
of the error may lie in the numerics, a special parameterization or representation of
dynamics or the inclusion of chemical details. Systematic errors detected in all mod-
els are of special importance as they are only detectable in multi-model ensembles and
hint to a lack of climatological understanding throughout the whole climate modelling
community. Such an error may occur due to an undetected but important dynamical
or chemical process, an overinterpretation of the influence of another, or a mistake in a
globally applied parameterization.
The definition of systematic errors shows that model intercomparison approaches are
also not independent of observational data. Model intercomparison projects can only
be seen as an additional step in sophisticated model evaluation. For those variables of
the model that relate directly to observable and observed data a model data comparison
should be undertaken thoroughly.
Comprehensive model intercomparison projects are suited for but not especially designed
to test a GCM modelling approach, but rather to make climate projections. Huge under-
takings of model intercomparison are made previous to the IPCC assessment reports to
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provide its scientific basis. The initiator of the most important intercomparison projects
is the World Climate Research Program’s Working Group on Numerical Experimen-
tation. It provided the first Atmospheric Model Intercomparison Project (AMIP;Gates
(1992)) in 1992 and are now undertaking the fifth phase of Coupled Model Intercompari-
son Project (CMIP;Meehl et al. (2000)) to deliver the facts for the fifth IPCC assessment
report to be released in 2013. The basis for the latest IPCC assessment report (AR4)
is CMIP phase three. Additionally there are other types of multi-model ensembles used
within the research for IPCC AR4 and, most notably, the Special Report on Emission
Scenarios (SRES; Nakicenovic and Swart (2000)) that provides the time evolution of the
climate system under different climate forcing scenarios.
In contrast to that the CMIP scenarios do not have a strict and realistic time evolution
in the model output. Thus they are used to study the types of climate change and the
range and differences of model response to an idealized CO2 increase of 1% per model
input year scenario and three forcing scenarios based on SRES simulations. The increase
of CO2 of 1% per year is one of the two experiments to measure a ’standard’ that should
quantify the reaction of a global GCM to other forcings. One of these measures is the
transient climate response (TCR) that is the global mean surface temperature change in
a 1% per year increase of CO2 until a doubling of preindustrial values is reached. The
other measure is equilibrium climate sensitivity(CS) which must by definition be cal-
culated with a doubling of CO2 equivalent forcing. Both measures are for temperature
response and can be computed within the same simulation approach where the TCR
gives the immediate temperature response of a CO2 doubling and CS the equilibrium
response.
Such ensembles aim at cancelling the individual model errors in adding up all simulations
to compute mean variables. It could be seen (Meehl et al. (2007)) that averages across
structurally different models do indeed represent observed means better than ensembles
of individual or identical models.
As the models are not weighted in any form a model intercomparison like this is not a
stochastic ensemble, therefore it is not possible to quantify the uncertainty of models
and variables within such an approach. For that kind of testing model intercomparison
approaches are invented using Bayesian learning strategies (see section 6.2) or perturbed
physics ensembles. Stochastic aggregation of model ensembles would be desirable but so
far the only method is expert elicitation which is questionable as the range of uncertainty
given by experts varies extremely (Zickfeld et al. (2007)) and experts able to provide
founded views on several models are rare.
Nevertheless multi-model ensembles allow for statistical analysis of the ensemble results
and thus decrease uncertainty. Smith (2002) invented a formalized test to quantify how
well a model is doing and thereby to underline the advantages of big statistical model
ensembles. He proposes calculating a temporal credibility ratio τcred that holds for a
variable in an ensemble of comparable simulations. The temporal credibility ratio is
defined as

τcred =
∆t

τave

; (5.1)
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whereas ∆t is the smallest time step in the model and τave the smallest duration over
which a variable has to be averaged before it compares favorably with observations. For
single climate models τave will normally be big and shortens with increasing number of
simulations. Computing the temporal credibility ratio permits an easy overview of on
which spacial and temporal time scales the model performance is good and which most
urgently need attention.
While the temporal credibility ratio can give information about the uncertainty of cer-
tain variables in a simulation grand ensembles using different models and model versions
can be used to learn about uncertainty of a distribution of the state of the system. The
seriousness of uncertainty of this kind can be gained via contrasting climate variable
distributions of various modelling setups. The more these distributions differ the bigger
the uncertainty. If they differ only in terms of detail larger ensembles can be used to
find out differences and thus get information for model improvement. If the difference is
so overwhelming that details are irrelevant, comparative data can be used to disqualify
modelling setups.
The temporal credibility ratio given by Smith (2002) is a very simple example of for-
malized inter model comparison. Actually applied formalisms are more complicated but
the idea is comparable.

A different mean to corroborate the results of model simulations is to compare output
from complex models with those of energy balance or other box models. If the pro-
jected distributions for selected variables are comparable they are more reliable for both
models but especially for GCM output as the right results for the wrong reasons seems
improbable if identical parameterisation is excluded. But such a comparison is of course
only possible for thermodynamic variables like temperature as there are no dynamics
represented in energy balance models. Thus it gives no hint at all of the dynamical
performance of the high resolution model.
Simple climate models play an increasingly important role in model intercomparison ap-
proaches. Whereas the model forcings taken from SRES are used equally in the idealized
approach, to find out types and ranges of climate change, the reliability of these forcing
scenarios can be tested within this different type of model intercomparison. Interhierar-
chical model intercomparison can be used to get information on the realisticness of the
scenario choice in the forcing, that is, by sampling a large amount of SRES scenarios
with simple models and EMICs.
The role simple models play in such an intercomparison is the simulation of interaction
of global variables. As this type of models consists of a set of large scale boxes only,
simulating the atmosphere, the oceans, hemispheres, or simple biochemical cycles they
do not need comparable computational power. Thus, initializing the model with ob-
served or AOGCM data and implementing the forcing they give the range of possible
development of the main variables, based only on the energy balance of the represented
system. Accordingly they are also used to apply output data of higher models to a wider
range of alternative forcings. Within such a comparison the influence of just the ener-
getic development of the AOGCM can also be depicted. Simple model and GCM should
take comparable paths in overlapping time periods with similar initializing and forcing.

93



5. Model Testing

If they strongly differ it hints to structural errors in the GCM modelling approach. An
example is perhaps Rahmstorf (2007), even if the comparison is a bit lopsided, he uses
a very simple modelling approach to compute sea level rise. In paleo data he found a
proportionality between global mean temperature and sea level with the proportionality
factor 3.4mm per year. With this simple linear approach he is able to predict the actual
sea level rise of the last few years much better then sophisticated GCMs are able to.
This is a clear indication that GCM dynamics lack some important processes and are
also unable to cover it by parameterisations. The simple model is not conceptual but
semi-empirical, thus it is not based on first principles1 which would make the evidence
even more compelling.

Another method of testing AOGCM modelling approaches with simpler models is done
via emulating the results of GCMs with simpler models or EMICs as for example done
by Meinshausen et al. (2008) with GCM results used for the IPCC AR4. Reproducing
the results of complex climate models using simple models is called emulation. The
simple models simulate the results by abandoning physical interpretability of it. If the
emulation models are unable to represent the AOGCM data for a wide range of scenarios
it is again a hint of modelling errors in the GCM approach.
The emulation of the trouble causing ECHO-G results (von Storch et al. (2004)), dis-
cussed in section 3.5, with the EMIC MAGICC, helped Osborn et al. (2006) to identify
the climate drift in the AOGCM simulations.

In contrast to simple models EMICs include the main processes as represented in AOGCMs
but on a larger scale, which makes quantification of uncertainties almost impossible using
EMICs (Meehl et al. (2007)). But EMICs are of enormous value concerning parameter-
izations, one of the main sources of uncertainty in climate modelling. Within modelling
approaches of intermediate complexity it is possible to sample the space of the param-
eter and thus to develop better parameterizations and sampling of the parameter space
makes true probabilistic model projections realisable. How this can be reasonably done
is the topic of the following chapter.
Furthermore EMICs can be used to investigate the large-scale effects of coupling earth
system components. As AOGCMs are the only climate models which include the emer-
gent internal variability of the climate system, interhierarchical comparison of models
allows for measuring the influence of that variability on global climate development.

1First principles is a term, commonly used in climate science, to refer to physical laws we believe to
be true, e.g. conservation of energy, and to result in parameter constraints, e.g. velocities which
are not negative. A model not based on such principles need not to violate them but they did not
govern the model development.
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6.1. Reasons for applying probability

The socially most important reason for modelling the climate system is not the under-
standing of the system in itself but to be able to make prognoses of its future develop-
ment. A perfect understanding of the system is impossible and so is forecasting future
impacts of global warming with certainty. The next thing to a certain prediction that
might be achievable would be a set of future scenarios with assigned probabilities of
occurrence. Thus probability plays an important role in public discussion of climate
science.
Predictions made with climate models, the published output of such models, seem to be
probabilistic but normally they are not. As results are often given as ranges they appear
to have confidence intervals. But this is normally not the case.
A probabilistic model projection is thus a prediction of state variables and their as-
sociated probability which is a statistical weighting of climate scenarios or ensemble
members. There are several methods to do this weighting of which some have proven
valuable for climate predictions and will be discussed in detail, while others entail disad-
vantages for a broad implementation and are thus only applicable in special modelling
setups.
But is it actually possible to talk meaningfully about probabilities in consideration of
climate modelling results, given the degree of uncertainty? At least for objective proba-
bilities in terms of relative frequencies the question is easy to answer. Relative frequencies
are only possible to measure if the range of possible values is known; independent of the
actual variable. Given the analysis of part II this is imperfectly known for observables
and unknown for most parameters. Therefore it is impossible to assign objective prob-
abilities to simulated climate development paths.

But this is not necessarily true for subjective probabilities. And the fact that objective
probabilities are not to be assigned to model output does not mean that it is meaning-
less or impossible to apply probability functions on model input. As statements about
the probabilities of possible climate change impacts are very important for society it is
especially important to be serious in their assessment.
To be able to judge probability statements the possibilities of their coming into existence
are reflected upon in the following: to finally answer the question how to take probability
statements in climate modelling contexts.
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Before discussing the different ways in which probabilities enter climate modelling some
terms important within this context must be fixed, especially the difference between
deterministic and stochastic models and their relevance in climate modelling.

6.1.1. Deterministic vs. stochastic modelling

A simple example for a linear deterministic system is:

f(x+ 1) = 2f(x) + 3.

From a system like this it is quite straight forward to build a deterministic model. For
example:

g(x+ 1) = ag(x) + b.

To use such a model to simulate the system and make predictions the parameters a and
b must be fixed. Furthermore initial conditions are to be prescribed to start modelling.
Configuring parameters a and b is possible via fitting on measured time series. Initial
conditions for prognoses come from currently measured data. Having done this success-
fully the system is understood and predictions can be made using the model. Whether
it was indeed a success can be tested on the basis of observational data which can falsify
the model output.

Normally systems we are confronted with in our physical environment are not simply
linear deterministic. There are basically two ways of making the system more compli-
cated: the system can be stochastic or nonlinear, or it can be both.
Nonlinear dependencies within a system make it harder to find parameters to build
models whereas stochastic behavior can only be modelled adequately by using stochas-
tic tools within the modelling approach.
A stochastic system could be for example:

f(x+ 1) = 2f(x) + 3 + ε(x);

with ε(x) being a random variable drawn from a distribution at every time step x. Thus
the time series produced by the system also depends on randomness. Now, the problem
for modelling purposes is that only one of many possible time series is realised in the
observations. To nevertheless simulate such a system one can build a model including a
noise term:

g(x+ 1) = ag(x) + b+ ε′(x).

A simple fitting is not possible due to the noise. That is, for every set of parameters (a, b)
many random realizations are to be calculated while counting the frequency of hitting
the actual time series. This leads to a probability distribution of the parameters which
in turn, with current data as the initial conditions of a prognosis, leads to a probabilistic
prediction.
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A deterministic system as described above is in the words of Laplace a system where the
epistemic features of some ideal predictor cohere perfectly with the ontological features
of that world (Eagle (2005)). In such a world it would be possible to predict with cer-
tainty the development of a physical system as it would be possible to know the current
state of that system and its dynamics exactly.
Our world and human epistemic abilities are not like that. We are unable to ascertain
the current state of a system. This is principally due to measuring inabilities as every
measurement changes the state and pragmatically due to the impossibility of measuring
with arbitrary precision. But it is also due to our limited knowledge about relevant
variables. At least this is true for micro states, on a quantum mechanical scale but
especially the latter is also a fact of macro states which is relevant for climate science.
For Eagle (2005) the latter facts untie the band of prediction and determinism in such
a way that the question of determinism becomes irrelevant in terms of predictability.
To put it in more simple words: whether the climate system is deterministic or not is
unimportant concerning climate predictions. At least it shows that we cannot find out
whether the world is strictly deterministic or not, which has the same consequence said
of strong determinism, we definitely do not need a perfectly deterministic world to be
able to make successful predictions.

But independent of the question of whether the world is deterministic or not we must
decide on a type of model that is preferable for climate prediction making.
If we consider complex systems instead we cannot predict the full trajectory of a sys-
tem but we can make predictions about chaotic systems using statistics and stochastical
tools. These predictions are not perfect but the better the system is analysed and under-
stood the closer we come to giving probability distributions. This is again independent
of the system being deterministic or truly stochastic.
In stochastic systems the knowledge of the initial state would not suffice to accurately
predict the system development even if it was perfectly understood, for deterministic
systems this was possible. But as understanding the system is impossible the question
of systems needs not to be answered.
Nevertheless, there are important differences in modelling this world deterministically or
with stochastic models. Especially concerning the quality of predictions there are hints
that stochastic elements in modelling approaches improve their behaviour. Both on the
input side and in postprocessing model output, stochastic process representations im-
prove process simulation. Stochastic methods, namely statistics, also do not need truly
stochastic models but can be applied to deterministic model output. The use of statisti-
cal methods would only be useless for predicting if confronted with perfect randomness
which is almost nowhere and never to be found. At the most, climate patterns and
regimes are overlaid with practically random noise, which can make life harder but is
not a fundamental limitation to predictions and does not shed light on the question of
whether the system is deterministic or not. In this context the difference between noise
and internal system and model variability respectively is important to highlight.
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Statistics as a method used to make predictions is also a method which depends on
measurement abilities. The usefulness of statistical analysis rests on the availability of
high quality data. Thus statistically produced predictions highlight again the crucial
role of measurement and how it separates determinism from predictability.
Our predictions cannot be any better than our measurements of the system variables
that are subject to prediction. In practice they are worse. As O’Connor (1957) puts it,
“our predictions can do no more than specify a class of possible events.” This is true
for any event being measurable in a metric system but even more so in systems with-
out metric. The precision of predictions depends on the language available to describe
the system within which the prediction is made. The less precise the description of a
system and therewith the measurement of variables the less precise the prediction can
be. Predictions about variables not able to be measured at present are if anything open
to prophecy but never to prediction. That is, there is always a whole class of possible
events that will correspond with the predicted event; given the prediction was a success
at all.

The situation in climate modelling is that complex climate models are deterministic but
the observed time series are noisy, due to unresolved processes. To be nevertheless able
to tune deterministic models with the help of noisy data, the noise is eliminated using
filters. The easiest way is just to take the mean. This is pretending the data is of a
deterministic system or pretending that nature realised only the expected values of the
variation.
This may be acceptable for linear systems and models but for the second case, nonlinear
systems, it is not. Nonlinear systems are such that small changes in data may result
in big differences. Therefore the filtering is inadmissible due to the assumption that in
spite of average building over time steps or areas in space neglecting noise makes no
difference.
Mathematically this is easy to comprehend. Filtering noise is as much as using the
expected value of all possible noise realizations via average building over the data.
If E is the average then

E(f(x+ 1)) = E(2f(x) + 3 + ε) equals only
= 2f(x) + 3 + E(ε)

if the noise goes in a linear way into the system, which is definitely not the case con-
cerning the climate system.
Thus it is in a sense illegitimate to filter the noise from data to compare it afterwards
with model data from a deterministic climate model. The proper way round would be
to add noise to a deterministic climate model to compare the output with equally noisy
observation data.
This method is indeed applied in climate modelling science under the name of ’detec-
tion and attribution’ but the previously explained method is more common in complex
climate modelling.
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To summarise it can be said that it is irrelevant for climate modelling whether the cli-
mate system is truly stochastic or not. Nevertheless climate modelling needs to deal
with noisy behaviour on a macro scale, may it be induced by internal dynamics within
complex climate models or by limited resolution of climate data.
The following section is about different methods to relate modeled climate variables to
probability functions. It can be seen that the applicability of statistical methods in par-
ticular is more sophisticated within stochastic modelling approaches. The increasingly
important statistics subsumed under the term Bayesian inference is especially only pos-
sible in noisy climate models.
However deterministic climate models are of great importance for climate projections.
GCMs are impossible to realise as a stochastic approach due to the enormous compu-
tational power such a model would consume. But concerning probability predictions of
climate impacts deterministic climate models may be given too much relevance.

6.1.2. Uncertainty

In chapter 3.1 I discussed the uncertainties related to climate modelling. There are two
main types of uncertainties determining climate modelling, fundamental uncertainties
and model uncertainties. While the former uncertainties cannot be overcome in prin-
ciple, the latter can principally be overcome. But due to insufficient knowledge and
technological skills we have to live with model uncertainties as well.
In the context of model projections the uncertainties directly linked to the climate model
in particular are of special importance compared to general uncertainties resulting from
our lack of understanding of the climate system. Model uncertainties are in particular
parameter uncertainty and structural uncertainties in the modelling approach. Both
of them are highly interlinked but constitute uncertainties that are reduceable using
different methods. Parameter uncertainty relates to all uncertainties concerning model
parameterizations, in particular the choice of parameters. Structural uncertainties relate
to uncertainties in model design. This includes the modelling concept: which processes
are modeled, which are neglected, what kind of resolution and grid the model has, and
what types of numerical schemes are chosen within the modelling approach.
As there is normally no obviously best way to model a certain aspect of the climate sys-
tem uncertainties, it is especially difficult to assign structural uncertainties with proba-
bilities. Nevertheless the assignment of probabilities to model output variables is mainly
to adequately present some uncertainties of the modelling approach. This is done via
ensemble modelling on the one hand and statistical methods on the other.
The structural uncertainties are untestable within a modelling framework as they ac-
count for the approach. But model intercomparison ensembles can reduce uncertainties
of that sort. A shortening of parameter uncertainty can be undertaken internal to one
model, using statistical methods and perturbed physics approaches.
The following sections give an overview of the different ways of dealing with uncertainty.
In conclusion it is argued that especially ensemble approaches are indeed appropriate
tools to deal with uncertainty but hardly adequate methods to assign climate variables
with probabilities that deserve the labelling.
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6.2. Statistical modelling

One method to enable climate models to make probabilistic predictions is to assign
probabilities to the parameters of the model and thus propagate those probabilities to
the output by running the model. In deterministic modelling the parameter values are
taken to be the best guesses of the modeller, or they result from some kind of tuning
procedure, as best values to represent some given feature in the model output. When
turning to probabilistic projections, probability distributions need to be assigned to the
model parameters. In a first step those probabilities can stem from expert judgments
and represent subjective beliefs about the true parameter value. Once such an a priori
probability measure is appointed the information incorporated in all types of data or
measurement can be used to update the knowledge about the parameter represented by
the probability density function according to the Bayesian approach. Bayesian inference
is thus a sophisticated method but not independent of the classical statistical method
of inference, the frequentist inference.
The classical statistical method of inference is statistical hypothesis testing which sub-
sumes several methods of statistical analysis. In principle this is a method of confirma-
tory data analysis used especially to assign confidence intervals to model parameters on
the basis of observed data.
The idea is to have a null-hypothesis and an alternative under the assumption that the
null-hypothesis, for example equal distribution of all parameter values in a given range,
is true. Before trying to confirm this assumption a critical number of confirming data
points must be set. This critical number determines the probability of a so-called Type
I error within the testing process, that is a false positive confirmation. This is the tricky
part of the procedure as it is often difficult to assess a number that is captured by data
and delivers a sufficiently small probability of Type I errors. There are many different
methods to assess the critical number and calculate the corresponding error. Before the
test is actually performed, the desired probability of a Type I error is determined. But
errors of Type II also exist, which is a non-confirmation of the hypothesis although it is
true. Normally it is not possible in parameter testing contexts to get small probabilities
for both errors.
The null-hypothesis of the testing procedure could theoretically be a subjective proba-
bility density function but according to the confirmation data available only confidence
intervals can plausibly be confirmed or rejected within frequentist inference.
Bayesian Learning and Bayesian Inference, which also subsumes several methods of sta-
tistical inference, is instead a method of sharpening subjective probability functions.

The principal method of Bayesian Learning is the application of Bayes’ Theorem:

p(h/e) =
p(e/h)p(h)

p(e)
.

This theorem marks the central basis of empirical hypotheses corroboration in Bayesian-
ism (Carrier (2006)). Datum e corroborates hypothesis h if e leads to an increase of
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probability of h. p(h/e) is thus the probability of the hypothesis in terms of the re-
liability of hypothesis h given datum e as conditional probability of h. It is the level
of corroboration. p(h) is the prior probability of h before observation of e. The prior
probability is a subjective measure of reliability of h. p(e/h) denotes the likelihood of e
on the basis of hypothesis h. That is the likelihood of observing e, assuming h is true.
In contrast to that p(e) denotes the probability of e independent of h.

Translating the theorem from a philosophical to a more applied vocabulary, the following
example (Lorenz et al. (2010)) shows an application of the method.
Using the Bayesian approach to constrain model parameters α the crucial input is the
prior probability p(α) on the one hand and the likelihood function L(α/y) on the other.
L(α/y) denotes the relative plausibility of parameter value α in view of the evidence y.
L(α/y) equals the probability p(y/α) for observations y and the parameter assumptions
α.
Within the application of Lorenz et al. (2010) the parameter “ocean diffusivity” α and
others are constrained using the duration of the 8.2 ka cold event as data y. The 8.2 ka
event was an abrupt cooling of 6± 2◦C, at least in the northern hemisphere, which took
place 8200 years before present with a duration of approximately 160 years. The event
is well reported in Greenland ice core data.
The EMIC CLIMBER 2.3n was used to carry out this study. The prior weighting of
α is done from physical assumptions. Both negative and very high values of the model
parameter representing ocean diffusivity can be left out due to the fact that ocean heat
transport is neither negative nor arbitrarily fast. As the Bayesian approach affords not
only a parameter range but a prior probability function normally a Gaussian like dis-
tribution with a rather flat maximum is assumed to represent sparse knowledge of the
prior distribution which is also called the non-informative prior (Lorenz et al. (2010)).
The likelihood L(α/y) of correctly representing the duration of the cold event for a given
parameter value α is not known a priori but had to be established numerically. This was
done by simulating the cold event with the noisy version of CLIMBER for many differ-
ent realisations of noise stemming from freshwater forcing for each model parameter α.
From these noise-ensembles of model runs for each parameter a relative likelihood of the
correct duration is established by simply counting the number of "correct" runs, those
that represent the event more or less as the ice core data. The resulting likelihood can
then be applied to the Bayesian formalism to give a sharpened probability distribution
of the parameter α instead of the mere guessed one used as a priori probability for α.
This method is especially good if the sampling is done more than once in light of inde-
pendent data using the resulting a posteriori probability as the new a priori probability
of the parameter in the next step.
Carrying this procedure out for every parameter, probability distributions can be as-
signed to the output variables of the model.
So far the Bayesian approach is a method to include reasonable subjective probabilities
in modelling approaches. Furthermore Bayesian inference is a method used to test cli-
mate models as follows.
Stochastic models that represent noisy processes with certain shape of noise and a cer-
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tain memory can be tested via formal Bayesian Learning. Via dicing the noise and fitting
model parameters to time series from observational data the probability of reproducing
the time series correctly is computed. In this way statements can be made of the form:
given a model of structure X and a time series Z the probability that model parameters
Y meet values Y ′ is Q. Additionally plausible parameter ranges of different models can
be analysed which leads to conclusions that model 1 happens to be able to reproduce
the time series well enough for a larger range of parameters than model 2. Thus model
1 is better in terms of more being general and more compatible compared to the time
series.
Therefore a model can be considered as better tested if it compares to more data and
thus longer time series; especially if the data comparison is relatively direct.
Again the quality of the observational time series is decisive as said above in the con-
text of paleo data. The length of the time scale is crucial as longer time series allow
for the detection of slower dynamics and longer memories. But there is a dimension of
information quality that is not proportional to the length of the time series. The fact
that an infinite time series represents the complete phase space does not correspond to
longer time series representing more parts of the phase space.

But there are many constraints, especially technical ones, for a general applicability of
the Bayesian approach in climate science.
First of all the model must not be too expensive in terms of computational requirements
in order to be run many times for estimating the likelihood and sampling the Bayesian
approach. Thus, the method is inapplicable to GCMs.
Secondly the number of parameters must be manageable and an a priori assessment of
the parameter ranges and probabilities within the ranges must be available.
Furthermore the model must be stochastic. Sampling is only meaningfully possible if the
forcing is noisy; that is what the n in CLIMBER 2.3n stands for. Within deterministic
models, the probability of meeting certain data is either 0 or 1. This does not preclude
the usage of Bayesian updating but only leads to a cropping of the support of the pa-
rameter distribution instead of a change of the distribution within the range. Even if
classical testing of hypotheses is still available for deterministic models this large group
of climate models is excluded from Bayesian probability assumption.

Concerning probabilistic predictions the Bayesian approach is superior to classical sta-
tistical inference as the procedure results in probability density functions instead of
confidence intervals. Aiming at probabilistic assumptions of climate variables a true
probability density function is preferred to such confidence ranges. This fact is not nar-
rowed by the probability being subjective. Subjectivity in scientific contexts must not
be understood as being in opposition to objectivity, but as related to the mind. Ac-
cording to Rougier (2007) all probabilities are subjective and there is no such thing as
the probability but only the probability of oneself. To nevertheless obtain an intersub-
jectively plausible probability the scientist must be able to justify it. The scientist has
to make plausible that he used all relevant information in a meaningful way to assign a
probability density function to a parameter.
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Recently Annan and Hargreaves (2011) have shown exemplarily for climate sensitivity
that not to use all relevant information to determine prior probabilities lead to extreme
pessimistic probability functions for the climate sensitivity. They could explain uniform
priors to be a poor choice as they do not lead to robust probabilities for the climate
sensitivity. Robust in this context means that the representation of uncertainty is “not
strongly dependent on contentious assumptions or expected to change significantly in
the very near future as incremental scientific progress occurs” (Parker (2010a), p.270).
These conditions of justification and robustness become of even more importance in
contexts of probabilities in GCM modelling contexts as described below.

6.3. Ensemble Modelling

Climate model predictions are made to investigate what climate would be like under dif-
ferent emission scenarios. Predictions for decision making discussions are almost always
based on GCM projections. Thus the statistical methods discussed above are inapplica-
ble to make probabilistic predictions as GCMs are not stochastic.
To nevertheless represent modelling uncertainty ensemble studies are carried out. As
described above and in chapter 4 there are two categories of model ensembles: multi-
model ensemble studies and perturbed physics ensemble studies.
Multi-model ensembles are used to reduce structural uncertainty. The more different
modelling approaches are used to assemble the model intercomparison study the more
different model structures are probed. Using multi-model ensembles instead of single
models has proved to provide more reliable (see chapter 4) representations of state vari-
ables. Thus the model uncertainty is reduced, simply due to the fact that the range
of sampled parameters is bigger and different modelling concepts are compared to each
other. At the same time also the uncertainty in the initial conditions can be diminished
if every model is run several times with perturbed initial conditions. In contrast to
the assessment of some parameter ranges, for example the ocean diffusivity described in
section 6.2, such an assessment is principally impossible for structural uncertainty as an
adequate way of setting the right equations and numerics is not known.
In comparison to observed data, multi-model ensembles give better results than single
modelling approaches, thus it is an adequate method of testing models and reducing
uncertainty in a trial and error manner but without even sampling ranges of possible
approaches. Moreover differences in models are not even chosen systematically but de-
pend on which modelling groups agree to participate in a study like CMIP3 described
in section 5.3 (Meehl et al. (2007)). Therefore the word probability is out of place in the
context of multi-model ensemble output.
In contrast to state variables, multi-model ensembles do not remarkably increase the re-
liability of strictly parameterization dependent measures such as clouds or precipitation.
Of course no model intercomparison study can straighten out systematic deficiencies in
all models. Nevertheless the still bad representation of parameterized variables shows
that a modelintercomparison is not the most appropriate approach to decrease parame-
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ter uncertainty.
The standard approach to representing parameter uncertainty adequately is a perturbed
physics ensemble, either in multi-parameterisation ensembles or multi-parameter ensem-
bles.
A perturbed physics ensemble of a General Circulation Model consists of a large num-
ber of model runs obtained by varying the GCM parameters within their physically
acceptable range (multi-parameter ensemble) or by applying different parameterisation
schemes (multi-parameterisation ensemble). In principle, a multi-parameter ensemble
could be comparable to a probabilistic ensemble but the input is just a range for param-
eters, not a probability distribution of this range. Thus it can not be decided whether
a scenario is more likely than another. Perturbed physics ensembles also do not lead to
true probabilistic projections.
However, perturbed physics ensembles are also carried out with simpler climate mod-
els. Simple models are less computationally demanding, thus a more complete range
of parameters may be sampled. According to Parker (2010a), such a comprehensive
parameter sample resembles a Monte Carlo estimation. Probability distributions that
reflect uncertainty regarding parameter values are randomly sampled many times and
a simulation is produced with each set of values selected via the sampling in order to
estimate uncertainty in output variables. Sophisticated examples of such approaches
combine Bayesian analysis to get input probability distributions. An example is that of
Meinshausen et al. (2009), in which the advantages of a perturbed physics ensemble are
combined with Bayesian inference which can be taken as an example for state of the art
probabilistic modelling. Nevertheless it suffers from the limitations Bayesian analysis
does, and it is also impossible to carry out for regional climate variables. Parker (2010a)
additionally argues that rapid changes in global climate due to missing linear feedbacks
in the modelling approach are possible but ignored within this study.
Looking at published output, as for example the probability distributions for global
mean temperature changes in Meehl et al. (2007), the probabilities differ remarkably,
although the emission scenarios are identical. The reason for that lies in the fact that
perturbed physics ensembles do not account for structural uncertainty. Thus reliable
probabilities are assignable to output variables of a certain model but not independent
of the modelling structures. For the time being, no method is known to account for
structural modelling uncertainties in terms of probabilities.
The only possible consequence of this analysis is that a reliable probability assignment
to climate predictions cannot be justified. Only conditional probabilities are meaningful
in the context of climate modelling.
Probabilities are inadequate measures to represent uncertainties in GCM climate mod-
elling. It implies a precision of knowledge that is not given in these contexts.
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7. Rules for dealing with climate
models

Throughout this work the idea of guiding rules that my be used within the process of
climate modelling is mentioned. In the introduction to the philosophical debate (sec-
tion 1.1)this case study touches upon some arguments for why methodological rules for
science cannot be meaningfully justified. Most importantly, this is because a teleological
view of science in general is not an adequate description of science. However, the argu-
ments against such a view might not apply to science in particular. There are certainly
goals and aims of scientific undertakings, for example climate modelling, which many
scientists would find they have in common, some very practical and some of a more eth-
ical nature. A set of common sense rules, so to speak, which could make the modelling
process more transparent for other scientists and increase the possibility and reliability
of model comparison would account for these aims which are specified throughout this
chapter. In particular such rules could avoid a misuse of data and thus hard the theory
ladenness (section 3.6) of climate models. Kuhn, for example, even claims the existence
of individual rules for each branch of science as a sign of true science (section 4.1).
In terms of explicit rules this objective may be too ambitious but such rules would cer-
tainly benefit modelling practice. It is a meaningful undertaking to formulate vague rules
as they might at least point to the crucial steps in model development. It will perhaps
be possible to refine such rules if working with them in practice. Rules are advantageous
in dealing with criticism and hostility by demonstrating that rules are applied. It is then
upon the critic to show that the rules have been breached, thus the burden of proof is,
so to speak, placed on the opponent because rules for good practice provide arguments
in favour of the methodology. Nevertheless, to discover rules to improve climate mod-
elling in all mentioned fields is a task difficult to achieve. This is due to the fact that
the prevention of data misuse especially involves a very detailed and technical analysis
of the practice. Thus a comprehensive set of rules cannot be given here but rather an
attempt at a starting set of rules, which might be improved by use.
However, in every climate modelling process there are error-prone steps and typical
questions arise and an aim most scientists would agree upon is certainly to prevent such
errors, of which some very basic ones are discussed in part II. In section 5.1.1 is de-
scribed how the IPCC in its forth assessment report (AR4, Randall et al. (2007)) gave
a set of negative rules to answer the question of whether a specific climate model test is
to be regarded as a failure or not. These rules are neither detailed or technical but on
a common sense level for scientists from within the community. Appealing to this very
level of common sense, Petoukov et al. (2000) referred to some common sense rules for
model tuning. As tuning is a very crucial step in modelling it is taken in the following
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section as an example of identifying a set of rules in the following section. The sub-
sequent section takes these rules and analyses whether they reveal some more general
common sense rules applicable for climate modelling more broadly and if so, whether it
would be good scientific practice to maintain them. To what extent and under which
circumstances climate modelling is good scientific practice is then explored by reviewing
an IPCC guidance note to extract implied common sense rules of climate modelling.

7.1. Common sense rules of model tuning

There is such a thing as good scientific practice which refers to a professional standard
and involves avoiding trivial mistakes and using common sense. But generally this is
an agreement of general, mostly ethical, standards which are not written down. Thus
rules of good scientific practice are more implicit rules. The German Research Foun-
dation (DFG), for example, published a memorandum concerning recommendations for
good scientific practice (Deutsche Forschungsgemeinschaft (DFG) (1998)). The second
recommendation is a request for universities and research institutes to shape individual
guidelines for good scientific practice. Recommendation one describes what such rules
have to be about, which are basically the “fundamentals of scientific work” including the
documentation of results, honesty, and constant questioning of scientific findings. This is
why good scientific practice is a more or less implicit agreement on ethical standards and
not a set of methodological rules. Furthermore, these rules are to be stated in general
and, if necessary, specified for individual disciplines.
The latter is especially not done comprehensively but only in ethically difficult disciplines
as medicine. Nevertheless there is common agreement that manipulation of results, dis-
honesty, invention of data, etc., characterises bad scientific practice. But there are less
obvious rules to follow to avoid the latter, and the following section will show that it
is not always a straightforward undertaking to avoid manipulating data and modelling
results.
Common sense rules are neither purely ethical nor methodological rules but guidelines
to follow to avoid those activities listed above under the term bad scientific practice.
Good scientific practice should in this context be interpreted accordingly as a practice
to achieve exactly the same goal as common sense rules. Both practice and rules are nec-
essarily individual for every small part of scientific endeavour. The common sense of an
experienced climate modeler gives quite different advice to that of scientists from other
disciplines or people from outside science. Hence if some basic rules were expressed it
would simplify communication particularly between different scientific communities and
at the interface of the scientific community and the public. Beyond that, the climate
science community could benefit from more specialised rules. The remaining part of
this chapter identifies some starting points for guidelines for good modelling practice in
general and in particular for the example of model tuning.
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7.1.1. Rules of model tuning

The fact that tuning is an ambiguous tool raised the question of whether there is a line
to be drawn between using and abusing tuning according to certain rules. Be aware as
well that tuning is a delicate but indispensable tool for climate modelling, the fourth
IPCC assessment report includes a section (Randall et al. (2007), IPCC Working Group
I, Chapter 8) on that topic. The IPCC AR4 suggests that tuning is justified, in the
sense of not being abused (see section 3.4), if the following requirements are met by the
applied tuning strategy. These are:

R1 Observationally based constraints on parameter ranges are not exceeded.

R2 The number of degrees of freedom in the tunable parameters is less than the number
of degrees of freedom in the observational constraints used in model evaluation.

The first rule (R1) seems to be easy to adhere to since an important aspect of tuning
is to vary those parameters not constrained by observed data. The second rule (R2)
is an important one even if it is common sense to follow it. In doing so, overtuning
is prohibited insofar as in terms of quantity not every output variable can be result of
a specially tuned parameter. The predictive capacity of a model is practically zero if
the number of the degrees of freedom of the model is equal to or exceeds those of the
output. An interpretation of this rule that may also be of value for the complex process
of climate model building is that the available theory must be used. Those components
and processes of the climate system that are known to scientists and are computable
within the modelling approach in question should not be parameterised. The latter
dramatically limits the possibility of truly using all theoretical knowledge. Nevertheless
the concrete wording quoted above gives an essential rule for climate model tuning but
does not guarantee a model output resulting from physically well-grounded relations.
These two rules presented in the fourth IPCC assessment report are not sufficient to
prevent the abuse of tuning.
An alternative set of conditions to be met in order to tune responsibly is given by
Petoukov et al. (2000) where four common sense rules for good tuning practice are
given:

P1 Parameters which are known empirically or from theory must not be used for tuning.

P2 Wherever possible parameterizations should be tuned separately against observed
data, not in context of the whole model.

P3 Parameters must relate to physical processes, not to specific geographic regions.

P4 The number of tuning parameters must be much smaller than the degrees of freedom
predicted by the model.

This set of rules is ascertained as a kind of sidenote in a model description paper to
prevent tuning abuse (see section 3.4) which is explained by the authors as avoiding
“right results for wrong” reasons. The implications of this central modelling aim are
discussed in the following section.
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The latter set of rules entails the former more or less while emphasising the underlying
physics. This is explicitly done in rule three (P3), but the first (P1) and second one
(P2) also relate to that. Relating parameters to physical processes is difficult insofar
as tuning is done in cases where the process cannot be modeled or is unknown. Thus
it is not easy to make sure that a parameterisation used for tuning really represents a
physical process. What is definitely avoided in adhering to this rule (P3) is the invention
of e.g. impulse or heat fluxes when it is known that no such fluxes exist.
The first rule (P1) underlines the need to carefully choose tuning parameters and data,
and instructs not to tune more than necessary. It is different from the first rule (R1)
of the former set of rules. It is phrased more strongly because it says not only to tune
within parameter ranges known from theory and first principles, but also not to exceed
observed parameter ranges. For well observed parameters this is certainly important but
in terms of sparse observational data an extension could be well justified. The first first
rule (R1) might thus be a more appropriate wording as in particular parameters that
are almost untouched by observation or that have implications or related parameters for
which rudimental data exists, are used for tuning. Both first rules (R1,P1) emphasise
the thorough check of all available data not to manipulate parameters where physical or
empirical constraints exist. Furthermore the existence of these two rules underlines the
need to be very careful with parameter ranges and the necessity for the justification of
an extension of empirically known ranges.
The second rule (P2) should also be observed in order to be able to identify and avoid
if possible wrong reasons for right results, which becomes even more difficult in a cou-
pled model. Adhering to this second rule (P2) would make it hard to tune a model
using methods of ’package tuning’. With this term I denote methods as the applica-
tion of filters to tune several parameters together (see section 3.4). In very complex
models filter tuning is necessary as it is computationally and temporally impossible to
tune every single parameter. But this rule (P2) is very important for understanding
dependencies between different processes. To assess the model output properly this is
in fact a necessary procedure at least for submodels. Even though modelling results
might be better if the complex model is tuned comprehensively, ’wrong reasons’ are
undetectable afterwards. Thus this second role is clearly an important addition to the
rules presented in the fourth IPCC report as it advises scientists to analyse the model
in terms of deconstructing the modelling problem and to independently build tunable
submodels whenever possible.
The last condition (P4) is evident as following it prevents the model from being overde-
termined. If there are as many tuned parameters as degrees of freedom no dynamically
computed variables could be treated as such, as the tuning would have constrained them.
This last rule (P4) does not contain any other implications than the one presented above
as R2.
These four rules presented by Petoukov et al. (2000) give a comprehensible grounding
for good tuning praxis and an overview of possible errors resulting from it. Nevertheless
they are incomplete with respect to the second rule (P2). If it is possible to adhere to
this rule (P2) the tuning is on a firm ground given the other rules are followed as well.
But if it is not possible to keep this one essential rule number two (P2) there is much
room left for the uncontrolled growth of tuning mistakes.
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In less complex models, the hierarchy downwards from EMICs, the physics is so compre-
hensible and computationally efficient that parameterisations can be tuned separately.
In GCMs with their interactive dynamic this is impossible. For some EMICs it is pos-
sible to fully map model parameter space but for GCMs, which contain up to hundreds
of uncertain parameters it is not. For such models parameters are tuned by sphere, that
is, separately in submodels for atmosphere, ocean, sea ice, etc. but not separately for
every parameter. Dividing the model into submodels for tuning is especially helpful in
avoiding tuning errors if the submodels could stand alone and the performance of the
submodels could be evaluated separately before coupling.
Due to the interaction of all variables tuning is a difficult task, changing one coefficient
to proper values may push other parameter behaviour out of an acceptable range in the
sense determined above. Thus the tuning process requires great computational power
the more complex the model is. It is possible to automatise the optimisation procedure
until the best parameter setting is found. But mathematical optimisation procedures
and ensemble methods which are particularly used for tuning GCM parameters do not
always result in optimal parameter settings. Such methods make GCM tuning possible
but adhering to the second rule (P2) impossible.
Considering the call for rules to improve tuning, automatised tuning seems to be a good
thing as it follows an algorithm and therefore explicit rules. It has further advantages as
it makes tuning of complex models possible. Furthermore, automatised tuning methods,
as multi-parameter tuning with so-called filters is more independent of individual pref-
erences than tuning parameters on the grounds of subjective choices. But whether such
methods are really better, in the sense of less arbitrariness1, and a better reflection of
reality, as Tebaldi and Knutti (2007) suggest, remains to be shown also in their interpre-
tation. Choices of parameters made by hand are often related to scientific understanding
of physical processes which is the reason for insisting on following the second rule (P2)
in the first place. If made thoroughly they may be better then parameters automatically
chosen only to fit observations. But the latter method may be better in cases where
nothing is known about the process underlying the tuning parameters and it prevents
overestimation of physical understanding and thus prejudiced parameter choices. Espe-
cially in very complex models automatised methods may not only be necessary but also
better than tuning on expert intuition only. The problem of intransparent interdepen-
dencies of parameters remains in automatically produced tuning parameter sets.
The explicit rules given in automatisation algorithm are apparently not sufficient to
avoid the abuse of tuning but they are effective in constraining internal parameters ac-
cording to restricted variables. If climate models were based on first principles2 and
observationally restricted parameters only, such algorithms would be not only effective
in constraining but could also be prescribed to avoid the abuse but climate models are
not like that. It is not possible to tune a model on the basis of first principles and
laws of physics, as tuning is per se unphysical. Nevertheless, the processes simulated

1Tuning parameter values are not chosen randomly but since they are by definition (section 3.4)
unconstrained by observation individual choices are necessary to be able to tune at all and it is
technically impossible to sample huge ranges of all parameters.

2see ftnt. 1 in section 5.3.
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by the model should not be unphysical, which means they should not show unplausible
behaviour as, for example, heat fluxes that violate mass conservation, negative veloci-
ties, or atmospheric velocities faster then sound. Heat fluxes and similar processes in
the atmosphere are good examples of processes not constrained by observation thus no
meaningful flux behaviour can be included in algorithms, nevertheless such fluxes can be
plausible or not according to the common sense of climate scientists. Therefore common
sense rules could be meaningful even if they are not rules explicit as algorithms. With
respect to common sense rules it could also be justified to not adhere to them but this
justification is necessary as otherwise it is commonly assumed by the community that
the rule is followed.
The best tuning results are probably gained if automatically tuned parameters are
checked afterwards according to the crucial points depicted in the rules and subjective
criteria gained from an understanding of physics and experience. Anyway the possibility
of abandoning tuning parameter sets that are not consistent with such criteria should
be given. Common sense rules as presented here are not new but they make implicit
rules explicit. This is not superfluous because many tuning approaches do not violate
the model physics or the common sense of climate modellers but some do and in most
cases this would not have happened if the modeller had envisioned these common sense
rules before the tuning. In agreement with Petoukov et al. (2000) it seems easier to
realise explicit common sense rules than implicit ones.

From the rules discussed above a set of five rules (R1,P1-P4) can be extracted, which
when adhered to will support good tuning practice. It is five instead of six as the second
rule of the first set of rules (R2) presented in this section is very similar to the fourth
rule of the second set (P4) whereas rule number one of the first (R1) set is an extension,
as explained above. O2, which is the essence of R2 and P4 as explained above, is no
contradiction to O3 because the latter is used for parameters which are known in very
defined ranges, whereas O2 refers to parameters that are constrained to some extent but
only by first principles or in very broad ranges. O6 is in a certain interpretation quite
similar to O3 but is additionally mentioned in particular to point to the possibility that
tuning can violate the model subsequent to a “correct” setup, especially by filter tuning.
It is additionally important in the very first phase of setting up a modelling approach
to ask the question of what variables to implement and which to parameterise.
But these five rules are not sufficient as tuning guidelines. In the first place I will prefix
this set with a rule that is very common sense but nevertheless important to prevent cir-
cular reasoning. In the absence of a theory of the climate system a climate model could
not gain any corroboration if the same data used for tuning is used for corroboration.
Rule number one (O1) must thus be to use independent data sets for model tuning and
model evaluation.3 The crucial question is then of what counts as independent data.
This is a question that cannot be solved within this rule-setting approach because I do

3In the context of model tuning this looks like a triviality but in the context of the philosophy of
science and confirmation of theories it is far from trivial but rather a controversy,the implications
of which for climate modelling rules will be briefly discussed below.
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not know what kind of criteria to apply, which is one of the reasons for being able to
present vague rules only. A rule climate scientists could certainly agree upon is not to
use the same value from the same source twice.
Another aspect of tuning that is highly problematic is that which is explained in the
context of the THC example in section 3.4. Climatic processes only existing in climate
simulations due to tuning parameters may just be there for the wrong reasons. Thus
it may be acceptable make claims about their behaviour under changed climatic condi-
tions but it is not acceptable to make statements with respect to the stability of such
processes under climate change (O7). This is a fact often disregarded in practice and
not addressed in the relevant literature. Only Weaver et al. (2001) admitted that sta-
bility might be affected by tuning in such a way that it is not realistically represented.
If such an analysis were made, causalities would be assumed to exist which are only
pseudocausalities implemented by tuning. Hence the seventh rule is intended to counter
the common error to assume that tuned cause and effect chains are real causalities. It
is not entirely possible to prevent such misinterpretation but for cases given in the ex-
ample sticking to this rule is possible if modellers make clear which processes exist due
to tuning only. This rule can also be taken as a special case to the claim of independent
data in the sense that pseudocausal relations are to be used only once, within the tuning
process but not again in model interpretation.
The set of rules is still incomplete especially due to the numerous cases where it is impos-
sible to tune parameters separately regarding the physical appropriateness. But as no
reliable method to circumvent this problem is known so far the set will stay incomplete
for now. Tuning as a crucial aspect of climate modelling has not been subject to much
scientific study yet. It only came into broader focus of research lately with publications
by Collins (2007) and Tebaldi and Knutti (2007) and the attention from the IPCC but
did not became the focus of a broader discussion. In the long run this will happen and
the set of rules presented here is expected to be expanded and advanced.
A state of the art set of common sense tuning rules is the following:

O1 Data sets used for tuning and evaluating models must be independent.

O2 Known constraints on parameter ranges are not exceeded.

O3 Parameters which are known empirically or from theory must not be used for tuning.

O4 Wherever possible parameterisations should be tuned separately against observed
data, not in the context of the whole model.

O5 Parameters must relate to physical processes, not to specific geographic regions.

O6 The number of tuning parameters must be much smaller than the degrees of freedom
predicted by the model.

O7 Pseudocausal interactions implemented by tuning should not be analysed in terms of
causality relations.
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Sticking to this set of rules is likely to not be sufficient to guarantee a scientifically good
tuning practice but is necessary to avoid undeliberate manipulation of model physics by
tuning. But the fact still remains that tuning is a very subjective method of parame-
terisation and model adjustment. Thus it is a kind of scientific art where it is difficult
and not always recommended to apply rules. The connection to physical theories and
observational data adds up to a great variety.
The rules above are phrased to account for crucial steps in the tuning process but their
importance is given for the process of model building in general. Especially in the more
abstract wording of the O-rules they could be taken as model building rules with the
main advantage of highlighting the crucial steps and thus showing which assumptions
in the modelling approach must be made more transparent in the future. A breaching
of this rules must be exposed, explained, and justified.

7.2. Common sense rules

A set of rules as depicted above could assure a scientifically valid modelling practice if
given for all crucial modelling steps and observed thoroughly. But even if this was a
desirable piece of work to do it would be a lot of work and it would never be finished
as adjustment of rules would be needed whenever new technical or scientific methods
are applied. But looking at the tuning rules in detail they entail more comprehensive
modelling advice that could be called common sense. These are common sense rules that
are not only of value for tuning but should be followed throughout the whole modelling
approach. It is thus possible to extract comprehensive rules for the entire modelling
approach from this specified set of tuning rules.
If meaningful rules for climate modelling were to be revealed it would be better if they
did not contradict specific rules, but they would not be derivable from each other in a
logical sens. Both sets of rules should enable scientists to reach their modelling aims
and thus support each other on a common sense level. As said above, for climate science
especially specified rules for modelling steps would be helpful to avoid errors. This is
also true for unspecified rules as they point at crucial steps, open to the choices of the
modeller. If these choices are transparent they can be judged and discussed by peers,
which in the best case allows for a specification of the rule.

The first rule given above (O1) says that data should be independent, that is a datum
known from observation must not be used more than once within the modelling process.
The data can be used to assess a parameter, or to tune the model, or to validate the
model. This rule seems to be trivial for climate science but in times of scarce data it is
sometimes hard to follow and in the philosophy of science this rule is a matter of broad
controversy. If interpreted as a claim for the use of new data for hypothesis testing only,
it is not at all clear that it should be defended. The problem then is the difference
between logical confirmation and historical confirmation as Musgrave (1974) puts it,
where the latter accepts only data that was not known, or not even observed in a very
strong form of predictionism (Curd and Cover (1998)). Time dependent confirmation
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is nothing you can meaningful claim for a climate model and not only in this context
is this historical perspective questionable. A lot of climate modelling approaches are
built on the hope of providing scientific understanding to make political decisions now
that relate to a “better” future. If climate models in their current application are fit for
this job is a question beyond this analysis. Perhaps they would be more adequate given
their limitations and possibilities if they were used for worst-case projections. However,
climate modelling would be impossible without the assumption that the observations
used to build the model may also be used to confirm it, because there is no comprehen-
sive theory to base climate modelling upon. Data is of greater importance for climate
modelling than for theory development as the data is not only the basis of theoretical
ideas but part of the model as initial and boundary data and in tuned parameters. Thus
no confirmation can come from the very same data but if it could also not come from
known data no confirmation would be possible at all. This is along the lines of Worrall
(1978) who stated with regard to theory confirmation the simple rule: “One can’t use the
same fact twice: once in the construction of a theory and then again in its support." is
to apply. This rule seems to be plausible for theories but it is true for climate modelling,
at least given the interpretation of the ”same“ data from above.
It is of course always possible to split the available data set and use one half for tuning
and the other for validation but this minimises data dramatically and the data is not
truly independent. This problem is addressed in chapter 6 where it is explained that
such a practice affords the active forgetting of the data you use for validation, which
seems to be a rather hard task. This is especially so as a datum must also not be used
in two different modelling approaches if the models are part of an ensemble. The latter
is not guaranteed but within one modelling approach scientists must necessarily stick to
the rule: never use a datum twice. Otherwise the model makes false presumptions and
reasoning is circular. The data are biased, due to coarse spatial and temporal resolution
and other observational obstacles, even if this rule is kept is out of question but there is
no problem of climate modelling that could be solved within a rule.
Following the tuning guidelines the next two rules are not so fundamental as there exist
arguments for the use of “best” parameters even if they are known to be false. Parker
(2010b) gives an example: The average speed of falling ice crystals is 1 ± 0.5m/s but
the model gives better results, compared to observed data, if the parameter identified
with this speed is much higher. A deliberately wrongly chosen parameter is thus to
compensate for other model deficiencies.
Given the analysis throughout this work this practice does not seem to be a good one, as
it makes it impossible to detect cause and effect chains within the modelling approach
and thus in the climate system.
Despite the arguments that wrong parameters might increase the predictability of a cli-
mate model there is in principle consensus among climate scientists to avoid right results
for wrong reasons because this very detection of causal relationships, which is in any
event difficult for climate modelling, is impossible with such wrong parameters.
Unrealistic assumptions are pervasive in climate modelling, it would be impossible with-
out these assumptions therefore most modelling results would be arrived at for wrong
reasons if this term included all simplifying assumptions. Unrealistic assumptions ac-
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cording to Betz (2006) are false with respect to the accepted theory but simplifications
are also unrealistic, although they are not false in a contradictory sense, rather merely
limited. An example of an unrealistic assumptions that is a brute simplification is the
ideal gas law as illustrated by Betz (2006) which includes two unrealistic assumptions.
The ideal gas theory takes gas molecules as Newtonian mass points and assumes the ab-
sence of inter-molecular forces. These assumptions are false as gas molecules are spacious
and attract each other but especially for huge volumes and less pressure the molecules
are very small compared to the volume itself and they do not meet each other very often.
Therefore this simplification is meaningful and, importantly, it is an unrealistic assump-
tion whose implications are quite traceable as they rely on a theory “above” the kinetic
gas theory, which is that they are made before computations and are physically plausible
and belong to an accepted theory, Newton’s Mechanics. In the discussion of confirmation
or corroboration not only inductive support from successful predictions is discussed but
also support from “above”, as Curd and Cover (1998) terms it, by an accepted theory
that frames, in a manner of speaking, the hypothesis in need of confirmation.
Unrealistic assumptions, like those discussed with respect to kinetic gas theory, are in
accordance with first principles, which cannot be said for many parameters to com-
pensate for various model failure, and if they follow first principles it is necessarily not
detectable. Climate models producing right results for wrong reasons with the definition
of wrong reasons from above could be much better for prediction making then models
with no or few such compensation parameters, but useless for learning about climate
system processes and for learning about modelling for the purpose of developing better
models. Without model development the aim of making good predictions cannot be
achieved thus right results for wrong reasons prevent scientists from reaching their main
modelling goals.
To conform to this wish, to avoid right results for wrong reasons, two fundamental
principles of modelling practice should be acted upon. These should use all available
theoretical grounding of the modelling approach and not take tuned climate mechanisms
as causalities. The former, in principle, means not to exceed known ranges of parameters
and especially not to violate first principles, whereas the latter could be interpreted as a
very special case of the first rule: never use a datum twice, to avoid using pseudocausal-
ities for scientific analysis.

From seven rules of tuning three principles for good modelling practice may be derived,
whereas the latter two are the two-fold axiom to avoid right results for wrong reasons..

1 Never use a datum twice.

2 Use all available theory.

3 Do not analyse pseudocausalities.

These three rules reveal the fundamentals of good scientific practice and not only valid
climate modelling rules. In this respect it is an unsatisfactory result not to be able to
extract specific modelling rules from a set of tuning rules. But starting with tuning
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guidelines there are at least three hard rules to follow in climate model development.
If we had instead tried to give a set of model testing rules and generalise it we would
very likely have ended up with nothing, as the three guidelines given above are not as
relevant for testing as for model building, although the first one is concerned with to
model comparison as described above. The last one provides no guidance for model
validation but rather for the interpretation of results.
The IPCC came up with a set of rules identifying criteria for what does not count as
model failure. But a positive list, to my knowledge, does not exist. There are good
reasons for the absence of such a list, because what criterion would be included? For
all practical purposes the representation of the present climate is a good criterion but,
thinking it through, one cannot even claim this for a climate model as explained in chap-
ter 6, much less other quality factors mentioned in chapter 5 such as consistency. This
is for the more philosophical reason that models could in principle predict the future ex-
actly but fail to simulate present day climates and for the very practical reason that it is
impossible to give the degree of precision needed to count as “passing the test”. The same
holds for the rule that climate prediction models must depict a global warming trend in
order to be acceptable. For practical purposes present climate and future warming are
good guidelines to assess model performance, yet they are not fundamentally essential
as there is the highly unlikely possibility of a negative feedback to counteract global
warming in the near future and models able to represent the future must not necessarily
give a correct simulation of the present.
This lack of rules that stand a thorough scrutinisation is basically due to the amount of
uncertainty in our knowledge of the climate system and in modelling approaches. Also
the many different modelling approaches concerning complexity, physical basis, but also
numerical representations prevent comprehensive criteria being met. The insufficient
availability of observational data closes the list of obstacles on the way to comprehensive
model testing criteria.

The validation of climate models is not the only aspect not captured by these rules.
Probability is also hardly touched by them but is nevertheless important in every step
of modelling. But while model testing cannot be captured easily by common sense rules,
there are criteria to be fixed in the handling of probability.
Even more than the arguments for whether parameter values should be true, the as-
signment of probabilities to climate variables is a controversial matter within the com-
munity. Some scientists (Murphy et al. (2004), Tebaldi et al. (2005)) apply probability
distributions to climate variables from ensemble results despite the problems discussed
in chapter 6, while others (Stainforth et al. (2007)) argue against it. The American
philosopher of science Wendy Parker (2010b) tries to show a way to assign probabilities
without ignoring the limitations of statistical and ensemble methods. As probability
distributions are representations of uncertainty she gives three criteria the distribution
must meet in order to represent it meaningfully. These are ownership, justification and
robustness. Ownership characterises the fact of probabilities in climate science being
strongly subjective. The scientists should be willing to claim it as their own represen-
tation of uncertainty. They must furthermore be able to justify shape and range of
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the probability distribution while showing that this distribution represents all available
knowledge about the predicted variable. This claim to represent all available knowledge
is central and a mapping of the second modelling principle from above. Additionally
the distribution’s shape should not depend strongly on highly controversial findings and
it should not be expected to change dramatically if minor model development takes
place. If these criteria are met probability density functions of climate variables could
be communicated, according to Parker (2010b). But Parker also admits in the conclud-
ing remarks of the cited paper that in most circumstances “something less than a full
probability density function” (Parker (2010b)) might be appropriate.
The conclusion to be drawn given the analysis in chapter 6 is that probability distribu-
tions are generally out of place for GCM ensemble results. Nevertheless the criteria given
by Parker are extremely helpful throughout the modelling process. One word to express
these requirements is transparency. Scientists must communicate the assumptions, un-
certainties and subjective beliefs they build their model upon. Consequently another
rule of climate modelling could demand transparency. However, the model building
guidelines depicted above are in particular necessary to keep for the modelling approach
to be transparent for other scientists. But additionally it is exactly these facts, which
theory is applied and which model behaviour resulted from tuning which must be laid
open.
In the context of probability assessment of climate variables Rougier (2007) also provides
a set of questions to be answered before probability distributions are given. These five
questions are about measurements, model input, model imperfections, model validation,
and computation. The main question for all these topics is basically whether the quan-
tification of errors and naming of uncertainties at the relevant modelling step are given.
Probability distributions of climate variables are the ultimate goal of climate modelling
but given the state of the art modelling abilities are an aim that is too ambitious. The
criteria such distributions must meet are nevertheless important guidelines throughout
the modelling process. Only if every step of modelling is justifiable, will reliable proba-
bility distributions be a reachable goal in the future. To be able to justify it the whole
process of modelling from building to validation and interpretation must be transparent
and available knowledge must be used.
The criteria probability distributions must met, according to Parker (2010b), and the
questions Rougier (2007) asks do not evolve from individual ethics but from general sci-
entific responsibility. Good scientific practice, as mentioned above, is basically to stick
to the scientific method, which is a similar loose term but with an even longer history.
In the twentieth century the scientific method was the subject of study of several contro-
versial philosophers, as described in connection to selected parts of Popper’s and Kuhn’s
work in chapter 4.
Apart from philosophical debate there are several efforts from research institutions to
give practical guidelines for good scientific practice. The, latest and most influential, for
the time being, results of discussing the scientific method in Germany are the propos-
als for safeguarding good scientific practice (Deutsche Forschungsgemeinschaft (DFG)
(1998)) mentioned above. No matter how controversial this topic is in philosophy, the
recommendations of the research foundation, which are reflected in every university’s
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research guidelines, can be subsumed in the following imperatives. They also reflect
Popper’s and Kuhn’s ideas of rational discussion, discussed in chapters 3.7 and 4.1,
which underlie their individual philosophies and are discussed throughout their work,
e.g. Popper (1959), Kuhn (1996).

1. Document your research to guarantee the repeatability of experiments.

2. Permanently doubt your results.

3. Be honest in the handling of data and towards your colleagues.

4. Every author is responsible for the contents of his published work.

If rules of climate modelling are possible, sticking to them must guarantee good scien-
tific practice according to these axioms of empirical science. Crucial axioms connected
with climate modelling research are documentation and honesty, where the latter is not
a problem in terms of honesty about purpose but is concerned with uncertainty and
especially lack of transparency. The controversy concerning the assignment of proba-
bility distributions to climate variables expresses that this is indeed the crucial axiom.
Honesty in dealing with uncertainty is also the axiom that allows solely the conclusion
in handling of probability distributions given above.
In the tuning example it becomes apparent that documentation is also crucial. In tuning
and parameterising complex models used by several scientists, especially scientists who
use a model as a black box, documentation is essential. Otherwise scientists not involved
in every step of the specific model development cannot decide what the model is forced
to represent due to tuning or what is the result of physics. Everyone using a model to
do scientific research must be able to judge the uncertainties connected to their results.
Therefore conceptual documentation of model development should be given in addition
to today’s technical reports of climate models. Complementing technical reports, model
descriptions could include something like a summary for data users.

7.2.1. Dealing with uncertainty in climate modelling

To summarise the needs for a good scientific practice in climate modelling it can be said
that transparency is the most important demand. If decisions in the modelling process
are untraceable for other scientists no critical discussion and scrutinisation by peers is
possible, which is the essence of science. The climate science community has the great
advantage that it has an organisation of these peers where scientists of almost every
institution concerned with climate science contribute their work. This organisation is
of course the Intergovernmental Panel on Climate Change, the IPCC. Major findings of
climate science are presented in the assessment reports of the IPCC, the fifth of which
will be released in 2013, which means planning and modelling starts now. Due to the
very broad contribution to the reports the panel is highly accepted throughout the cli-
mate community. In the IPCC there exists a body much more influential than national
organisations, for example the German Research Foundation, that could provide rules
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to guarantee good climate scientific practice. Actually it does provide such rules, which
are basically contained in the “Guidance Note for Lead Authors of the IPCC Fifth As-
sessment Report on Consistent Treatment of Uncertainties” (Mastrandrea et al. (2010)).
The aim of these rules is to urgently recommend scientists to consider uncertainties and
to provide a calibrated language to do this consistently. Eleven points are made about
the treatment of uncertainty and six grades of uncertainty for climate variables are iden-
tified. Generally scientists are advised to consider uncertainty independently for every
finding and to assess conditional uncertainties for findings in cause and effect chains.
They are also encouraged to describe findings they consider unlikely and to provide in-
formation on the whole ranges of key climate variables even if they consider the values
on the outer ranges improbable. In treating uncertainty IPCC authors are furthermore
to take the following points into account.
First of all it is important to plan a strategy to deal with uncertainty at an early stage
of assessment. The scientists working together are to know early which of their views
might differ so that a range of them must be describe. Their findings are to be judged
as expertly if possible or if necessary in a formal expert elicitation process and the judg-
ment must be explained. To avoid the convergence of intrinsically different views every
scientist is advised to make his judgment before discussing the matter as a group.
In displaying their uncertainty assessment scientists must have a psychological under-
standing of probability statements. A 90% chance of survival is interpreted more posi-
tively than a 10% chance of dying, for example. The authors of the guidance furthermore
encourage scientists to describe findings with compelling evidence without uncertainty
qualifiers. The latter are to be reviewed carefully to avoid incomplete assessment of all
sources of uncertainty.
To evaluate and communicate uncertainty scientists are recommended to use three dif-
ferent measures. The most basic concept of uncertainty assessment is to use summary
terms (1) to describe the type, amount, quality and consistency of a finding, on the one
hand, and to independently evaluate the degree of agreement concerning this variable
or event on the other hand. Even for climate processes that are very poorly known
summary terms such as limited, medium or robust validity and low, medium or high
agreement can be used. Climate variables which are at least known with their sign can
additionally be assessed using the second measure: confidence (2). The guidance note
proposes five levels of confidence from very low to very high, whereas findings of low and
very low confidence are to be expressed only in fields of major concern. It is important
to underline that these levels of confidence are subjective measures, not to be mistaken
for statistical confidence levels. For variables which can be identified with ranges of
values, not only confidence levels are assignable but likelihoods (3). These likelihoods
may be displayed using seven terms calibrated for probability ranges from virtually cer-
tain corresponding to a probability range from 99% to 100% to exceptionally unlikely
with a probability of between 1% and 0%, whereas the boundaries of the corresponding
probability ranges are fuzzy.
To help to assess variables they can be classified into six classes, from ambiguous vari-
ables (1) over those known by sign (2), magnitude (3), or range (4) to variables that
can be given with likelihood or probability (5), resulting from ensembles, multiple obser-
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vations, or expert judgment, and also to variables determined from statistical analyses
with probability distributions (6).
The author team summarises their guidance note on consistent treatment of uncertainties
with the advice to communicate uncertainty carefully and to provide traceable account
of their findings and their evaluation.

This guidance note describes a process of good scientific practice strongly related to
the recommendations of such practice discussed above. In providing a consistent treat-
ment of uncertainty the essential problem of climate modelling is addressed, which is, as
said before, that decisions in modelling must be traceable for scientists. In my opinion,
climate modelling would gain a lot of confidence if communication of uncertainty was
standard in publishing results. To do this in a traceable way a consistent language is
needed, and this is indeed a significant achievement of the IPCC and the guidance note.
If editors of relevant journals accepted only such publications that deal responsibly with
uncertainty it would be possible to assess research results from other scientists correctly.
Until now only the research contributing to IPCC reports implement such standards,
others do not address uncertainty at all or using uncalibrated language. Not only within
but especially in communication outside of the community it is necessary in order to
avoid the overinterpretation of modelling results which will, if results are contradicted
by the next model generation, erode the general credibility of climate science. In a
very brief outlook below it will be discussed whether rules could be given if findings of
climate modelling approaches are given as advice to the public, and how this could be
done. This means discussing the question of whether there are rules possible for advising
on action to be taken, or differently phrased, whether rules can prevent the erosion of
public credibility.
Taking the guidance note of the IPCC as a true guide scientists would reach a high de-
gree of transparency for their work and thus confidence in research results from within
and outside the community. But one point is misplaced in this guide as it would lead
to an inconsistent picture of climate research results. That is the recommendation to
present findings with overwhelming evidence without uncertainty measures. If all other
results are presented with such a measure an unmeasured result could stir up mistrust
due to the belief that uncertainty is not measurable in this case. As the concept given
in the guidance note allows the expression of a high degree of certainty, for example, a
likelihood of 99% to 100%, it is to be used in every case to guarantee consistency. Ad-
ditionally, low probabilities are extremely difficult for human beings to assess. An even
better recommendation would therefore be to also give certain events that are without
probabilities or with low probabilities but high potential impact, without probabilities
but as possibilities. Furthermore, the recommendation to assign probability distribu-
tions to variables where the distributions result from formal expert elicitation seems to
overstretch the expertise of experts, likelihood assessment would be more honest with
respect to the precision of available knowledge.

In sum, the guidance note of the IPCC concerning the treatment of uncertainty touches
upon the main points preventing good modelling practice so far. If uncertainty is a
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topic addressed early in the modelling process, and not only addressed but considered
adequately throughout the process, climate modelling will be a branch of science pro-
viding reliable results. Climate models will never have a measurable quality due to the
fact that they are a modelling approach rather than being a fixed entity, and due to the
problems of climate modelling discussed in chapter II. But addressing these problems
carefully and always being able to justify assumptions and results, makes climate mod-
els a very powerful tools in the process of understanding the climate system. In almost
every case conditional uncertainty would be assigned to modelling results, for example
actual model projections are conditional predictions. It is now important to describe the
conditions in a transparent way. The three rules of model development point to crucial
steps of uncertainty within the modelling process.

7.3. Conclusion and outlook

Climate models defined as a modelling approach suffer from uncertainty in crucial steps
of a modelling process, it is thus inevitable to assess the uncertainty within the process
and in published modelling results to guarantee valid modelling results.
In principle there are two types of uncertainty: fundamental uncertainty and model un-
certainty. The former is due to the nonlinearity of the climate system and its complexity
which limits human understanding and possibilities to observe the climate comprehen-
sively. The fundamental uncertainty cannot generally be overcome but deficits in un-
derstanding the climate decrease as research continues and modelling improves. Model
uncertainties are not of a comparably fundamental nature but will also not dissolve ei-
ther. Furthermore in fields of high uncertainty there is not only evidential uncertainty
concerning processes or variables but also uncertainty in agreement about this uncer-
tainty between scientists.
A crucial manifestation of the uncertainty is the parameterisation of processes and sub-
systems within the modelling approach. In the need to parameterise unknown principles
in the climate system and processes on smaller scales as the resolution of model, and
unobserved variables, the main problems of climate modelling come to a head. Tuning
parameters is thus a method to make modelling possible on the one hand but is on
the other hand extremely sensitive to unintended violation of physics if uncertainties in
parameter knowledge are inadequately respected. Only if there is agreement about the
uncertainties and they are treated accordingly is it at all meaningful to assign proba-
bilities to parameters and therewith to modelled climate variables. An increasing use
of stochastic models could improve probabilistic constraining of parameters and only
hence offer true probability density functions. Instead of suggesting a very high level of
precision, uncertainty would better be considered if calibrated terms of agreement and
evidence of uncertainty were used throughout a modelling approach instead of probabil-
ity density functions.
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To serve all the different purposes that climate models are good for, a whole spectrum of
models exist representing a hierarchy of complexity and various levels of understanding,
all of them with different advantages and shortcomings. Due to this fact, it is not possi-
ble to describe comprehensive modelling rules that exceed general rules of good scientific
practice significantly. Yet some crucial steps within the modelling process could be im-
proved in terms of transparency and reliability if common sense rules are used for the
specific procedure. This might be, for example, the tuning of climate models for which
a set of rules is given above and the assignment of probabilities to predicted climate
variables.
The degree of uncertainty in climate modelling steps and approaches varies enormously
from virtually certain knowledge concerning the physical basis and thermodynamic pro-
jections to high uncertainty in the prediction of regional precipitation changes or cloud
physics. If these differences in the certainty of climatological findings were communi-
cated adequately, confidence in modelling results could be much increased. It would
avoid an excessively optimistic level of precision in the assignment of probabilities but
would also most importantly prevent the suspicion that all modelling results suffer from
outside the community. It is virtually certain that the planet warms and that this warm-
ing increases and that this is accompanied by rising sea level and an increase in extreme
weather events. Our understanding of the climate system and the modelling abilities
providing these facts are sound.
Not only the communication of climate research and the dialogue with the public and
politicians could benefit from the transparent dealing with uncertainty, but also research
within the community. The climate is such a complex system that it is impossible to
capture all relevant subsystems in a single modelling approach. Therefore there are re-
search groups holding more or less monopolies over comprehensive models for specific
subsystems. If such monopolies are unavoidable it will at least be necessary to review
their findings thoroughly which is only possible if assumptions and their uncertainties
throughout the modelling process are made transparent. Uncertainties in agreement of
uncertainties can only be treated adequately if assumptions are discussed and shortcom-
ings recognised. Three very basic rules of model building could be depicted that relate
to typical model shortcomings and could help to avoid modelling errors. Furthermore,
and in particular, these rules could be used to enlarge transparency because they give,
if adhered to, scientists a basis to show that and which scientifically valid approaches
are taken.

The IPCC has tried and tries increasingly harder to make the formation of presented
climate modelling results more transparent. Rules for specific modelling steps as pre-
sented here for tuning and in very vague words for general model building, as well as
rules for dealing with uncertainty will further this process of increasing transparency.
No climate skeptic ever measured the uncertainty of his claims or laid his sources open.
As an outlook this fact begs the question of whether the set of rules especially for
model development could be complemented by rules used as guidelines in model valida-
tion, dealing with probabilities, and maybe in instructing actions according to climate
modelling results. Given the analysis throughout this thesis the latter seems especially
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impossible, basically due to the fact that climate models and political actions are on
very different levels of understanding and motivation, but this is certainly not the only
possible conclusion possible from an analysis of this topic. Rules for dealing with prob-
abilities instead will likely not be very different from those dealing with uncertainty,
supplemented by guidelines referring to low probability, high impact events and virtu-
ally certain facts.
Within this paper I find it very much beneficial for climate modelling to have a set of
guidelines assuring scientifically valid climate models. In the literature this is a highly
discussed topic although in the context of theory building, not model building. It is
thus an apparently interesting question to discuss whether the consequences drawn from
modelling analysis for the development of model building rules could be applied to the
theory building debate in the philosophy of science.
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Glossary

Anthropogenic climate change is the change of the climate state due to atmospheric
radiative forcing from greenhouse gases emitted by fossil fuel combustion and
changes in land use. Leading signal of the anthropogenic climate change is global
warming, the increase of the global mean surface temperature, section 2.2.

Carbon dioxide, CO2 is a trace gas comprising 0.0035% of the atmosphere and nor-
mally given in parts per million in an air volume of one liter (ppmv). CO2 is
radiatively active as a greenhouse gas as it reflects long wave heat radiation back
to Earth. It is the most important greenhouse gas secondary to water vapour but
stays in the atmosphere for centuries whereas water vapour survives only for days
at maximum. Carbon dioxide is built in plants by photosynthesis and released
when biomass and fossil fuels are burnt. The preindustrial CO2 concentration was
280 ppmv whereas today it is more than 390 ppmv (/co2now.org (2011)/).

Climate is defined as the average weather over a certain time span, traditionally 30
years, with average being the statistical mean and variability of relevant variables,
which are for example surface temperature and precipitation, section 2.1.

Climate change is a statistically significant change in the mean or variability of vari-
ables and thus a change of the state of the climate system. Climate changes can
occur naturally through variations in forcing parameters or changes in internal
processes or can be induced by anthropogenic changes in the composition of the
atmosphere, section 2.1 and 2.2.

Climate model refers to the approach of modelling the climate system or aspects of
it by use of mathematical models commonly implemented within a computational
software. A climate model is thus a numerical representation of the components
of the climate system that are known and understood in such a way that they
can be described by physical equations and parameterisations. Climate models
are tools to simulate properties and components of the climate system. There is a
whole spectrum of climate models referring to different purposes of modelling and
representing varying levels of understanding and computational cost, section 2.3.

Climate Sensitivity is defined as the global mean equilibrium temperature change fol-
lowing a doubling of atmospheric CO2-concentration from preindustrial 280ppmv
to 560ppmv. The likely value of climate sensitivity is 3± 1◦C.

Climate system refers to the nonlinear physical system of the earth’s climate. It is
composed of many subsystems and their feedbacks and interactions. The most im-
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portant subsystems are the atmosphere, the oceans, the cryosphere, the biosphere,
and the land surface, section 2.1.

Emissions in this text refers to anthropogenic CO2 equivalent emissions of greenhouse
gases released by biomass and fossil fuel burning and increased due to land use
changes, agriculture and deforestation.

Ensemble denotes a set of parallel model simulations to give an estimate of the spread-
ing of climate model output variables, section 5.2.

Experiment in the modelling context is a modelling approach with fixed boundary and
initial conditions but variable parameters, part II.

Feedbacks can either be positive or negative. In the former case feedbacks are interac-
tions of climate system components that increase these interaction while negative
feedbacks decrease the interaction process, section 2.1.2.

Forcing as radiative forcing refers to the rate of energy change at the top of the atmo-
sphere per area of the earth as it is defined in W/m2. Forcing loosely describes
driving mechanisms of the climate system whereas external forcing are drivers
outside the system such as solar radiation, volcanic eruptions, or anthropogenic
changing of atmospheric greenhouse gas concentration. Internal forcing mecha-
nisms are basically internal feedbacks, section 2.1.

GCM is the abbreviation for General Circulation Model which is the most complex type
of climate models. Coupled Atmospheric-Ocean GCMs (AOGCM) are the state
of the art models for climate predictions as they seek to include as many relevant
climate processes as possible to get a comprehensive simulation of the climate
system, section 2.4.

Global temperature is, if not specified otherwise, the mean of the global surface air
temperature.

Greenhouse effect refers to the ability of greenhouse gases such as carbon dioxide,
water vapour, methane, etc. to reflect long wave radiation, while being transparent
for incoming short wave solar radiation, and thus warming the earth like a glass
roof in a greenhouses does, section 2.1.

Impacts (of climate change) are all events, like floods, hurricanes, droughts, etc. oc-
curring due to global warming. Besides events directly linkable to climate change
there are also indirect impacts as for example migration from areas uninhabitable
after extreme weather events, section 2.2.

Nonlinearity is a property of a system if there are no direct and simple chains of causes
and effects to identify within the system, as small changes in the cause may lead
to unproportionally large changes in the effect; section 2.1 and section 3.2.1.
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Parameterisation refers to the method of representing processes that cannot be explic-
itly resolved at the spatial or temporal resolution of the climate model because the
process is inadequately understood or exists on a sub-grid scale. A parameteri-
sation is to find a relationships between model-resolved larger-scale processes and
unresolved processes in the climate system, section 3.3.

Prediction is a term used in its common sense if not explicitely stated otherwise. It
is principally impossible to make climate predictions with the same precision and
low uncertainty as weather forcasts, section 3.8.1.

Probability is normally given as a probability density function which is a function that
indicates the relative chances of occurrence of different outcomes of a predicted
climate variable. Probability density functions integrate to unity and are the most
precise measures to assign to climate variables to account for the uncertainty in
model and prediction, chapter 6.

Projection refers to the predicted climate development in a climate model on basis
of a given emission scenario. A projection is thus a potential climate evolution,
section 3.8.

Reanalysis refers to the technique of preprocessing observed data of climate variables to
make it comparable to model data and to account for lacking data and not directly
measured variables. Reanalysis is done with state of the art general circulation
models which are updated with observed data after every timestep of modelling,
section 3.6.1.

Scenario refers to a simplified possible future evolution of the climate system in a
climate model or based on a simulation with several assumptions.

Spectrum of climate models was formerly known as hierarchy of climate models and
describes the range of climate models from simple energy-balance models to com-
plex GCMs, section 2.4.

Theory is an ambiguous term in referring to scientific theories, as for example quantum
mechanics, on the one hand and to theoretic assumptions not necessarily belonging
to a scientific theory on the other hand. Since there is no complete scientific theory
of the climate system the term theory basically refers to theoretic assumptions, an
exception is section 2.3.1.

Tuning of a climate model refers to the adjustment of parameters to achieve agreement
with observations. This means weakly restricted parameters are adjusted in such a
way that parameters restricted by observations match the observations, section 3.4.

Uncertainty is an expression to account for insufficient knowledge concerning the range
of variables and mechanisms and processes in the climate system and in the models.
Uncertainty is omnipresent in climate modelling as it has several sources, section
3.1 and disputed ways to deal with, section 6.1.2 and 7.2.1.
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