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Figure 5.1: Schematic view of three regimes in the
(length,time) space and methods used to simulate the cor-
responding regimes. The molecular processes occur in the
electronic regime, whereas their statistical interplay devel-
ops in the mesoscopic and macroscopic regime.

DFT has proven to be a useful
tool to investigate the electronic
structure of materials. How-
ever, it provides only the to-
tal energy and is thus not di-
rectly applicable to situations at
finite temperature [54]. More-
over, due to the unfortunate scal-
ing of DFT, the accessible sys-
tem sizes are limited. One would
therefore often like to separate
off large, but homogenous parts
of the system and treat them
only as reservoirs. For these
cases, a suitable approach is first-
principles statistical mechanics in
which DFT is combined with con-
cepts from thermodynamics or
statistical mechanics. We will use
such approaches in this work to
account for the effect of realistic
gas-phases with pressures of the order of atmospheres and elevated temperatures (ab-
initio thermodynamics [55, 57, 58]), and to account for the effect of configurational
entropy in the adsorbate ensemble (ab-initio statistical mechanics).
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5.1 Ab-initio Atomistic Thermodynamics

The total energies obtained by DFT correspond to the Helmholtz free energy at T = 0
K and neglecting the zero-point energy (ZPE). The effect of temperature and the ZPE
can be drawn from calculating the potential energy surface (PES) at different atomic
positions. A finite gas-phase pressure can be considered by assuming the surface to be
in equilibrium with a reservoir exhibiting the appropriate thermodynamic potential.

If we correspondingly extend the surface energy definition of Eq. 4.8, we obtain
the surface energy for oxygen adsorption at Pd surfaces in the (T, p) ensemble. Sub-
stituting the Gibbs free energy definition G(T, p) = E − TS + pV into Eq. 4.7, we
get

γ =
1

2A
(GO/Pd(slab)(T, p) −NPdµPd −NOµO) , (5.1)

where µPd and µO are the chemical potentials of Pd and oxygen atoms, respectively.
NPd and NO are the number of Pd and O atoms in the adsorption system, respectively.
The area A and the factor 1/2 have the same meaning as in Eq. 4.8. Assuming the
surface to be in equilibrium with the underlying metal bulk, µPd is determined by the
Pd bulk atoms. The vibrational entropic and pV terms in this bulk Gibbs free energy
and the surface Gibbs free energy are rather similar. We therefore approximate the
difference between these two quantities entering Eq. 5.1 by their leading total energy
terms: (GO/slab(T, p) −NPdµPd) ≈ (Etotal

O/slab −NPdE
total
bulk ), and then arrive at,

γ =
1

2A
(Etotal

O/Pd(slab) −NPdE
total
bulk −NOµO) . (5.2)

Subtracting the surface energy of the clean surface, and supposing the number of
Pd atoms in the O-covered slab and clean slab to not change, we get the Gibbs free
energy of adsorption,

∆G(T, p) = γ − γclean ≈ − 1

2A
(Etotal

O/Pd(slab) − Etotal
Pd(slab) −NOµO) . (5.3)

Assuming the surface in equilibrium with the surrounding gas-phase the µO can be
written as,

µO(T, p) =
Etotal

O2(gas)

2
+ ∆µO . (5.4)

Substituting into Eq. 5.3, and exploiting the definition for the binding energy we
arrive at,

∆G(∆µO) = − 1

2A
(Etotal

O/Pd(slab) − Etotal
Pd(slab) −NO(

Etotal
O2(gas)

2
+ ∆µO))

=
NO

2A
(Eb + ∆µO) . (5.5)
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Table 5.1: ∆µO(T, p0) in the temperature range of interest to our study. The entropy and enthalpy
changes used to obtain ∆µO(T, p0) are taken from [59] at p0= 1 atm.

T ∆µO(T, p0) T ∆µO(T, p0)
100 K -0.08 eV 600 K -0.61 eV
200 K -0.17 eV 700 K -0.73 eV
300 K -0.27 eV 800 K -0.85 eV
400 K -0.38 eV 900 K -0.98 eV
500 K -0.50 eV 1000 K -1.10 eV

The chemical potential of an oxygen atom in an ideal gas, ∆µO(T, p), can be ob-
tained using [55]

∆µO(T, p) = ∆µO(T, p0) +
1

2
kBT ln(

pO2

p0
) , (5.6)

where p0= 1 atm, and ∆µO(T, p0) can be found in thermochemical tables [59]. We
list some values for ∆µO(T, p0) of interest to our work in Table 5.1.

Eq. 5.5 can be used in a most straight forward way to determine the most stable
surface structure by comparing the stability of different adsorbate phases depending on
the gas phase condition, ∆µO(T, p), and using the surface energy of the corresponding
clean slab as reference energy. Fig. 5.2 illustrates this with the phase diagram of
oxygen adsorption at the Pd(100) surface, which clearly shows three stable regions:
The clean Pd(100) surface, as well as a p(2×2) and a c(2×2) adsorbate phase, which
will be explained in more detail below [87–90, 92, 93].

5.2 Ab-initio Statistical Mechanics

In the above described formulation, the atomistic thermodynamics approach enables
a first consideration of a surrounding environment. It is, however, restricted in its
predictive character to those structures that are included in the comparison, i.e. it
cannot predict unanticipated stable structures. The neglect of the surface configura-
tional entropy furthermore limits its use for elevated temperature, e.g. order-disorder
transitions in the adsorbate ensemble cannot be treated. In order to overcome these
shortcomings, we use the first-principles Lattice Gas Hamiltonian (FP-LGH) approach
in combination with Monte Carlo (MC) simulations to investigate corresponding phe-
nomena.

5.2.1 Canonical Monte Carlo (CMC) [61, 62]

If we first want to explicitly address temperature effects on a fixed adsorbate ensemble,
the appropriate ensemble to study thermodynamically is the (NV T ) ensemble with
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Figure 5.2: Phase diagram of on-surface oxygen atom adsorption at the Pd(100) surface. At low
chemical potentials, the clean Pd(100) surface is the stablest structure (−∞,−1.35); with increasing
chemical potential, oxygen atoms start to adsorb at the surface and build a p(2 × 2) configuration
(−1.35,−0.79); at further increased chemical potential, the c(2 × 2) configuration (−0.79, +∞) is
coming out.

fixed number of particle N , fixed volume V , and fixed temperature T . The central
quantity in this so-called canonical ensemble is the partition function,

Z =
∑

ν

e−Eν/kBT =
∑

ν

e−βEν , (β = 1/kBT ) . (5.7)

where Eν are the energies of the system states of interest and kB is the Boltzmann
constant, 1.38×10−23 J/K.

In this work, these system states of interest are any configuration of the adsorbates
on the surface, ordered or disordered. For the moment we neglect vibrational contri-
butions to the free energy, so that these system states are characterized by their total
energy Eν . We will thus intend to evaluate through Z the configurational entropy, and
through F = −kT lnZ the Helmholtz free energy. In more practical terms, we wish
to evaluate the expectation value of any observable quantity Q in the corresponding
(NV T ) ensemble,

< Q >=
∑

ν

Qνpν =
1

Z

∑

ν

Qνe
−βEν , (5.8)
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where, Qν is the value of Q in state ν. The straight idea to calculate < Q > is to
calculate Z,

∑

ν Qνe
βEν , and get < Q >. Unfortunately, it is tedious to calculate the

integrand, and the scaling is (grid points)dimension for a grid-based techniques numerical
integration. An efficient numerical approach is instead to resort to Monte Carlo (MC)
simulations. The basic idea behind Monte Carlo simulations is to simulate the random
thermal fluctuations of the system from state to state over the course of an experiment.
In principle, one has to average the quantity of interest over all states ν of the system,
and the real < Q > is obtained when ν → ∞. However, this is only tractable for
a very small system. For a large system, a much more efficient way would be to
average only over the subset of system states, which have the largest contribution to
the average quantity. The Monte Carlo technique thus works by choosing a subset
of states at random from some probability distribution pν and thereby achieves an
importance sampling. Hence, Eq. 5.8 is rewritten as,

QM =

∑M
i=1Qνi

p−1
νi
e−βEνi

∑M
i=1 p

−1
νi
e−βEνi

, (5.9)

where, QM is an estimator. If M is large enough and nearly all important states are
included, QM will approach the real < Q >. Particularly important is to realize that
for QM to be a good estimator, one does not need the numerator and denominator in
Eq. 5.9 to well approximate the infinite sums separately, but for a converged < Q >
only a well converged ratio of the two is necessary. Metropolis [64] devised an efficient
Monte Carlo scheme to sample such a ratio. This so-called Metropolis Algorithm is
described as follows:

1. If there are N particles in the system, and its total energy is E1, we can give
this configuration a probability distribution, pν = e−E1β .

2. Randomly create a new configuration, and calculate the total energy of the
new configuration, E2. If E2 is lower than E1, accept the trial, and update the old
configuration to the new one. Otherwise, accept the trial with a probability (e−β∆E,
∆E = E2 − E1). In practice this is realized by comparing e−β∆E with a random
number (between 0 and 1). If e−β∆E is larger than the random number, accept the
trial, and update the old configuration to the new one, otherwise reject the trial and
continue with the old configuration.

3. Add the current configuration to the sums in Eq. 5.9.

4. Loop steps 1 to 3 steps until the estimator is converged to a given precision.

Since the system is allowed to visit any configuration in this scheme, it is clear that
a large enough number of trials will enable the system to reach any phase space point
of the system if the way to create new configuration is chosen appropriately. Hence,
the method is ergodic.

5.2.2 Grand-Canonical Monte Carlo (GCMC)
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Figure 5.3: θ vs. ∆µ from the Langmuir ad-
sorption isotherm Eq. 5.10 (red solid line (300
K), red dashed line (800 K)) and GCMC sim-
ulation (blue dots (300 K), blue diamond (800
K)), respectively.

In typical adsorption studies, the adsorbates
do not only move at the surface, but also ex-
change with the gas-phase represented by a
constant temperature and pressure. The ap-
propriate ensemble to consider in this case is
the grand-canonical ensemble (µV T ), which
means that chemical potential (µ), volume
(V ) and temperature (T ) are fixed. The
Metropolis scheme detailed in the previous
sections can be readily extended to evaluate
this ensemble as well. The corresponding
grand-canonical Monte Carlo procedure is
the following for a gas-phase reservoir char-
acterized by the chemical potential ∆µ(T, p)
and again disregarding vibrational contribu-
tions to the free energy of the adsorbed par-
ticles for the time being:

1. Prepare an initial configuration, con-
taining N particles with total energy of E1.

2. In the (µTV ) ensemble, three cases can lead to new trial configurations: re-
distribution of the fixed number of particles at the surface, remove a particle from
the surface, or add a particle to the surface. Each of the procedures has the same
probability.

1). Removal: Randomly choose a particle, and move it from the surface to the
reservoir. Then, calculate the total energy of this (N − 1) particle configuration, E2,
and the energy difference, ∆E = (E2 + ∆µ) − E1. If ∆E < 0, accept the removal.
Otherwise, the removal should be accepted with a probability, e−β∆E.

2). Addition: Randomly select an empty site, and add a particle from the reservoir
to this site. The total energy of the new (N + 1) particle configuration, E2, and the
energy difference, ∆E = E2 − (E1 − ∆µ), are calculated. If ∆E < 0, accept this
addition. Otherwise, the addition should be accepted by a probability, e−β∆E .

3). Diffusion: The same procedure as in CMC (see section 5.2.1).

3. Loop steps 1) to 3) until the observable QM is converged to a descried accuracy.

A simple numerical test to illustrate the GCMC approach is to evaluate the ad-
sorption isotherm (∆µ, θ), where θ is the coverage, for a lattice gas without lateral
interactions. This model can also be evaluated analytically, leading to the Langmuir
adsorption isotherm [76],

θ =
1

1 + e
E0−∆µ

kBT

, (5.10)

where, θ is the coverage, E0 is the binding energy of an adsorbated particle at the
surface, and ∆µ is the chemical potential difference to the particle in the gas-phase.

Fig. 5.3 shows a comparison of corresponding numerical GCMC results to the
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analytical curve at T = 300 K and 800 K. The simulation cell was a square lattice of
dimension (40×40). Based on the probabilities of removal and addition, in the low
chemical potential (∆µ < E0) region, the probability to accept remove a particle from
the surface is larger than adding a particle. This leads to θ < 0.5 ML. On the contrary,
when ∆µ is larger than E0, the probability to accept adding a particle to the surface
is larger than removing a particle, and then the coverage is larger than 0.5 ML. At the
point, ∆µ = E0, the probabilities to accept removal and addition are equal and the
equilibrium coverage is 0.5 ML. Furthermore, Fig. 5.3 shows that the curve at high
T is more spread than at low T . This reflects the increased configurational entropy
contribution at the higher temperature. Nevertheless, all curves must cross the (E0,
0.5 ML) point.

5.2.3 First-principles Lattice-gas Hamiltonian (FP-LGH)

Figure 5.4: Schematic
view of lateral interaction
figures for adatoms at a
fcc (100) surface.

While the importance sampling achieved by the described
Metropolis schemes makes the evaluation of averaged proper-
ties in the (NV T ) and (µV T ) ensemble much more efficient,
the total number of energy evaluations required is still un-
traceable for larger systems, if the total energies are provided
directly from electronic structure calculations. In addition,
due to the periodic boundary conditions the latter can only
provide the energetics for ordered adsorbate configurations
with rather small unit-cell sizes. For adsorption systems with
site-specific adsorption this problem can be solved by resort-
ing to a lattice model and expand the energy of any given
configuration in terms of occupations in the lattice. This is
the idea behind the Lattice-Gas Hamiltonian (LGH) [65−67]
or Cluster Expansion (CE) approach, in which the total en-
ergy depends on an infinite expansion in terms of pair interactions, and many-body
interactions, such as trio (three-body) interactions, quattro (four-body) interactions,
and so on between well defined sites at the surface. As soon as the lateral interaction
potentials are known, the total energy can be evaluated by a simple summation for any
given configuration on the lattice, so that a manyfold evaluation of this Hamiltonian
as required for MC simulations becomes readily possible.

Fig. 5.4 illustrates such a LGH model for adsorption of particles at a fcc (100)
surface into the fourfold hollow sites. The LGH is then written (again neglecting
vibrational contributions to the free energies for this time being):

E =
N
∑

i=1

Eon−site
i ni +

∑

i6=j

Vp(i, j)ninj +
∑

i6=j 6=k

Vt(i, j, k)ninjnk + ...... (5.11)

where, Eon−site
i is the on-site energy, and Vp and Vt are pair and trio interactions,

respectively. Formally, higher and higher order interaction terms (quattro, quinto, ...)
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would follow in this infinite expansion. ni is set as 1 or 0 according to site i being
occupied or empty. In the LGH, the periodic boundary condition (Fig 5.5) should
be considered in Eq. 5.11, which means that apart from the interactions between
atoms in the simulation cell (green arrows), also the interactions with atoms in the
neighboring image cells (blue arrows) should be considered.

Figure 5.5: Schematic il-
lustration of periodic im-
age lateral interactions in
the simulation cell. Green
arrows are pair interac-
tions in the simulation
cell, while blue arrows are
image pair interactions.

As has been noted, the LGH expansion is in principle infi-
nite including higher order interaction terms. In practice, the
expansion must (and can) be truncated after a finite num-
ber of terms. One crucial objective to determine a reliable
LGH is thus to identify which terms can be truncated. For
a given truncated LGH the accuracy of the predicted total
energies depends then on the accuracy of the considered lat-
eral interactions, which is thus the second central objective
to fit a reliable LGH. Traditionally, these parameters are ad-
justed in order to fit a variety of experimental data such as
phase diagrams, heats of adsorption, or thermal desorption
data. Although useful, such an approach is clearly not nec-
essarily predictive in nature, nor the parameters unique, and
may thus not capture the physics of the microscopic processes
that are behind the best-fit adjusted effective parameters.

In recent years, algorithmic advances and increased compu-
tational power have made it possible to determine the lateral
interactions alternatively from first-principles. Most notably, these are approaches
that parameterize LGHs with DFT energetics. This is called First-principles LGH
approach. In the FP-LGH, various ordered configurations at different coverages are
calculated by DFT. For each configuration, the binding energy is expanded as a cluster
expansion using Eq. 5.11. The on-site energies and lateral interactions can then be
extracted by fitting to a sufficiently large number of such computed binding energies
for different configurations. There are thus two crucial aspects that determine the
reliability of this approach: One is which and how many lateral interactions play a
role in determining accurate total energies. In other words, where should the CE be
truncated? And the second one is which and how many DFT calculations are required
to identify optimum lateral interactions. Obviously, the two questions are related to
each other. In the next two sections, we are going to address these two intertwined
topics.

5.2.4 Leave-one-out Cross-validation: Identify Optimum Lat-

eral Figures

Suitable guidance for the question which lateral interactions should be considered in
the truncated LGH expansion can be obtained by assessing the predictive character of
the expansion. In other words, how well can the energetics of configurations that were
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not used in the fitting of the lateral interactions be predicted. Due to the high cost
of the underlying DFT calculations, it is not desirable to calculate a larger number
of configurations as a test set with which this predictive character can be evaluated.
Instead, one would want to use each computed configuration in the actual training set
used to determine the lateral interactions. For such cases the predictive character can
be assessed through cross-validation (CV) scores. The simplest one, the leave-one-out
CV (LOO-CV) is defined as:

CV =

√

√

√

√

1

N

N
∑

i=1

(EDFT
b (i) − ELGH

b (i))2 . (5.12)

where N is the number of calculated ordered configurations. EDFT
b (i) and ELGH

b (i)
are the binding energies of the ith configuration by DFT calculation and evaluated
from the LGH expression for this configuration, respectively. This method means
that least-squares fitting (LSF) is applied on (N − 1) configurations to get the lateral
interactions, and the remaining configuration is used to check the fitting data with an
expected error. In more detail, the procedure of LOO-CV is: First, calculate N ordered
configurations by DFT, and prepare a large pool of lateral interaction figures (like Fig.
5.4 or Fig. 6.1) according to the studied system. Second, randomly choose m lateral
interaction figures from the pool. Instead of fitting them by least-square-fitting using
ALL calculated configurations, leave the ith configuration out, use the rest (N − 1)
configurations to fit the selected m figures by LSF, use the left out configuration to
check the fitting data and get one expected error, (EDFT

b (i) − ELGH
b (i))2. Then leave

another configuration out, and fit the same m figures by the now remaining (N − 1)
configurations by LSF, use the left out configuration to check the new fitting data
and get another expected error. This loop is run until each configuration has been
left out once and finally all expected errors are summed and averaged to produce the
final CV score for the considered set of m lateral interactions. Then choose another
group of m figures from the cluster pool, start anew, and get another CV score. This
is equally done for all sets with m−1, m+1, m−2, m+2 ... etc. lateral interactions
and finally the set of lateral interactions with the smallest CV score is identified as
the optimum one.

5.2.5 Direct Enumeration: Validate the Set of DFT Input
Structures

The LOO-CV identifies the optimum set of lateral interaction figures that minimizes
the fitting errors for a given set of calculated configurations. This leaves the question,
whether the configurations provide an ideal and sufficient set of input structures. One
possibility to check on this is by assessing whether the LGH predicts the same set
of ordered ground-state structures at T=0 K than the DFT input data. For our
adsorption studies this is suitably evaluated through the formation energy, ∆Ef [69],
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which is in general defined as an excess energy with respect to the equivalent amounts
of pure constituents,

∆Ef =
1

Nt
[Etotal

O/slab − θEtotal
(1×1)−O/slab − (1 − θ)Etotal

slab ] . (5.13)

As in Eq. 4.9, Etotal
O/slab is the total energy for a specific adsorbate configuration with NO

O atoms per surface unit-cell (corresponding to a coverage Θ = NO/Nt with Nt the
number of sites per surface unit-cell), Etotal

slab is the total energy of the clean surface,
and Etotal

(1×1)−O/slab is the total energy of the full monolayer (1 × 1)-O configuration.
With this definition, ∆Ef reflects the relative stability of a particular configuration
with respect to phase separation into a fraction θ of the full monolayer configuration
and a fraction (1− θ) of the clean surface, and we can relate it to the binding energy
of the configuration by

∆Ef = θ
[

Eb,O/slab −Eb,(1×1)−O/Pd(100)

]

. (5.14)
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Figure 5.6: Schematic illustration of the idea
behind a of convex hull and the ground line
determined by formation energies.

Plotting the formation energy vs. cov-
erage is very convenient to determine the
DFT ground state line (or convex hull) [78].
As illustrated in Fig. 5.6, assume there
are two stable configurations (θ1,∆Ef1) and
(θ2,∆Ef2), and they define the DFT ground
state line (dashed line in Fig. 5.6). Any for-
mation energy (∆Ef0) of a configuration at
any coverage (θ0) that lies on the dashed line
can be easily derived by,

∆Ef0 =
∆Ef2 − ∆Ef1

θ2 − θ1
× θ0 . (5.15)

Therefore, the ground state line divides the
whole (θ,∆Ef) space into a unstable config-
uration region above the DFT ground line,
and a stable configuration region below the line at least with respect to the existing
DFT data (which here comprises only two configurations). If we now compute a third
configuration (θ3,∆Ef3) that lies below the ground-state line a new stable structure
is found and the convex hull/ground-state line must be redrawn (solid line in Fig.
5.6). For any newly computed configuration we can thus quickly assess whether it
constitutes a stable structure at T = 0 K or not.

The LGH expansion should obviously predict the same stable structures as the DFT
input data. An additional benefit is that with the LGH many more configurations
within much larger unit-cells can be computed. By directly enumerating all such
configurations within unit-cells with a certain maximum area, one can quickly check
the consistency of the LGH with the DFT data. If there is LGH configuration that
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leaks below the DFT ground-state line, the corresponding structure is obviously an
important motif not yet included in the DFT input data set or it is an artifact of the
present LGH expansion. In either case, this identifies a structure (or structural motif)
that should be computed and included in the DFT input data set. For a refined LGH
based on this new input data set, the procedure is repeated and again checked whether
it predicts structures below the DFT ground-state line. This iterative scheme is done
until DFT and LGH predict a consistent set of ground-state structures.

5.2.6 Two Properties to Monitor Phase Transitions:
Ψ and CV

Using a validated first-principles LGH in either canonical or grand-canonical MC sim-
ulations enables the study of critical phenomena at surfaces, like the order-disorder
transition in the adsorbate ensemble. For this two central quantities that we will eval-
uate in the MC simulations are order parameters sensitive to the lateral periodicities
at the surface (Ψ)[70–73] and the specify heat capacity (CV ).

Corresponding order parameters can be derived from Fourier theory for the periodic-
ity of the ordered configuration of interest. Considering our two-dimensional periodic
surfaces, the Fourier transformation should act on each dimension of the surface unit-
cell. In this work, we are only interested in surface unit-cells with equal periodicity
in both dimensions. We can correspondingly concentrate on a square Fourier matrix
(F) [68] written as:

F =





















w0·0 w0·1 ... w0·(NFFT−1)

w1·0 w1·1 ... w1·(NFFT−1)

. . . .

. . . .

. . . .
w(NFFT−1)·0 w(NFFT−1)·1 ... w(NFFT−1)·(NFFT−1)





















, (5.16)

where wr·c = e
− r×c×2πi

NFFT : NFFT indicates the periodicity in units of the surface unit-cell
vector. In order to make a suitable transform according to our magnetization matrix
M defined later, the Fourier transformed matrix (R) is written as, [68]

R = F ∗ (F ∗ MT)T . (5.17)

where the superscript T denotes transposed the matrices transport without conjuga-
tion, which means that the operation only exchanges the rows and columns.

In our case the ordered arrangements of interest are p(2 × 2) and c(2 × 2) ordered
adlayers as depicted in Fig. 5.7. In order to evaluate a suitable order parameter
we apply the so-called renormalization group [70, 75], which divides the unit cell into
several sub-lattices, a, b etc (Fig. 5.7). Supposing there are Nsub sub-lattices, we
use Ma, Mb etc to indicate the total magnetization of the corresponding sub-lattices.
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(The magnetization value of each site is 1 or −1 depending if the sites are occupied
or empty.) The magnetization matrix of a configuration cell is thus expressed by a
(Nsub ×Nsub) size matrix,

M =
1

Nsub







Ma Mb ...
... ... ...
... ... ...





 , (5.18)

which has the same arrangement in its rows and columns as the unit-cell lattice at the
surface. Correspondingly, the Fourier transform is written as a (Nsub ×Nsub) matrix
as well. After transforming Eq. 5.17, the remaining non-zero elements in the matrix
R compare to the frequencies, and are partly degenerate. Summing all these non-zero
parts and normalizing so that the stable arrangement yields an order parameter of 1,
we arrive at the final order parameter Ψ.

If we apply this general recipe to the p(2 × 2) ordered arrangement shown in the
left panel of Fig. 5.7, we identify first Nsub=4 sub-lattices, a, b, c and d. Ma, Mb, Mc

and Md are the corresponding magnetizations of the a, b, c and d sub-lattices in the
simulation cell, respectively, and the magnetization matrix reads,

Mp(2×2) =
1

4











Ma Mb Ma Mb

Mc Md Mc Md

Ma Mb Ma Mb

Mc Md Mc Md











, (5.19)

Correspondingly, we can write its Fourier matrix as,

Fp(2×2) =













1 1 1 1

1 e−
πi
2 e−πi e−

3πi
2

1 e−πi e−2πi e−πi

1 e−
3πi
2 e−πi e−

πi
2













. (5.20)

Substituting Mp(2×2) and Fp(2×2) into Eq. 5.17, we get,

Rp(2×2) =











Ma +Mb +Mc +Md 0 Ma −Mb +Mc −Md 0
0 0 0 0

Ma +Mb −Mc −Md 0 Ma −Mb −Mc +Md

0 0 0 0











. (5.21)

Neglecting the constant part, Ma +Mb +Mc +Md = θ ·Nt (Nt: the total number of
sites in the simulation cell), the order parameter at 0.25 ML can be written as,

Ψp(2×2) =
√

(Ψ1)2 + (Ψ2)2 + (Ψ3)2 , (5.22)

where Ψ1 = Ma−Mb+Mc−Md, Ψ2 = Ma+Mb−Mc−Md, and Ψ3 = Ma−Mb−Mc+Md.
Normalizing Eq. 5.22 to the most stable configuration, p(2 × 2) (left panel in Fig.
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5.7), which gives Ma = Nt

4
and Mb = Mc = Md = −Nt

4
, we thus obtain Ψmax

p(2×2) = 3
4Nt

.
Correspondingly, Eq. 5.22 is rewritten as,

Ψp(2×2) =
3

4Nt

√

(Ψ1)2 + (Ψ2)2 + (Ψ3)2 . (5.23)

In the same spirit, for the c(2 × 2) ordered arrangement shown in the right panel
in Fig. 5.7, we can identify 2 sub-lattices, Nsub=2, and the magnetization matrix is,

Mc(2×2) =
1

2

(

Ma Mb

Mb Ma

)

, (5.24)

Correspondingly, its Fourier matrix is,

Fc(2×2) =

(

1 1
1 −1

)

. (5.25)

Substituting Mc(2×2) and Fc(2×2) into Eq. 5.17, we get,

Rc(2×2) =

(

Ma +Mb 0
0 Ma −Mb

)

. (5.26)

Neglecting the constant part, Ma +Mb = θ ·Nt (Nt: the total number of sites in the

simulation cell), its order parameter is written as, Ψc(2×2) =
√

(Ma −Mb)2, where Ma

and Mb indicate the total magnetization of a and b sub-lattices in the simulation cell,
respectively. Normalizing this formula to the most stable c(2 × 2) configuration at
this coverage, which gives Ma = Nt

2
and Mb = −Nt

2
, we thus obtain Ψmax

c(2×2) = 1
Nt

and
arrive at the final order parameter at 0.5 ML,

Ψc(2×2) =
1

Nt

√

(Ma −Mb)2 . (5.27)

Such order parameters are perfect to determine the critical temperature for the
order-disorder transition, if the periodicity of the ordered structure is known. Essen-
tially, these order parameters are equivalent to the superstructure spot intensities in
low-energy electron diffraction (LEED) experiments [74]. However, if the periodicity
of the ordered structure is unknown, monitoring the specific heat capacity CV is an-
other suitable approach, which is instead sensitive to the mean squared fluctuations
in energy [75]. This quantity is defined as,

CV =
< E2 > − < E >2

kBT 2

=

∑M

i
E2

i

M
− (

∑M

i
Ei

M
)2

kBT 2
, (5.28)
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Figure 5.7: Schematic top view illustrating the division into sub-lattices for the p(2× 2) (left panel)
and c(2 × 2) structures (right panel) on a fcc (100) surface. There are 4 and 2 sub-lattices for
the p(2 × 2) and c(2 × 2) configurations, respectively. a, b, c or d indicate the name of one kind of
sub-lattice. (Large spheres Pd atoms, small spheres O adatoms)
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Figure 5.8: Illustration of how the order parameter Ψ (upper panel) and the specific heat CV (lower
panel) identify the order-disorder transition of a p(2 × 2) structure at a cubic (100) surface with
θ = 0.25 ML. As a toy model we consider a strongly repulsive first nearest neighbor pair interaction
(-200 meV) and a smaller repulsive second nearest neighbor pair interaction (-50 meV) between
adatoms adsorbed into the hollow sites of the (100) surface. Evaluating Ψ and CV over 108 MC
steps and in a (60×60) simulation cell, both properties yield a critical temperature (taken from the
inflection point for Ψ and from the peak for CV ) that is identical to within 40 K.
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where, < E > and < E2 > are the average energy and the mean squared energy,
respectively, and M is the number of MC steps. Fig. 5.8 illustrates an example of
how Ψ and CV identify the order-disorder transition.

Furthermore, for a (100) surface including one (111) step, in order to study the (111)
step effects on the mesoscopic adsorption properties at the (100) surface, we need to
define a property that is sensitive to the local environment. For this we employ the
specific heat per atom resolved for each row parallel to the (111) step, Crow

V . Since the
number of atoms in each row is then no longer constant during the MC simulation we
thus rewrite Eq. 5.28 as

C
rowj

V =
1

kT 2
[

∑M
i=1(

E
rowj
i

√

N
rowj
i

)2

M
− (

∑M
i=1

E
rowj
i

√

N
rowj
i

M
)2] , (5.29)

where, N
rowj

i and E
rowj

i are the number of atoms and the total energy in the jth row
at the ith MC step. (See the test for O-Pd(100) in Appendix D.)
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