
Chapter 4

DFT Calculations for Solid
Surfaces

Surfaces are generated when we split a bulk crystal. The created surface is the place
where molecules from the gas phase or a liquid come into contact with the material.
Atoms at the surface will have a lower coordination than those in the bulk. Due to
the changed coordination the surface geometry will relax or possibly even reconstruct,
to let surface atoms find their new equilibrium positions. For ideal surfaces of cubic
crystals, there are two groups, low Miller index (flat) surfaces, (100), (111) and (110)
surfaces, and high Miller index (stepped) surfaces. Stepped surfaces can exhibit sig-
nificantly different properties compared to flat surfaces due to the effect of the defects.
In this chapter, we summarize how to construct a stepped surface model within the
context of periodic boundary condition electronic structure calculations, and which
geometric and electronic structure quantities of surfaces are evaluated in our analysis.

4.1 Vicinal Surfaces

Close-packed flat surfaces are generated by cutting a fcc bulk along perfect low Miller
index planes, like (100) (left panel in Fig 4.1), (111) or (110) surfaces. Although
the investigation of such low-index surfaces can generate a wealth of information on
surface properties of materials, they are far away from real surfaces. A real surface
exhibits additional features like steps, kinks, or vacancies (Fig. 4.1), which can play
an important role for the overall surface properties. It is therefore a key endeavor in
current surface science to extend our knowledge toward such defects. In our presented
work, we focus on atomic step defects. The role of steps can be particularly suitably
studied using vicinal surfaces, which exhibit a regular array of steps. Cutting a crystal
at a small angle (miscut angle) away from a low-Miller-index plane creates such vicinal
surfaces (Fig. 4.2) (or stepped surfaces or high-Miller-index surfaces). Vicinal surfaces
exhibit atomic terraces with a low-index orientation, and these terraces are separated
by either straight or kinked atomic steps.
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Figure 4.1: Left panel: Top view of a fcc (100) surface (second layer atoms are drawn as light
spheres). Right panel: A real surface with steps, kinks, and vacancies.

Figure 4.2: Cartoon scheme to create a (113) vicinal surface in a fcc bulk. The left panel is a bulk
fcc unit cell. The plane enclosed by red lines is the (113) plane. Expanding the fcc cell 3 times in
the x and y directions reveals the (113) plane (top right panel), and atoms on the plane are shown
in red color. In the bottom right panel, the yellow plane corresponds to a (100) terrace and the blue
one is a (111) step. The green atoms indicate the bottom step edge. The (113) plane can therefore
be viewed as two atomic row wide (100) terraces and (111) atomic steps.
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Figure 4.3: Top view of the family of Pd(11N) vicinal surfaces, Pd(113), Pd(115) and Pd(117) (from
left panel to right panel). Based on the GGA-PBE bulk fcc Pd lattice constant (3.947 Å), the value
of b is same in the three cells, 2.79 Å, and a and γ are 4.83 Å and 106.790 for Pd(113), 7.38 Å and
100.890 for Pd(115), and 10.06 Å and 97.970 for Pd(117), respectively. The additional nomenclatures
will be discussed in Chapter 7.

In our work, we focus on Pd(11N) (N=3, 5, 7) vicinal surfaces (Fig. 4.3), which
can be built in the way described in Fig. 4.2. The family of Pd(11N) (N=3, 5, 7)
vicinal surfaces (top view in Fig. 4.3 and side view in Fig. 7.1) has a similar geometric
structure, exhibiting (111) steps and (100) terraces of varying width. There are 2, 3
and 4 atomic rows on the (100) terraces of Pd(113), Pd(115) and Pd(117), respec-
tively. The relationship between the Miller indices of these Pd(11N) vicinal surfaces
and their constituent low-index micro-facets becomes clear from the vector decom-
position (11N)=nrow×(002)+1×(111̄), (N=2nrow−1, nrow=2, 3, 4...), where nrow is
the number of atomic rows on the (100) terraces. ((002)≡(100) and (111̄)≡(111) in
cubic symmetry). From the (1 × 1) surface unit cells of the different vicinal surfaces,
Pd(11N) (N=3, 5, 7) indicated in Fig. 7.1, the surface unit cell becomes larger and
larger, and the interlayer spacing becomes smaller and smaller with increasing N .
Moreover, the larger the surface unit cell, the smaller the atomic density is, and the
more open the surface is.

4.2 Surface Models

For surface simulations, there are different models that can be used, most notably
the cluster model and the supercell model. Cluster models treat the surface as a
small isolated cluster of atoms, one facet of which has the same symmetry and atomic
arrangement as the crystal surface intended to study. This model is useful for materials
with more localized wavefunctions, such as insulators like MgO [35]. For metal surfaces
with de-localized valence wavefunctions, however, it is not suitable, and the supercell
model (Fig. 4.4) including slabs and vacua is the more efficient choice. The slab in
the supercell is infinite and periodic in the directions parallel to the surface, but finite
in the direction perpendicular to the surface.

Such a setup thus enables band formation with the correct dispersions. Two impor-
tant things should be kept in mind using a supercell model: The vacuum thickness
should be large enough to avoid surfaces of consecutive slabs seeing each other, and
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Figure 4.5: Left panel: Striped islands on a fcc(111) surface. The stripes and the valleys between
them are both four atomic rows wide. The islands are necessarily bounded by an A (100) (green)
and a B (111) (blue) step. Middle and right panels: Two types of triangular islands on an fcc(111)
surface, exhibiting (100) (green) and (111) (blue) steps.

the thickness of the slab should also be thick enough to avoid interaction between the
two surfaces of one slab. This normally also ensures that the middle layer of the slab
exhibits bulk-like properties.

Vacuum

Vacuum

Slab

Figure 4.4: Supercell
model, including slabs
and vacuum.

There are three methods to build stepped surfaces in the
supercell approach. The first one is a striped surface (Fig.
4.5) [38]. Striped surfaces are (n+1) layers thick in cross sec-
tion through the stripe islands and n layers thick through the
trenches in between. On such a striped surface, the disad-
vantage is that there are necessarily (100) and (111) steps
simultaneously present at the two sides of one stripe. The
second method to build a stepped surface is via triangular
islands on the surface (Fig. 4.5) [39]. Such structures con-
tain only one kind of either (100) or (111) steps around each
island. This method is useful to differentiate the small en-
ergy differences in step formation of (111) and (100) steps,
but contains the effect of the step facet edges of the triangle.
The third method is via a slab vicinal surface as illustrated in
Fig. 4.4 and Fig. 7.1. Here, the slab is constructed from the
corresponding high Miller-index plane layer by layer. Such a
setup allows the investigation of long-range step-step interac-
tions, and also exhibits only one type of step. Additionally,
the surface unit cell size is modest. On the other hand, due
to the sheared orientation of the supercell, particular care has to be taken to ensure
proper k-point sampling (Appendix C). The slab vicinal surface model to investigate
the properties of vicinal surfaces is used in our study.

26



Chapter 4. DFT Calculations for Solid Surfaces

4.3 Surface Minimization

In surface science surfaces are often classified into three kinds: ideal bulk-truncated
surfaces, relaxed surfaces and reconstructed surfaces, depending on how they differ
from the same planar termination in the bulk. Assuming cleavage of the crystal does
not perturb the remaining material at all and the geometrical arrangement of surface
atoms is the same as the bulk termination, a surface is called an ideal surface. At a
metal surface, the electrons are free to rearrange their distribution in space to lower
their kinetic energy (Smoluchowski smoothing [44, 45]), which leads to a net force on
the ions. The ensuing movement of the atoms in the surface fringe is called surface
relaxation. If the atomic movement leads even to a change in the symmetry and
size of the surface unit cell (e.g. through changing bonds), one talks about surface
reconstruction. Relaxation changes thus only interlayer spacings, while the surface
unit cell does not change at all. Neither flat Pd surfaces, nor Pd(11N) vicinal surfaces
are known to reconstruct so far. Therefore, we focus on the varying interlayer spacings
as resulting from surface relaxation,

∆dij = 100 × (dij − db)/db , (4.1)

where db is the bulk interlayer spacing, and dij is the interlayer spacing between
layers i and j (i and j are the surface layer numbers) after relaxation. With the
sign convention behind Eq. 4.1, a minus sign indicates interlayer spacing contraction,
while a plus sign indicates expansion. In addition to the varying interlayer spacing,
there can be atomic displacements from the bulk position parallel to the surface.
Such registry relaxations [36], ∆rij , are defined similar to the interlayer relaxation
perpendicular to the surface as,

∆rij = 100 × (rij − rb)/rb , (4.2)

here, rb and rij are the distance between the positions of two atoms in different
layers (i and j) projected onto the surface plane, before and after surface relaxation,
respectively. In the registry relaxation, a minus sign means atoms of neighboring
layers try to approach each other compared to their bulk distance, while a plus sign
means that atoms go further away from each other.

For finding the equilibrium positions of atoms, the PORT minimization method [46],
a reverse-communication trust-region quasi-Newton method from the Port library, was
used to relax the atomic positions. Almost all geometry optimization approaches base
on a harmonic approximation, in which the total energy can be expanded near the
minimum as,

E = E(R∗) − F(R∗) · (R− R∗) +
1

2
(R −R∗) · H(R∗) · (R− R∗) , (4.3)

where E is the predicted energy for taking a step ∆R (∆R=R−R∗) from the current
point, E(R∗) and F(R∗) are the energy and force calculated at the current point and
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H(R∗) is the Hessian matrix. The most straightforward approach is steepest descent,
which takes H(R∗) as a unitary matrix and takes a step along the direction of the
force,

F(R) = F(R∗) −H(R∗) · ∆R . (4.4)

Looking for the minimum of total energy E means searching for a zero of this force.
Hence, we have

∆R = H−1(R∗) · ∆F(R), (∆F(R) = F(R∗) − F(R)) . (4.5)

The left side indicates the finite step ∆R which points to the minimum provided
the inverse Hessian matrix and quadratic approximation of E are exact. The most
important method to investigate this information is the Broyden-Fletcher-Goldberg-
Shanno (BFGS) method [47]. The method iteratively builds up an approximation of
H−1(R∗) by making use of the forces obtained during previous steps of the structure
minimization. This Hessian matrix must remain positive definite in order to guarantee
that E(R) deceases as we move into the direction ∆R. If the step ∆R is too large,
i.e. E(R) is increasing, one has to backtrack trying a smaller step along the same
direction to get a lower total energy. The minimization process terminates when all
atomic forces for a geometry fall below a certain target value.

However, away from the minimum the true Hessian is not necessarily well approx-
imated by this procedure. If the approximated Hessian is not positive definite, the
solution to Eq. 4.5 may even be in the uphill direction and the update procedure can
go badly wrong. To circumvent this we can rewrite the Eq. 4.4 as,

(R −R∗)T · ∆F(R) = (R− R∗)T · H(R∗) · (R −R∗) . (4.6)

If H is positive definite, the right-hand side is positive, (R−R∗)T·H(R∗)·(R−R∗) > 0.
This is called the curvature condition. If instead (R − R∗)T · H(R∗) · (R − R∗) < 0
at some stage, precautions have to be taken to prevent the approximated Hessian to
become wrong. The PORT method includes such a curvature condition judgment.

Moreover, moving a full step ∆R is often not appropriate; it may be too large. One
approach would be to search along the direction of ∆R, but this can be inefficient since
it would involve many calculations along a single direction. An alternative approach
is to use what is called Trust-Region method. Here one calculates the best step for a
quadratic model with the current approximation for the Hessian with the additional
constraint that ‖∆R‖ ≤ R, where R is the trust region radius. If a good step is
chosen, the current approximation for the Hessian is good and it is safe to increase
the radius; if the step is poor (the total energy increases) the radius is decreased.
In one word, PORT is still a BFGS type minimization method but with curvature
condition and trust region. In the WIEN2k code the PORT minimization method
is strongly recommended, and for our purposes it proved to be stable, efficient and
did not depend too much on the users input. In our surface simulations, the middle
layer in the slab is fixed during relaxation procedure, and the remaining layers are
fully relaxed until each force component of each atom decreases below 5 mRy/a.u (1
mRy/a.u=7.20 meV/Å).
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4.4 Two Key Surface Energetic Properties: γ and

Eb

The surface relaxation we just described minimizes the forces on the atoms. Ener-
getically, this relaxation process is suitably characterized by the surface energy per
unit area, γ [37]. (For simplicity, it is often just named surface energy though.) It is
defined as the surface excess free energy per area of a particular crystal facet. The
total energy of a surface is,

E = TS − pV + µN + γA . (4.7)

Since γ denotes the cost connected with creating the surface, the most stable surface
will minimize γ. In this respect, it also determines the equilibrium shape of a crystal
(Wulff construction [40, 41]), or plays a key role in faceting, roughening, crystal growth
phenomena, or surface segregation in binary alloys. Most of the experimental data on
absolute surface energies [42] comes from surface tension measurement in the liquid
phase extrapolated to zero temperature. This procedure includes a rather large degree
of uncertainty and corresponds furthermore to an isotropic crystal.

Using a supercell model containing slabs with two equivalent surfaces (i.e. a crystal
with inversion symmetry), the surface energy, γ at T = 0 K of a clean surface, can
then be calculated as,

γ =
1

2A
(Etotal

slab −NsE
total
bulk ) . (4.8)

where Etotal
slab and Etotal

bulk are the total energy of the slab and the total energy of a bulk
atom, respectively. Ns is the number of atoms in the slab, A is the surface unit area,
and the factor 1

2
is used because the slab has two surfaces.

When atoms or molecules adsorb at surfaces, created bonds with the surface will
release energy. The total energy component of this formation energy is called binding
energy, Eb, which is a function of coverage and distribution of the adsorbates at the
surface. In the case of oxygen adsorption, it is written as,

Eb = − 1

NO

[

Etotal
O/slab − Etotal

slab − NO

2
Etotal

O2(gas)

]

. (4.9)

Here NO is the total number of adsorbed O atoms, Etotal
O/slab, E

total
slab , and Etotal

O2(gas) are
the total energies of the surface containing oxygen, of the corresponding clean surface,
and of an isolated oxygen molecule, respectively. Since a free O2 molecule is thus used
as the zero reference for Eb, a positive binding energy indicates that the dissociative
adsorption of O2 is exothermic at T = 0K. To obtain the total energy of the isolated
O2 molecule, we exploit the relation Etotal

O2(gas)
= 2Etotal

O(atom) − D, where Etotal
O(atom) is the

total energy of an isolated oxygen atom, and D is the theoretical O2 binding energy.
The isolated O atom is then calculated spin-polarized, inside a rectangular cell of
side lengths (12 × 13 × 14) bohr, Γ-point sampling of the Brillouin zone and without
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spherically averaging the electron density in the open valence shell. For D we employ
the previously published ultra-converged GGA-PBE value of 6.202 eV. [96] Compared
to the experimental binding energy of 5.12 eV [110], this value shows the well-known,
substantial GGA-induced error. With this value Eq. 4.9 can be rewritten as,

Eb = − 1

NO

(Etotal
O/slab −Etotal

slab ) + (Etotal
O(atom) − 3.101 eV) . (4.10)

4.5 Step Formation Energy

The change in the T = 0 K surface energies of vicinal surfaces compared to the
corresponding terrace surface energies reflects the additional cost due to the atomic
steps at the surface. This cost can be expressed by the so-called step formation
energy [48, 49]. Consider a vicinal surface (Fig. 4.6) exhibiting a periodic succession
of terraces with equal widths, separated by steps of monoatomic height. The step
energy density (step formation energy per unit length) β̄ of the vicinal surface is
defined by the equation:

β̄ = β(n)b− β(n0)s . (4.11)

So,

β(n) = β(n0)
s

b
+
β(θ)

b
= β(n0)cosθ + β̄sinα/h , (4.12)

where β(n) and β(n0) is the surface energy (per unit length) of the vicinal surface
and the flat terrace surface, respectively. This equation yields the surface energy of
vicinal surfaces in terms of the step energy density β̄. On the other hand, it is useful
to consider the step formation energy Estep per step atom rather than the energy
density β̄, Estep = β̄a0. Then Eq. 4.12 can be rewritten as,

Estep = (β(n) − β(n0)cosθ)
a0h

sinθ
= (β(n) − β(n0)cosθ)a0b

= γvicinal(n) − (nrow − 1)β(n0)a0b0

= γvicinal(n) − (nrow − 1)γterrace(n0) − fγterrace(n0) , (4.13)

where γvicinal(n) and γterrace(n0) are the surface energies per atom of the vicinal surface
and flat surface, respectively. nrow is the number of atomic rows at terraces. The
additional term, fγterrace(n0), is a correction for the fact that the step may not rise
at a right angle from the terrace. f is a geometrical factor explained in Fig. 4.6. The
values for f on different vicinal surfaces can be found in ref. [48]; f=1/2 for the ideal
vicinal Pd(11N) surfaces, nrow(100)+(111).
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Figure 4.6: Model explaining the geometrical view behind Eq. 4.13. n and n0 are the directions
normal to the vicinal surface and to the terraces, respectively. b is the distance between two consec-
utive steps, b0 is the distance between two consecutive atomic rows in a terrace. a0 is the unit along
the step edge. α is the miscut angle and nrow is the number of atomic rows, f is a geometrical factor
depending on the vicinal surface and h is the height of the steps.

4.6 Local Density of States (LDOS)

The local density of electronic states (LDOS), which is the number of electronic states
within energy between E and E + dE, is an important quantity to analyze the elec-
tronic structure. It is defined as,

n(r, ǫ) =
∞
∑

i=1

|ϕi(r)|2δ(ǫ− ǫi) , (4.14)

where ϕi(r) is the single-particle eigenfunction of the Kohn-Sham Hamiltonian, and
ǫi is the corresponding eigenvalue. The LDOS exhibits system properties, such as the
valence band, conduction band, Fermi energy, bonding region, etc. Based on that,
we can determine whether the system is a metal, or insulator or semiconductor. In
the LAPW method, the muffin-tin sphere is a convenient local region to calculate the
LDOS of different states projected onto the different atoms. Fig. 4.7 shows the cor-
respondingly computed LDOS of fcc bulk Pd. The valence d-band is nicely discerned
and the Fermi-level falls at the upper edge, indicating the high filling characteristic
for this late transition metal (TM).

4.7 Surface Core-level Shifts

Apart from the LDOS, surface core-level shifts (SCLS) [50] are another important
quantity that can be used to investigate the electronic structure of surfaces. Although
the core orbitals do not take part in the bonding, they are affected by changes in the
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Figure 4.7: Local density of states of bulk fcc Pd (projected onto s, p and d atomic orbitals). s and
p orbitals have a very small contribution to the total valence DOS, while the Pd 4d band is clearly
visible. The Fermi level is at its upper end of this band, reflecting the position of Pd in the periodic
system of elements.

atomic environment, and as such the core level energies are sensitive local probes
of changes in the electronic structure in different environments. Core level energies
can be measured for both clean and adsorbate-covered surfaces by high resolution
core-level photoemission spectroscopy [52]. The SCLS [51], ∆SCLS, is defined as the
difference in energy that is needed to remove a core electron either from the surface
or from a bulk atom,

∆SCLS = [Esurface(nc − 1) − Esurface(nc)] − [Ebulk(nc − 1) − Ebulk(nc)] , (4.15)

where Esurface(bulk)(nc) is the total energy of the system considered as a function of
the number of electrons nc in a particular core level c of a surface or bulk atom,
respectively. In DFT calculations, we can rewrite Eq. 4.15 approximately as,

∆SCLS
initial = [ǫcbulk − ǫFbulk] − [ǫcsurface − ǫFsurface] , (4.16)

where, ǫcsurface(bulk) is the KS eigenvalue of the core level c in the surface and bulk,

respectively. ǫFsurface(bulk) is the Fermi level in the surface and bulk, respectively. In

this SCLS approximation, ∆SCLS
initial is one contribution to the measurable SCLS in x-ray

photoemission spectroscopy (XPS), where the latter comprises in addition also the
screening contribution of the valence electrons in response to the created core hole
[50]. For a meaningful comparison with the experimental data, a total SCLS taking
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both initial and final state screening effects into account must be used. However, it
is not so much this connection to an experimentally accessible quantity that makes
us interested in the initial-state SCLS in this work, but rather that the ∆SCLS

initial are a
very sensitive probe of changes in the local electronic structure of an atom in different
environments, which is why we mostly content ourselves here with focusing on the
∆initial

SCLS of the 3d Pd core level.
In Fig. 4.9, one can see for both clean Pd(111) and Pd(100) that the 4d band

of the first layer atoms is narrower than those of the deeper lying surface layers.
This can be rationalized as follows: The width of the band depends on the overlap
or hybridization of orbitals with orbitals from neighboring atoms. The higher the
coordination, the more overlap and the broader the band. The reduced coordination
of the surface atoms leads therefore to a narrowing of the valence d-band. Moreover,
because the total number of valence states must be conserved, the narrowed LDOS
is enhanced around the Fermi level. In order to keep local charge neutrality, the Pd
d-band is therefore also slightly shifted to a higher energy (Fig. 4.8), which induces a
positive surface potential shift [∆V (r) = Vsurface(r)−Vbulk(r)] [51, 53]. Since ∆V (r) is
related with the initial-state SCLS (∆): ∆3d ≈ − ∫ dr∆V (r)r2|R3d(r)|2, the changed
potential acting on the Pd surface atom 3d core levels generates a negative initial
surface core level shift. This would be reversed for surface atoms in an early TM (less
than half full d band), where the surface potential shift is negative and a positive
3d initial-state surface core level shift is induced. The computed initial-state surface
core level shift of the 3d level is −0.39 eV and −0.50 eV for the outermost layer
of Pd(111) and Pd(100) (with GGA-PBE), respectively. They are therewith much
larger than those of the other deeper lying layers, which are nearly zero. Both the
LDOS and the SCLS reflect therefore the efficient metallic screening behavior of Pd:
Only the first layer atoms are largely affected by the changed coordination and exhibit
correspondingly significantly changed parameters. These changes are rapidly screened
away by the mobile conduction electrons deeper inside the crystal, and already the 2nd
and lower layer atoms approach properties virtually indistinguishable from the ones
of bulk atoms. The LDOS of the middle layer atoms in the slab is correspondingly
already quite similar to the bulk LDOS (Fig. 4.7).

In additional to the initial SCLS, we need to compute the total SCLS including the
final SCLS contribution for comparing with the experimental value. We already know
that the final SCLS is induced by the valence screen effect on the creating core in the
core level. The screen effect in the energy different in Eq. 4.15 can be determined by
the mean value theorem of integration [51],

E(nc − 1) − E(nc) =
∫ nc−1

nc

∂E(n′)

∂n′ dn′ ≈ −ǫc(nc − 1/2) . (4.17)

In order to implement the final state effect by the DFT calculation, we ionize the
interesting core level of atoms by moving 1/2 electron from the core to the valence
band.
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Figure 4.8: Cartoon using the rectangular d-band model to illustrate the d-band surface shift in late
TM (more than half full d band). In order to maintain the same number of occupied states up to
EF , the narrowed surface band (dash shading) shifts up in energy.
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Figure 4.9: Local density of states of different layers for Pd(111) [top panel] and Pd(100) [bottom
panel]. The LDOS of the outermost layer is significantly narrower than those of the other layers,
while the LDOS of the middle layer is already similar to the bulk DOS. Additionally shown are the
3d initial-state surface core level shifts ∆SCLS

initial of the corresponding layers.

35



Chapter 4. DFT Calculations for Solid Surfaces

36




