Chapter 3
(L)Y APW+lo

From the HK theorems, the electron density determines all system properties. Un-
fortunately, there is no direct way to obtain the electron density, and it is hard to
express the kinetic energy as a functional of the density as well. Therefore, we have
to integrate Kohn-Sham wave functions to generate p (Eq. 2.12), and insert wave
functions into the kinetic potential to get the kinetic energy. In order to convert
the corresponding wave function equations into suitably numerically accessible ma-
trix equations, the wave functions and electron densities are expanded into a basis
set. Based on the type of basis functions a variety of DFT formulations in numerical
codes exist. In this chapter, we will introduce one of the most accurate methods,
(L)APW+lo, which is used in the present work.

3.1 Bloch’s Theorem

The Bloch theorem [20] states that Any eigenfunction W(r) can be written as a product
of a function ¢,(r) that has the periodicity of the lattice, and a plane wave e'8* with
g any vector in reciprocal space,

U(r) = d(r)e®T . (3.1)

If the reciprocal vector g is written as the sum of a vector (k) in the first Brillouin
zone and a reciprocal lattice vector K, g=k-+K, the Bloch theorem is rewritten as,

U(r) =V, (r) = {gg(r)e™ }e™”
= i, ()™ (3.2)
where, n indicates the number of the Brillouin zone where g is in, and is called band
index.
The first term in Eq. 3.2 ¢y, (r), determines the eigenfunction, ¥(r). Due to the
periodicity of the lattice, the straight idea to get ¢y, (r) is to sum over plane waves
that have the same periodicity of the lattice. Then,

Dren (1) = D cie™®T (3.3)
K
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The expansion of Wy (r) becomes,

Ty, (v ZCK el KAl (3.4)

Popular DFT codes like VASP or CASTEP [21] are based on such a plane wave
basis sets. Describing the steep potential close to the nuclei (and correspondingly
highly oscillating wave functions) is demanding with a pure plane wave basis set, and
requires to go to high K values in Eq. 3.3. When aiming to maintain a full-potential
description a suitable approach followed in the (L)APW+lo idea is thus to augment
the plane wave basis functions with more localized functions.

3.2 Augmented Plane Wave (APW)

Before embarking on the (L)APW+lo method, it is ad-
vantageous to discuss the APW method introduced by
Slater [22]. Considering the behavior of electrons in

space, when electrons are far away from the nuclei, they
show the behavior of free electrons, and are then suit- @

ably described by plane waves. While close to the nuclei,
electrons bind strongly to their nuclei, their behavior is
quite as in a free atom and they could be described more
efficiently by atomic like functions. Therefore, the whole
space can be techniqually divided into two regions, non- Figure 3.1: Schematic division of
overlapping atomic spheres (so-called Muffin-tin (MT) gspace into atomic sphere region
regions) and interstitial (I) region (Fig. 3.1). Corre- (I) and interstitial region (IT).
spondingly, the potential in the whole space can be de-

fined as
| V(r) (r € MT)
Vir) = { constant (r€l) | (3.5)
and, two types of basis sets are used in the two different regions,
A , €)Y (T e MT
W(r ) = { %n;ikr.l-{knw(r ) Yin (7) g e1) ) (3.6)
NG

In the atomic spheres (MT), the wave functions are expanded by radial functions
times spherical harmonics. u; is the solution of the radial Schrédinger equation for a
spherical potential [V (r)] for energy ¢,

1d, ,d I(l+1
uz+(+)

_T_ZJ(T dr) [ > +V(r)—elruy=0 . (3.7)

In the interstitial region (I) plane waves are instead used to build the wave function.
The coefficients A;,, in the atomic sphere expansion are determined by requiring that
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the wave functions in the MT and the interstitial regions match each other at the
MT boundary [24]. Thus, each plane wave is augmented by an atomic-like function
in every atomic sphere and constitutes thus the basis set used to expand the wave
function,

U(r) = Z CnPr, (r) . (3.8)

The biggest disadvantage in the APW method is that it can not get the eigenvalues
from a single diagonalization due to the unknown parameter ¢; in Eq. 3.6. The exact
¢; value, which is what we want to know, is needed to describe the eigenstate ¥y (r)
accurately. Since this energy depends on the function wu;(r, ), the resulting eigenvalue
problem is non-linear in energy. One has to set a trial energy for ¢, solve Eq. 3.7
to obtain the APW basis, set up the matrix elements, and compute the determinant
|H — ES|. If the eigenenergy does not equal ¢, another trial energy must be chosen
until the eigenenergy equals ¢;. This makes the APW method extremely inefficient.

3.3 LAPW

In order to overcome the non-linearity problem in the APW method, Anderson de-
veloped the linearized augmented plane wave method (LAPW) [23,24]. In his idea,
the radial function v; is expanded by a Taylor expansion around ¢,

w(r,e) = w(r,e) + (e — e )u(r,e) + O((e — )% (3.9)

where u; = g—g. In this case the radial function error is second order, and the energy
error is of fourth order [25]. When ¢ is set near ¢, the radial function and energy
errors are negligible. Substituting Eq. 3.9 into Eq. 3.6, we get the formulation of the

LAPW basis set,

qbifpw(r) _ { zirzi[ﬁl.:-mkHUl(T’ €l1) + Blm,knul(rv Ell)]yim(f') Ei g IR;IT) (310)

VQ

In the interstitial region, the basis set is the same as in the APW method, but in
the MT spheres, the basis functions not only depend on u;, but also on its energy
derivative, ;. It is very clear that the LAPW method is thus more flexible than
the APW in the MT spheres. To know the exact value for ¢, as in the APW is not
important anymore. For a fixed value of ¢/, the modified basis functions (Eq. 3.9)
provide the extra flexibility to cover a large energy region around this linearization
energy. In order to determine both Ay, k, and By, x,,, the functions in the M'T spheres
are required to match the plane wave function both in value and in slope at the sphere
boundary. However, the continuous derivatives require higher plane wave cutoffs to
achieve a given level of convergence.
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3.4 LAPW with Local Orbital (LAPW+LO)

Based on whether or not electrons in an atom participate in the chemical bonding
with other atoms, the electrons can be divided into two types. One type of electrons
are core electrons, which are extremely bound to their nucleus and are thus entirely
localized in the MT sphere. The corresponding states are called core states. The
other type of electrons are wvalence electrons, who are leaking out of the MT sphere
and bond with other atoms. However, for many elements, the electrons cannot be
clearly distinguished like that. Some states are neither constrained in the core states,
nor lie in the valence states and are correspondingly termed semi-core states. They
have the same angular quantum number [ as the valence states but with lower principal
quantum number n. When applying LAPW on these states, it is thus hard to use one
€} to determine the two same [ in Eq. 3.10. The dilemma is solved by introducing
local orbitals (LO), which are defined as

LO(,) — { ([)Azmul(r, €) + Bimtu(r, €) + Cimwi(r, )] Yim (F) 511: 2 i\;[T) (3.11)

Each local orbital is zero in the interstitial region and other atoms’ MT sphere. The
three coefficients A, B, and Cj,, can be determined by requiring the LO to have
both zero value and zero slope at the M'T boundary and be normalized.

3.5 APW+lo

It has been realized that the standard LAPW method is not the most efficient way to
linearize Slater’s APW method [27]. Instead, the basis set of the introduced APW+lo
[26,27] method is also energy independent and still has the same basis size as the
original APW method. In order to achieve that a new local orbital (lo) is added, which
is different from the LOs used to describe semicore states to gain enough variational
flexibility in the radial basis functions. The lo definition is,

o (1) = { [Apwi(r, €) + Bimtu(r, €)Y (F) (v € MT) (3.12)

tm 0 (rel)

The two coefficients A, and By, are determined by normalization, and by requiring
that the local orbital has zero value at the Muffin-tin boundary. The advantage of
the APW+lo method is that it has the same small basis set size as the APW method,
and has the same accuracy compared to the LAPW method.

As mentioned by Madsen et al [27], it is also possible to use a hybrid basis set,
LAPW in combination with APW [(L)APW+lo|, and treat the physically impor-
tant orbitals by the APW-lo method, but the polarization [-quantum numbers with
LAPW. All the data presented in our work are using this hybrid basis set (L)APW+lo.
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3.6 Full Potential (L)APW+lo Method

In Eq. 3.5, we supposed the potential is constant in the interstitial region and spherical
in the MT region. The accuracy of (L)APW+lo method can be further improved by
considering the full potential (FP), and expand it similar to the wave functions,

Vir) = { %gé@@}flm(f) g : %m (3.13)

This is also called non-muffin-tin correction. In this case, the radial function u; in
Eq. 3.7 is not the exact solution inside the MT sphere. It should be evaluated for the
true MT potential.

3.7 Two Important Basis Set Parameters: Energy
Cutoff and K-mesh

In all DFT codes for solid state calculations the energy cutoff (E..) and k-mesh
(or k-points) are important basis set parameters to determine the accuracy of the
computational results. Both parameters must be tested in DFT calculations in order
to find the optimum compromise between accuracy and implied computational burden.

When we use plane waves to construct wave functions, in principle the more plane
waves, the better the results are. However, it is not necessary to use infinitely many
plane waves to construct the wave function. We can limit the energy cutoff, which
describes the number of plane waves used, to an optimum value. The relationship
between energy cutoff and plane wave coefficient is,

WK
Eew = “om. (3.14)
And the wave function based on K.y is,
Kmax .
Ui (1) = D Ok, €™ (3.15)
K

In the FP-(L)APW-+lo method this energy cutoff is employed in the interstitial region.
Turning to the MT sphere, the spherical harmonics should also be terminated at a
maximum [m for the same reason.

The evaluation of the Kohn-Sham equations in a periodic boundary calculation
requires many system quantities like the charge density to be integrated over the
Brillouin Zone (BZ). Exploring the symmetry of the system, it is more specifically
only necessary to integrate over the irreducible part of the Brillouin Zone (IBZ). The
integrals are dealt with numerically by summing over a finite number of k-points in

the IBZ,
1

IBZ QIBZ

dk — Zu)k . (3.16)
k
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Therefore, the denser the k-mesh, the more accurate the integrand is. Similar to
E.w, we should also find an optimum k-mesh at which the quantities of interest are
converged.

There are two common methods to get k-points: The tetrahedron method [28, 29|
and the special k-points method [30-32]. In our work we use the special k-point
method according to Monkhorst and Pack [31] throughout. The method generates a
uniform k-point grid in the full BZ, then uses the space group of the system to rotate
the k-points into the IBZ, and determine the proper weights, w(k), of each special
k-point by dividing the number of equilibrium k-points of a special k-point in the BZ
by the total number of points in the grid.

In metals, energy bands intersect the Fermi energy. This leads to discontinuities in
the occupation and in the integrand on the Fermi surface, and can cause problems
with reaching self-consistency due to charge sloshing. We can replace the step function
occupation at the Fermi energy with a smoother function, like a Fermi distribution
at a finite temperature to solve the problem. After the integration the resulting free
energy has then to be extrapolated to T'= 0 K.

3.8 WIEN2k Code

The WIEN2k code [33] is based on the FP-(L)APW+lo method. The code can only
be applied to systems with periodic boundary conditions and is therefore mainly used
for crystal calculations.

The WIEN2k code has two main parts (Fig. 3.2). One is the initialization (left
part in Fig. 3.2). It is used to check if MT spheres overlap, generate a new structure
file according to its space group, detect its symmetry operations, generate a k-mesh in
its BZ, and get the input trial density. The other one is the self-consistency cycle (right
part in Fig. 3.2). It calculates the potential used in the KS equation, diagonalizes
the Hamiltonian and overlap matrices and generates eigenvalues and eigenvectors,
integrates all valence states and obtains the valence electron density (pya), solves
the atomic calculation and gets the core electron density (peore), mixes [34] the two
electron densities with the old total electron density (poq) and gets the new total
electron density (ppew). Thereafter it checks if the properties (puew, or Eior, or F' ...)
of the system are converged, and either stops the self-consistency cycle or starts anew.

Apart from two the main parts, WIEN2k has lots of additional packages to evaluate
a variety of system properties. This comprises geometry optimization, plotting the
density of states (DOS), band structure, electron density, X-ray spectra ...

Two kinds of parallelization modes are implemented in the WIEN2k code to in-
crease the calculation efficiency. One is k-point parallelization, which distributes the
computations for the different irreducible k-points over several CPUs. This method
is only useful for small calculations and a low communication bandwidth between
the CPUs. If we go to big systems with few k-points, fine grained parallelization
can be additional applied. It diagonalizes the Hamiltonian and overlap matrices for
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Figure 3.2: Flow chart of the WIEN2k code.
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The left part is the initialization, which is used

to get the trial input electron density for starting the self-consistency cycle. The right part is the

self-consistency cycle, which is used to converge the electron density.
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each k-point on different CPUs. The speed of this method strongly depends on the
communication between the CPUs, on the number of CPUs and on the matrix size.
In order to run the code more efficiently, the WIEN2k code can combine the two
methods, which separates number of k-points on different block of CPUs, and applies
the fine grained parallelization on each block of CPUs.

22





