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Theoretical Background
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Chapter 2

Density-functional Theory

The Schrödinger equation provides a theoretical way to investigate the quantum-
mechanical properties of systems like atoms, molecules etc. Unfortunately, for most
systems of practical interest the Schrödinger equation cannot be solved exactly any-
more and approximations must be applied. In this respect, Density-functional theory
(DFT) has become a most popular and powerful tool in studying physics and chem-
istry topics, and Walter Kohn was awarded by Nobel Prize in 1998 [1] for his marvelous
contribution on DFT. As Isaac Newton said:” If I have seen further it is by standing
on ye shoulders of giants”. Before heading on to the modern DFT, we are going to
retrace the history of this theory.

2.1 The Many-electron Problem

In order to understand or predict properties of materials including N electrons and
M nuclei from ab initio calculations, the Schrödinger equation for time-independent
nonrelativistic cases can be written as,

ĤΨ(ri,Rj) = EΨ(ri,Rj) , (2.1)

where Ĥ is the Hamiltonian operator, and E is the eigenvalue of the operator. Ψ
is the corresponding wave function, and ri and Ri are the coordinates of electron i
and nucleus j, respectively. The Hamiltonian contains several contributions: Kinetic
energies of electrons (Te) and nuclei (Tn); interaction potentials between particles,
in form of repulsive potentials between nuclei (Vnn), attractive potentials between
nuclei and electrons (Vne) and repulsive potentials between electrons (Vee). Then, the
Hamiltonian operator Ĥ is rewritten as,

Ĥ = Tn + Te + Vnn + Vne + Vee . (2.2)

Applying atomic units, i.e. me = h̄ = e = 1, these components of the Hamiltonian
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operator are written as,

Tn = −1

2

M
∑

j=1

1

mj

∇2
j , (2.3)

Te = −1

2

N
∑

i=1

∇2
i , (2.4)

Vnn =
M
∑

i=1

M
∑

j>i

ZiZj

|Ri −Rj|
, (2.5)

Vne =
N
∑

i=1

M
∑

j=1

−Zj

|ri −Rj|
, (2.6)

Vee =
N
∑

i=1

N
∑

j>i

1

|ri − rj|
, (2.7)

where mj , Zj and ∇j are the mass of nucleus j, its atomic number and Laplacian
operator, respectively.

Although Eq. 2.1 is the most accurate way to obtain the properties of materials, it
is too complex to solve due to the large number of variables that the wave function
depends on. For a system with M nuclei and N electrons, we have 3M+3N variables,
i.e. 3 coordinates and 3 momenta for each particle, respectively. In order to solve
Eq. 2.1 in practice for many-electron systems, approximations have to be applied.
The first important approximation is the Born-Oppenheimer (BO) nonrelativistic
approximation: Loosely stated, it assumes that the movement of the electrons is so
fast that they can catch up the movement of the nuclei instantaneously and relax to
the corresponding ground state instantaneously, because the mass of an electron is
so much smaller than that of a nucleus. (In the worst case of a H atom, 1 electron
≈ 1/1800 of the mass of nucleus) Then, nuclei can be viewed as static, enabling a
splitting of the full Hamiltonian (Ĥ) in Eq. 2.1 into two parts: Nuclear part (ĤN)
and electronic part (Ĥe). Correspondingly, the total wave function (Ψ) is split into
the following form:

Ψ(ri,Rj) = ΨR
e (ri)Ψ(Rj) , (2.8)

where ΨR
e (ri) is the wave function of electrons with current nuclei positons, and Ψ(Rj)

is the wave function of nuclei. The total energy of a system then equals the sum of
the nuclear energy (EN) and electronic energy (Ee), E = EN + Ee. For fixed atomic
coordinates EN is a constant and we can focus on the electron Schrödinger equation,

ĤeΨe(ri) = EeΨe(ri) , (2.9)

where

Ĥe = −1

2

N
∑

i=1

∇2
i +

N
∑

i=1

M
∑

j=1

−Zj

|ri −Rj|
+

N
∑

i=1

N
∑

j>i

1

|ri − rj|
. (2.10)

8



Chapter 2. Density-functional Theory

It is clear that the BO approximation decreases the number of variables in Eq. 2.1
from 3N+3M to 3N , but this computational burden still requires further approxima-
tions for most practical systems. One fundamental approach to solve the electronic
Schrödinger equation (Eq. 2.9) numerically is the Hartree-Fock approximation, which
transfers the many-body problem into a single particle problem through approximat-
ing the electronic wave function Ψe(ri) by a Slater-determinant of single particle wave
functions. This ensures the antisymmetry of the wave function, required to fulfill to
Pauli principle, and thereby accounts for a quantum mechanical contribution to the
potential, termed exchange potential (Vx). On the other hand, this approximation
does not account for the quantum mechanical interaction between electrons of like
spin. Compared to the full potential (Vee), the Hartree-Fock potential thus includes
the classical Coulomb potential (V c

ee) and the exchange potential (Vx), but misses a
part termed correlation potential (Vc).

Although this term is smaller than the other two, it is significant to obtain accurate
results. In order to improve the original Hartree-Fock approximation, there are thus
further advanced approaches to account for the correlation energy. The most popular
are second or fourth order perturbation theory by Møller and Plesset (MP2 or MP4)
[3], configuration interaction (CI) [4], multiconfiguration self-consistent field (MCSCF)
[5], and coupled cluster approaches (CC) [6]. These methods are quite accurate, but
are computationally very intense.

Alternatively, density-functional theory (DFT) is a remarkable theory that replaces
the complicated N -electron wave function and the associated Schrödinger equation
by a formulation based on the simpler electron density (ρ).

2.2 Density-functional Theory

2.2.1 Original Idea: Thomas-Fermi Model

In 1927 Thomas and Fermi realized that statistical considerations can be used to ap-
proximate the distribution of electrons in an atom. Electrons are distributed uniformly
in the six-dimensional phase space for the motion of an electron at the rate of two for
each h3 of volume, and there is an effective potential field that ”is itself determined
by the nuclear charge and this distribution of electrons.” Based on this realization
the Thomas-Fermi formula for the electron density can be derived [7], and finally, the
famous Thomas-Fermi kinetic energy functional is,

TTF(ρ) = CF

∫

ρ5/3(r)dr, CF = 3
10

(3π2)2/3 = 2.871 . (2.11)

Additionally, the electron density [ρ(r)] is defined as the number of electrons per unit
volume in a given state. The electron density at point r1 means that the probability
to find an electron at this point, is (without spin),

ρ(r1) = N
∫

...
∫

|Ψ(r1, r2...rN)|2dr2...drN . (2.12)
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If we integrate Eq. 2.12 over space, we will get the total number of electrons,

∫

ρ(r)dr = N . (2.13)

Applying this definition on Eq. 2.10, the electron-nucleus attractive energy and clas-
sical electron-electron repulsive energy can be written as a function of ρ(r),

Vne = Z
∫

ρ(r)

r
dr , (2.14)

V c
ee =

1

2

∫ ∫

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 . (2.15)

For simplicity, we here neglect the exchange-correlation energy in the expectation
value of Eq. 2.10 (〈Ψe|Ĥe|Ψe〉) for the moment. Together with the kinetic energy
functional, Eq. 2.11 we then reach the energy functional of the Thomas-Fermi theory
of atoms in terms of the electron density,

ETF[ρ(r)] = CF

∫

ρ5/3(r)dr + Z
∫ ρ(r)

r
dr +

1

2

∫ ∫ ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 . (2.16)

Under the constraint of Eq. 2.13, the electron density is used to minimize the
energy functional ETF[ρ(r)], and to obtain the ground state energy. Unfortunately,
while the Thomas-Fermi formula is quite simple and decrease the variables from 3N to
3, the approximations behind it (neglected Vxc and kinetic energy functional based on
a non-interacting, homogenous electron gas) are too bold to make it of any practical
use for actual calculations.

2.2.2 Hohenberg-Kohn Theorems

While the Thomas-Fermi model already casts the electronic energy into a functional of
electron density, it did not become popular because of its low accuracy. The situation
changed with the landmark paper published by Hohenberg and Kohn [8] in 1964,
which demonstrates that the Thomas-Fermi formula is only an approximation to an
exact theory, the density-functional theory. For nondegenerate ground states, the
Hohenberg-Kohn theory is based on two theorems, which legitimize the use of the
electron density ρ(r) as basic variable to obtain the ground state energy. The first
theorem states: The external potential v(r) is determined, within a trivial additive
constant, by the electron density ρ(r). Here v(r) does not restrict to the Coulomb
potential. The proof of this theorem is quite simple by employing the minimum-energy
principle for the ground state. Consider two external potentials v and v′ that differ by
more than a constant, but both give the same ρ for their ground state. The different
Hamiltonians H and H ′ whose ground state densities are the same then determine
two different normalized wave functions Ψ and Ψ′. Taking Ψ′ as a trial function for
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H , we would have,

E0 < 〈Ψ′|Ĥ|Ψ′〉 = 〈Ψ′|Ĥ ′|Ψ′〉 + 〈Ψ′|Ĥ − Ĥ ′|Ψ′〉
= E ′

0 +
∫

ρ(r)[v(r) − v′(r)]dr , (2.17)

where E0 and E ′
0 are the ground state energies for Ĥ and Ĥ ′, respectively. In the

same way, taking Ψ as a trial function for H ′ we would get,

E ′
0 < 〈Ψ|Ĥ ′|Ψ〉 = E0 −

∫

ρ(r)[v(r) − v′(r)]dr . (2.18)

Adding Eq. 2.17 and 2.18, we get E0 +E ′
0 < E′

0 +E0. This contradiction indicates
that there cannot be two different v that give the same ρ for their ground states. The
first Hohenberg-Kohn theorem thus tell us that the ground state density ρ determines
all properties of a system. Then the total energy of a configuration at a certain
potential v can be written as,

Ev[ρ] = T [ρ] + Vne[ρ] + Vee[ρ]

= FHK[ρ] +
∫

ρ(r)v(r)dr , (2.19)

where
FHK[ρ] = T [ρ] + Vee[ρ] . (2.20)

FHK is called universal functional of ρ due to its independence on the external poten-
tial.

The second Hohenberg-Kohn theorem states: For a trial density ρ̃(r), such that
ρ̃(r) ≥ 0 and

∫

ρ̃(r)dr = N , then,

E0 ≤ Ev[ρ̃(r)] , (2.21)

where Ev[ρ̃(r)] is the energy depending on v. This theorem is a justification to use
the variational principle to determine the ground state energy E0. Based on the first

theorem, ρ̃ determines its own potential ṽ, Hamiltonian ˆ̃H and wave function Ψ̃.
Taking Ψ̃ as a trial function for a Hamiltonian (Ĥ) with the true external potential
v,

〈Ψ̃|Ĥ|Ψ̃〉 =
∫

ρ̃(r)v(r)dr + FHK[ρ̃] = Ev[ρ̃] ≥ Ev[ρ] , (2.22)

which is the desired result.
Additionally, applying the variational principle with constrained

∫

ρ(r)dr = N ,
the differentiability of Ev[ρ] for the ground state density is satisfying the stationary
principle,

δ{Ev[ρ] − µ[
∫

ρ(r)dr−N ]} = 0 , (2.23)

which gives the Euler-Lagrange equation, and

µ =
δEv[ρ]

δρ(r)
= v(r) +

δFHK[ρ]

δρ(r)
, (2.24)

where µ is the chemical potential.
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2.2.3 Kohn-Sham Equation

In principle, if we knew the exact universal functional (FHK), Eq. 2.23 is an exact
equation to obtain the ground-state properties. Unfortunately, this exact FHK is
elusive, leaving the Hohenberg-Kohn theorems without much practical relevance. The
break-through came only one year after the HK theorems. In 1965 Kohn and Sham
[9] approximated the FHK functional, and made the theorems practically useful by
introducing the concept of a non-interacting reference system. Within this approach,
the kinetic energy of the non-interacting reference system still exhibiting the real
density ρ(r) can be written as,

Ts = −1

2

N
∑

i

< ϕi|∇2|ϕi > , (2.25)

where ϕi are single-particle Kohn-Sham orbitals. Here the non-interacting kinetic
energy is not equal to the true kinetic energy (T ) of the interacting system, Ts 6= T ,
and actually T = Ts +Tc. Therefore, Kohn and Sham rewrote the universal functional
as,

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] , (2.26)

and the exchange-correlation energy is defined as,

Exc[ρ] = (T [ρ] − Ts[ρ]) + (Eee[ρ] − J [ρ]) . (2.27)

The exchange-correlation energy thus contains everything that is unknown: The non-
classical effects of exchange and correlation, which are contributions to the potential
energy of the system, and a portion belonging to the kinetic energy. With this for-
mulation, the many-body problem is mapped onto an effective single particle prob-
lem. Kohn and Sham thus established that for any real (interacting) system with
ground-state density ρ(r) there always exists a noninteracting system with the same
ground-state density ρ(r). This leads to the famous Kohn-Sham equation,

[−1

2
∇2 + Veff(r)]ϕi = ǫiϕi , (2.28)

where ϕi are the single particle wave functions, or Kohn-Sham orbitals, and ǫi are
the Kohn-Sham orbital energies. Veff(r) is the effective potential, which contains the
classical Coulomb potential, exchange-correlation potential and the external potential
Vext(r),

Veff(r) =
∫ ρ(r′)

|r − r′|dr
′ + Vxc(r) + Vext(r) . (2.29)

The density of the real system, ρ(r), can be expressed in terms of the Kohn-Sham or-
bitals, ρ(r) =

∑N
i |ϕi(r)|2. The exchange-correlation potential, Vxc(r), can be written

as,

Vxc(r) =
δExc[ρ]

δρ(r)
, (2.30)
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i.e. as the functional derivative of Exc[ρ] with respect to the density. If the exact
forms of Exc and Vxc were known, the Kohn-Sham strategy would lead to the exact
energy, i.e. the correct eigenvalue of the Hamilton operator Ĥ of the Schrödinger
equation. The Kohn-Sham approach is thus in principle exact! The approximation
only enters when we have to decide on an explicit form for the unknown functional
for the exchange-correlation energy Exc and its corresponding potential Vxc. The
central goal of modern density-functional theory is therefore to find better and better
approximations to these two quantities.

2.2.4 Present-day Exchange-correlation Functionals

The most basic approximation to Vxc was introduced by Kohn and Sham in their
seminal paper [9]. The so-called local density approximation (LDA) is based on the
homogeneous electron gas to approximate the exchange-correlation energy. For an
inhomogeneous system, the idea is to view the electron density as locally homogeneous
at each point in space. The LDA xc energy then has the form,

ELDA
xc [ρ] =

∫

ρ(r)ǫxc[ρ(r)]dr , (2.31)

where ǫxc(ρ) indicates the exchange-correlation energy per particle of a uniform elec-
tron gas of density ρ. The corresponding exchange-correlation potential becomes,

vLDA
xc (r) =

δELDA
xc

δρ(r)
= ǫxc[ρ(r)] + ρ(r)

∂ǫxc(ρ)

∂ρ
. (2.32)

Moreover, ǫxc(ρ) contains two parts: exchange ǫx(ρ) part and correlation ǫc(ρ) part,

ǫxc(ρ) = ǫx(ρ) + ǫc(ρ) , (2.33)

where the exchange part ǫx(ρ) is expressed as [7, 10],

ǫx(ρ) = −3

4
(
3ρ(r)

π
)

1
3 . (2.34)

The correlation part ǫc(ρ) can not be expressed by such an explicit functional form.
Expressions are only known for the high-density [12, 13] and low-density [14, 15] limit,
whereas for intermediate densities only numerical values are known from highly accu-
rate quantum Monte Carlo calculations [11]. This insight was then used to parame-
terize suitable expressions for DFT-LDA calculations [16, 17].

The LDA gives already surprisingly good results for a wide range of realistic systems,
but fails for systems that are far from the uniform electron gas limit like atoms or
molecules. A straightforward correction to the LDA is a formal expansion of Exc

in gradients of the density. The idea also came from Hohenberg and Kohn [8]. In
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general, such a density-gradient expansion (DGE) of the exchange-correlation energy
has the form,

EDGE
xc [ρ] =

∫

[ǫ(0)xc (ρ) + ǫ(1)xc (ρ)∇ρ+ ǫ(2)xc (ρ)|∇ρ|2 + ...]dr . (2.35)

However, a first order truncated DGE does not work very well, and sometimes give
even worse results than LDA. In order to solve this problem, one can introduce a
more generalized expansion and consider generalized-gradient approximation (GGA)
functionals of the form.

EGGA
xc [ρ] =

∫

f(ρ(r),∇ρ(r))dr =
∫

ρǫGGA
xc (ρ(r),∇ρ(r))dr . (2.36)

As in the LDA, the GGA exchange-correlation energy also divides into two parts:
EGGA

x and EGGA
c . There are lots of GGA versions based on different constructions

mainly using as many known constraints on the Vxc. In the present work the functional
from Perdew, Burke and Ernzerhof in 1996 (PBE) [18] is almost exclusively used.
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