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Abstract

As prominent defects at solid surfaces atomic steps are commonly perceived as play-
ing some kind of special, if not decisive role for the surface properties or functions in
materials science applications. When aiming to qualify this role at the atomic scale
an important first task is to identify the structure and composition at the step edge
under realistic gas-phase conditions that are representative for the targeted applica-
tion. From the modeling side, this requires two ingredients: A reliable description of
the energetics at the surface, in other words of the chemical bonds that are formed
there. And on the other side a proper treatment of the manifold of processes that can
occur, in particular also due to the contact with the gaseous environment at finite
temperatures.

In this thesis this problem is addressed with a first-principles statistical mechanics
approach, i.e. with an approach that is based entirely on a reliable first-principles
energetics. Since the evaluations of the partition functions required to at least thermo-
dynamically account for the statistical interplay at finite temperatures would neces-
sitate on unfeasible amount of first-principles total energy calculations, the approach
relies on parameterizing as intermediate between the electronic and mesoscopic regime
a coarse-grained lattice model, which is then employed in the statistical simulations.
The approach is illustrated using the interaction of an oxygen atmosphere with a
close-packed (111) step at Pd(100) as example. Apart from the methodological ad-
vances that are achieved the major result for this application is then that the specific
way how oxygen atoms decorate the step even in environments with pressures of the
order atmospheres and elevated temperatures around 1000 K is obtained. Since such
gas phase conditions are representative for an important catalytic application like the
high-temperatures combustion of methane, this work thus provides first first-principles
insight into the structure and composition at a prominent defect at the surface of a
working model catalyst.
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