First-principles Statistical Mechanics Approach to Step Decoration at Solid Surfaces

von

M. Sc.

Yongsheng Zhang

im Fachbereich Physik der Freien Universität Berlin eingereichte Dissertation zur Erlangung des akademischen Grades

DOCTOR RERUM NATURALIUM

Berlin 2008
Erstgutachter: PD Dr. Karsten Reuter
Zweitgutachter: Prof. Eberhard K. U. Gross
Abstract

As prominent defects at solid surfaces atomic steps are commonly perceived as playing some kind of special, if not decisive role for the surface properties or functions in materials science applications. When aiming to qualify this role at the atomic scale an important first task is to identify the structure and composition at the step edge under realistic gas-phase conditions that are representative for the targeted application. From the modeling side, this requires two ingredients: A reliable description of the energetics at the surface, in other words of the chemical bonds that are formed there. And on the other side a proper treatment of the manifold of processes that can occur, in particular also due to the contact with the gaseous environment at finite temperatures.

In this thesis this problem is addressed with a first-principles statistical mechanics approach, i.e. with an approach that is based entirely on a reliable first-principles energetics. Since the evaluations of the partition functions required to at least thermodynamically account for the statistical interplay at finite temperatures would necessitate on unfeasible amount of first-principles total energy calculations, the approach relies on parameterizing as intermediate between the electronic and mesoscopic regime a coarse-grained lattice model, which is then employed in the statistical simulations. The approach is illustrated using the interaction of an oxygen atmosphere with a close-packed (111) step at Pd(100) as example. Apart from the methodological advances that are achieved the major result for this application is then that the specific way how oxygen atoms decorate the step even in environments with pressures of the order atmospheres and elevated temperatures around 1000 K is obtained. Since such gas phase conditions are representative for an important catalytic application like the high-temperatures combustion of methane, this work thus provides first first-principles insight into the structure and composition at a prominent defect at the surface of a working model catalyst.
For Yuanyuan
and my parents
Contents

1 Introduction 1

I Theoretical Background 5

2 Density-functional Theory 7
 2.1 The Many-electron Problem 7
 2.2 Density-functional Theory 9
 2.2.1 Original Idea: Thomas-Fermi Model 9
 2.2.2 Hohenberg-Kohn Theorems 10
 2.2.3 Kohn-Sham Equation 12
 2.2.4 Present-day Exchange-correlation Functionals 13

3 (L)APW+lo 15
 3.1 Bloch’s Theorem 15
 3.2 Augmented Plane Wave (APW) 16
 3.3 LAPW 17
 3.4 LAPW with Local Orbital (LAPW+LO) 18
 3.5 APW+lo 18
 3.6 Full Potential (L)APW+lo Method 19
 3.7 Two Important Basis Set Parameters: Energy Cutoff and K-mesh 19
 3.8 WIEN2k Code 20

4 DFT Calculations for Solid Surfaces 23
 4.1 Vicinal Surfaces 23
 4.2 Surface Models 25
 4.3 Surface Minimization 27
 4.4 Two Key Surface Energetic Properties: γ and E_b 29
 4.5 Step Formation Energy 30
 4.6 Local Density of States (LDOS) 31
 4.7 Surface Core-level Shifts 31
Contents

5 First-principles Statistical Mechanics 37
 5.1 Ab-initio Atomistic Thermodynamics 38
 5.2 Ab-initio Statistical Mechanics 39
 5.2.1 Canonical Monte Carlo (CMC) [61,62] 39
 5.2.2 Grand-Canonical Monte Carlo (GCMC) 41
 5.2.3 First-principles Lattice-gas Hamiltonian (FP-LGH) 43
 5.2.4 Leave-one-out Cross-validation: Identify Optimum Lateral Figures 44
 5.2.5 Direct Enumeration: Validate the Set of DFT Input Structures 45
 5.2.6 Two Properties to Monitor Phase Transitions: Ψ and C_V 47

II Ordering Behavior of Oxygen Atoms at the Pd(100) Surface 53

6 On the Accuracy of First-Principles Lateral Interactions: Oxygen at Pd(100) 55
 6.1 Computational Details 56
 6.1.1 Lattice-Gas Hamiltonian for O-Pd(100) 56
 6.1.2 Static and Vibrational Average Binding Energy 57
 6.1.3 Total Energy Calculations 58
 6.1.4 Monte Carlo Simulations 59
 6.2 First-Principles Lattice-gas Hamiltonian for O at Pd(100) 60
 6.2.1 Energetics of On-Surface Adsorption 60
 6.2.2 Lateral Interactions 62
 6.2.3 Order-disorder Transition 67
 6.2.4 Population of Bridge Sites 68
 6.3 Accuracy of First-principles Lateral Interactions 70
 6.3.1 Uncertainties in the LGH Expansion Procedure 71
 6.3.2 Uncertainties in the First-principles Energetics 72
 6.4 Comparison to Empirical Parameters 76
 6.5 Conclusions 79

III Ordering Behavior of Oxygen Atoms under the Influence of a Step 81

7 Oxygen Adsorption at Pd(11N)(N=3,5,7) Vicinal Surfaces 83
 7.1 Computational Details 85
 7.2 Clean Vicinal Surfaces 86
 7.2.1 Geometric Structure 86
 7.2.2 Energetics and Electronic Structure 87
CONTENTS

7.3 Oxygen Adsorption at Vicinal Surfaces ... 92
 7.3.1 Binding Energy .. 92
 7.3.2 Geometric and Electronic Structure 94
7.4 Conclusions .. 99

8 Decoration of a (111) Step at Pd(100) by Oxygen Atoms 101
 8.1 Computational Details ... 102
 8.1.1 Total Energy Calculations ... 102
 8.1.2 Lattice-gas Hamiltonian for O-Pd(117) 103
 8.2 First-principles Lattice-gas Hamiltonian for O at Pd(117) 105
 8.2.1 Energetics for O−Pd(117) ... 105
 8.2.2 Lateral Interactions for O−Pd(117) 106
 8.2.3 Vibrational Contribution to the Lateral Interactions 108
 8.2.4 Validation by Direct Enumeration 108
 8.2.5 Treating the Boundary for Surfaces with Wider Terrace Width 109
 8.3 Ordering Behavior of Oxygen Near a (111) Step at Pd(100) 111
 8.3.1 Simulated Annealing Simulation: Identify Low-energy Step struc-
 tures ... 111
 8.3.2 Stability of Zigzag Decorated Step 112
 8.4 Conclusion .. 115

9 Summary and Outlook ... 119

IV Appendix .. 121
 A Bulk Pd ... 123
 B Low-index Pd Surfaces .. 127
 B.1 Clean Surfaces ... 127
 B.2 Oxygen at Pd(100) ... 131
 C Pd(11N) Vicinal Surfaces ... 135
 C.1 Clean Pd(11N) Vicinal Surfaces .. 135
 C.2 Oxygen at Pd(11N) Vicinal Surfaces 139
 D Monte Carlo Simulations ... 145
 D.1 Equilibration .. 145
 D.2 Simulation Cell for O-Pd(100) .. 145
 D.3 Identical T_c from Ψ and C_V .. 146
 D.4 Simulation Cell for Stepped Pd(100) 149
 E Computed Ordered Configurations for O-Pd(100) 151
CONTENTS

- **F Computed Ordered Configurations for O-Pd(117)** 167
- Bibliography 195
- Acknowledgments 203
- Curriculum Vitae 205
- Publications 207
List of Figures

3.1 Schematic division of space into atomic sphere and interstitial 16
3.2 Flow chart of the WIEN2k code. .. 21
4.1 Top view of a fcc (100) surface, and a real surface 24
4.2 Cartoon scheme to create a (113) vicinal surface in a fcc bulk. 24
4.3 Top view of the family of Pd(11N) vicinal surfaces, 25
4.5 Striped and two types of triangular islands on a fcc(111) surface. 26
4.4 Supercell model, including slabs and vacuum. 26
4.6 Model explaining the geometrical view behind Eq. 4.13. 31
4.7 Local density of states of bulk fcc Pd 32
4.8 Cartoon to illustrate the d-band surface shift in late TM 34
4.9 Local density of states of different layers for Pd(111) and Pd(100) ... 35
5.1 Schematic view of three regimes in the (length,time) space 37
5.2 Phase diagram of on-surface oxygen atom adsorption at the Pd(100) .. 40
5.3 θ vs. $\Delta\mu$ from the Langmuir adsorption isotherm 42
5.4 Schematic view of lateral interaction figures for adatoms at a fcc (100) 43
5.5 Schematic illustration of periodic image lateral interactions 44
5.6 Schematic illustration of the idea behind a of convex hull 46
5.7 Schematic top view illustrating the division into sub-lattices 50
5.8 Illustration of how Ψ and C_V identify the order-disorder transition ... 50
6.1 Illustrating the considered pool of 17 lateral interactions between O ... 57
6.2 Top view of 5 ordered adlayers with O in on-surface hollow sites. 60
6.3 Coverage (θ) dependence of the calculated DFT binding energies 62
6.4 Formation energies ΔE_f as computed with DFT 66
6.5 $\theta - T$ diagram using different functionals 68
6.6 Considered lateral interaction figures for bridge-bridge sites 69
6.7 Critical temperatures for 0.25, 0.35 and 0.45 ML coverages 70
6.8 $\theta - T$ diagram using different lateral interaction groups 72
6.9 $\theta - T$ diagram comparing to the empirical approach 78
7.1 Top and side views of the atomic geometry of the family of Pd(11N) .. 84
7.2 Smoluchowski smoothing picture .. 88
LIST OF FIGURES

7.3 Local density of states in the different layers in Pd(11N) 89
7.4 Geometry side views for adsorption in the Sh2 and Thu 96
7.5 Oxygen-induced changes in the LDOS and initial-state SCLSs 97

8.1 70 step-influenced lateral interaction figures 104
8.2 Phase diagrams of DFT calculations and of corresponding DE data 109
8.3 Schematic top view of the site types at wider terrace width 110
8.4 Schematic top views showing the results of simulated annealing 111
8.5 Computed Gibbs free energy ΔG^{ad} for O at a (111) step at Pd(100) . 112
8.6 Schematic view of a Pd(100) surface with (111) steps 113
8.7 Average coverage and order parameter for the terrace and step 114
8.8 Two Pd vicinal structures used to calculate the O 1s SCLS 116
8.9 Schematic perspective view of the surface under gas-phase conditions . 116

A.1 Determination of the equilibrium lattice constant for the fcc Pd 124
A.2 Determination of the equilibrium lattice constant for the fcc Pd 124

B.1 Schematic figures of the Pd(111) and Pd(100) 127
B.2 Convergence test for the optimal energy cutoff and k-points 128
B.3 Convergence test for the optimal energy cutoff and k-points 128
B.4 Convergence test for the optimal energy cutoff and k-points 129
B.5 Convergence test for the optimal layer number for Pd(111) and Pd(100) 130
B.6 Cutoff convergence test and k-mesh test for the O at Pd(100) 133

C.1 $E_{\text{wf}}^{\text{max}}$ and irreducible k-point convergence tests for Pd(113) 136
C.2 $E_{\text{wf}}^{\text{max}}$ and irreducible k-point convergence tests for Pd(115) 136
C.3 $E_{\text{wf}}^{\text{max}}$ and irreducible k-point tests for Pd(117) 136
C.4 Surface energy convergence with number of slab layers for the Pd(113) 138
C.6 Absolute binding energies of oxygen adsorbed at the Sh2 and Thu 141
C.7 Binding energy vs. energy cutoff for oxygen adsorbed at Pd(11N) ... 141
C.8 E_b vs. number of slab layers for O-Pd(113) 143
C.9 E_b vs. number of slab layers for O-Pd(115) and O-Pd(117) 143

D.1 Illustration of the evaluation of the total energy with MC steps 146
D.2 E vs. MC step and $< E >$ vs. MC step 147
D.4 Critical temperatures determined by Ψ and C_V 148
D.5 Cell size tests for two coverages, $\theta=0.1$ ML and $\theta=0.15$ ML 150

xiv
List of Tables

5.1 $\Delta \mu_O(T, p^0)$ in the temperature range of interest to our study. 39
6.1 Calculated E_b for O adsorption in on-surface hollow or bridge sites . . 59
6.2 E_{DFT}^b for ordered O-Pd(100) with O in the hollow sites 61
6.3 List of the sets containing m lateral interactions 64
6.4 Lateral interactions obtained using the LDA and the GGA-PBE 75
7.1 Comparison of the multilayer relaxation sequence of the Pd(11N) . . 87
7.2 Computed surface energies of the low-index surfaces and Pd(11N) . . 87
7.3 Step formation energies at the different vicinal surfaces 91
7.4 Initial-state $\Delta_{\text{initial}}^{\text{SCLS}}$ for the topmost layers 92
7.5 E_b of O at the different highly-coordinated terrace and step 92
7.6 E_b of oxygen adsorption at different sites on Pd(113)(1×1) 93
7.7 O-Pd bond lengths at the different sites in (1×1) overlayers 95
7.8 Surface relaxation pattern of the Pd(11N) ($N = 3, 5, 7$) 97
8.1 Total binding energies of one O at different sites in Pd(117) 105
8.2 Extracted on-site energies and lateral interactions of O-Pd(117) 107
8.3 Comparison of equivalent lateral interaction figures of O-Pd(117) 107
A.1 Comparison of calculated lattice constant and bulk modulus 125
B.1 Optimized basis set parameters for the clean Pd(111) and Pd(100) . . 130
B.2 Surface energies for various vacuum thicknesses 131
C.1 Surface energies of the Pd(11N) ($N=3, 5, 7$) vicinal surfaces 139
C.2 Computed surface energies of different low-index and vicinal surfaces . . 139
C.3 E_b for various vacuum thicknesses in supercells for O at the Sh2 site. . 142
C.4 Optimal basis set parameters of oxygen adsorption on Pd(11N) 142