Appendix B

Approximations for E_{xc} and their properties

In the following appendix we state all the approximations introduced in Chapter 3 and the respective properties of the exact functional they fulfil. It should serve as a quick reference, for a more detailed discussion of the functionals we refer the reader to Chapter 3.

All approximations presented in this thesis can be written as

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \iint d\mathbf{x} d\mathbf{x}' \frac{\varphi_j^*(\mathbf{x}') \varphi_j(\mathbf{x}) \varphi_k^*(\mathbf{x}) \varphi_k(\mathbf{x}')}{|\mathbf{r} - \mathbf{r}'|}$$
(B.1)

with different functions $f(n_j, n_k)$. For the Hartree-Fock approximation this function is given as

$$f_{HF}(n_j, n_k) = n_j n_k. (B.2)$$

For the Müller functional the dependence is changed into

$$f_M(n_j, n_k) = \sqrt{n_j n_k},\tag{B.3}$$

while for the Goedecker/Umrigar functional we have to remove the self-interaction which leads to

$$f_{GU}(n_j, n_k) = \sqrt{n_j n_k} - (n_j - n_j^2) \delta_{jk}.$$
 (B.4)

The three different corrections, BBC1, BBC2, and BBC3, are more complicated due to their distinction between strongly and weakly occupied orbitals. The first correction is given as

$$f_{BBC1}(n_j, n_k) = \begin{cases} -\sqrt{n_j n_k} & j \neq k \text{ both weakly occupied} \\ \sqrt{n_j n_k} & \text{otherwise.} \end{cases}$$
(B.5)

The second correction changes the form of f for two different strongly occupied orbitals

$$f_{BBC2}(n_j, n_k) = \begin{cases} -\sqrt{n_j n_k} & j \neq k \text{ both weakly occupied} \\ n_j n_k & j \neq k \text{ both strongly occupied} \\ \sqrt{n_j n_k} & \text{otherwise.} \end{cases}$$
(B.6)

Approximation	Fulfilled Properties
Hartree-Fock (HF)	(1) (4-6) (8-10)
Müller (M,BB)	(1^*) (2) $(4-6)$ (8) (10)
Goedecker, Umrigar (GU)	$(1^*) (4-6) (8)$
BBC1	(1^*) $(4-6)$ (8) (10)
BBC2	(1^*) $(4-6)$ (8) (10)
BBC3	$(1^*) (4-6) (8)$
Corrected Hartree-Fock (CHF)	(1^*) $(4-6)$ (8) (9) (10)
Csányi, Goedecker, Arias (CGA)	(1*) (4-6) (8) (10)

Table B.1: Various approximations in RDMFT and the exact properties which they fulfil. (1*) denotes the fulfilment of hermiticity but the violation of antisymmetry.

Finally, the BBC3 correction reads as

$$f_{BBC3}(n_j, n_k) = \begin{cases} -\sqrt{n_j n_k} & j \neq k \text{ both weakly occupied} \\ n_j n_k & \begin{cases} j \neq k \text{ both strongly occupied} \\ j(k) \text{ anti-bonding }, k(j) \text{ not the bonding orbital} \\ n_j^2 & j = k \\ \sqrt{n_j n_k} & \text{otherwise.} \end{cases}$$
(B.7)

The approximations from the tensor product expansion, CHF and CGA, are given by

$$f_{CHF}(n_j, n_k) = n_j n_k + \sqrt{n_j (1 - n_j) n_k (1 - n_k)},$$

$$f_{CGA}(n_j, n_k) = n_j n_k + \sqrt{n_j (2 - n_j) n_k (2 - n_k)}.$$
(B.8)

$$f_{CGA}(n_j, n_k) = n_j n_k + \sqrt{n_j (2 - n_j) n_k (2 - n_k)}.$$
 (B.9)

Table B.1 states which of the properties of the exact functional each of these approximations fulfils. The numbers refer to Section 3.1.