
Appendix A

N-representability

In the minimization of the total energy with respect to the one-body reduced density
matrix one has to ensure that all density matrices can be represented by an ensemble
of properly anti-symmetrized N -particle wave functions. This problem is known as
the N -representability problem. The constraints for the one-body reduced density
matrix

Γ(1) =
∞

∑

j=1

njϕ
∗
j(r)ϕj(r) (A.1)

to be indeed ensemble N -representable are given by

0 ≤ nj ≤ 1,
∞

∑

j=1

nj = N. (A.2)

Although these conditions are relatively simple, the proof that they are in fact
necessary and sufficient [47] is rather involved. In the following, we review the
proof and in particular discuss the distinction between pure-state and ensemble N -
representability. Although the proof by Coleman [47] contains both the necessity as
well as the sufficiency of the two conditions, the necessity can also be proven in a
more intuitive way given by Löwdin [83].

Following Löwdin we expand the many-body wave function Ψ in Slater determi-
nants using the natural orbitals, i.e.

Ψ(x1...xN) =
∑

K

cK ΦK(x1...xN), (A.3)

ΦK(x1...xN) =
1√
N !

det{ϕk1 , ϕk2 , ...ϕkN
}, (A.4)

where K = {ki with ki < ki+1} denotes the ordered set of orbitals appearing in
determinant K. The normalization of the many-body wave function results in

∑

K

| cK |2= 1. (A.5)
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The 1-RDM for the wave function (A.3) is then given by

Γ(1)(x1;x
′
1) = N

∑

K,L

c∗KcL

∫

dx2...dxN Φ∗
K(x′

1...xN)ΦL(x1...xN)

=
∑

K,L

c∗KcL

∑

k∈K

∑

l∈L

ϕ∗
k(x

′
1)ϕl(x1)DKL(k, l). (A.6)

Here, DKL(k, l) is the minor of first order of

DKL =

∫

dx1...dxN Φ∗
K(x1...xN)ΦL(x1...xN). (A.7)

Changing the order of summation in (A.6) we obtain

Γ(1)(x1;x
′
1) =

∑

k,l

ϕ∗
k(x

′
1)ϕl(x1)

∑

K3k

∑

L3l

c∗KcLDKL(k, l), (A.8)

where the second summation runs over all determinants K (L) that contain the
orbital k (l). Hence, one finds the standard expression for the 1-RDM

Γ(1)(x1;x
′
1) =

∑

k

nkϕ
∗
k(x

′
1)ϕk(x1) (A.9)

with the occupation number

nk =
∑

K3k

∑

L3k

c∗KcLDKL(k, k). (A.10)

For k 6= l, there is no contribution to the sum because we have chosen to work with
natural orbitals. The first order minor DKL(k, k) reduces to a Kronecker-Delta δKL

and, hence,

nk =

(k)
∑

K

| cK |2 . (A.11)

Since the sum runs only over those coefficients cK where the respective determinant
contains the orbital k we find 0 ≤ nk ≤ 1 from the normalization (A.5). The
summation over k

∞
∑

k=1

nk =
∞

∑

k=1

(k)
∑

K

| cK |2=
∑

K

K
∑

k

| cK |2=
∑

K

N | cK |2= N (A.12)

shows that the second condition is fulfilled as well. Therefore, we conclude that any
normalized anti-symmetric wave function Ψ leads to a Γ(1) in agreement with (A.2)
(hence the conditions are necessary to ensure N -representability).
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In a second step we now show that the conditions are sufficient. This proof
relies on properties of compact convex sets. A set S is called convex iff for any two
elements A,B ∈ S one finds

αA + (1 − α)B ∈ S, ∀ 0 ≤ α ≤ 1. (A.13)

According to the Krein-Milman theorem [48] a convex set is completely determined
by its extreme elements. An element A is extreme iff from

A = αB + (1 − α)C, 0 < α < 1 (A.14)

follows B = a1A, C = a2A, i.e. both B and C are multiples of A. If the elements
of the set are normalized (|| A ||= 1), one can conclude that B = C = A. In order
to employ the Krein-Milman theorem we first show that the set of ensemble N -
representable density matrices P(1)

N is convex. An ensemble N -representable 1-RDM
is given as a sum over pure-state RDMs

Γ(1)(x1;x
′
1) =

∑

j

cjΓ
(1)
j (x1;x

′
1), (A.15)

where each Γ
(1)
j (x1;x

′
1) is connected to a pure-state wave function Ψj via

Γ(1)(x1;x
′
1) = N

∫

dx2...dxNΨ∗
j(x

′
1,x2...xN)Ψj(x1,x2...xN). (A.16)

The coefficients satisfy

0 ≤| cj |≤ 1,
∑

j

| cj |2= 1. (A.17)

In order to show that P(1)
N is convex we form a weighted average in the sense of

(A.13) of two matrices (A.15). This weighted average is simply the 1-RDM of an-

other ensemble and hence again an element of the set P(1)
N . In contrast to ensemble

N -representable matrices, the set of pure state N -representable matrices is not nec-
essarily convex. Therefore, we have to work with ensembles. Löwdin’s proof for
the conditions (A.2) to be necessary can be extended to ensembles by adding the
appropriate sums over pure-states.

In the next step we discuss the extreme elements of the set P(1)
N . We claim that

the extreme elements of P(1)
N are 1-RDMs corresponding to single Slater determinants

ΨS(x1...xN) =
1√
N !

det{ϕk1 ...ϕkN
}, (A.18)

i.e.

Γ
(1)
S (x1;x

′
1) =

N
∑

j=1

ϕ∗
kj

(x′
1)ϕkj

(x1). (A.19)
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We write Γ
(1)
S as a weighted average of two 1-RDM Γ

(1)
1 and Γ

(1)
2 which are both

elements of P(1)
N , i.e.

Γ
(1)
S (x1;x

′
1) = αΓ

(1)
1 (x1;x

′
1) + (1 − α)Γ

(1)
2 (x1;x

′
1). (A.20)

The rank of Γ
(1)
S , i.e. the number of its non-zero eigenvalues, is equal to the particle

number N . For Γ
(1)
1 and Γ

(1)
2 to be in P(1)

N it is necessary that their eigenvalues fulfil

0 ≤ nj ≤ 1. Therefore, the rank of Γ
(1)
1 and Γ

(1)
2 is at least N due to

∑

j nj = N .

Actually, it is equal to N if and only if N occupation numbers of Γ
(1)
1 and Γ

(1)
2 are

equal to 1 and the rest are zero which again resembles single Slater determinants.
The rank of a matrix is identical to the dimension of the range of this matrix. The
dimension of the range of the sum of two matrices is identical to the dimension
of the union of the two ranges of the single matrices. Therefore, we can conclude
that the rank of Γ

(1)
S is bigger or equal to N . The equivalence only holds true if

the ranges of Γ
(1)
1 and Γ

(1)
2 are identical and of dimension N . In other words, both

Γ
(1)
1 and Γ

(1)
2 represent a single Slater determinant with the same set of orbitals, i.e.

Γ
(1)
1 = Γ

(1)
2 = Γ

(1)
S . Hence, Γ

(1)
S is an extreme element of P(1)

N . The question remains
if there are other extreme elements.

We assume that there exists a Γ(1) which is an extreme element but does not cor-
respond to a single Slater determinant. Expanding the wave function corresponding
to this Γ(1) in Slater determinants we find

Γ(1)(x1;x
′
1) =

∑

k

ckΓ
(1)
Sk(x1;x

′
1), (A.21)

where Γ
(1)
Sk again denote 1-RDMs from single Slater determinants. Due to normal-

ization the coefficients ck have to sum up to 1 and, hence, Eq. (A.21) is a weighted

average. If Γ(1) is an extreme element, Γ(1) = Γ
(1)
Sk for all k which contradicts the

assumption that Γ(1) is not representing a single Slater determinant.
We have shown that the extreme elements of P(1)

N are one-body density matrices

corresponding to single Slater determinants. We now leave P(1)
N for a moment and

consider the space of functions µ

JN =

{

µ(x;x′) | µ(x;x′) =
∞

∑

j=1

njφ
∗
j(x

′)φj(x), 0 ≤ nj ≤ 1,
∞

∑

j=1

nj = N

}

, (A.22)

i.e. JN represents all density matrices with occupation numbers between zero and
one summing up to the particle number N . The orbitals φj represent a complete
set of orthonormal orbitals. This set can differ for different elements of the set, i.e.
the elements are diagonal in different basis sets. In the remainder of this section we
show that the set JN is convex and has the same extreme elements as P(1)

N . The
two sets are therefore identical.
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First, we have to show that the set JN is convex. If we form a weighted average
of two elements of JN

µ(x;x′) = αν(x;x′) + (1 − α)τ(x;x′) (A.23)

we can expand the orbitals of ν and τ in those of µ

φν
j =

∞
∑

k=1

cν
jkφ

µ
k (A.24)

φτ
j =

∞
∑

k=1

cτ
jkφ

µ
k (A.25)

which results in

µ(x;x′) =
∞

∑

j,k,l=1

(

α nν
j c∗νjkc

ν
jl + (1 − α) nτ

j c∗τjkc
τ
jl

)

φ∗µ
k (x′)φµ

l (x) (A.26)

=
∞

∑

k=1

nµ
kφ

∗µ
k (x′)φµ

k(x). (A.27)

The occupation numbers of µ are hence given as

nµ
k = α

∞
∑

j=1

nν
j | cν

jk |2 +(1 − α)
∞

∑

j=1

nτ
j | cτ

jk |2, (A.28)

and the off-diagonal terms in the first sum have to vanish because we chose to
expand in the natural orbitals of µ. From the normalization of all three basis sets,
the restrictions for the occupation numbers of ν and τ , and 0 < α < 1, one can see
that the resulting occupation numbers nµ

k are indeed again between zero and one.
Therefore, µ is an element of JN which, as a consequence, is convex.

As the final part of the proof we show that the extreme elements of JN are those
functions µ with N of the nj equal to 1 and the remaining nj equal to zero. We,
again, first show that these elements are indeed extreme before we prove that no
other extreme elements exist. We write the extreme element µ again as a weighted
average

µ(x;x′) = αν(x;x′) + (1 − α)τ(x;x′) (A.29)

with ν, τ ∈ JN . Being elements of JN both the ranges of ν and τ have dimensions
equal or larger than N . Since the dimension of the range of µ is identical to N , by
assumption, we can conclude, using the same arguments as for the set P(1)

N , that
both ν and τ can be simultaneously diagonalized and have N occupation numbers
which are equal to one. Hence, ν = τ = µ and, therefore, µ is an extreme element.

Now we assume that there exists an extreme element µ which is not of the above
type. Without loss of generality we assume that the nµ

j are ordered such that

1 ≥ nµ
1 ≥ nµ

2 ... ≥ nµ
N+1... ≥ 0. (A.30)
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Then there exists an ε > 0 such that

0 < ε < nµ
N , (A.31)

nµ
N+1 < 1 − ε. (A.32)

We can then decompose µ into

µ(x;x′) = εν(x;x′) + (1 − ε)τ(x;x′), (A.33)

where nν
j = 1 for j ≤ N and nν

j = 0 otherwise, and the occupation numbers of τ are
then given by

nτ
j =

nν
j − ε

1 − ε
, j ≤ N, (A.34)

nτ
j =

nν
j

1 − ε
, j > N. (A.35)

In both cases one can show that 0 ≤ nτ
j ≤ 1, and also

∞
∑

j=1

nτ
j = N. (A.36)

Therefore, we can conclude that τ ∈ JN . The element µ can therefore be written
as the weighted average of two elements of JN which are different from µ. Hence, µ
is not extreme.

Furthermore, we know that the extreme elements µ correspond to single Slater
determinants via Eq. (2.9). We have hence proven that the extreme elements of JN

and P(1)
N are identical. Due to the convexity of both sets and the Krein-Milman

theorem [48], the two sets are identical, which proves that the conditions (A.2) are
indeed necessary and sufficient for a 1-RDM to be ensemble N -representable.


