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Chapter 5

Theoretical Foundations

Historically, the extension of density-functional theory to systems in an external
magnetic field was a two-step process. General DFT was first extended to spin-
density-functional theory (SDFT) which allows the treatment of spin-polarized sys-
tems [56]. The coupling to an external magnetic field within this formalism is solely
described by a Zeeman term, i.e. the magnetic field only couples to the spin de-
grees of freedom but not to the orbital angular momentum. This limitation has
been overcome by Vignale and Rasolt in 1987 [17, 18] introducing current-spin-
density-functional theory (CSDFT). Within this theory the Hamiltonian contains,
in addition to the external scalar potential v0, an external magnetic field B0 and the
corresponding vector potential A0. The two are connected via the usual relation

B0(r) = ∇× A0(r). (5.1)

Due to the two additional potentials, there are two additional densities introduced in
the theory, namely the spin magnetization m and the paramagnetic current density
jp.

Extending the approximations from DFT to CSDFT proved to be significantly
more difficult than extending the theory itself. LDA and all GGAs rely on the homo-
geneous electron gas (HEG) for their construction. If we apply an external magnetic
field to the HEG and change its strength, the energy density changes discontinuously
whenever a new Landau level is filled [19], see Fig. 5.1. The filling of Landau levels
is a physical effect, however, the consequences of the kinks in the energy density
are quite severe. The exchange-correlation potential, given as a functional deriva-
tive, suffers from divergencies at these magnetic fields. Therefore, it is impossible
to directly implement an LDA or GGA potential in a numerical calculation. The
only solution to this problem so far is an interpolation between two different ap-
proximations at high and low magnetic fields. The kinks in the energy density are
smoothed out and the corresponding divergencies in the exchange-correlation poten-
tial, therefore, avoided. In addition, the discontinuities and respective divergencies
occur whenever the local densities coincide with the positions of the discontinuities
in the HEG. In general, these positions do not correspond to the Landau levels of

59



60 CHAPTER 5. THEORETICAL FOUNDATIONS

1 2 3 4 5 6 7 8 9

λ2 (∝ 1/B)

-2

-1.5

-1

-0.5

0

∆e
xc

 (
ar

b.
 u

ni
ts

)

Figure 5.1: Energy density of the homogeneous electron gas as a function of the
inverse of an external magnetic field [19].

the inhomogeneous system and lead to unphysical effects. The interpolation solves
this problem only partially, the potential does not diverge but still shows strong
features at the respective, and hence wrong, positions. Due to these problems with
LDA and GGAs the use of orbital functionals is a necessity within CSDFT rather
than an option. Therefore, we need to extend the OEP formalism to CSDFT.

In this Chapter, we first extend the Hohenberg-Kohn theorem to CSDFT and
introduce the corresponding Kohn-Sham system in Section 5.1. In Section 5.2 we
briefly comment on collinear magnetism which is frequently employed in the litera-
ture and which we use for the applications in Chapter 6. The OEP formalism within
CSDFT is presented in Section 5.3, and the effect of the KLI approximation [66]
on the resulting equations in Section 5.4. Section 5.5 discusses the OEP equations
in collinear magnetism with and without the KLI approximation. We conclude this
chapter with Section 5.6 by introducing the exact-exchange functional employed in
Chapter 6.

5.1 Hohenberg-Kohn Theorem and Kohn-Sham

System

The non-relativistic Hamiltonian for N electrons in an external magnetic field reads

H =
N

∑

j=1

[

1

2

(

−i∇j +
1

c
A0(rj)

)2

+ v0(rj) + gµBσjB0(rj)

]

+
1

2

N
∑

j,k=1
j 6=k

1

| rj − rk | ,

(5.2)
where the magnetic field couples both to the spin degrees of freedom via the Zeeman
term and to the spatial variables via the minimal coupling to the vector potential.
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Here, ∇j denotes a gradient with respect to rj and σj = (σxj, σyj, σzj) is the vector
of Pauli matrices acting on the jth particle. g and µB are the gyromagnetic ratio
and the Bohr magneton, respectively.

In their original paper Vignale and Rasolt claimed that one can extend the
Hohenberg-Kohn proof and establish a one-to-one correspondence between the three
external potentials v0, B0 and A0 and the three ground-state densities

nGS(r) =
∑

σ

N
∑

j=1

∫

dx1...dxN Ψ∗
GS(x1,x2...xN)δ(x − xj) ΨGS(x1,x2...xN),(5.3)

mGS(r) = −gµB

∑

σ

N
∑

j=1

∫

dx1...dxN Ψ∗
GS(x1,x2...xN)

×σj δ(x − xj) ΨGS(x1,x2...xN), (5.4)

jpGS(r) =
1

2i

∑

σ

N
∑

j=1

∫

dx1...dxN Ψ∗
GS(x1,x2...xN)

× [−∇jδ(x − xj) − δ(x − xj)∇j] ΨGS(x1,x2...xN)(5.5)

which are the density, the spin magnetization and the paramagnetic current density,
respectively. The variable x is a combined space-spin variable, i.e. x = (r, σ) and the
integral over x stands for an integral over space and a sum over spin,

∫

dx =
∑

σ

∫

dr.
In their original work on spin-DFT [56] von Barth and Hedin already mention that
under certain circumstances the potentials are non-unique. Recently, it was shown
by Capelle and Vignale that, also in CSDFT, there are certain physical systems
where the potentials leading to a specific set of densities are not unique [67, 68]. We
immediately see that an explicit construction of the potentials from an inversion of
the Schrödinger equation, as used in conventional DFT, is impossible, since we have
three different potentials. Hence, a direct generalization of the HK theorem fails.

The one-to-one correspondence between the ground-state wave function and the
three densities, however, is still valid. Assuming that two different ground-state
wave functions ΨGS and Ψ′

GS, which necessarily correspond to two different sets of
potentials {v0,B0,A0} and {v′

0,B
′
0,A

′
0} yield the same set of densities n′

GS = nGS,
m′

GS = mGS and j′pGS = jpGS one finds (again both ground-states are assumed to be
non-degenerate)

EGS = 〈ΨGS | Ĥ | ΨGS〉 < 〈Ψ′
GS | Ĥ | Ψ′

GS〉
< 〈Ψ′

GS | Ĥ ′ + V̂ − V̂ ′ + B̂ − B̂′ + Â − Â′ | Ψ′
GS〉 (5.6)

< E ′
GS +

∫

d3r nGS(r)

[

v0(r) − v′
0(r) +

1

2c2
(A2

0(r) − A′
0
2(r))

]

−
∫

d3r mGS(r) [B0(r) − B′
0(r)] +

∫

d3r jpGS(r) [A0(r) − A′
0(r)] .
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Starting with the primed system we derive

E ′
GS = 〈Ψ′

GS | Ĥ ′ | Ψ′
GS〉 < 〈ΨGS | Ĥ ′ | ΨGS〉

< EGS +

∫

d3r nGS(r)

[

v′
0(r) − v0(r) +

1

2c
(A′

0
2(r) − A0

2(r))

]

(5.7)

−
∫

d3r mGS(r) [B′
0(r) − B0(r)] +

∫

d3r jpGS(r) [A′
0(r) − A0(r)] .

Adding the two equations, leads to the contradiction

EGS + E ′
GS < EGS + E ′

GS. (5.8)

Therefore, the three ground-state densities nGS, mGS, and jpGS uniquely determine
the ground-state wave function of the system. As a consequence, any observable of
a system in its ground-state is a functional of the three densities.

The non-uniqueness of the potentials is indeed a problem for the calculation
of excited-state properties. However, it seems to be restricted to a small number
of very specific systems, for example semi-metals [67], while for most systems the
one-to-one correspondence holds. Also, the non-uniqueness might be an artefact
of the restriction to collinear magnetism, where the magnetization density m is
restricted to be parallel to the magnetic field. To the best of the authors knowledge
no numerical problems due to non-uniqueness have been reported in the literature.

The ground-state energy of the system can be obtained by minimizing the ex-
pectation value of the Hamiltonian with respect to an antisymmetric wave function.
Splitting this minimization process into one minimization with respect to the three
densities, and a second over all wave functions which lead to a specific set of densi-
ties, one defines the energy as a functional of the densities, i.e.

EGS = min
Ψ

〈Ψ | Ĥ | Ψ〉

= min
n,m,jp

[

min
Ψ→n,m,jp

〈Ψ | Ĥ | Ψ〉
]

= min
n,m,jp

E[n,m, jp]. (5.9)

As a direct consequence the ground-state energy satisfies

EGS ≤ E[n,m, jp], (5.10)

where the equality holds if and only if n ≡ nGS, m ≡ mGS, and jp ≡ jpGS. This part
of the HK theorem allows us to find the ground-state density from a minimization
of the total energy.

Part three of the Hohenberg-Kohn theorem introduces a universal functional F
which is independent of the external potential. The Hamiltonian (5.2) can be split
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into a kinetic part T̂ , the interaction part Ŵ , and the external potential part. The
energy functional E[n,m, jp] can hence be expressed as

E[n,m, jp] = min
Ψ→n,m,jp

[

〈Ψ | T̂ + Ŵ | Ψ〉 + 〈Ψ | V̂0 + B̂0 + Â0 | Ψ〉
]

= F [n,m, jp] +

∫

d3r n(r)

[

v0(r) +
1

2c2
A2

0(r)

]

−
∫

d3r m(r)B0(r) +

∫

d3r jp(r)A0(r) (5.11)

with the functional F given by

F [n,m, jp] = min
Ψ→n,m,jp

〈Ψ | T̂ + Ŵ | Ψ〉. (5.12)

The functional dependence of F on the density is universal, i.e. it is the same for
all systems where the particles interact via the Coulomb interaction Ŵ , it does not
depend on the external potentials.

Due to the one-to-one correspondence between the set of densities and the wave
function we can introduce a Kohn-Sham (KS) system, i.e. a non-interacting system
that reproduces the densities of the interacting system. The KS Hamiltonian is
given by

[

1

2

(

−i∇ +
1

c
As(r)

)2

+ vs(r) + gµBσBs(r)

]

Φk(r) = εkΦk(r), (5.13)

where the KS orbitals Φk are Pauli spinors. The effective potentials resulting from
a minimization of the total energy read

vs(r) = v0(r) + vH(r) + vxc(r) +
1

2c2

(

A2
0(r) − A2

s(r)
)

,

Bs(r) = B0(r) + Bxc(r) , (5.14)

As(r) = A0(r) + Axc(r) .

Note that the definition of the scalar potential is changed with respect to standard
DFT. The additional term is due to the coupling of the term quadratic in A to
the density. The exchange correlation potentials are, as in standard DFT, defined
as functional derivatives of the exchange-correlation energy Exc with respect to the
corresponding densities

vxc(r) =
δExc

δn(r)
, (5.15)

Bxc(r) = − δExc

δm(r)
, (5.16)

1

c
Axc(r) =

δExc

δjp(r)
. (5.17)
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Finally, we can calculate the density

n(r) =
occ
∑

k=1

Φ†
k(r)Φk(r) , (5.18)

the magnetization density

m(r) = −gµB

occ
∑

k=1

Φ†
k(r)σΦk(r) , (5.19)

and the paramagnetic current density

jp(r) =
1

2i

occ
∑

k=1

(

Φ†
k(r)∇Φk(r)−(∇Φ†

k(r))Φk(r)
)

(5.20)

of the KS system. The iteration starts from a guess for the densities, for example
one can use densities of a non-interacting system. Then one evaluates the functional
derivatives (5.15)-(5.17) at these given densities. The resulting KS potentials are
used in Eq. (5.13) to obtain a new set of KS spinors from which a new set of densities
via Eqs. (5.18-5.20) is calculated. This procedure is repeated till self-consistency is
reached, i.e. until the potentials or the densities remain unchanged in consecutive
iterations.

Once the calculation has converged the total energy of the interacting system is
calculated from

E[n,m, jp] = Ts[n,m, jp] + EH [n] + Exc[n,m, jp] +

∫

d3r v0(r)n(r) (5.21)

−
∫

d3r m(r)B0(r) +
1

c

∫

d3r jp(r)A0(r) +
1

2c2

∫

d3r n(r)A2
0(r),

where

Ts =
occ
∑

k=1

Φ†
k(r)

(

−∇2

2

)

Φk(r) (5.22)

is the kinetic energy of the KS system while

EH =
1

2

∫∫

d3rd3r′
n(r)n(r′)

| r − r′ | (5.23)

denotes its Hartree energy. Using the KS equation (5.13) one can rewrite this
equation as

E[n,m, jp] =
occ
∑

k=1

εk + Exc[n,m, jp] −
1

2

∫

d3r vH(r)n(r) (5.24)

−
∫

d3r vxc(r)n(r) +

∫

d3r m(r)Bxc(r) −
1

c

∫

d3r jp(r)Axc(r).
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Note that the term quadratic in Axc is absent. The second formula does not contain
the second derivative of the KS spinors which is part of the kinetic energy in (5.21).
Therefore, one prefers Eq. (5.24) in the numerical implementation.

Whenever one is working with electromagnetic potentials one has to ensure that
all observable quantities are invariant under gauge transformations. The total energy
is certainly an observable and since the combined kinetic plus external energy, and
also the Hartree energy, are gauge invariant the exchange-correlation energy has to
satisfy gauge invariance as well. This requirement leads to the restriction that Exc

depends on jp only through the vorticity [18]

ν(r) = ∇× jp(r)

n(r)
, (5.25)

i.e.
Exc[n, jp,m] = Ēxc[n, ν,m]. (5.26)

As a consequence the exchange-correlation vector potential Axc has to satisfy

∇ (n(r)Axc(r)) = 0. (5.27)

In addition, Capelle and Gross showed [69] that the dependence on the magne-
tization density is only through ∇× m, i.e.

Exc[n, jp,m] = Ẽxc[n, jp,−c∇× m]. (5.28)

This condition implies that
Bs = ∇× As (5.29)

which ensures that the KS magnetic field and vector potential resemble true physical
fields. CSDFT itself treats the magnetic field and the vector potential as independent
variables which do not necessarily satisfy Eq. (5.29). Therefore, the approximation
for Exc has to be carefully chosen not to violate (5.29). LDA and GGAs do not
depend on the magnetization density only through its curl, and hence, lead to a
violation of Eq. (5.29).

5.2 Collinear Magnetism

One commonly applied additional approximation restricts the spin magnetization
m to be parallel or anti-parallel to the effective magnetic field which is taken to
point in the same direction throughout space. Without loss of generality one can
then choose the magnetic field to be along the z-direction, and hence

B(r) = B(r)ez, m(r) = m(r)ez. (5.30)

The Zeeman term in the KS equation (5.13) reduces to

µB

(

Bs 0
0 −Bs

)

, (5.31)
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and the whole equation for the two spin components decouples. As a consequence,
the KS spinors can be chosen as purely spin-up or spin-down, i.e.

Φk(r) =

(

ϕk↑(r)
0

)

or Φk(r) =

(

0
ϕk↓(r)

)

, (5.32)

and the resulting KS equation reads
[

1

2

(

−i∇ +
1

c
As(r)

)2

+ vs(r) ± gµBBs(r)

]

ϕkσ(r) = εkσϕkσ(r), (5.33)

where the + sign corresponds to spin-up (σ =↑) and the − sign to spin-down (σ =↓).
One defines a spin-dependent scalar potential

vsσ(r) = vs(r) ± gµBBs(r) (5.34)

and the corresponding spin densities

nσ(r) =
occ
∑

k

| ϕkσ(r) |2 . (5.35)

The total density and the z-component of the spin magnetization are then given by

n(r) = n↑(r) + n↓(r), (5.36)

m(r) = −gµB (n↑(r) − n↓(r)) . (5.37)

From these two equations we can conclude that instead of writing Exc[n,m, jp], we
might use Exc[n↑, n↓, jp] since there is a one-to-one correspondence between {n,m}
and {n↑, n↓}. Defining spin-dependent scalar exchange-correlation potentials

vxcσ(r) =
δExc

δnσ(r)
(5.38)

one obtains from the chain rule

δExc

δnσ(r)
=

∫

d3r′
δExc

δn(r′)

δn(r′)

δnσ(r)
+

δExc

δm(r′)

δm(r′)

δnσ(r)
(5.39)

=

∫

d3r′ vxc(r
′)δ(r − r′) ± gµBBxc(r)δ(r − r′). (5.40)

In other words, the spin-dependent scalar exchange-correlation potentials are given
by

vxcσ(r) = vxc(r) ± gµBBxc(r). (5.41)

The KS equation can then be written in a very compact form as
[

1

2

(

−i∇ +
1

c
As(r)

)2

+ vsσ(r)

]

ϕkσ(r) = εkσϕkσ(r). (5.42)
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In their original papers [17, 18] Vignale and Rasolt introduced a spin-dependent
vector potential Asσ with the associated paramagnetic current densities jpσ. Al-
though external vector potentials are spin-independent the inclusion of spin-depen-
dent KS vector potentials allows for direct access to the spin components of the
paramagnetic current density. If the vector potential is spin-independent, only the
total KS paramagnetic current is required to coincide with the one of the interacting
system. As a disadvantage of a spin-dependent vector potential the relation (5.29)
between Bs and As becomes unusable since the functional dependence of the total
As on its two spin-components Asσ is unknown. Here, we choose to work with a
spin-independent KS vector potential.

5.3 Optimized Effective Potential Method in CS-

DFT

In conventional DFT there are not only functionals which depend explicitly on the
density but also orbital functionals which show an implicit dependence. We have
also seen that the extension of explicit density functionals to CSDFT is problematic.
Since these problems are caused by the filling of Landau levels, an orbital effect, or-
bital functionals are the natural solution. The concept of orbital functionals can be
transfered to any extension of DFT. In CSDFT, the dependence on the densities
(5.18)-(5.20) is replaced by a dependence on the KS orbitals which, via the ex-
tended HK theorem, are functionals of the complete set of densities. Of course, the
functional derivatives with respect to the densities, in CSDFT Eqs. (5.15)-(5.17),
become non-trivial to evaluate. Hence, we have to extend the whole optimized effec-
tive potential (OEP) method [70, 71]. The OEP equations can be derived keeping
in mind that the exchange-correlation energy in CSDFT is an implicit functional of
the densities (5.18), (5.19), and (5.20). In analogy to conventional DFT, we vary
the exchange-correlation energy with respect to all three potentials using the chain
rule with respect to all three densities. This leads to more complicated equations
but does not introduce any fundamental difficulty. Applying the chain rule also with
respect to the KS spinors we find

δExc

δvs(r)
=

∫

d3r′
(

vxc(r
′)

δn(r
′)

δvs(r)
+

1

c
Axc(r

′)
δjp(r

′)

δvs(r)
− Bxc(r

′)
δm(r′)

δvs(r)

)

=
N

∑

j=1

∫

d3r′
(

δExc

δΦj(r′)

δΦj(r
′)

δvs(r)
+

δExc

δΦ†
j(r

′)

δΦ†
j(r

′)

δvs(r)

)

, (5.43)

δExc

δBs(r)
=

∫

d3r′
(

vxc(r
′)

δn(r′)

δBs(r)
+

1

c
Axc(r

′)
δjp(r

′)

δBs(r)
− Bxc(r

′)
δm(r′)

δBs(r)

)

=
N

∑

j=1

∫

d3r′
(

δExc

δΦj(r′)

δΦj(r
′)

δBs(r)
+

δExc

δΦ†
j(r

′)

δΦ†
j(r

′)

δBs(r)

)

, (5.44)
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δExc

δAs(r)
=

∫

d3r′
(

vxc(r
′)

δn(r′)

δAs(r)
+

1

c
Axc(r

′)
δjp(r

′)

δAs(r)
− Bxc(r

′)
δm(r′)

δAs(r)

)

=
N

∑

j=1

∫

d3r′
(

δExc

δΦj(r′)

δΦj(r
′)

δAs(r)
+

δExc

δΦ†
j(r

′)

δΦ†
j(r

′)

δAs(r)

)

. (5.45)

The exact functional derivatives of the orbitals with respect to the KS potentials are
calculated from first order perturbation theory of the Hamiltonian (5.13) perturbed
by small fields δvs, δBs, and δAs. This leads to

δΦj(r
′)

δvs(r)
=

∞
∑

k=1
k 6=j

Φ†
k(r)Φj(r)

εj − εk

Φk(r) , (5.46)

δΦj(r
′)

δBs(r)
= µB

∞
∑

k=1
k 6=j

Φ†
k(r)σΦj(r)

εj − εk

Φk(r) , (5.47)

and

δΦj(r
′)

δAs(r)
=

1

c

∞
∑

k=1
k 6=j

1
2i

[

Φ†
k(r)∇Φj(r) − (∇Φ†

k(r))Φj(r)
]

+ 1
c
As(r

′)Φ†
k(r)Φj(r)

εj − εk

Φk(r) .

(5.48)
The functional derivatives of the densities are calculated from their definitions in
terms of the KS spinors, Eqs. (5.18)-(5.20), e.g.

δn(r′)

δvs(r)
=

occ
∑

j

∫

d3r′′

(

Φ†
j(r

′′)
δΦj(r

′′)

δvs(r)
+

δΦ†
j(r

′′)

δvs(r)
Φj(r

′′)

)

. (5.49)

The derivatives of the exchange-correlation energy can be evaluated once an approx-
imate orbital functional is specified. The final OEP equations read

N
∑

j=1

(

Φ†
j(r)Ψj(r) + h.c.

)

= 0, (5.50)

−µB

N
∑

j=1

(

Φ†
j(r)σΨj(r) + h.c.

)

= 0, (5.51)

[

1

2i

N
∑

j=1

(

Φ†
j(r)∇Ψj(r) −

(

∇Φ†
j(r)

)

Ψj(r)
)

]

+ h.c. = 0. (5.52)

These equations (5.50)-(5.52) form a set of coupled integral equations for the three
unknown exchange-correlation potentials. We introduced the “orbital shifts” [71,
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72, 73]

Ψj(r) =
∞

∑

k=1
k 6=j

D†
jkΦk(r)

εj − εk

(5.53)

with

D†
jk =

∫

d3r′
(

vxc(r
′)Φ†

k(r
′)Φj(r

′)

+gµBBxc(r
′)Φ†

k(r
′)σΦj(r

′) − Φ†
k(r

′)
δExc

δΦ†
j(r

′)

)

+
1

2ic2
Axc(r

′)
[

Φ†
k(r

′)∇′Φj(r
′) −

(

∇′Φ†
k(r

′)
)

Φj(r
′)
]

. (5.54)

In first-order perturbation theory, the orbital shifts Ψj would correspond to a pertur-

bation whose matrix elements are given by D†
jk. Hence, the OEP equations (5.50)-

(5.52) have the simple physical interpretation that the densities do not change under
this perturbation. The perturbation in CSDFT contains two additional terms, one
for Axc and one for Bxc, compared to conventional DFT.

For Axc = 0 in Eqs. (5.50) and (5.51) reduce to the OEP equations in spin-
DFT [74], as expected. In collinear (spin-) DFT, a technique for solving the OEP
equations has recently been developed which is based on a direct computation of the
orbital shifts [72, 73]. A similar technique has been used to solve the OEP equations
in non-collinear spin-DFT [74] and could also be employed here. However, we do
not follow this approach but use the simplifying approximation by Krieger, Li, and
Iafrate (KLI) [75, 66] which is also frequently employed in spin-DFT calculations.

5.4 Approximation of Krieger, Li, and Iafrate

The derivation of the OEP equations in the last section resulted in three coupled
integral equations (5.50)-(5.52) for the three exchange-correlation potentials. The
approximation by Krieger, Li, and Iafrate (KLI) [75, 66] transforms these equations
into a set of coupled algebraic equations simplifying the numerical treatment con-
siderably. As in DFT, one replaces the energy denominator εj − εk in the definition
(5.53) of Ψj by a constant ∆ε leading to

Ψj(r) =
1

∆ε

{

∞
∑

k=1

D†
jkΦk(r) − D†

jjΦj(r)

}

. (5.55)

The sum over k can then be performed analytically due to the closure relation

∞
∑

k=1

Φ†
k(r

′)Φk(r) = δ(r − r′). (5.56)
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The three OEP equations in the KLI approximation are then most conveniently
written in the matrix notation

D(r)Vxc(r) = R(r), (5.57)

where we defined the vector of exchange-correlation potentials as

VT
xc(r) =

(

vxc(r),B
T
xc(r),

1

c
AT

xc(r)

)

. (5.58)

The 7 × 7 matrix D is given by

D(r) =







n(r) −mT (r) jTp (r)

−m(r) g2µ2
B n(r)

� J (r)

jp(r) J T (r) N (r)






, (5.59)

where
�

is the 3× 3 unit matrix. The matrix elements of the 3× 3 matrices J and
N are defined by

Jαβ(r) = −gµB

2i

N
∑

j=1

(

Φ†
j(r)σα

∂Φj(r)

∂rβ

−
∂Φ†

j(r)

∂rβ

σαΦj(r)

)

, (5.60)

and

Nαβ(r) =
1

2

N
∑

j=1

(

∂Φ†
j(r)

∂rα

∂Φj(r)

∂rβ

+
∂Φ†

j(r)

∂rβ

∂Φj(r)

∂rα

)

− 1

4n(r)

∂n(r)

∂rα

∂n(r)

∂rβ

, (5.61)

where α = 1, 2, 3 correspond to the Cartesian coordinates x, y, and z, respectively.
The seven components of the vector R(r) on the right hand side of Eq. (5.57) are
given by

R1(r) =
1

2

N
∑

j=1

(

Φ†
j(r)

δExc

δΦ†
j(r)

+ nj(r)D
†
jj + h.c.

)

, (5.62)

R1+α(r) =
1

2

N
∑

j=1

(

−µBΦ†
j(r)σα

δExc

δΦ†
j(r)

+ mjα(r)D†
jj + h.c.

)

, (5.63)

R4+α(r) =
1

2

N
∑

j=1

(

1

2i
Φ†

j(r)
∂

∂rα

δExc

δΦ†
j(r)

− 1

2i

∂Φ†
j(r)

∂rα

δExc

δΦ†
j(r)

+ jpjα(r)D†
jj + h.c.

)

,

(5.64)
where the density nj, the magnetization density mj, and the paramagnetic current
density jpj correspond to a single orbital Φj(r), i.e.

nj(r) = Φ†
j(r)Φj(r), (5.65)

mj(r) = −µBΦ†
j(r)σΦj(r), (5.66)

jpj(r) =
1

2i

(

Φ†
j(r)∇Φj(r) − (∇Φ†

j(r))Φj(r)
)

. (5.67)

In order to derive the KLI equations in this form we made use of Eq. (5.27), i.e. we
employed the gauge invariance of Exc.



5.5. OEP EQUATIONS FOR COLLINEAR MAGNETISM 71

5.5 OEP Equations for Collinear Magnetism

As introduced in Section 5.2, a common approximation restricts the magnetization
of the system to be collinear with the magnetic field and the KS equation decomposes
into two independent spinor components. Therefore, the orbital shifts (5.53), being
spinor quantities in general, also reduce to spin-orbital shifts, i.e.

ψjσ(r) =
∞

∑

k=1
k 6=j

D∗
jkσϕkσ(r)

εj − εk

. (5.68)

The matrix elements Djkσ also inherit the spin-dependence and are given by

D∗
jkσ =

∫

d3r′
(

vxcσ(r′)ϕjσ(r′)ϕ∗
kσ(r′) − ϕ∗

kσ(r′)
δExc

δϕ∗
jσ(r′)

+
1

2ic
Axc(r

′) [ϕ∗
kσ(r′)∇′ϕjσ(r′) − ϕjσ(r′)∇′ϕ∗

kσ(r′)]

)

(5.69)

with the spin-dependent scalar potential defined in Eq. (5.34).
The OEP equations (5.50)-(5.52) reduce to a sum over their two spin components

∑

σ=↑,↓

Nσ
∑

j=1

ϕ∗
jσ(r)ψjσ(r) + c.c. = 0, (5.70)

−µB

∑

σ=↑,↓

Nσ
∑

j=1

±ϕ∗
jσ(r)ψjσ(r) + c.c. = 0, (5.71)

[

1

2ic

∑

σ=↑,↓

Nσ
∑

j=1

[

ϕ∗
jσ(r)∇ψjσ(r) − ψjσ(r)∇ϕ∗

jσ(r)
]

]

+ c.c. = 0, (5.72)

where the upper sign in Eq. (5.71) is for the spin up and the lower signs for the spin
down direction. Note that Eq. (5.71) simplifies from a 3-component vector equation
to a pure scalar equation for collinear magnetism. By adding and subtracting the
first two equations, the two spin directions can be decoupled, i.e.

Nσ
∑

j=1

ϕ∗
jσ(r)ψjσ(r) + c.c. = 0 (5.73)

has to be satisfied separately for each spin component. The third equation, however,
does not decouple into its spin components because the vector potential does not
depend on spin.

The KLI approximation can be used in complete analogy to Section 5.4. Since
the number of densities is reduced, the KLI approximation results in a 5× 5 matrix
equation

D(r)Vxc(r) = R(r), (5.74)
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where the vector of exchange-correlation potentials is now given by

VT
xc(r) =

(

vxc↑(r), vxc↓(r),
1

c
AT

xc(r)

)

, (5.75)

and the matrix D reads

D(r) =









n↑(r) 0 jTp↑(r)

0 n↓(r) jTp↓(r)

jp↑(r) jp↓(r) N (r)









. (5.76)

The matrix elements of the 3 × 3 matrix N are also given as a sum over both spin
directions

Nαβ(r) =
1

2

∑

σ=↑,↓

Nσ
∑

j=1

(

∂ϕ∗
jσ(r)

∂rα

∂ϕjσ(r)

∂rβ

+
∂ϕ∗

jσ(r)

∂rβ

∂ϕjσ(r)

∂rα

)

− 1

4n(r)

∂n(r)

∂rα

∂n(r)

∂rβ

,

(5.77)
where α = 1, 2, 3 again correspond to the Cartesian coordinates x, y, and z, respec-
tively. The five components of the vector R(r) on the right hand side of Eq. (5.74)
can be written as

R1(r) =
1

2

N↑
∑

j=1

(

ϕ∗
j↑(r)

δExc

δϕ∗
j↑(r)

+ nj↑(r)D
∗
jj↑ + c.c.

)

, (5.78)

R2(r) =
1

2

N↓
∑

j=1

(

ϕ∗
j↓(r)

δExc

δϕ∗
j↓(r)

+ nj↓(r)D
∗
jj↓ + c.c.

)

, (5.79)

R2+α(r) =
1

2

∑

σ=↑,↓

Nσ
∑

j=1

(

1

2i
ϕ∗

jσ(r)
∂

∂rα

δExc

δϕ∗
jσ(r)

− 1

2i

∂ϕ∗
jσ(r)

∂rα

δExc

δϕ∗
jσ(r)

+jpjσα(r)D∗
jjσ + c.c.

)

. (5.80)

5.6 Exact Exchange

The derivations in Sections 5.3 to 5.5 are completely general and valid for any orbital
dependent functional Exc. For the application in Chapter 6 we restrict ourselves to
the most commonly used functional, namely the exact-exchange functional EEXX

xc .
In terms of the KS spinors EEXX

xc is given by

EEXX
xc = −1

2

N
∑

j,k=1

∫∫

d3rd3r′
Φ†

j(r)Φj(r
′)Φ†

k(r
′)Φk(r)

| r − r′ | . (5.81)
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Applying the collinear approximation, (5.81) simplifies to

EEXX
xc = −1

2

∑

σ=↑,↓

Nσ
∑

j,k

∫∫

d3rd3r′
ϕ∗

jσ(r)ϕjσ(r′)ϕ∗
kσ(r′)ϕkσ(r)

| r − r′ | . (5.82)

A comparison with conventional DFT reveals an advantage of orbital functionals.
They remain unchanged when the theory is extended to include additional potentials
and densities. All the dependence on any new density is automatically accounted
for because the KS orbitals depend on the new density.
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