
Chapter 4

The Fundamental Gap in RDMFT

The theoretical description of atoms, molecules, and solids relies on the calcula-
tion of single-particle orbitals, like Hartree-Fock or Kohn-Sham orbitals, and their
respective energies. Experimentally extensive information is obtained from photo-
emission and -absorption spectra. In photo-absorption experiments one measures
the difference between the ground-state and an excited state of an N -particle sys-
tem by measuring the energy of a photon which is absorbed by the system. The
difference between the ground-state energy and the first excited state

∆̃ = Egs
total(N) − Eexc

total(N) (4.1)

is called the optical or neutral gap of the system. As a second possibility, one can
ionize the system in a photo-emission experiment. The absorbed photon in this case
has enough energy to allow an electron to leave the system. From the known energy
of the photon and the measured energy of the escaping electron one can obtain the
ionization potential

I = Etotal(N − 1) − Etotal(N). (4.2)

Additionally, one can measure the electron affinity

A = Etotal(N) − Etotal(N + 1) (4.3)

from an inverse photo-emission experiment, where an electron is absorbed by the
system and the energy of the resulting photon is measured. The fundamental gap
of the system is defined as

∆ = I − A. (4.4)

In the chemistry literature (e.g. Ref. [45]), ∆/2 is usually termed the absolute
hardness of a chemical species. Here, we use the term fundamental gap for both
finite and extended systems since the physical concept defined by Eq. (4.4) is the
same in both cases.

The fundamental gap ∆ differs from the optical gap ∆̃ because of the attractive
interaction between the electron and the corresponding hole which is part of the
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Figure 4.1: The KS gap at the Γ point for Ge, GaAs, AlAs, GaN, and Si (left to
right) calculated from LDA and exact exchange. The dashed line is a guide to the
eye for the experimental value. Numbers are taken from Refs. [15, 44]

optical gap. Therefore, the optical gap is smaller than the fundamental one by the
binding energy of the resulting exciton in the photo-absorption experiment.

In DFT the fundamental gap is given by

∆ = ∆KS + lim
η→0

(

δExc

δn(r)
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)

. (4.5)

However, as already mentioned in the introduction, employing the commonly used
LDA leads to a gap which is 30-100% too small. The discrepancy is due to the
derivative discontinuity of the exchange-correlation energy which is not described
by LDA. The band gap is therefore solely given by the KS band gap. Fig. 4.1 shows
the results for several semi-conducting systems. Although all LDA results are too
small the largest error occurs in Germanium which is even predicted as a metal
in LDA. Using the exact-exchange functional the KS band gap is in quite good
agreement with experimental values, see Fig. 4.1. It was shown, however, that the
agreement is due to a fortuitous cancellation of errors in these systems and does not
hold in general [11]. In addition, the derivative discontinuity of the exact-exchange
functional is different from zero. Adding it properly leads to a gap very close to the
HF gap which is therefore too large.

In this chapter we are concerned with the fundamental gap of finite and periodic
systems and how to calculate it within reduced-density-matrix-functional theory. In
Section 4.1 we present the formalism for the calculation of the fundamental gap.
Special attention needs to be paid to the N -representability problem to be covered
in Section 4.2. We then focus on the numerical implementation and close the chapter
with results for finite as well as periodic systems in Section 4.3.
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4.1 The Fundamental Gap as the Discontinuity of

the Chemical Potential

In order to derive the fundamental gap (4.4) within RDMFT we extend the definition
of the total-energy functional Etotal[Γ

(1)] to systems with fractional particle number
M . Such systems can be described as an ensemble consisting of an N - and an
(N + 1)-particle state for N ≤ M ≤ N + 1. The expectation value O of an operator
Ô is then given by the trace

O = tr(D̂Ô), (4.6)

where D̂ is the statistical matrix. In the case of an ensemble of an N - and an
(N + 1)-particle state it is given by

D̂ = αN |ΨN〉〈ΨN | +αN+1 |ΨN+1〉〈ΨN+1 |, (4.7)

where ΨN and ΨN+1 represent the N - and (N + 1)-particle wave functions which
contribute to the ensemble. The ensemble 1-RDM for fractional particle number is
therefore given by

Γ(1)M(x;x′) = tr(D̂Γ̂(1))

= αNN

∫

dx2...dxN ΨN∗(x′,x2...xN)ΨN(x,x2...xN) (4.8)

+αN+1(N + 1)

∫

dx2...dxN+1 ΨN+1∗(x′,x2...xN+1)Ψ
N+1(x,x2...xN+1) .

Since the density, i.e. the diagonal of the 1-RDM, has to integrate to the particle
number M = N + η (N ∈ � , 0 ≤ η ≤ 1) the coefficients αN and αN+1 have to take
the values

αN = 1 − η (4.9)

αN+1 = η. (4.10)

The resulting ensemble 1-RDM then reduces to

Γ(1)M(x;x′) = (1 − η) Γ(1)N(x;x′) + η Γ(1)N+1(x;x′). (4.11)

The ground-state energy of the ensemble is

Etotal(M) = (1 − η)Etotal(N) + ηEtotal(N + 1), (4.12)

where Etotal(N) and Etotal(N+1) are the ground-state energies of the N - and (N+1)-
particle system, respectively. Fig. 4.2 shows the total energy as a function of η, or
alternatively as a function of the fractional particle number M . One can verify this
picture by reformulating (4.12) as

Etotal(M) = E(N) + η [E(N + 1) − E(N)] (4.13)
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Figure 4.2: Total energy for a fractional total number of particles M . The en-
ergy shows a derivative discontinuity at integer particle number N . The ionization
potential I and the electron affinity A are also given.

for N < M < N + 1. For N − 1 < M < N , one obtains in analogy

Etotal(M) = E(N − 1) + η [E(N) − E(N − 1)] . (4.14)

Since A = E(N +1)−E(N) and I = E(N)−E(N −1) are in general not the same,
the derivative ∂Etotal(M)/∂M has a discontinuity at integer particle number N .
For Coulomb-systems Lieb’s conjecture claims that the energy is a convex function
of the particle number such that the electron affinity is smaller than the ionization
potential [46]. From Eqs.(4.2-4.4), one can conclude that the derivative discontinuity
of the energy is identical to the fundamental gap

∆ =
∂Etotal(M)

∂M

∣

∣

∣

∣

N+η

−∂Etotal(M)

∂M

∣

∣

∣

∣

N−η

. (4.15)

The total energy of a system in RDMFT is calculated by minimizing the func-
tional (2.58)

F [Γ(1)] = Etotal[Γ
(1)] − µ

(∫

dx Γ(1)(x;x) − N

)

. (4.16)

For fractional particle number M the question again arises when the one-body re-
duced density matrix Γ(1) is N -representable. Here, N -representability refers to Eq.
(4.11), i.e. is it possible to write the density matrix as a weighted sum of two density
matrices for integer particle numbers which are themselves N -representable? As we
show in the next section this is ensured again by restricting the occupation numbers
of the M -particle system to the interval [0; 1] and ensure

∑

j nj = M . Here, we
continue to discuss the fundamental gap using this constraint.

First, we prove that the Lagrangian multiplier µ in equation (4.16) is nothing
else but the chemical potential, i.e.

µ(M) =
∂Etotal(M)

∂M
. (4.17)
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This is not at all obvious because, in contrast to DFT, δF/δΓ(1) does not need to
vanish at the minimum energy due to the states pinned at the border. As discussed
in Section 2.5, for these states the occupation number is pinned to either zero or
one in order to satisfy the N -representability constraint. The minimum is hence a
border minimum with non-vanishing derivative. To prove (4.17) nevertheless, we
investigate the difference

Etotal(M + η) − Etotal(M) = E[Γ(1)M+η] − E[Γ(1)M ], (4.18)

where Γ(1)M+η(x;x′) and Γ(1)M(x;x′) denote the ground-state density matrices of
the M + η and M particle systems, respectively. A Taylor expansion of E[Γ(1)M+η]
around Γ(1)M leads to

Etotal(M+η)−Etotal(M) =

∫∫

dxdx′ δEtotal

δΓ(1)(x;x′)

∣

∣

∣

∣

Γ(1)M

(

Γ(1)M+η(x;x′) − Γ(1)M(x;x′)
)

,

(4.19)
where we only kept terms up to first order in the density matrices. The functional
derivative of (4.16) yields

δF

δΓ(1)(x;x′)
=

δEtotal

δΓ(1)(x;x′)
− µδ(x − x′). (4.20)

Evaluating δF/δΓ(1) via the functional chain rule with respect to the occupation
numbers nj and the natural orbitals ϕj, (4.20) leads to

δEtotal

δΓ(1)(x;x′)
= µδ(x − x′) +

∞
∑

j=1

δF

δnj

δnj

δΓ(1)(x;x′)
+

∞
∑

j=1

∫

dy
δF

δϕj(y)

δϕj(y)

δΓ(1)(x;x′)
+ c.c.

(4.21)
At the energy minimum, δF/δϕj = 0 for all natural orbitals and δF/δnl = 0 for any
unpinned state l. The pinned states, however, contribute so that

δEtotal

δΓ(1)(x;x′)

∣

∣

∣

∣

min

= µδ(x − x′) +
∑

p

δF

δnp

ϕ∗
p(x)ϕp(x

′), (4.22)

where we have used Eq. (2.51). The sum now runs over pinned states only. Equation
(4.19) reduces to

Etotal(M + η) − Etotal(M) = (4.23)

µ(M)η +
∑

p

δF

δnM
p

∫∫

dxdx′ ϕ∗M
p (x)ϕM

p (x′)
(

Γ(1)M+η(x;x′) − Γ(1)M(x;x′)
)

,

where the upper index M denotes that the natural orbitals and occupation numbers
corresponding to the M -particle density matrix. If we write the occupation numbers
and orbitals of the M + η system as

nM+η
j = nM

j + δnj, ϕM+η
j = ϕM

j + δϕj, (4.24)
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all first order corrections to Γ(1)M+η are contained in

Γ(1)M+η(x;x′) =
∞

∑

j=1

(nM
j + δnj) (ϕM∗

j (x′) + δϕ∗
j(x

′)) (ϕM
j (x) + δϕj(x)) . (4.25)

Using the orthonormality of the natural orbitals, this leads to

Etotal(M + η) − Etotal(M) = (4.26)

µ(M)η +
∑

p

δF

δnM
p

[

δnp + nM
p

∫

dx
(

ϕM
p (x)δϕ∗

p(x) + δϕp(x)ϕ∗M
p (x)

)

]

.

The second term in the square brackets is zero since the norm of the natural orbitals
does not change when the particle number is increased. Hence, δϕp is orthogonal to
the corresponding ϕM

p . Concerning the first term we observe that the sum is only
running over pinned states, i.e. states where the true minimum is at a finite distance
from the border of the interval [0; 1]. Adding an infinitesimal amount of particles η
to the system can not unpin these states and, hence, δnp is zero in the limit η → 0.
This proves Eq. (4.17), and hence, by (4.15), we can evaluate the fundamental gap
from the discontinuity of the Lagrange multiplier µ(M)

∆ = lim
η→0

[µ(M + η) − µ(M − η)]. (4.27)

4.2 N-Representability for Fractional Particle

Number

The N -representability conditions for systems with integer particle numbers are
discussed in Chapter 2. The proof of Coleman [47] is given in Appendix A. Since
this proof is only concerned with integer number of particles we have to extend it
to one-body reduced density matrices for M = N + η particles, 0 < η < 1, N ∈ � .
In this section we show that the conditions (2.20) and (2.21)

0 ≤ nj ≤ 1,
∞

∑

j=1

nj = M (4.28)

are also valid for fractional particle number.
We call a density matrix of a system with fractional particle number N -represen-

table if it belongs to the set S1 given by

S1 =

{

Γ(1)M(x;x′) = (1 − η)Γ(1)N(x;x′) + ηΓ(1)N+1(x;x′),

with Γ(1)N(x;x′), Γ(1)N+1(x;x′) ensemble N−representable

}

. (4.29)
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In other words, a density matrix for fractional particle number is N -representable
if it can be written as an ensemble of density matrices for integer particle number
which are N -representable. We introduce a second set S2

S2 =

{

Γ(1)M(x;x′) =
∞

∑

j=1

αjφ
∗
j(x

′)φj(x), 0 ≤ αj ≤ 1 ∀j,
∞

∑

j=1

αj = N + η

}

. (4.30)

In order to prove that the conditions (4.28) are necessary and sufficient, we have to
show that the two sets S1 and S2 are identical.

In the first part of the proof we show that S1 ⊆ S2, i.e. that (4.28) are necessary
conditions. Starting from

Γ(1)M(x;x′) = (1 − η)Γ(1)N(x;x′) + ηΓ(1)N+1(x;x′) (4.31)

we diagonalize Γ(1)M and obtain, due to its hermiticity,

Γ(1)M(x;x′) =
∞

∑

j=1

nM
j ϕM∗

j (x′)ϕM
j (x), (4.32)

where nM
j and ϕM

j denote the eigenvalues and eigenfunctions of Γ(1)M , respectively.

We also diagonalize Γ(1)N and Γ(1)N+1 and, since they are both N -representable, we
obtain

Γ(1)N(x;x′) =
∞

∑

j=1

nN
j ϕN∗

j (x′)ϕN
j (x) , (4.33)

Γ(1)N+1(x;x′) =
∞

∑

j=1

nN+1
j ϕN+1∗

j (x′)ϕN+1
j (x) (4.34)

with

0 ≤ nN
j ≤ 1,

∞
∑

j=1

nN
j = N, (4.35)

0 ≤ nN+1
j ≤ 1,

∞
∑

j=1

nN+1
j = N + 1. (4.36)

In order to compare (4.31) and (4.32) we expand the natural orbitals of Γ(1)N and
Γ(1)N+1 in the natural orbitals of Γ(1)M , i.e.

ϕN
j (x) =

∞
∑

k=1

cN
jk ϕM

k (x), (4.37)

ϕN+1
j (x) =

∞
∑

k=1

cN+1
jk ϕM

k (x). (4.38)
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Such an expansion is always possible since the natural orbitals of a density matrix
form a complete orthonormal set of functions. We can then rewrite (4.31) as

Γ(1)M(x;x′) = (1 − η)
∞

∑

j,k,l=1

nN
j cN∗

jk cN
jlϕ

M∗
k (x′)ϕM

l (x)

+η
∞

∑

j,k,l=1

nN+1
j cN+1∗

jk cN+1
jl ϕM∗

k (x′)ϕM
l (x) (4.39)

=
∞

∑

k=1

nM
k ϕM∗

k (x′)ϕM
k (x). (4.40)

A comparison of the coefficients shows that all terms with k 6= l in the first two
sums have to vanish and, furthermore, we obtain

nM
k = (1 − η)

∞
∑

j=1

nN
j | cN

jk |2 +η
∞

∑

j=1

nN+1
j | cN+1

jk |2 . (4.41)

From the normalization of the three sets of natural orbitals, ϕN
j , ϕN+1

j , and ϕM
j , we

know that the expansion coefficients satisfy

∞
∑

j=1

| cN
jk |2 =

∞
∑

j=1

| cN+1
jk |2 = 1. (4.42)

As a result we conclude

0 ≤ ∑∞
j=1 nN

j | cN
jk |2 ≤ 1 , (4.43)

0 ≤ ∑∞
j=1 nN+1

j | cN+1
jk |2 ≤ 1 (4.44)

because the occupation numbers nN
j and nN+1

j are between zero and one and hence
the sums are reduced compared to those in Eq. (4.42). Multiplying Eqs. (4.43) and
(4.44) with 1 − η and η, respectively, leads to

0 ≤ (1 − η)
∑∞

j=1 nN
j | cN

jk |2 ≤ 1 − η (4.45)

0 ≤ η
∑∞

j=1 nN+1
j | cN+1

jk |2 ≤ η (4.46)

which shows together with (4.41) that indeed

0 ≤ nM
k ≤ 1. (4.47)

It is straightforward to show that
∑

k nM
k = M = N + η by using (4.41), (4.42)

with
∑

j replaced by
∑

k, and the constraints for nN
j and nN+1

j . Therefore, we have
shown S1 ⊆ S2.

In the second part we have to prove S2 ⊆ S1, i.e. that the conditions (4.28)
are also sufficient. We use some of the theorems and methods already employed
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by Coleman in his proof of the N -representability for integer particle number [47].
First, we show that the two sets are convex (see also App. A). The weighted average

of two elements Γ
(1)M
1 and Γ

(1)M
2 of S1 is given by

Γ
(1)M
3 = αΓ

(1)M
1 + (1 − α)Γ

(1)M
2

= α
[

(1 − η)Γ
(1)N
1 + ηΓ

(1)N+1
1

]

+ (1 − α)
[

(1 − η)Γ
(1)N
2 + ηΓ

(1)N+1
2

]

= (1 − η)
[

αΓ
(1)N
1 + (1 − α)Γ

(1)N
2

]

+ η
[

αΓ
(1)N+1
1 + (1 − α)Γ

(1)N+1
2

]

= (1 − η)Γ
(1)N
3 + ηΓ

(1)N+1
3 . (4.48)

Due to the convexity of the sets of N -representable density matrices for integer
particle number, Γ

(1)N
3 and Γ

(1)N+1
3 are N -representable and therefore Γ

(1)M
3 is also

an element of S1 which proves the convexity of this set.
In order to show that S2 is convex we employ a theorem from linear algebra:

The maximum eigenvalue of the sum of two positive definite operators is smaller or
at most equal to the sum of the maximum eigenvalues of the two operators. For
a weighted average of two elements of S2, Γ

(1)M
1 and Γ

(1)M
2 , we add the operators

αΓ
(1)M
1 and (1 − α)Γ

(1)M
2 having maximum eigenvalues α and 1 − α, respectively.

The maximum eigenvalue of

Γ
(1)M
3 = αΓ

(1)M
1 + (1 − α)Γ

(1)M
2 (4.49)

is hence 1. Since the sum of two positive definite operators is again a positive definite
operator, Γ

(1)M
3 has no negative eigenvalues. Therefore, all eigenvalues of Γ

(1)M
3 are

elements of [0; 1] so that Γ
(1)M
3 is an element of S2 which is hence a convex set.

Due to the Krein-Milman theorem [48] any convex set is completely defined by
its extreme elements. Therefore, we show next that the extreme elements of S2 are
those density matrices Γ

(1)M
e with exactly N occupation numbers equal to one and

one occupation number equal to η, i.e.

Γ(1)M
e (x;x′) =

N+1
∑

j=1

njϕ
∗
j(x

′)ϕj(x),







nj = 1 j ≤ N
nj = η j = N + 1
nj = 0 j > N + 1.

(4.50)

First, we show that these elements are indeed extreme which means that they can
not be written as the weighted average of two other elements of S2. Then we prove
that there are no other extreme elements. Since the proof of the first step is by
contradiction, we assume that Γ

(1)M
e can be written as

Γ(1)M
e = αΓ

(1)M
1 + (1 − α)Γ

(1)M
2 , (4.51)

with Γ
(1)M
1 , Γ

(1)M
2 ∈ S2 and 0 < α < 1. For the rank R of the extreme element (i.e.

the number of non-zero eigenvalues) one has R = N + 1 while R ≥ N + 1 for any
element of S2. The rank of a positive definite operator is equal to the dimension of
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its range. The range of the sum of two positive definite operators is equal to the
union of their ranges. Hence, if the sum of two density matrices is to have rank
N + 1, both density matrices must have rank N + 1. Since R = N + 1 for Γ

(1)M
e

in Eq. (4.51) both Γ
(1)M
1 and Γ

(1)M
2 have to have N + 1 non-zero eigenvalues and

their ranges are both identical to the range of Γ
(1)M
e . We can therefore expand the

natural orbitals of Γ
(1)M
1 and Γ

(1)M
2 in the natural orbitals of Γ

(1)M
e according to

ϕk1(r) =
N+1
∑

j=1

cjk1 ϕj(r), (4.52)

ϕk2(r) =
N+1
∑

j=1

cjk2 ϕj(r). (4.53)

Using these expansions together with (4.50) and (4.51) yields

N+1
∑

k=1

α nj1 | cjk1 |2 + (1 − α) nj2 | cjk2 |2= 1, j = 1...N. (4.54)

Due to the normalization of the expansion coefficients and the properties of the
occupation numbers this equation can only be satisfied if the fully occupied orbitals
ϕ1...ϕN only contribute to fully occupied orbitals ϕk1 and ϕk2. Therefore, the fully
occupied orbitals of the three matrices Γ

(1)M
e , Γ

(1)M
1 , and Γ

(1)M
2 span the same N -

dimensional space. The (N + 1)st orbital of the three matrices is hence identical
and has occupation number η in all three cases. In other words, the three matrices
are connected by a unitary transformation in the subspace of fully occupied orbitals
and therefore identical, i.e. Γ

(1)M
1 = Γ

(1)M
2 = Γ

(1)M
e which is therefore an extreme

element of S2.
Now, we prove, again by contradiction, that there exist no other extreme ele-

ments. Assume there is an extreme element Γ
(1)M
1 which is not of the above kind.

Then there are two different possibilities:

(1) Γ
(1)M
1 has more than N + 1 non-zero eigenvalues.

(2) Γ
(1)M
1 has exactly N +1 non-zero eigenvalues but at least one differs from both

1 and η.

In the first case, we order the occupation numbers of Γ
(1)M
1 such that

1 ≥ nM
1,1 ≥ nM

1,2 ≥ ... ≥ nM
1,N ≥ nM

1,N+1 ≥ nM
1,N+2 ≥ ... ≥ 0. (4.55)

In addition, one has nM
1,N+1 < 1 and nM

1,N+2 > 0. The first index implies that these

occupation numbers belong to Γ
(1)M
1 . We can then always find an ε, 0 < ε < 1 such

that
nM

1i ≥ ε i = 1...N ,
1 − ε ≥ nM

1i ≥ ηε i = N + 1 ,
1 − ε ≥ nM

1i i ≥ N + 2 .
(4.56)
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We decompose Γ
(1)M
1 into Γ

(1)M
e and Γ

(1)M
2 according to

Γ
(1)M
1 = εΓ(1)M

e + (1 − ε)Γ
(1)M
2 , (4.57)

where Γ
(1)M
e denotes the extreme element with the first N occupation numbers equal

to 1 and the (N + 1)st equal to η. All three matrices share the same set of natural

orbitals. The occupation numbers of Γ
(1)M
2 are therefore given as

nM
2i = (nM

1i − ε)/(1 − ε) i = 1...N,
nM

2i = (nM
1i − ηε)/(1 − ε) i = N + 1,

nM
2i = nM

1i /(1 − ε) i ≥ N + 2.
(4.58)

Due to the restrictions (4.56), 0 ≤ nM
2i ≤ 1 and their sum is equal to M . Hence,

Γ
(1)M
2 is an element of S2. This, however, implies that Γ

(1)M
1 is not an extreme

element.
In the second case we can immediately conclude that all N +1 non-zero occupa-

tion numbers have to be larger than η. Therefore, we can always find an ε, 0 < ε < 1
such that

nM
1i ≥ η + ε i = 1...N + 1,

nM
1i = 0 i ≥ N + 2.

(4.59)

As in the first case, we find

Γ
(1)M
1 = εΓ(1)M

e + (1 − ε)Γ
(1)M
2 , (4.60)

where the occupation numbers of Γ
(1)M
2 are now given by

nM
2i = (nM

1i − ε)/(1 − ε) i = 1...N ,
nM

2i = (nM
1i − ηε)/(1 − ε) i = N + 1 ,

nM
2i = 0 i ≥ N + 2 .

(4.61)

Again, from the restrictions (4.59), all occupation numbers nM
2i are elements of the

interval [0; 1] and sum up to M . Therefore, Γ
(1)M
2 is an element of S2 and Γ

(1)M
1 is

not extreme. We have therefore proven that an element of S2 is extreme if and only
if it has exactly N eigenvalues equal to 1 and one eigenvalue equal to η.

Due to the convexity of S2 any of its elements can be written as a weighted
average of the extreme elements, i.e.

Γ(1)M =
∑

j∈{e}

αjΓ
(1)M
j with

∑

j

αj = 1 ∀Γ(1)M ∈ S2, (4.62)

where the sum runs over all extreme elements. To prove S2 ⊆ S1, it therefore
remains to be shown that an arbitrary extreme element of S2 is also an element of
S1. This is, however, easily done by explicit construction. Writing

Γ(1)M
e = (1 − η)

N
∑

j=1

ϕ∗
j(x

′)ϕj(x) + η
N+1
∑

j=1

ϕ∗
j(x

′)ϕj(x), (4.63)
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where ϕj(x) are the natural orbitals of Γ
(1)M
e the first sum represents a single Slater

determinant in N -particle space and the second is a single Slater determinant for
N + 1 particles. Both sums are N -representable density matrices and, hence, the
extreme element Γ

(1)M
e of S2 is also an element of S1. As shown above, S1 is a convex

set and, therefore, any weighted average of two of its elements is again an element of
the set. Since all elements of S2 can be written as weighted averages of the extreme
elements, this implies S2 ⊆ S1. We have therefore shown that

S1 ⊆ S2 ⊆ S1, (4.64)

which can only be fulfilled if
S1 ≡ S2. (4.65)

Hence, restricting the occupation numbers of Γ(1)M according to S2 is necessary and
sufficient to ensure N -representability.

4.3 Numerical Treatment

After settling the issue of N -representability, in this section we consider the actual
numerical treatment of finite and periodic systems in RDMFT. We first discuss
issues which are independent of the specific system before we focus on a more specific
description of finite and periodic systems.

The normalization of the density matrix and the orthonormality of the natural
orbitals are realized by adding Lagrange multipliers to the total energy functional.
Hence, we minimize

F [Γ(1)] = Etotal[Γ
(1)]−µ

(

∞
∑

j=1

nj − N

)

−
∞

∑

j,k=1

εjk

(∫

dx ϕ∗
j(x)ϕk(x) − δjk

)

. (4.66)

As discussed already in Section 2.5, the additional N -representability constraint
0 ≤ nj ≤ 1 is enforced by the substitution nj = sin2 θj.

The natural orbitals are expanded in an appropriate basis set. The minimization
is therefore equivalent to finding the optimal expansion coefficients for each natural
orbital. The minimization of Eq. (4.66) with respect to the natural orbitals, i.e.
taking the functional derivative of (4.66) with respect to orbital j and setting it to
zero, leads to equations of the form

F (j)ϕj =
∞

∑

k=1

εjk ϕk, (4.67)

εjk = εkj, (4.68)

where F (j) is an orbital-dependent operator, i.e. it depends on the orbital ϕj it
acts on. As a consequence, the Lagrange multipliers εjk are non-diagonal. For an
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orbital independent operator F the orthogonality of the eigenfunctions is automat-
ically satisfied and only the normalization is enforced by a then diagonal Lagrange
multiplier. Orbital-dependent operators, however, are not unusual, they also appear
in DFT calculations when self-interaction corrected LDA functionals are used or in
restricted open-shell Hartree-Fock calculations.

Differentiating with respect to the occupation numbers, we obtain

δF

δθj

= 2 sin θj cos θj

[

δEtotal

δnj

− µ

]

= 0, (4.69)

which has two different types of solutions. For the pinned states the occupation
numbers nj are either zero or one and therefore sin θj or cos θj is zero. For states
with fractional occupation numbers

δEtotal

δnj

= µ (4.70)

has to be satisfied.
In principle, one has to solve the system of equations consisting of (4.67), (4.68),

and (4.69) plus the additional constraints from the Lagrange multipliers. Since these
equations are generally non-linear a direct solution is very demanding. Therefore,
one finds a minimum of the functional (4.66) employing a conjugate gradient scheme.
Eqs. (4.67), (4.68), and (4.69) then determine the gradient in each iteration. For
the initial guess we use the results of a Hartree-Fock calculation which should be
sufficiently close to the minimum of the functional (4.66). One should be aware that
the conjugate gradient scheme does not guarantee that the absolute minimum is
found. The minimization is implemented as a two-step process. In each iteration we
first find the optimal set of occupation numbers from (4.69) using the orbitals from
the previous iteration. Then these occupation numbers are kept fixed and a new
set of orbitals is obtained from (4.67) and (4.68). The orbitals are orthogonalized
in each iteration. The whole process is iterated until it converges. In an outer loop,
the chemical potential µ is adjusted to satisfy the particle number constraint.

4.3.1 Finite Open- and Closed-Shell Systems

In principle, open- and closed-shell systems can be treated on the same footing. In
practice, however, one can use spin independent natural orbitals in the case of closed-
shell systems which can then be doubly occupied. This simplifies the numerical
treatment significantly. The total energy for a closed-shell system employing the
Goedecker/Umrigar approximation (see Section 3.3) for the exchange-correlation
energy reads

EGU
total =

∞
∑

j=1

njhjj +
∞

∑

j,k=1

njnk(2 − δjk)Jjk −
∞

∑

j,k=1

√
njnk(1 − δjk)Kjk. (4.71)
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Figure 4.3: The total energy of Beryllium atom in the singlet state as a function of
the natural orbitals for the Goedecker/Umrigar functional. For comparison the CI
and exact values [49, 50] are also shown.

The one-body integral hjj is given by

hjj =

∫∫

drdr′ ϕ∗
j(r

′)

(

δ(r − r′)

(

−∇2

2

)

+ v0(r
′, r)

)

ϕj(r) , (4.72)

and the two-body integrals, Coulomb and exchange respectively, read

Jjk =

∫∫

drdr′
ϕj(r)ϕ

∗
j(r)ϕk(r

′)ϕ∗
k(r

′)

| r − r′ | , (4.73)

Kjk =

∫∫

drdr′
ϕj(r)ϕ

∗
j(r

′)ϕk(r
′)ϕ∗

k(r)

| r − r′ | . (4.74)

We employ the GAMESS computer code [51] to calculate both the one-body as well
as the two-body integrals. The GAMESS code is also used to obtain the Hartree-
Fock solution which we use as a starting point for the RDMFT calculation. The
natural orbitals are expanded in a Gaussian type basis set (cc-PVQZ [36]) which
contains between 30 and 100 basis functions depending on the chemical element.
This immediately leads to the question of how many natural orbitals have to be
taken into account in the calculation to reach a satisfying accuracy. In principle,
all sums run over infinitely many natural orbitals. However, only a finite number
of occupation numbers is significantly larger than zero and the sums can be safely
truncated. Before truncating we have to ensure that the results are well converged
with respect to the number of natural orbitals taken into account. Fig. 4.3 shows the
convergence of the total energy as a function of the number of natural orbitals for the
Beryllium atom in its singlet ground state for the Goedecker/Umrigar functional.
As one can see, the inclusion of 20 natural orbitals yields an accuracy of 0.01 Ha for
the total energy. Including 40 natural orbitals one reaches the same accuracy as the
CI calculation. All higher orbitals have such a small occupation that their inclusion
does not significantly influence the results.
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Figure 4.4: The total energy of the Carbon triplet state (left) and the Nitrogen
quartet state (right) as a function of the number of natural orbitals for the restricted
open-shell version of the Goedecker/Umrigar functional. For comparison, the CI and
the exact values [49, 50] are also given.

For open-shell systems the formalism based on spin-independent orbitals is ob-
viously no longer valid. Not considering the full spinor treatment, one at least
has to use spin dependent occupation numbers and orbitals. The resulting states
are, as discussed in Section 2.6, no longer eigenfunctions of the total spin operator
S2 [52]. In our treatment we prefer to keep eigenstates of the total spin opera-
tor and therefore use a method in analogy to restricted open-shell Hartree-Fock,
which we call restricted open-shell RDMFT. In this formalism the occupation num-
bers are spin dependent while the natural orbitals remain spin independent. The
Goedecker/Umrigar functional is then given by

EGU
total =

∞
∑

j=1

(

n↑
j + n↓

j

)

hjj

+
1

2

∞
∑

j,k=1

[(

n↑
jn

↑
k + n↓

jn
↓
k

)

(1 − δjk) +
(

n↑
jn

↓
k + n↓

jn
↑
k

)]

Jjk

−1

2

∞
∑

j,k=1

[(

√

n↑
jn

↑
k +

√

n↓
jn

↓
k

)

(1 − δjk)

]

Kjk. (4.75)

The one-body integral hjj and the two-body integrals Jjk and Kjk are again given
by Eqs. (4.72)-(4.74).

As a consequence of the spin-dependent occupation numbers, there are two dif-
ferent ways to implement the constraint of particle number conservation. We can
either use a single Lagrange multiplier µ which fixes the total number of particles as
for the closed-shell system, or we use a spin resolved constraint, i.e. µ↑ and µ↓ fixing
the number of spin-up and spin-down electrons separately. In the first case there is
the possibility of charge diffusion between the different spin channels and the total
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Atom RDMFT QCI Exact
µ↑ = µ↓ µ↓ 6= µ↑

Li 7.4940 7.4827 7.4743 7.4781
B 24.6746 24.6616 24.6515 24.6539
C 37.8675 37.8506 37.8421 37.8450
N 54.6096 54.5965 54.5854 54.5893
O 75.0668 75.0671 75.0613 75.0670
F 99.6951 99.6952 99.727 99.734

∆̄ 0.020 0.010 0.004 0.000

Table 4.1: Total energies for the first-row open-shell atoms (in Ha) for the restricted
open-shell Goedecker/Umrigar functional with and without enforcing the spin con-
servation constraint. The QCI and exact values [49, 50] are given for comparison.
∆̄ denotes the mean absolute deviation from the exact values.

spin in z-direction is not fixed. The spin resolved Lagrange multipliers, on the other
hand, fix the total spin. Fig. 4.4 compares the two methods for a Carbon atom in
the triplet state and the Nitrogen quartet state. In comparison with the exact value
the spin-dependent µ is superior to a spin independent treatment in both cases.
Due to the approximative nature of the energy functional the total energy is smaller
than the exact value independent of the spin treatment. The results are again well
converged for about 40 orbitals.

For finite systems, open- as well as closed-shell, the inclusion of 20 to 50 natu-
ral orbitals for the considered atomic species is sufficient to obtain well converged
results. The number of needed orbitals is, of course, expected to increase with in-
creasing system size. Hence, for all systems considered in this thesis an investigation
of the convergence precedes all other calculations.

Calculating the total energies of the first row open-shell atoms with the two
different choices for the Lagrange multiplier, the spin-dependent treatment is again
superior, see Table 4.1. The average error, compared to the exact results, is a factor
of two smaller compared to the, already quite good, results of the spin-independent
treatment. Therefore, a spin-dependent µ is used in all following calculations for
open-shell systems.

4.3.2 Periodic Systems

Periodic systems are commonly employed in the description of solids. While this
is, of course, not expected to capture any effects arising from the surface it yields
a very accurate description of bulk properties. Bloch’s theorem, a consequence of
the periodicity of the lattice and the corresponding discrete translational invariance,
requires the natural orbitals to be Bloch states, i.e.

ϕαk(r + R) = exp(ikR)ϕαk(r), (4.76)
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for any lattice vector R. The orbitals are labelled with a band index α and a wave
vector k restricted to the first Brillouin zone. Since the Bloch wave functions are
delocalized over the whole crystal the evaluation of the one- and two-body integrals
using Bloch orbitals is very demanding. Alternatively, one can use Wannier functions
which are also orthonormal but localized. They form a complete set of functions
spanning the same space as the Bloch orbitals. The connection between Bloch and
Wannier states is given by the Wannier transformation

Φα(r − R) =
∑

k

exp(−ik(r − R))ϕαk(r). (4.77)

The resulting Wannier functions Φα(r − R) are centred at lattice position R and
carry the same band index as the original Bloch states. Identical copies of the
Wannier states are used throughout the entire crystal due to the periodicity of the
lattice. The 1-RDM of a periodic system can hence be written as

Γ(1)(r; r′) =
∑

αk

nαk ϕ∗
αk(r

′) ϕαk(r) (4.78)

=
∑

R,R′

∑

αk

nαk exp(ik(R − R′) Φ∗
α(r′ + R′) Φα(r + R). (4.79)

For k-independent occupation numbers nαk, which one finds in the HF calculation
of semiconductors and insulators, the k summation yields a Delta-function in R and
R′ and the 1-RDM reduces to

Γ(1)(r; r′) =
∑

R

∑

α

nαΦ∗
α(r′ + R)Φα(r + R). (4.80)

In other words, the natural orbitals can also be written as Wannier functions.
However, in RDMFT the occupation numbers are, in general, k-dependent. Writing
the 1-RDM in terms of Wannier functions is therefore approximative. Alterna-
tively, the use of Wannier states can be regarded as a different approximation for
the exchange-correlation energy. Using the same functional form with Wannier or
Bloch states always yields two fundamentally different approximations due to the
fractional nature of the occupation numbers which implies a k-dependence. Of
course, the quality of the Wannier functional needs to be tested. Intuitively, one
would expect a reasonable description for systems with flat bands, i.e. strong lo-
calization like in ionic solids. As an additional advantage, the occupation numbers,
using Wannier orbitals, are wave vector independent leading to a simpler RDMFT
functional. Moreover, because of the localized nature of the Wannier orbitals all
calculations can be performed for a single central unit cell. The energy per unit cell
for the Goedecker/Umrigar functional is given by (for closed-shell systems)

E

Nuc

= 2
∑

α

nαh0α +
∑

α,β

nαnβJαβ −
∑

α,β

√
nαnβKαβ + Enuc, (4.81)
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where Nuc denotes the number of unit cells. Due to the periodicity of the lattice it is
sufficient to evaluate the one- and two-body integrals at R = 0. They are therefore
given by

h0α =

∫∫

drdr′ Φ∗
α(r′)

[

δ(r − r′)

(

−∇2

2

)

+ v0(r, r
′)

]

Φα(r) , (4.82)

Jαβ =
∑

R′

(2 − δαβδR′0)

∫∫

drdr′
Φ∗

α(r − R′)Φβ(r′)Φ∗
β(r′)Φα(r − R′)

| r − r′ | ,(4.83)

Kαβ =
∑

R′

(1 − δαβδR′0)

∫∫

drdr′
Φ∗

α(r − R′)Φβ(r)Φ∗
β(r′ + R′)Φα(r′)

| r − r′ | .(4.84)

The contribution to the total energy from the repulsion of the nuclei reads

Enuc =
1

2

∑

j,k

′
∑

R′

ZjZk

| R′ + rj − rk | , (4.85)

where rj +R′ and rk denote the positions of ions with charge Zj and Zk, respectively,
and the prime on the first sum implies that no ion interacts with itself. In order to
determine the Wannier orbitals directly by a variational procedure it is necessary
to impose a localization constraint. This can be accomplished by introducing a
penalty factor proportional to the overlap of an orbital localized at the reference
lattice site with all the basis-set orbitals outside a locally prescribed environment
[53, 54] around the reference site. An implementation of this procedure is available
in the WANNIER computer code [53, 54]. Our Wannier RDMFT calculation for
periodic systems is implemented on top of the WANNIER code. The latter is used
to evaluate the integrals over the basis functions, for the HF calculations determining
the initial values, and for performing the lattice summations.

As a first application we consider the ionic LiH chain being a good candidate for
localized natural orbitals. We use a Gaussian type basis set [59] which allows us to
occupy up to 10 natural orbitals in the minimization procedure.

At first sight the functional (4.81) seems to be pathologic due to the non-
convergent behaviour of the different contributions with respect to the lattice sum-
mation. In an actual calculation, the number of lattice sites on each side of the
reference cell is given by the lattice cut-off parameter lc. Examining the stability
of the functional with respect to lc reveals that the quantities of interest, occupa-
tion numbers and the correlation energy, quickly converge, see Fig. 4.5. Fig. 4.5
also shows that the one-electron energy, i.e. the contribution from the one-body
integrals, being a non-convergent lattice sum depends dramatically on the cut-off
parameter. However, for the quantities of interest we can conclude that lc = 50 is
sufficient to obtain accurate results.

Table 4.2 shows a comparison of the total energy of the LiH chain calculated
from RDMFT and a variety of different electronic structure methods. Apart from
the first two results and the RDMFT calculation which use Wannier-type orbitals,
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Figure 4.5: Correlation Energy, occupation numbers and one-electron energy as
functions of the number of unit cells (on each side of the central cell) involved in
the lattice summation.
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Method Total Energy [Ha]
HF (WANNIER) -8.03806

HF + Perturbation1 -8.06874
HF (CRYSTAL) -8.03803

LDA (VBH)2 -8.03840
LDA (VBH/VWN)3 -7.96821

GGA (PBE)4 -8.09456
GGA (PW91)5 -8.11031

B3LYP6 -8.12341
RDMFT(present) -8.08213

Table 4.2: Total energy for the infinite LiH chain using various electronic structure
methods.
1From Ref. [55] using Wannier code and the same basis set as the present work
2LDA from [56]
3exchange from [56] and correlation from [57]
4GGA from [3]
5GGA from [2]
6hybrid functional from [58]

all other results correspond to Bloch-state calculations using the CRYSTAL code
[60] with the same Gaussian-type basis set as in the Wannier calculation. Our result
is in excellent agreement with the GGA calculation.

4.4 Results for the Fundamental Gap

In Section 4.3.1 we have seen that the total energies of open- as well as closed-
shell systems can be computed with high accuracy. We also discussed how to treat
periodic systems by using Wannier states for the natural orbitals in Section 4.3.2.
In this section we come back to the computation of the fundamental gap. The
derivation in section 4.1 leading to Eq. (4.27) assumed that the exact exchange-
correlation energy functional was available. Here, we investigate how approximate
functionals perform in the calculation of the fundamental gap.

First, we consider the closed-shell molecule LiH using again the Goedecker/Umri-
gar functional. Fig. 4.6 shows the result of the numerical calculation of the chemical
potential for different fractional particle numbers. There is a step near M = 4
which is sharp at the lower edge but relatively smooth at the upper edge. The
discontinuity of µ(M) is located at a value slightly higher than M = 4 precisely
at the point where the largest fractional occupation number becomes one and gets
pinned. These features, the smoothness as well as the step at M 6= 4, are due to the
approximate nature of the exchange-correlation energy. The exact functional yields
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Figure 4.6: The chemical potential µ (in Hartree) as a function of particle number
M for the LiH molecule calculated from the Goedecker/Umrigar functional.
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Figure 4.7: The two chemical potentials µ↑ and µ↓ (in Hartree) as a function of η
for adding spin-up and spin-down electrons, respectively. The neutral system has a
spin of +1/2. The right figure shows an enlargement of the left.

a step function with the discontinuity exactly at M = 4. In order to extract the gap
from the graph in Fig. 4.6 we used the intersection of the extrapolated behaviour
for M > 4 and a vertical line at the position of the jump. If the curve was a step
function this procedure would yield the exact discontinuity.

For open-shell systems the situation is again more difficult. Fixing N↑ and N↓

separately, one has to distinguish between adding/subtracting spin-up or spin-down
electrons. (For Li and Na, for example, the fundamental gap is given as the disconti-
nuity between removing majority-spin electrons and adding minority-spin electrons.)
Fig. 4.7 shows the chemical potentials µ↑(η↑) and µ↓(η↓) for adding η spin-up or spin-
down electrons, respectively, to a neutral Li atom with spin +1/2. The graphs of
µ↑(η↓) and µ↓(η↑) are omitted since they do not show any discontinuity. Since the
neutral system contains two spin-up and one spin-down electron the gap is given
by the discontinuity between µ↑ for negative η and µ↓ for positive η which is shown
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System RDMFT Other theoretical Experiment
Li 0.177 0.1751 0.1752

Na 0.175 0.1693 0.1692

LiH 0.296 0.2864 0.2715

Table 4.3: The fundamental gap for several atoms and small molecules calculated
from the Goedecker/Umrigar functional.
1 QCI from Ref. [49]
2 from Ref. [61]
3 Ionization potential from [49], electron affinity from [62]
4 CISD using the same basis set as in RDMFT
5 Ionization potential from [63], electron affinity from [64]
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Figure 4.8: The chemical potential as a function of particle number for the one-
dimensional LiH chain (left) and the three-dimensional Ne solid (right).

by the arrow in the right graph of Fig. 4.7. Calculations for Na yield results very
similar to Fig. 4.7.

Table 4.3 compiles the results for all three systems, LiH, Li, and Na. It shows
a remarkable agreement with both QCI results and experimental values for both
open- as well as closed-shell systems.

As a first step towards calculating the band gap in realistic solids we consider
a one-dimensional LiH chain. Employing again the GU approximation and using
Wannier states as natural orbitals we obtain the chemical potential as a function of
the particle number as shown in Fig. 4.8. Again, it shows a discontinuity close to
M = 4. However, it is not as pronounced as for the molecule. The corresponding
fundamental gap is given in Table 4.4. It is significantly larger than the LDA
and GGA results obtained with the same basis set. Since both LDA and GGA
are known to systematically underestimate the gap these results are encouraging.
However, as the LiH chain does not exist in nature there are no experimental results
for comparison.

The extension to three dimensional systems turns out to be extremely demanding
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System RDMFT Other theoretical Experiment
LiH chain 0.64 0.500(LDA), 0.509(GGA)
Ne solid 0.76 0.439(LDA), 0.546(GGA) 0.7971

Table 4.4: The fundamental gap (in Hartree) for the one-dimensional LiH chain and
three-dimensional solid Neon calculated from the Goedecker/Umrigar functional.
The LDA and GGA calculations are performed using the same basis set as in the
RDMFT calculation. 1 from Ref. [65]

with respect to computer memory. The Wannier orbitals need to be orthogonalized
not only to their nearest but also to their next-nearest neighbours. In an fcc lattice
this amounts to an orthogonalization to 12 nearest and 6 next-nearest neighbour
lattice-sites which is numerically not feasible at present. Not performing these or-
thogonalizations leads to an unphysical energy. Therefore, as a first step, we consider
a variation of the occupation numbers only. We keep the initial HF orbitals and
calculate the optimal set of occupation numbers. The resulting chemical potential as
a function of particle number is shown in Fig. 4.8. The chemical potential shows the
typical discontinuity and a comparison with experiment, see Table 4.4, yields good
agreement. This is not too surprising since it has been observed in other systems
before that varying the occupation numbers only already leads to accurate results.
The additional variation of the orbitals (when possible) modifies the band gap only
marginally.
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