
Chapter 3

Approximations for Exc[Γ
(1)]

In the following Chapter we introduce currently known and extensively explored
approximations for the exchange-correlation energy functional Exc[Γ

(1)]. Before de-
scribing the different approximations, we give an overview over properties of the
exact exchange-correlation functional in Section 3.1. All approximations are then
analyzed with respect to these properties.

Since the interaction energy can be exactly expressed in terms of the diagonal
of the two-body density matrix, our goal is to approximate Γ(2) in terms of Γ(1) or,
in most cases, in terms of the occupation numbers nj and natural orbitals ϕj. In
addition, we give the explicit formula for the exchange-correlation energy because
all approximations presented in this chapter share the Hartree part. The combined
exchange- and correlation energy is notationally less difficult than the correlation
part alone. Therefore, despite the fact that Ex can be given exactly, we state
the approximation for the total exchange-correlation energy. We start with the
Hartree-Fock approximation in Section 3.2 and continue with increasingly ambitious
approximations in Sections 3.3 to 3.5.

3.1 Properties of the Exact Exchange-Correlation

Energy Functional

An important guidance in the construction of approximate functionals is provided
by known properties of the exact functional. Several of these properties are simply
consequences of properties of the two-body density matrix. In addition, one can
derive properties from the definition of the exchange-correlation energy itself or
from applying the RDMFT formalism to specific systems, like the homogeneous
electron gas or the hydrogen atom, where the exact solution is known. An extended
compilation of properties of the exact Exc was given by Cioslowski, Pernal, and
Ziesche in [24].

From Eq. (2.12) we can directly conclude that finding a good approximation for
Γ(2)(x,x′;x,x′) in terms of Γ(1) results in a good approximation for Etotal or Exc.
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22 CHAPTER 3. APPROXIMATIONS FOR EXC

As a consequence, the following properties of Γ(2) directly lead to restrictions for
possible approximations.

(1) The two-body density matrix is antisymmetric

Γ(2)(x1,x2;x
′
1,x

′
2) = −Γ(2)(x1,x2;x

′
2,x

′
1) (3.1)

= −Γ(2)(x2,x1;x
′
1,x

′
2) (3.2)

and hermitian

Γ(2)(x1,x2;x
′
1,x

′
2) = Γ(2)†(x′

1,x
′
2;x1,x2). (3.3)

(2) The partial sum rule, Eq. (2.14), should be respected when Γ(2) is approxi-
mated.

(3) The Carlson-Keller theorem [25] states that the non-zero eigenvalues of Γ(p)

and Γ(N−p) are identical. For N = 3 this leads to the fact that the non-
vanishing eigenvalues of Γ(1) and Γ(2) are identical.

In addition to properties of Γ(2), there are also known properties of the exchange-
correlation energy itself. Since the exchange energy Ex is known exactly, most of
these properties can be formulated in terms of the correlation energy Ec alone.

(4) The correlation energy for idempotent 1-RDMs vanishes, i.e.

Ec[Γ
(1)] = 0, for idempotent Γ(1). (3.4)

(5) Due to a theorem by Lieb [26] the correlation energy is strictly non-positive
[27], i.e.

Ec[Γ
(1)] ≤ 0. (3.5)

Scaling the coordinate with a constant λ, i.e. x → λx = (λr, σ), the one-body
density matrix has to preserve its normalization and therefore

Γ(1)(x;x′) → Γ
(1)
λ (x;x′) = λ3Γ(1)(λx; λx′). (3.6)

(6) The correlation energy shows a very simple scaling behavior [27], namely,

Ec[Γ
(1)
λ ] = λEc[Γ

(1)]. (3.7)

The linear scaling is due to the fact that the kinetic energy is treated exactly in
RDMFT and does not pollute the exchange-correlation energy. One can show that
both the exact interaction energy, Eq. (2.43), as well as the Hartree-exchange part,
EHx = EH+Ex, scale linearly with λ. Hence, the correlation energy, Ec = Eint−EHx,
has to scale in the same way.
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(7) Due to its definition, Eq. (2.43), as a minimum, the interaction energy must
be a convex functional, i.e.

Eint[c1Γ
(1)
1 + c2Γ

(1)
2 ] ≤ c1Eint[Γ

(1)
1 ] + c2Eint[Γ

(1)
2 ] (3.8)

for any two positive constants c1 and c2 with c1 + c2 = 1 and N -representable
one-body density matrices Γ

(1)
1 and Γ

(1)
2 .

(8) For the correlation energy, property (7) implies that, for systems where Γ
(1)
1

and Γ
(1)
2 are localized in distant regions,

Ec[c1Γ
(1)
1 + c2Γ

(1)
2 ] = c1Ec[Γ

(1)
1 ] + c2Ec[Γ

(1)
2 ]. (3.9)

This property is known as size-consistency.

(9) As an additional property, shown by Yasuda [28], the correlation energy is
invariant under an exchange of particles and holes, i.e.

Ec[Γ
(1)] = Ec[

� − Γ(1)], (3.10)

where
�

is a unit matrix of the same rank as Γ(1). If the correlation energy
is given as a functional of the natural orbitals and occupation numbers this
property can be written as

Ec[{nj}, {ϕj}] = Ec[{n′
j}, {ϕj}], with nj + n′

j = 1 ∀j . (3.11)

For orbital functionals the invariance under a certain class of unitary transforma-
tions is required. In Chapter 2 we discussed the existence of a one-to-one mapping
between Γ(1) and the sets of natural orbitals and occupation numbers as long as
the latter are non-degenerate, i.e. as long as there are no two natural orbitals with
the same eigenvalue. If there is at least one degenerate eigenvalue one can apply a
unitary transformation to the orbitals in that subspace without changing the one-
body density matrix Γ(1). Therefore, the energy functional EHxc = EH + Exc being
a functional of Γ(1) according to Gilbert’s theorem, has to be invariant under the
very same unitary transformation. The Hartree and exchange parts, both explicit
functionals of the one-body density matrix, certainly fulfill this requirement. Hence,
the correlation energy also has to be invariant under this unitary transformation.
In other words:

(10) The one-body density matrix Γ(1) and the exact correlation energy Ec are
invariant under the same set of unitary transformations.

(11) For the special case of two-particle closed-shell systems the exact two-body
density matrix is known in terms of the natural orbitals [29, 30, 31], namely

Γ(2)(r1, r2; r
′
1, r

′
2) = 2

∞
∑

j,k=1

cjckϕ
∗
j(r

′
1)ϕ

∗
j(r

′
2)ϕk(r1)ϕk(r2) (3.12)

with real coefficients cj = ±
√

nj/2 which satisfy
∑

j c2
j = 1.
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Kollmar and Heß [32] therefore suggested to include the reproduction of this re-
sult in the list of desired properties of an approximation for Γ(2). However, any
approximation in terms of the occupation numbers and natural orbitals looses the
information on the phase factor in the coefficients cj, nj = 2c2

j , unless the sign is
determined correctly for each j. Therefore, all functionals introduced in the next
sections violate (3.12), although BBC1 corrects some signs [31] (see Section 3.4).

For the different approximations discussed in the following sections, we state
which of the above properties are fulfilled. A compilation of the approximations
and obeyed properties can be found in Appendix B.

3.2 Hartree-Fock approximation

A well-known and still simple approximation is the Hartree-Fock approximation
[33, 34], where the two-body density matrix is approximated by

Γ(2)(x1,x2;x
′
1,x

′
2) =

1

2
Γ(1)(x1;x

′
1)Γ

(1)(x2;x
′
2) −

1

2
Γ(1)(x1;x

′
2)Γ

(1)(x2;x
′
1) . (3.13)

The first term leads to the Hartree energy, Eq. (2.45), while the second yields the
approximate exchange-correlation energy functional

EHF
xc = −1

2

∫∫

dxdx′ Γ(1)(x;x′)Γ(1)(x′;x)

| r − r′ | = Ex[Γ
(1)] , (3.14)

which is also known as the Fock term. Comparing Eq. (3.14) with (2.46), the Fock
term is identical, as a functional of Γ(1), to the exchange energy of RDMFT. However,
we emphasize that in a traditional HF calculation the 1-RDMs are restricted to
occupation numbers identical to either zero or one. If we allow for non-idempotent
Γ(1) in Eqs. (3.13) and (3.14) and do not add any correlation contribution, one can
show that the minimum is actually obtained for an idempotent Γ(1) [26].

Concerning the properties described in the previous section, the two-body density
matrix (3.13) is antisymmetric and hermitian. The partial sum rule, however, is
violated unless the one-body density matrix is idempotent, hence, it is fulfilled at
the solution but not during the minimization process. Since Ec ≡ 0 properties (4-6)
and (8-10) are trivially fulfilled.

3.3 The Müller functional with and without self-

interaction

Most of the functionals currently in use can be traced back to an approximation
by Müller [35] who suggested to approximate the two particle density matrix Γ(2),
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Figure 3.1: The ground-state energy of H2 as a function of the distance between
the two nuclei for Hartree-Fock (HF), the Müller and the Goedecker/Umrigar (GU)
functionals. For comparison we also give the configuration interaction (CI) result.
All results are obtained using the cc-pVTZ basis set [36].

using three parameters β1, β2, and p, as

Γ(2)(x1,x2;x
′
1,x

′
2, β1, β2, p) = β1Γ

(1)(x1;x
′
1)Γ

(1)(x2;x
′
2) (3.15)

+ β2

∑

j,k

n
1/2+p
j n

1/2−p
k ϕ∗

j(x
′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2).

The parameters β1 and β2 are chosen such that the Hartree-Fock case is recovered
whenever all occupation numbers are either zero or one, i.e.

β1 =
1

2
, β2 = −1

2
. (3.16)

As was shown by Müller, the probability of finding two particles at the same
position, n2(rσ, rσ′) ∝ Γ(2)(x,x′;x,x′)δ(r−r′), is negative if at least one occupation
number is fractional. Of course, it should be positive for two particles with different
spins, σ 6= σ′, and exactly zero for σ = σ′. This catastrophe is minimized by
choosing p = 0 in the sense that the absolute value of the still negative probability
is minimized. Therefore, the functional proposed by Müller reads

Γ
(2)
M (x1,x2;x

′
1,x

′
2) =

1

2

∞
∑

j,k=1

njnk ϕ∗
j(x

′
1)ϕj(x1)ϕ

∗
k(x

′
2)ϕk(x2) (3.17)

−√
njnk ϕ∗

j(x
′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2).

Buijse and Baerends arrived at the same functional by approximating the ex-
change-correlation hole as the square of a so-called hole amplitude [37]. In DFT the
quality of a functional is often measured by the quality of the approximation of the
exchange-correlation hole. Therefore, Buijse’s and Baerends’ derivation sheds some
light on the reason for the great success of Müller’s functional. Due to this alternative
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derivation, Müller’s functional is often called Buijse/Baerends (BB) functional in the
literature. The exchange-correlation energy for the Müller or BB functional is given
by

EM
xc = −1

2

∞
∑

j,k=1

√
njnk

∫∫

dxdx′
ϕj(x)ϕ∗

j(x
′)ϕk(x

′)ϕ∗
k(x)

| r − r′ | . (3.18)

Due to the appearance of the square root in the exchange-correlation energy
and the fractional nature of the occupation numbers the electron self-interaction,
present in both the Hartree and the exchange-correlation energies, is only partially
cancelled. Therefore, Goedecker and Umrigar [16] introduced a small but important
variation of Müller’s functional by explicitly removing all terms with j = k from the
summation. The resulting two-body density matrix is given by

Γ
(2)
GU(x1,x2;x

′
1,x

′
2) =

1

2

∞
∑

j,k=1
j 6=k

njnk ϕ∗
j(x

′
1)ϕj(x1)ϕ

∗
k(x

′
2)ϕk(x2) (3.19)

−√
njnk ϕ∗

j(x
′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2).

We emphasize that this procedure leads to a functional without orbital self-interac-
tion, i.e. any interaction of orbital j with itself is excluded. However, because the
distribution of a specific electron over several natural orbitals (fractional occupation
numbers) is unknown the exclusion of the complete self-interaction of the electron
is not possible. The exclusion of orbital self-interaction is the best one can do. In
practical applications, however, the occupation numbers are often close to either
zero or one such that the orbital self-interaction resembles a large part of the total
self-interaction.

The exchange-correlation energy for the Goedecker/Umrigar approximation ex-
plicitly reads

EGU
xc = −1

2

∞
∑

j,k=1
j 6=k

√
njnk

∫∫

dxdx′
ϕj(x)ϕ∗

j(x
′)ϕk(x

′)ϕ∗
k(x)

| r − r′ |

−1

2

∞
∑

j=1

n2
j

∫∫

dxdx′ | ϕj(x) |2| ϕj(x
′) |2

| r − r′ | , (3.20)

where we have removed the j = k term from the first sum and the second term
removes the self-interaction of the Hartree energy.

As one can see in Fig. 3.1, the dissociation of H2 is best described by the Müller
functional. It reproduces the convergence to a constant energy although it still
misses the correct asymptotic value of twice the energy of the hydrogen atom. At the
equilibrium position, however, the GU performs better than the Müller functional.
For other small molecules it was found that the exclusion of self-interaction also
improves the dissociation results [38, 31]. A detailed analysis of the performance of
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Figure 3.2: The ground-state energy of H2 as a function of the distance of the two
hydrogen atoms for the original Müller functional, the GU correction and the three
corrections BBC1, BBC2, and BBC3. For comparison we also give the CI result.
The cc-pVTZ basis set [36] is used in all calculations.

different functionals for the dissociation of several small molecules can be found in
[38].

The removal of the self-interaction leads to the violation of several exact proper-
ties. Contrary to the original Müller functional the GU approximation violates the
partial sum rule and also property (10). Both the Müller as well as the GU func-
tional satisfy the hermiticity but not the anti-symmetry of the two-body density
matrix. Also properties (4-6), and (8) are obeyed in both cases.

3.4 Corrections to the Müller functional

Recently, Baerends and co-workers introduced a series of improvements to the origi-
nal Müller/BB functional, which they baptized BBC1, BBC2, and BBC3 [31]. They
wanted mainly to correct for the over-binding of the original functional which con-
sistently overestimates the absolute value of the total energy in the dissociation of
H2 (see Fig. 3.1). Hence, the corrections increase the repulsion between the elec-
trons guided by physical arguments. They distinguish between strongly and weakly
occupied orbitals. All orbitals with occupation number equal to 1 in a Hartree-Fock
treatment of the system are strongly occupied, all orbitals with occupation number
zero are weakly occupied. In the RDMFT treatment these orbitals are then modified
and have, in most cases, occupation numbers close to one or zero, respectively.

Starting from the approximation (3.17), for BBC1 the sign for the exchange-
correlation part for all products between two different weakly occupied orbitals is
changed. The approximation then reads

Γ
(1)
BBC1(x1,x2;x

′
1,x

′
2) = Γ

(1)
M (x1,x2;x

′
1,x

′
2) + Γ

(1)
C1(x1,x2;x

′
1,x

′
2) (3.21)
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with

Γ
(1)
C1(x1,x2;x

′
1,x

′
2) =

∑

j 6=k
j,k>N

√
njnkϕ

∗
j(x

′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2). (3.22)

This approximation improves especially the results for two-electron closed-shell sys-
tems, where the product of two weakly occupied orbitals enters Γ(2) with a positive
sign [31].

BBC2 restores the exchange-only term for terms containing two different strongly
occupied orbitals, i.e.

Γ
(1)
BBC2(x1,x2;x

′
1,x

′
2) = Γ

(1)
BBC1(x1,x2;x

′
1,x

′
2) + Γ

(1)
C2(x1,x2;x

′
1,x

′
2) (3.23)

with

Γ
(1)
C2(x1,x2;x

′
1,x

′
2) =

1

2

∑

j 6=k
j,k≤N

(√
njnk − njnk

)

ϕ∗
j(x

′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2). (3.24)

This correction can be physically motivated because correlation mainly occurs be-
tween strongly and weakly occupied orbitals while two strongly occupied orbitals
interact mainly via exchange.

BBC3 mostly concerns the bonding and anti-bonding natural orbitals. Firstly,
the self-interaction correction, as in the GU functional, is applied to all natural
orbitals except the bonding and anti-bonding ones. Secondly, the correction C2 is
applied to the interaction of the anti-bonding orbitals (one for each spin) with all
strongly occupied natural orbitals except the corresponding bonding orbitals. Hence,
if we denote the anti-bonding orbitals with indices r and r′ and the corresponding
bonding orbitals with N and N − 1 we obtain

Γ
(1)
BBC3(x1,x2;x

′
1,x

′
2) = Γ

(1)
BBC2(x1,x2;x

′
1,x

′
2) + Γ

(1)
C3(x1,x2;x

′
1,x

′
2) (3.25)

with

Γ
(1)
C3(x1,x2;x

′
1,x

′
2) =

1

2

∑

j<N

(√
njnr − njnr

)

ϕ∗
j(x

′
2)ϕj(x1)ϕ

∗
r(x

′
1)ϕr(x2) + c.c.

+
1

2

∑

j<N−1

(√
njnr′ − njnr′

)

ϕ∗
j(x

′
2)ϕj(x1)ϕ

∗
r′(x

′
1)ϕr′(x2) + c.c.

+
1

2

∑

j 6=N,N−1
j 6=r,r′

(

nj − n2
j

)

ϕ∗
j(x

′
2)ϕj(x1)ϕ

∗
j(x

′
1)ϕj(x2) . (3.26)

The first two sums are the correction C2 applied to the anti-bonding states and the
last term removes the self-interaction of all orbitals which are neither bonding nor
anti-bonding.
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0.01 0.1 1 10 100
r

s
[a.u.]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

C
or

re
la

tio
n 

E
ne

rg
y 

[H
a]

Monte Carlo
Müller
Müller
BBC1
BBC2 

Figure 3.3: The correlation energy of the homogeneous electron gas calculated from
the original Müller functional as well as the BBC1 and BBC2 corrections. For
comparison the Monte-Carlo results of Ortiz and Ballone [4, 40] are also given. For
the Müller functional analytical results are given above rs ≈ 5.77 [41] and numerical
results below this value [42]. (rs = (3n/4π)1/3)

The distinction between bonding and anti-bonding orbitals, of course, is some-
what problematic for extended systems. Also, one can show that the self-interaction
is proportional to the inverse of the volume for periodic systems and hence vanishes
for infinite systems. Hence, for solids, the correction C3 coincides with C2. The
bonding/anti-bonding pair is treated differently from the rest of the orbitals be-
cause it is this pair which is mainly responsible for the proper dissociation of a
bond. Removing the self-interactions for this pair results in a distortion of the en-
ergy curve in the dissociation region [31]. Fig. 3.2 shows the success of the three
different corrections for the H2 dissociation compared to the original Müller func-
tional, the Goedecker/Umrigar approximation and the quasi-exact CI result. As
one can see, BBC1 and BBC2 coincide for a 2 electron closed-shell system since
there are no two different strongly occupied natural orbitals in that case. All three
approximations improve the dissociation curve significantly lying almost on top of
the CI result. This is not too surprising since the corrections aimed at improving
exactly this dissociation curve. However, applications to other small systems show
a large improvement of the dissociation curves as well [31]. More surprisingly, the
corrections also result in a significant improvement of the correlation energy of the
homogeneous electron gas (HEG) [39], as shown in Fig. 3.3. However, as discussed
in [39], there are other properties of the HEG which are not properly reproduced.

Regarding the properties of the exact functional all three corrections still lead
to a hermitian two-body density matrix which is however not anti-symmetric. The
partial sum rule is violated in all three cases. The three approximations fulfill
properties (4-6), and (8), but only BBC1 and BBC2 satisfy (10). BBC3 violates
(10) due to the removal of the self-interaction terms.
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Figure 3.4: The correlation energy of the homogeneous electron gas for the CHF
and CGA functionals as a function of rs = (3n/4π)1/3. For comparison the original
Müller functional [41, 42] and the fit to the Monte-Carlo data of Ortiz and Ballone
[4, 40] are given.

3.5 Functionals from tensor product expansion

While all functionals presented so far have been constructed by optimizing their
performance for finite systems, Csányi, Goedecker, and Arias were concerned with
the homogeneous electron gas (HEG). As we have seen in Fig. 3.3, the Müller/BB
functional does not give satisfactory results for the HEG [39, 41]. The results are
improved by the BBC1 and BBC2 corrections but important features of the exact
solution are still not captured [39].

Csányi and Arias [42] started from a tensor product expansion of the two-body
density matrix

Γ(2)(x1,x2;x
′
1,x

′
2) =

1

2

(

Γ(1)(x1;x
′
1)Γ

(1)(x2;x
′
2) +

∑

j

uj ⊗ vj

)

, (3.27)

where ⊗ denotes the tensor product

[u ⊗ v] (x1,x2;x
′
1,x

′
2) = u(x1;x

′
2)v(x2;x

′
1). (3.28)

uj and vj represent functions of two variables and the sum in Eq. (3.27) can in
principle be infinite. One possible approximation in this framework coincides with
the Müller/BB functional but is called corrected Hartree (CH) in [42]. A second
approximation, corrected Hartree-Fock (CHF), is given by

Γ
(2)
CHF (x1,x2;x

′
1,x

′
2) =

1

2
Γ(1)(x1;x

′
1)Γ

(1)(x2;x
′
2) (3.29)

−1

2

∞
∑

j,k=1

(

njnk +
√

nj(1 − nj)nk(1 − nk)

)

ϕ∗
j(x

′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2).
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Figure 3.5: The ground-state energy of H2 as a function of the distance of the two
nuclei for the CHF and CGA functionals.

When applied to the HEG the Müller/BB functional overestimates the absolute
value of the correlation energy for all rs while the CHF undercorrelates for small rs

and overcorrelates for rs > 6 [42], as can be seen in Fig. 3.4. This finding prompted
Csányi, Goedecker, and Arias to suggest a somewhat intermediate approximation
[43]

Γ
(2)
CGA(x1,x2;x

′
1,x

′
2) =

1

2
Γ(1)(x1;x

′
1)Γ

(1)(x2;x
′
2) (3.30)

−1

4

∞
∑

j,k=1

(

njnk +
√

nj(2 − nj)nk(2 − nk)

)

ϕ∗
j(x

′
2)ϕj(x1)ϕ

∗
k(x

′
1)ϕk(x2)

which improves the results dramatically for very small rs and still performs quite
well at metallic densities (1 < rs < 6), see Fig. 3.4 [43].

The exchange-correlation energies for the two new functionals read

ECHF
xc = −1

2

∑

j,k

(

njnk +
√

nj(1 − nj)nk(1 − nk)

)

∫∫

dxdx′
ϕ∗

j(x
′)ϕj(x)ϕ∗

k(x)ϕk(x
′)

| r − r′ | , (3.31)

ECGA
xc = −1

4

∑

j,k

(

njnk +
√

nj(2 − nj)nk(2 − nk)

)

∫∫

dxdx′
ϕ∗

j(x
′)ϕj(x)ϕ∗

k(x)ϕk(x
′)

| r − r′ | . (3.32)

Applying the two functionals to finite systems [38] shows remarkably good pre-
dictions if one keeps in mind that they were designed for the homogeneous electron



32 CHAPTER 3. APPROXIMATIONS FOR EXC

gas. Fig. 3.5 shows the dissociation of H2 calculated from the CHF and CGA func-
tionals compared to the CI calculation.

Both the CHF and the CGA approximations lead to a hermitian two-body den-
sity matrix which is, however, not anti-symmetric and violates the partial sum rule.
The correlation energy vanishes for idempotent one-body density matrices, it is
strictly non-positive, and has the correct scaling, i.e. properties (4-6) are obeyed.
Also the size consistency property (8) and the invariance property (10) are satisfied
for both functionals. CHF is the only approximation presented here which is invari-
ant under particle-hole exchange, i.e. it fulfills property (9). (HF also fulfills it but
only because correlation is neglected completely.)

In addition to the two specific functionals discussed here, Csányi’s and Arias’ ten-
sor product expansion (3.27) also provides an idea for the systematic improvement
of functionals in the future.


