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Chapter 2

Theoretical Foundations

Quantum mechanics teaches us that all information about a system is contained in
its wave function. Equivalently, one can describe a system of N particles by the
N-body density matrix

T (xy.. xpy, X xy) = U (%] x) U (% x), (2.1)

where x is understood as a combined space-spin coordinate x = (r, o) and f dx =
Yo f dr. The wave function is normalized such that

/dxl...de\If*(Xl...XN)lII(Xl...XN) =1. (2.2)
For the wave function one has to store a function depending on 3N spatial variables.

However, nature was kind enough to provide us with electrons that can be described
with two-particle interactions only. Consequently, the Hamiltonian can be written

- [axitx (__) L] L w;ﬁ _>zf/<">¢<x>_ 03

The field operators are given by

Ui(x) = szﬁ(x)c;ta (2.4)
h(x) = Zl/)k: X)cr, (2.5)

where the set {1} forms a basis of the single-particle Hilbert space. The creation
(annihilation) operators ¢} (¢;) fulfill the usual anti-commutation relations

{ej ey ={cl,l} =0, {ej,cl} = . (2.6)

We introduce the p!* order reduced density matrix
r® o oy (N Kot o
(X1..-Xp; X...X,,) = » dxpiq..dxy U (X) .. %0, Xp i1 XN) V(X1 xn)  (2.7)
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which is the expectation value of the operator

D0 (%1%, X X)) = =2 (x))..ab T (x))0(x1)... 00 (). (2.8)
For the special case p =1, (2.7) reduces to

r(x;x') = /dxg...de U*(x], X, . Xn) ¥ (X1...XN). (2.9)

We can then rewrite the Hamiltonian (2.3
R R ) /. /
H = /dxg/ﬁ(x) //dxdx &, %5 %, X')
]
. /
= /dx lim <—%) (x;x") //dxdx );i(;/)(|,x) (2.10)

Specifying appropriate boundary conditions one can, in principle, solve the static
Schrodinger equation HY, = E,¥,. The total energy of the system, i.e. the
expectation value of the above Hamiltonian, however, is completely determined by
the one-body reduced density matrix (1-RDM) and the diagonal of the two-body
reduced density matrix. Any other information present in the wave function is
irrelevant for the total energy. At the same level of complication we can add an
external potential to the Hamiltonian which also couples only to the 1-RDM, i.e.

2 2 /. /
H = /dx lim _V_ (x;x) //dxdxF (x, X%, X)
x'—x 2 |I‘—I‘/|
+//dxdx/ oo (x, %) (x: (2.11)

The physical, i.e. local, potentials are given by vy(x,%x’) = vo(x)d(x — x’). We
nevertheless keep the more general form of the Hamiltonian because the necessary
HK-type theorem can be proven for the more general form.

The total energy of the system of N interacting electrons is the expectation value
of the Hamiltonian and, therefore, reads

) ’. /
Fiotal = dx lim —V— (x; X dxdx (x5, x5 %, X))
x/—x 2 | r—r' |
+//dxdx’ vo(x, X ) TW(x'; x) . (2.12)

In other words, the density matrix operators, present in the Hamiltonian, are re-
placed by their respective expectation values. From the definition of the reduced
density matrices (2.9) one can see that the p™ and (p — 1)* order density matrices
are connected via

F(p_l)(xl...xp_l;x'l...x;_l) = N+M /dxp F(p)(xl...xp_l,xp;xll...x;_l,xp),
(2.13)
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and, in particular for p = 2,

I(x;x)) = % /dx2 '@ (x,, %05 X, X3). (2.14)
Consequently, we can rewrite the total energy (2.12) as a functional of I'® alone.
Minimizing this functional should then result in the ground-state energy of the
system. However, there is one additional complication. One has to ensure that the
set of two-body density matrices over which we minimize only contains physical I'?)
which are N-representable, i.e. correspond to a properly anti-symmetrized wave
function via Eq. (2.9). The set of necessary and sufficient conditions for I'® to be
N-representable is not known completely. Recently, a set of necessary conditions
has been introduced which is however not sufficient [21, 22]. The conditions for
ensemble N-representability are known, however, for the one-body density matrix
'™ where they even turn out to be very simple. Therefore, the idea of using 'V
as the basic variable is appealing. From Eq. (2.12) the kinetic and external energies
are known explicitly as functionals of '™, Also, as we discuss later in this Chapter,
the Hartree and exchange energies can be written exactly in terms of '™, Only
the so-called correlation energy remains to be approximated which, in general, is a
small percentage of the total energy. Reduced-density matrix functional theory can
be regarded as an intermediate step going from DFT to solving the full problem.
In DFT, the kinetic energy is unknown in terms of the density and the difference of
the kinetic energies of the true system and the KS system is part of the exchange-
correlation energy. In other words, the part of the total energy that needs to be
approximated in DFT is larger than in RDMFT.

In order to use I'™ as the basic variable one has to prove a Hohenberg-Kohn
type theorem which was done by Gilbert [23]. Before we review his proof in Section
2.2 we introduce some important properties of f(l), especially its eigenfunctions and
eigenvalues in Section 2.1. There, we also state the conditions which ensure the
N-representability of '), The proof that these conditions are indeed necessary and
sufficient can be found in Appendix A. The ground-state energy as a functional of
'™ is discussed in Section 2.3 with special emphasis on the needed approximations.
The concept of orbital functionals can be transfered with only minor modifications
to RDMFT and is presented in Section 2.4. For reasons that we discuss in Section
2.5 there exists no KS system in RDMFT such that the energy has to be minimized
directly. The corresponding equations are also presented in Section 2.5. We conclude
this introductory chapter with a discussion of spin degrees of freedom in Section 2.6.

2.1 Natural Orbitals and Occupation Numbers

Diagonalizing the one-body reduced density matrix operator (see Eq. (2.8)) yields

IO x) =D ¢5(x)e;(x) cl ¢, (2.15)
j=1
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with the basis for the single-particle Hilbert space chosen to be the eigenfunctions
p; of '), These eigenfunctions are referred to as natural orbitals. Due to the ap-
pearance of the number operator of orbital 7 in the above expression the eigenvalues
are called occupation numbers and denoted by n;. Therefore, the one-body reduced
density matrix (I-RDM) can be written as

I x) = Z n; @;j(x) 5 (x). (2.16)

In position-space representation the operator I'® is an integral operator and its
eigenvalue equation reads

[ T 6) = iy ). (2.17)

The natural orbitals form a complete orthonormal set, i.e.

[ixea0 = o (2.15)
Z(pj(x)go;f(xl) = S(x—x). (2.19)

In order for the one-particle density matrix to be N-representable, i.e. to correspond
to an anti-symmetric wave function ¥ via (2.9), the conditions

0< n; <1, (2.20)

onj =N (2.21)
j=1

have to be satisfied. The proof that these conditions indeed ensure N-representabi-
lity is very technical and given in Appendix A.! The special case where exactly N
occupation numbers have the value one and the rest are zero describes a system
of non-interacting particles. This is a consequence of the fact that the ground-
state wave function of a non-interacting system is a single Slater determinant. The
single particle orbitals in the determinant are identical to the natural orbitals of
the resulting density matrix, and these orbitals have occupation number equal to 1.
For interacting particles the wave function can be expressed as an expansion in the
complete (infinite) set of Slater determinants constructed from the natural orbitals.
Any single particle orbital that is not part of each determinant of the expansion
results in an occupation number smaller than 1 in the density matrix.

The 1-RDM is, via (2.16), a functional of the occupation numbers and natural
orbitals T (x;x') = TW[{n;}, {¢,;}](x;x'). The spectral representation (2.16) of

! Actually, the proof ensures ensemble N-representability which, however, is sufficient as dis-
cussed in Section 2.2.
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the density matrix is unique unless I'V)(x;x’) has degenerate eigenvalues. Hence,
we can write the occupation numbers and natural orbitals as functionals of the
one-particle density matrix, i.e.
n; = n;[TV], (2.22)
pi(x) = IV)(x). (2.23)
These equations imply that we can also write the energy as a functional of the occu-
pation numbers and natural orbitals instead of the 1-RDM. Therefore, the concept
of orbital functionals, commonly used in DFT, can also be employed in RDMFT,
where the KS orbitals are replaced by the natural orbitals and one has an additional
dependence on the occupation numbers.

If there are two or more degenerate natural orbitals one can change the basis
in the degenerate subspace by performing a unitary transformation. These unitary
transformations leave I'D unchanged. The total energy, being a functional of T is
then also independent of the basis in the degenerate subspace. In other words, I'")
and Fia are invariant under the same set of unitary transformations. As long as
we only employ approximations which are explicit functionals of I'") this property is
automatically satisfied. However, when orbital functionals are used special attention
has to be paid not to violate this property. Strictly speaking, any approximation for
FElota1 which is not invariant under the same unitary transformations as 'V is not a
functional of '), We come back to this point when we discuss the approximations
in Chapter 3.

2.2 Gilbert Theorem

As already mentioned before, the many-body wave function ¥ describes a quantum
mechanical system completely. The Hohenberg-Kohn theorem of DFT, however,
shows that all information about the system is already contained in its ground-
state density ngs(r). Using the one-body reduced density matrix I'") instead of the
density n the kinetic energy is known exactly. To take advantage of this fact, a HK
like theorem needs to be proven which was done by Gilbert in 1975 [23].

The proof starts from the Schrodinger equation

N

vV 1 & 1
-2 — — | ¥ 2.24
Z( 2)—'—22“.;_[.“ o(X1..xy) ( )

Jj=1 Ji.k=1
itk
N N
+ Z /dx&...dx?v H5(Xk — X} )00 (%5, X;) Vo (X) .. X)) = EoWo (X1 XN),
J=1 k=1
kg
where now the external potential vy can be non-local. This includes all physical,
and hence local, potentials. However, we state the proof in a form as general as
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possible. As an additional advantage, the use of pseudo-potentials, which are often
non-local in space, is well founded within RDMFT.

In analogy to the HK proof, the ground-state wave function is determined by
the external potential if it is non-degenerate. The corresponding one-body density
matrix is then given by Eq. (2.9) and hence, the external potential determines it
uniquely, i.e.

vg — Yag — Fg% (2.25)

In contrast to the HK theorem, however, part of the inverse direction breaks down.
The ground-state wave function does not uniquely determine the non-local potential
vp. As a simple example, consider the case of N non-interacting electrons. The
ground-state many-body wave function is then given by a single Slater determinant
of N single-particle orbitals ;. Hence, the one-body reduced density matrix reads

T x) = ) (%) (). (220)

where the natural orbitals are exactly the single particle orbitals of the Slater deter-
minant. If we add an arbitrary function f of the operator I'") to the non-interacting
Hamiltonian, i.e. we change the potential according to

vo(x,X') — wo(x, %) + (x| F(TW) | X)), (2.27)

the same Slater determinant remains an eigenfunction of the new Hamiltonian. For
some functions f this Slater determinant also remains the ground-state. The relation
between vy and Vg is, therefore, many-to-one

,, many-—one

vo(x,X") —— Pag(x1...XN), (2.28)

provided we restrict ourselves to non-degenerate ground states.

One can still prove that the ground-state one-body reduced density matrix Fg%
uniquely determines the ground-state wave function Wgg by reductio ad absurdum.
We assume that two different ground-state wave functions Wgg and Wi lead to the
same density matrix Fg% = Flc(:ls)' The two different ground-state wave functions
then, due to (2.28), have to originate from two different potentials vy and v. The

ground-state energies of the two systems are then given by

Eos = (Vgs | H | Weag),
Eés = < /GS ’ H' ‘ ‘I’/Gs> (2-29)

Applying Ritz’ theorem we can conclude
Egs = (Was | H | Wes) < (Ugs | H | W)
< FEig+ /dxdx' T (x; %) [vo(x, X) — vh(x, X)) (2.30)
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and on the other hand
Egs = (Ves | H' | W) < (Vas | H' | Uas)
< Eas+ / dxdx' TGL(x; x) [vh(x, ') — vo(x, X)) . (2.31)

Adding the two equations, under the assumption that Fg% = Fég, we arrive at the

contradiction
Eas + Eés < Egs + Eé}S‘ (2.32)

Therefore, the relation between the ground-state 1-RDM and the ground-state wave
function is indeed one-to-one,

Was(x1..xy) e TH (x;X). (2.33)

As we have just shown, Gilbert’s proof establishes a one-to-one correspondence
between the ground-state 1-RDM and the ground-state wave function. Therefore,
any observable of the system in its ground-state can be written as a functional of
the 1-RDM. We emphasize this subtle but important difference: while in DFT the
ground-state density uniquely determines any wave function (also for excited states),
here, only the ground-state wave function is uniquely determined. Hence, only all
ground-state observables are functionals of the ground-state density matrix Fgg Of
course, this difference is a direct consequence of the non-uniqueness of the non-local
potential.

The second and third part of the Hohenberg-Kohn theorem can be transfered
to the 1-RDM formalism with only minor modifications. For all N-representable
1-RDMs, the energy has a minimum at the ground-state 1-RDM, i.e.

Egs < ETM], (2.34)

where the equality only holds if TM = Fg% We can also introduce a universal
functional F

FrW) = Join (W | T+ W | W), (2.35)
where T is the kinetic energy operator and W is the Coulomb interaction. The
functional is universal in the sense that it does not depend on the potential vy (x,x’),
it is the same for all systems that interact via Coulomb interaction. The total energy
then reads

E[rW] = F[rW) //dxdx TW(x'; x)vg(x, X). (2.36)

At this point, we have to address the N-representability problem again. Actually,
the proof in Appendix A shows that the conditions (2.20) and (2.21) ensure ensemble
N-representability. The density matrix of an ensemble is given by

x) =3 o TV (xx), (2.37)
k
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where each FS)(X; x') is connected to an N-particle wave function via (2.9). The
coefficients ¢, satisfy
da=1, (2.38)
k

such that the normalization of the density matrix is preserved. If we denote the
pure-state N-representable F,(:) (x;x’) which yields the lowest energy in Eq. (2.36)

by Fl(l)(x; x') then we can rewrite (2.37) as

r(x;x') = ¢ IV (x;x) + Z o T (x; %), (2.39)
=y

In the non-degenerate case, one can lower the energy in the system by increasing
¢; and decreasing the other coefficients. The lowest possible energy is obtained
for ¢, = 1 and all other coefficients ¢, = 0. In other words, the set of ensem-
ble N-representable density matrices obtains its lowest energy at a pure-state N-
representable density matrix anyway. Therefore, it is sufficient to restrict the 1-
RDMs to ensemble N-representable matrices in the minimization process. Of course,
this argument only applies to the exact total energy and only holds for approxima-
tions which are convex (see Section 3.1). In case the ground-state of the system is
degenerate, i.e. two or more different density matrices I' S) yield the same energy,
the minimization leads to any linear combination of these matrices with the correct
ground-state energy of the real system.

2.3 Total Energy as a functional of T')
The total energy of an electronic system is given by
BTV = EgnTW] + Eoe TW] + B, TV, (2.40)

where i, Foxt and Eiy, are the kinetic, external and interaction energy respectively.
As a big advantage of RDMFT, the kinetic energy is known exactly as a functional
of the one-body reduced density matrix

BEn[TW] = / / dxdx’ 6(x — x') (-%) I (x;x'). (2.41)

The external energy can also be written as a functional of the one-particle density
matrix

Eoe[TW] = //dxdx/ vo(x, x)TW (x; x). (2.42)

Only the interaction part, in our case the Coulomb interaction, cannot be easily
expressed as a functional of the one-body reduced density matrix. However, parts
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of the interaction are known. We therefore split the interaction energy

N
1 I (xy, .. XN} X1...
B[l = min = Z /dxl...de (1, Xpi X1 X) , (2.43)
PV 2 L=~ |r; —ry |
#k

further into
Eint[TW] = Ex[TW] + E [TW] + E T W] (2.44)

The Hartree energy Fy is known in terms of 1-RDMs and reads

1 P(l) . F(l) VR
EH[F(I)] — 5 //dXdX, (Xa X) (X aX), (245)

v -1

It represents the interaction energy between two charge clouds at r and r’. It is,
therefore, often referred to as the classical part of the interaction. The exchange
energy E, in Eq. (2.44) is given by

1 F(l) ./F(l) /.
Ex[l“(l)]:——//dxdx’ B XI5 %) (2.46)

2 |r—1 |

Only the remaining correlation energy F. needs to be approximated. We empha-
size at this point that the exchange energy here differs from the exchange energy in
DFT and also from the exchange energy in Hartree-Fock. The density matrices in
(2.46) have, in general, fractional occupation numbers while in DFT and Hartree-
Fock they are restricted to the sum of fully occupied orbitals. If I'® has fractional
occupation numbers, the exchange energy as defined by (2.46) contains energy con-
tributions which usually (in DFT and HF) are considered part of the correlation
energy. In addition, we conclude from (2.41) that the exchange-correlation energy
within RDMFT does not contain any kinetic energy contributions. The consequence
of this property, as well as other properties of the exchange and correlation energy
functionals, F, and E,, are discussed in Chapter 3, where we also present possible
approximations to F..

2.4 Orbital Functionals

In Section 2.2 we have presented the proof of Gilbert which ensures that we can write
the ground-state energy as a functional of the one-body reduced density matrix
I'M(x;x’). From the diagonalization of T one can directly conclude that the
ground-state energy can then also be written as a functional of the occupation
numbers n; and the natural orbitals ;. In addition, as long as '™ does not possess
degenerate eigenvalues, its diagonalization is unique and the occupation numbers
and natural orbitals are functionals of '™ as well. In this case, any functional of
n; and ; is automatically a functional of '™ The dependence on 'V however,
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might be implicit so that it might not be possible to make all the dependencies of
n; and ¢; on ' explicit. As an example we compare the following two terms

> <)) (247)

> Vi ) ) (2.48)

While the first term can easily be replaced by 'V (x;x’) such a substitution is
impossible for the second term. Nevertheless, also this term is a functional of 'V but
the dependence is implicit. From this little example we can see the big advantage of
orbital functionals: The flexibility in possible approximations has grown enormously.
As we discuss in Chapter 3 most of the currently used approximations are indeed
orbital functionals. As usual, there is a price to pay for this advantage. Here,
functional derivatives with respect to the density matrix '™ cannot be evaluated
directly. Instead we have to employ the chain rule with respect to n; and ¢;. While
this is not a principle problem, it increases the number of terms in the equations.
For a functional G[{n;}, {p;}] the derivative with respect to T is hence calculated
according to

S - 0G  dp;(y)

—+ /dy ( 1 +cec ||. (249
o)~ 2 ez 5,(¥) A0 ;) (249
The derivatives of G with respect to n; and ¢; can be calculated directly if G is an
orbital functional. The functional derivatives of the occupation numbers and natural

orbitals with respect to the 1-RDM can be obtained from first order perturbation
theory applied to the eigenvalue equation of the 1-RDM (2.17)

[x Ty ) = ) (2.50)
The resulting derivatives are given by

on; .

W)‘Z.X,) = soj(X)soj(X’), (2.51)
0 (y) sok LX) (x)

STO(x;x) Z - k(.‘/)' (2.52)

k=1

k#j

Here, the second equation is only valid for non-degenerate occupation numbers. In
case of degeneracies, one has to obtain the expression from degenerate perturbation
theory. The infinite sums, of course, have to be truncated in a numerical implemen-
tation. We come back to this point when we discuss numerical results in Chapter
4.
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2.5 Direct Minimization

In the previous sections we have introduced the foundations of RDMFT. We now
tackle the question how to determine the ground-state energy in practice. Due to the
second part of Gilbert’s theorem we can find the ground-state energy by minimizing
the energy functional with respect to I'™. In DFT the total energy is minimized
with respect to the density and the direct minimization is replaced by solving the
non-interacting Kohn-Sham system. In RDMFT there is no Kohn-Sham system.
There is simply no non-interacting system that reproduces the one-body reduced-
density matrix of the interacting one because the density matrix of a non-interacting
system is idempotent, i.e. I'M fulfills

/dX”F(l)(X;X”)F(l)(X”;X/) —TW(x;x') = 0. (2.53)

Expanding the density matrix in any set of complete orthonormal orbitals v; Eq.
(2.53) reads

y Fﬁ)F;ﬁ? T =0 (2.54)
k
with
Fﬁ) = //dxdx’ w;(X)F(l)(X; x' )b (x') (2.55)
r(x;x') = Zl—ﬁ) (X)) (x). (2.56)
jk

Using the natural orbitals of 'V as the set of basis functions for the expansion the
off-diagonal elements vanish and Eq. (2.54) reduces further to

ni —n; =0, (2.57)

where n; are the occupation numbers of '™, Equation (2.57) has only the two
solutions n; = 0 and n; = 1. Therefore, any one-body density matrix fulfilling (2.53)
represents a system of non-interacting particles: The many-body ground-state wave
function is a single Slater determinant built out of natural orbitals with occupation
number 1. From Eqgs. (2.53)-(2.57) we can also conclude that the ground-state
one-body density matrix of any interacting system, where the ground-state wave
function cannot be written as a single Slater determinant, does not fulfill (2.53).
Therefore, one cannot find a non-interacting system that reproduces the one-body
density matrix of an interacting system. If we want to determine the ground-state
energy within RDMFT we need to perform the minimization directly.

The total energy Eiota has to be minimized under the subsidiary condition that
the 1-RDM is N-representable, i.e. conditions (2.20) and (2.21) have to be satisfied.
The constraint that the 1-RDM has to integrate to the particle number N can be
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implemented with a Lagrange multiplier u. The functional to be minimized then
reads

FITW] = Eipa[TY] — ( / dx T (x;x) — N) . (2.58)

Numerically, the minimization is realized by taking the functional derivative of F'
with respect to I'D which equals zero at a true minimum. However, the second con-
straint, n; € [0; 1], cannot be made explicit in terms of the 1-RDM in a form useful
for the numerical implementation. One can either use n; = sin? ; and minimize
with respect to ¢, instead of n;, or one can keep n; between zero and one explicitly
in the numerical treatment. In both cases, to minimize with respect to 'V, we
make use of the chain rule with respect to the natural orbitals and the occupation
numbers n; (6;)

§F [ 6F  dn;(0; SF  0p;
STO(x;x) 2 [(m.(e-) 5r<1>J(<x-]z</) " / 4y (5g0-(y) 5r<i0>](£<y'1<f) * C'Cﬂ '
; =1 i\Yj ) J )
(2.59)
Since the N-representability condition can only be implemented in a way similar to
orbital functionals, compare Eq. (2.49), using orbital functionals does not introduce
any further complications.

We like to add a few more words about the problem of keeping the occupation
numbers between zero and one. If one includes this constraint explicitly in the nu-
merical treatment one simply puts n; back to zero or one, whenever the minimization
procedure would move it out of the interval. However, this leads to a violation of
the minimum condition 6F/dn; = 0. The derivative is bigger than zero (at zero)
or smaller than zero (at one) as it is typical for a border minimum. Therefore, the
constraint leads to 0F/dn; # 0 at the minimum of F' in all directions where n; takes
values at the border of the interval [0;1]. We refer to these states as pinned states
because the corresponding occupation numbers are pinned to the values zero or one.
From (2.59), we can see that then 0 F /6T is not zero either at its minimum due to
these pinned states. If we instead replace n; with sin? 6; and minimize with respect
to 0; F' always has a minimum. However, we have to pay special attention when-
ever 0; is a multiple of /2. Then the derivative 6F/d6; is zero and the conjugate
gradient scheme leaves ¢, unchanged in the following iteration. One avoids this by
moving 6, a bit (e.g. 107°) away from 7/2. For a pinned state the next iteration
recovers the §; = m/2 solution.

2.6 Spin Dependent Formalism

In all previous sections we considered a combined space-spin variable x = (r,0).
The natural orbitals can be written as two-component spinors

() — [ @it en(r) e e
eit) = (1) o Pt Lo =1 2:60)



2.6. SPIN DEPENDENT FORMALISM 19

The 1-RDM is then given as a 2 x 2 matrix in spin-space
1 1
X / F%T) (r;r’) F%l)(r; ')
rV(x;x') = o " (2.61)
L (') T ()

with N
T (1) =) nj aly ajo 95 (X)0ja(x) (2.62)
j=1

However, there are several physical applications where the treatment can be
significantly simplified. As long as the Hamiltonian does not mix the two different
spin directions, like for LS coupling or inhomogeneous external magnetic fields, and
the symmetry is also not broken spontaneously, the two spin directions decouple. For
example for homogeneous magnetic fields (no LS coupling), the quantization axis
of the spinors can be chosen such that one can directly work with spin dependent
occupation numbers and natural orbitals, i.e. there is a different set of occupation
numbers and orbitals for each spin channel. For closed-shell systems both spin
directions are completely identical even if the LS coupling is taken into account (no
magnetic field). Therefore, one can work with natural orbitals that only depend
on r and use occupation numbers between zero and two. As an intermediate and
only approximate method, one can allow for spin dependent occupation numbers
but keep the spin-independent natural orbitals. This method is in the spirit of
restricted open-shell Hartree-Fock, and we therefore call it Restricted Open-Shell
RDMEFT. Hence, there are the following four possibilities:

I Restricted RDMFT (Spin independent treatment)

The occupation numbers and the natural orbitals are independent of the spin
of the electron. The occupation numbers are restricted to the interval [0;2].
The method is suitable for closed-shell systems.

II Restricted open-shell RDMFT (Spin dependent n;,)

The occupation numbers are spin dependent while the natural orbitals are still
identical for both spin channels. The states calculated with this method are
eigenstates of the total spin operators S, and S2.

IIT Unrestricted RDMFT (Spin dependent n;, and ¢;,)

Both the occupation numbers as well as the natural orbitals depend on spin.
The numerical treatment is more expensive and the resulting states are in
general not eigenstates of the total spin operator S2.

IV Full Spinor treatment

Each electron is described with a spinor and a Pauli equation is solved. This
method is necessary, for example, to include LS coupling.
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Since we do not describe LS coupling or other effects that require a full spinor
treatment, we do not consider the last method in the following chapters. We do not
employ spin-dependent natural orbitals either (method III) because we require the
system to be an eigenstate of the total spin operator.



