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Abstract  

Autism refers to a large number of neurological disorders known as autism spectrum 

disorders (ASD). ASD patients display difficulties in social interactions and a large 

variety of accompanying symptoms which manifest the complex genetic background 

underlying this disease. To date, over 2000 copy number variations (CNVs) and 300 

genes potentially linked to ASD have been identified via array-based comparative 

genomic hybridization. However, the physiological function of these genes and their 

relation to ASD is mostly unknown. This thesis examines the potential of zebrafish as 

being, a suitable model to functionally analyze such large number of potential neuronal 

disease genes and their relevance for ASD.   

For this thesis the most frequently reported ASD related CNV, located in the human 

16p11.2 chromosomal region, was chosen for analyses. This 500 kb long CNV 

encompasses 27 genes of which 22 orthologs and 6 paralogs exist in the zebrafish 

genome. This thesis concentrated on only those zebrafish orthologs which are organized 

in syntenic clusters in both zebrafish and human genomes as this conservation of 

genomic organization indicates strong evolutionary pressure acting to preserve 

functionally important gene interaction and regulation. Specifically, I analyzed the 

zebrafish orthologs organized in two syntenic clusters on chromosome 3 consisting of 

the genes kctd13, sez6l2, asphd1 and ppp4ca (and ppp4cb), mapk3, gdpd3, ypel3. 

As a result of this thesis, it was identified that all the analyzed genes are active in the 
brain during development. The analysis by morpholino knockdown of: I) kctd13 and 
sez6l2 revealed a possible connection to ASD by induction of head size changes, II) the 
ppp4c genes resulted in heart and blood vessel deformations, which is in line with the 
heart malformations present in some 16p11.2 CNV carriers. III) mapk3 induced 
notochord, heart, and head deformations which are possibly related to the neuro-cardio-
facial-cutaneous syndrome. IV) ypel3 and gdpd3a resulted in embryo mortality 
indicating their essential role during development.  

In conclusion, this thesis establishes the possible involvement of kctd13 and sez6l2 in 
ASD and more importantly serves as a case study that demonstrates the potential of 
zebrafish as the preferred model system for identifying and analyzing the molecular 
pathways involved in neurological disorders with complex genetic background such as 
ASD.    
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Zusammenfassung 

Autismus und weitere neurologische Erkrankungen werden heute zu den Autismus-

Spektrum-Störungen (ASS) zusammengefasst. Patienten mit dieser Störung zeigen 

übereinstimmend Schwierigkeiten in sozialen Interaktionen, variieren jedoch stark in 

der Ausprägung und den Begleiterscheinungen, was sich ebenfalls in einem komplexen 

genetischem Hintergrund wiederspiegelt. Bisher wurden mittels der microarray-

basierten vergleichenden genomischen Hybridisierung rund 2000 Kopienzahl-

variationen und 300 Gene als potentielle Ursachen von ASS identifizierte, deren 

Funktion und Beziehung zu ASS unbekannt sind. Ziel dieser Arbeit ist es die Eignung 

des Zebrabärblings zur funktionellen Analyse großer Mengen potentieller neuronaler 

Krankheitsgenen und deren Zusammenhang mit ASS zu testen. 

Ausgangspunkt dieser Arbeit ist die bei ASS Patienten am häufigsten gefundene 

Kopienzahlvariation in der chromosomalen Region 16p11.2. Diese rund 500 kb große 

Region beinhaltet 27 Gene, von denen 22 Orthologe und 6 Paraloge im Zebrabärblings-

genom nachgewiesen sind. Um eine hohe Vergleichbarkeit zwischen Mensch und 

Zebrabärbling zu ermöglichen wurden die Gene zweier syntenischer Cluster für 

funktionelle Untersuchungen ausgewählt welche aus kctd13, sez6l2, asphd1 und ppp4ca 

(und ppp4cb), mapk3, gdpd3 sowie ypel3 bestehen.  

Die Ergebnisse dieser Arbeit zeigen, dass alle untersuchten Gene im Gehirn der 

Zebrabärblinge aktiv sind. Daher wurden sie in Morpholino knockdown Experimenten 

auf ihre Funktion untersucht, wobei: I) kctd13 und sez6l2 eine Veränderung der 

Kopfgröße erzeugten, welche möglicherweise im Zusammenhang mit ASS steht, II) die 

ppp4c Gene Veränderungen der Herz- und Blutgefässentwicklung ergaben, welche eine 

mögliche Verbindung mit Herzerkrankungen einiger der 16p11.2 Deletionsträger 

darstellt, III) mapk3 induzierte Veränderungen an der Chorda dorsalis, dem Herzen und 

dem Kopf, was im möglichen Zusammenhang mit dem Neuro-Cardio-Fazio-Cutanem 

Syndrom steht, IV) ypel3 und gdpd3a zum Absterben der Embryonen führten, was auf 

eine essentielle Rolle während der Embryonalentwicklung hindeutet. 

Die gefundene Verbindung von kctd13 und sez6l2 mit ASS, sowie die Hinweise auf 

Zusammenhänge zu Erkrankungen und Embryonalentwicklung der anderen Gene zeigt 

deutlich das Potential des Zebrabärbling-Modells zur Analyse von molekularen 

Ursachen im Zusammenhang mit komplexen genetischen neuronalen Erkrankungen.  
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1. Introduction 

1.1 Short introduction into autism spectrum disorders  

Autism is a neural developmental disorder belonging to the autism spectrum disorders 

(ASD) which also includes the Asperger syndrome, childhood disintegrative disorder 

and pervasive developmental disorder not otherwise specified (PDD-NOS). The 

estimated prevalence of ASD ranges from 1.0 - 2.6 % among the world-wide 

population. This places ASD the most common neurological disorders (Fombonne 

2010, Boyle, Boulet et al. 2011, Kim, Leventhal et al. 2011, MMWR 2012). ASD is 

characterized by three diagnostic core domains: impaired social interaction, 

communication difficulties and stereotypical behavior (Box 1). A guideline serving 

psychiatrists to identify problems in the core domains of ASD is the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-V), of which the fifth revision is available 

since 2013 (American Psychiatric Association 2013). The DSM allows psychiatrists to 

classify patients according to their diagnostic features and provides suggestions for 

therapies and medications. Since problems in the ASD core domains appear early in the 

development, the DSM enables to diagnose most children already before the age of 

Box 1 Summary of the ASD diagnostic core factors of the DSM-V 
(American Psychiatric Association 2013) 

Impairment in social interaction 
 difficulties in use of nonverbal behaviors such as eye-to-eye 

gaze, facial expression, body postures, and gestures to regulate 
social interaction 

 disabilities to form age appropriate peer relationships 
 failure to share interests, enjoyment or achievements with other 

people 

Impairment in communication  
 delay or lack of language  
 impairment in the ability to initiate a conversation with others 
 stereotypical and repetitive use of language 

Stereotypical and restrictive repetitive pattern of behavior 
 fixed to specific routines or rituals 
 repetitive movements and gestures 
 persistent preoccupation with objects 
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three (American Psychiatric Association 2013).  

Besides behavioral, social and communication problems almost no clinical phenotype 

coincides with ASD. Only in some rare cases ASD patients exhibit microcephaly or 

macrocephaly. It is speculated that the reasons for the macrocephaly is based on an 

enlargement of the ventricles (MMWR 2012). However, the reason for this co-

occurrence remains unknown (Courchesne, Karns et al. 2001, Lainhart, Bigler et al. 

2006).  

Unfortunately, there is no cure for autism, but there are ways to minimize the autism 

core features to improve the quality of life. This is achieved by educational 

interventions and medical management (Seida, Ospina et al. 2009). Furthermore, certain 

drugs can be used to treat illnesses which occur simultaneously, like sleep dysfunction, 

coexisting challenging behaviors or psychiatric conditions like seizures. The most 

efficient way to improve life quality of an affected person and their social environment 

is the educational intervention. With consequent training, the children who suffer from 

ASD can be trained to develop the skills needed to ensure personal responsibility and 

independence. The educational intervention not only applies to the child. It also 

includes the family to allow them to better adapt to the needs of ASD patients. (Myers, 

Johnson et al. 2007)  

1.1.1 Genetic basis of ASD 

Although, Folstein and Rutter already predicted a genetic component of ASD by twin 

studies in 1977, the molecular causes remained undiscovered. Since the discovery of a 

genetic background, which was confirmed in later studies, an autosomal recessive mode 

of inheritance was expected (Steffenburg, Gillberg et al. 1989, Bailey, Le Couteur et al. 

1995, Le Couteur, Bailey et al. 1996). This was also supported by pedigree analyses 

which showed a clustering of autism in family members. However, these analyses could 

not confirm a Mendelian inheritance. Therefore, a more complex background of an 

inheritance model is indicated (Jorde, Mason-Brothers et al. 1990). 

The difficulties in finding an inheritance model for ASD also led to a non-genetic 

hypothesis. For example epigenetic reasons like the X-chromosomal imprinting, which 

could explain the 4 : 1 male to female ratio (Skuse 2000, Jones, Skinner et al. 2008). 

Other hypotheses include environmental reasons like prenatal exposure to viruses or 



Introduction 

 

 3

drugs, even though a direct coherence has not been shown (Persico and Bourgeron 

2006).  

In conclusion, the evidence available let most researchers to believe that ASD has a 

genetic component. But the question how to identify the autism-causing genes remains 

unanswered. To identify the genetic component responsible for ASD, researchers used 

mainly two approaches: linkage analysis and array-based comparative genomic 

hybridization (aCGH). Reason for choosing those techniques was the complexity of 

ASD, which required large cohorts to overcome the heterogeneity of the manifestations. 

Therefore, the relative cheapness of the array-based methods was favored and a large 

number of CNVs were discovered (Autism Genome Project, Szatmari et al. 2007, Shi, 

Zhang et al. 2013). Today, with the enormous reduction in cost, the next generation 

sequencing replacing the aCGH and first publications are coming up using this 

technique to analyze ASD affected families (Shi, Zhang et al. 2013). However, even the 

high resolution of whole-genome sequencing will need large cohorts to overcome the 

complexity of ASD. 

1.1.2 16p11.2 - the most frequently found deletion in autism subjects  

The main problem in autism is its complex genetic background, which makes the 

identification of potential disease-causing genes very challenging. Because of its minor 

cost and its whole-genome attempt most researchers used array based comparative 

genomic hybridization (aCGH) to identify candidate genes. The idea was to screen 

hundreds of patients to overcome the complexity of the disease. In the last 10 years the 

microarray approach was used in several studies, which resulted in 2022 copy number 

 
Figure 1 CNV annotation frequency  
2022 CNVs form the AutDB database (Basu, Kollu et al. 2009)sorted for their annotation frequency. 
Most CNVs are only reported once (946). With 51 reports the 16p11.2 locus is the most frequently 
described (updated September 2013).  
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variations (CNVs) from 283 reports lists to date in the autism database AutDB (updated 

September 2013) (Basu, Kollu et al. 2009). Surprisingly, the reported CNVs do not 

localize to a few hotspots. Instead, they are spread over the whole-genome and most of 

them are only reported once (47 %; Figure 1). Interestingly, only 24 CNVs are reported 

20 times and more, therefore they are supposed to be good candidate regions for further 

investigations. For this reason the most reported locus 16p11.2 was chosen for further 

amalyses. 

The CNV 16p11.2 is not only the most reported one, but also the most frequently found 

CNV in ASD subjects. It appears in approximately 1 % of all autism patients. The 

16p11.2 CNV was reported for the first time by Kumar, KaraMohamed et al. in 2008. 

They screened 180 autism patients with aCGH and found the 16p11.2 microdeletion in 

two nonrelated autism patients. Because it was so surprising to find the same deletion in 

two independent patients, they tested 532 additional patients by quantitative PCR. In 

this second screen they found another two patients with the 16p11.2 deletion (total 

4/712). Importantly, the deletion was not found in one of the 837 control samples. Since 

then, the 16p11.2 deletion was confirmed in other studies as well. In most patients, the 

16p11.2 locus is deleted, nevertheless there are also a few duplications reported in ASD 

patients (Marshall, Noor et al. 2008, Weiss, Shen et al. 2008, Levy, Ronemus et al. 

2011). The 16p11.2 deletion consists of a ~ 500 kb long DNA fragment which is 

flanked by >99 % identical segmental duplications (147 kb each side) (Kumar, 

KaraMohamed et al. 2008). Within this locus the UCSC Genome Browser lists 27 genes 

(Figure 2). However, it is unknown if all or only one of these genes is involved in the 

formation of ASD.  

1.1.3 Clinical manifestation of the 16p11.2 CNV  

First the 16p11.2 CNV was only associated with autism and schizophrenia (Weiss, Shen 

et al. 2008, Fernandez, Roberts et al. 2010, Shen, Chen et al. 2011). However, the 

 
Figure 2 Chromosomal location of the 16p11.2 CNV 
Screenshot of the 16p11.2 CNV region from UCSC Genome Browser, human assembly Feb. 2009 
(GRCh37/hg19), position chr16: 29,455,038 - 30,361,950. The CNV is flanked by segmental duplications 
(orange bars, sequence similarity greater than 99 %) (Bailey, Gu et al. 2002, Kent, Sugnet et al. 2002) 
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increasing number of aCGH analyses with large cohorts of patients presenting mental 

retardation or congenital anomalies showed, that the 16p11.2 CNV is not exclusively 

present in autism or schizophrenia patients (Horev, Ellegood et al. 2011). The 

description from different publications of subjects carrying a 16p11.2 deletion or 

duplication showed phenotypes including mostly developmental delay and problems 

with learning, speech, language, and behavior (Rosenfeld, Coppinger et al. 2010, 

Schaaf, Goin-Kochel et al. 2011). Beside the mostly similar reported phenotypes, two 

publications mentioned also that the 16p11.2 deletion is cosegregating with obesity 

(Shinawi, Liu et al. 2010, Walters, Jacquemont et al. 2010). Further, one of the 

publications also describes that patients with the 16p11.2 deletion presented 

macrocephaly, whereas patients with the duplication displayed microcephaly (Shinawi, 

Liu et al. 2010). Interestingly, all publications describe a strong variance in the 

phenotype of the 16p11.2 deletion carriers. One of the best examples for this is the 

publication by Shen, Chen et al. (2011). They investigated a Chinese family with three 

members carrying the 16p11.2 deletion. The observed phenotypes ranged from only 

language delay at an early stage in one brother to neurodevelopmental issues, 

dysmorphic features and malformations like atrial septal defect, scoliosis, myopia and 

ptosis in the other one. The conclusion of these results is that most of the dysmorphic 

features and malformations have to be caused by other events then the 16p11.2 deletion. 

Most probably they are caused by mutations in the hemizygous 16p11.2 locus. Even 

though the reason for the large variability remains unknown, all patients with the 

16p11.2 locus showed problems in the diagnostic core features of ASD (Shen, Chen et 

al. 2011). This demonstrates that further investigations of the genes inside the 16p11.2 

CNV are needed to understand the molecular mechanisms and their relation to ASD. 

1.2 Zebrafish, a model for human neuronal diseases  

Since its introduction as a new model organism for developmental studies in the 1970s 

by George Streisinger, the zebrafish Danio rerio has become a widely used tool in 

modern science. The reasons for this success was its availability all over the world, the 

cheap and easy maintaining of the embryos in fresh water, and the simple breeding. 

Furthermore, the ex vivo fertilization enables the manipulation of embryos. In addition, 

the embryos are transparent, which allows the optical examination of developmental 

defects in the living embryo. The embryos develop very quickly, within 3 days post 
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fertilization (dpf) the embryos hatch and start to swim. After three months the fish are 

fertile and can be used to produce the next generation.  

But what makes this developmental model, which lacks the repertoire of human 

behaviors, suitable to understand the backgrounds of neuronal diseases. Most 

importantly, the neuronal development is following the same pattern like all vertebrates 

(see 1.3.2 Brain development of the zebrafish). Therefore, it is expected that the pattern 

of the brain development is based on the same molecular mechanism (Tropepe and Sive 

2003). Another important reason for using the zebrafish to investigate diseases with a 

complex genetic background like ASDs is the great clutch size of 100 – 200 eggs and its 

fast development. This allows the screening of a large number of genes in a short time 

within an identical genetic background. The technique mostly used in these screens is a 

gene knockdown with morpholinos (Nasevicius and Ekker 2000). However, the 

zebrafish model is also suitable to test the overexpression of a gene by mRNA injection 

(Hyatt and Ekker 1999). The evaluation of a knockdown or overexpression in zebrafish 

is relatively easy. To uncover changes in the development the visual inspection is 

mostly sufficient. This can be supported by in situ hybridization, GFP labeled proteins 

or injection of fluorescent dyes into the vascular system or ventricles (Weinstein, 

Stemple et al. 1995, Gutzman and Sive 2009, Kalen, Wallgard et al. 2009). In addition 

to the optical examination of the knockdown embryos, zebrafish also offers the 

possibility of performing behavioral tests. For example, the choice chamber or 

conditioned place preference were mutant embryos are tested for a change of their 

preference for small molecules like morphine. Another method is the visual threshold 

measurement which tests the response of the mutant embryos to light (Darland and 

Dowling 2001, Bretaud, Li et al. 2007, Gerlai, Chatterjee et al. 2009).  

An example where zebrafish has already been successfully used as a model for 

functional analyses of a human neuronal disease is the fragile X syndrome. This disease 

which is caused by the loss of the FMR1 (fragile X mental retardation) gene is one of 

the most common forms of inherited mental retardation. In 2006 Tucker, Richards et al. 

showed that the knockdown of the orthologous fmr1 gene in zebrafish results in 

abnormal axonal branching which could be rescued by treatment with MPEP [2-methyl-

6-(phenylethynyl) pyridine]. MPEP is a known antagonist of the metabotropic 

glutamate receptor mGluR5 and has been shown to reduce the fmr1 loss induced 

behavior in mouse (Yan, Rammal et al. 2005). Additionally to Tucker, Richards et al. 
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(2006) the results of the fmr1 knockdown in zebrafish were confirmed by Lin, Chang et 

al. (2006), who obtained similar results with a miRNA knockdown of the FRM1 

orthologous gene. 

Another complex neuronal disease studied in zebrafish is schizophrenia, which is 

described as a debilitating psychiatric illness of which the causes are still unknown. 

However, it is postulated that in addition to genetic components also environmental 

factors are involved in the manifestation of schizophrenia (Lewis and Levitt 2002). One 

of the genes associated with schizophrenia is DISC1 (disrupted in schizophrenia 1) 

(Chubb, Bradshaw et al. 2008). In 2009 Drerup and Wiora et al. tested the knockdown 

of the DISC1 orthologous gene in zebrafish embryos. The knockdown showed abnormal 

craniofacial development together with a changed migration pattern of the cranial neural 

crest cells. This indicates the involvement of the disc1 gene in the neuronal 

development.  

Another schizophrenia-associated gene investigated in zebrafish is SHANK3 (SH3 and 

multiple ankyrin repeat domains 3) (Gauthier, Champagne et al. 2010). Interestingly, 

SHANK3 is not only associated with schizophrenia but also with ASD (Durand, 

Betancur et al. 2007). When the SHANK3 orthologs were knocked down by 

morpholinos in zebrafish, embryos presented a reduced head, eye and trunk size and no 

response to physical stimuli. The presented phenotype of the embryos indicated a 

neuronal cause. This is supported by SHANK3-mutant rates where overexpression of 

SHANK3 led to an increase in primary neurite outgrowth from somata (Gauthier, 

Champagne et al. 2010). Thus, the zebrafish ability for a reverse genetic investigation 

with the morpholino knockdown tool offers the chance to examine a large number of 

putative neuronal diseases (Tropepe and Sive 2003, Kabashi, Brustein et al. 2010, 

Mathur and Guo 2010). 
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1.3 Zebrafish, development and tools  

As seen above the zebrafish has all features of a great model organism and offers also 

the ability to investigate human neuronal diseases. In this chapter the fundamentals of 

the zebrafish model organism are presented. 

1.3.1 Brief description of the zebrafish development - from single cell to 

swimming larvae  

This section is based on the very detailed descriptions of zebrafish development by 

Kimmel, Ballard et al. (1995) which is part of “The zebrafish book” (Westerfield 2000). 

The developmental stages of zebrafish embryo are linked to easy recognizable 

morphological structures. The zebrafish development starts with fertilization which is 

immediately followed by the swelling and lifting of the chorion from the yolk ball. 

During the enlargement of the first cell cytoplasmic movements towards the animal pole 

become visible. After approximately 20 min the first cell reaches its full size and the 

first cleavage starts. This repeats every 15 min so that 2.25 hours post fertilization (hpf) 

128 cells are formed on top of the yolk ball. This event marks the entrance to the 

blastula period. At 4 hpf, the ongoing cell deviation has formed a smooth spherical 

structure on the yolk called blastoderm. The period in which the cells start to spread 

over the yolk is called epiboly stage ( 

 

Figure 3). The epiboly is measured in percent of blastoderm covering the yolk. Once 

50 % of the yolk is covered by the blastoderm, the gastrulation starts. At full epiboly 

nearly 100 % of the yolk is covered with blastoderm. Now the posterior end of the 

embryo starts to swell which is theref cells start ore named bud stage. Next, in the 

segmentation period the embryo starts to grow along the anterior- posterior axis. It starts 

approximately 10 hpf and finishes at 24 hpf. During this time the somites are formed 

and the tail lifts from the yolk and lengthens. The distinct increase of somites along the 

anterior- posterior axis is now used to stage the embryos. At the end of the segmentation 

period 30 to 34 somites are formed. Beside the somites also eyes, ears, notochord and 

all three main parts of the brain start to form. At this point the embryo is comparable to 

the classical vertebrate anatomy.  
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The segmentation period is followed by the pharyngula period (24 – 48 hpf). During 

this phase the staging of the embryos is based on the position of the primordia, which is 

moving from the head anterior along the trunk and tail. During its motion the 

primordium leaves groups of sensory cells behind which form the lateral line.Beside the 

migration of the primordium also the opening of the head-trunk angle (HTA) and the 

reduction of the otic vesicle length (OVL) are used for staging embryos during the 

pharyngula period. The HTA is formed by two imaginary lines one through the middle 

of eye and ear and the other one along the notochord. Due to the lifting of the head from 

the yolk the HTA reduces during the hatching period and reaches nearly 0° by the end 

of the hatching period. Because of its direct association with the growth of the embryo 

the HTA allows a very quick approximation of the stage. In the same way the OVL is 

used to estimate the stage of the embryos. The OVL is simply the estimated number of 

otic vesicles fitting between eye and ear. During the development this distance will 

decrease because of the straightening of the head. Other important landmarks during the 

pharyngula period are the beginning of the pigmentation, the development of the 

cardiovascular system and most prominent the formation of the mouth.  

The last stage of the embryonic development is the hatching period (48 – 72 h) which 

takes place during the entire third day. Therefore, the hatching itself is not useful as a 

developmental landmark. However, the constant growth of the embryos is not affected 

by the hatching.  

The hatching period is divided into three different stages named after the growth of the 

pectoral fins. The first one is the long-pec stage (48 h). At this stage the embryos are 

approximately 3.1 mm long with an HTA = 45° and an OVL = ½. The pectoral fins are 

twice as long as they are wide. Viewed from the side the yolk ball is the same size as 

the head of the embryo. However, in the dorsal view the yolk is still wider than the 

head. During the long-pec stage also the circulatory system of the tail is completed, 

which is visible by the movement of erythrocytes. 
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Figure 3 Early zebrafish developmental stages  
Drawings of selected embryonic stages from one cell stage to the pharyngula period. Developmental 
stages before the epiboly are positioned with animal pole up. The later embryos are positioned anterior 
up, ventral left. Modified figure from Kimmel, Ballard et al. (1995). Scale bar 250 µm 
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The second stage during hatching period is the pec-fin stage. The embryos are 3.3 mm 

long and the HTA = 55°. The distal part of the pectoral fin is flat with a blade like form. 

The end of the fin has reached the middle of the yolk ball. The width of the head 

measured between the middle of the eye is wider than the yolk. Viewed from the ventral 

side the forming mouth is visible at the anterior end of the eyes. The pigmentation of the 

retina is so strong that the lens are slightly visible in the dorso-ventral view. The 

embryos show a rapid escape response on a stimulus and rest dorsal up after swimming.  

The last part of the hatching period is the protruding- mouth stage. The embryos 

reached a length of 3.5 mm with a HTA = 25°. The wide opened mouth protrudes 

anteriorly. The pectoral fins reached the length of the yolk ball. Inside the embryo 

intestines like gut, liver, kidneys and swim bladder start to develop. Further, the 

embryos start to swim with only small periods of resting. The protruding mouth stage 

marks the end of the embryonic development and the start of the larval development. At 

 
Figure 4 Developmental stages of zebrafish during hatching period  
Embryos are positioned anterior up, ventral left. Figure taken from Kimmel, Ballard et al. (1995). Scale 
bar 250 µm 
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4 dpf the swim bladder is fully inflated and easily visible within the trunk. Therefore, it 

can be used as a good staging feature.  

The description of the zebrafish embryogenesis presented here is only a short summary 

based on the very detailed publication of Kimmel, Ballard et al. (1995).  

1.3.2 Brain development of the zebrafish  

The brain development is an evolutionary 

highly conserved and well examined 

process. Therefore, the brain-forming 

progenitor cell, can be traced back already 

to the shield stage (6 hpf). The gastrulation 

is followed by the formation of the neural 

plate (10 hpf). During the next three hours 

the neural plate is folding towards the 

midline and transforms into the neural rod 

(Figure 5). The neural rod is the basis of the 

brain which starts to differentiate at the 

segmentation period. During this process 10 

segments, called neuromeres, become 

visible. The first three of them are larger and 

correspond to the three rostral parts of the 

brain: the telencephalon and diencephalon, 

which are forming the forebrain, and the 

midbrain. The last seven neuromeres are 

called rhombomeres and form the hindbrain 

(14 somite stage) (Kimmel 1993, Quesada-

Hernandez, Caneparo et al. 2010). 

The next structural change of the brain is 

based on the swelling of the ventricles inside the neural rod, which therefore is termed 

neural tube. The ventricles are filled with cerebrospinal fluid (CSF) which provides 

nutrients, signal molecules, and metabolites for the brain. Therefore, changes in the 

ventricles can affect the formation of the brain (Sawamoto, Wichterle et al. 2006, 

Gutzman and Sive 2010). After reaching its maximum size at 1 dpf the ventricles 

 
Figure 5 Morphogenesis from plate to tube  
A) The neural plate shows a vertical enlargement 
of the cells (10 hpf). During the morphogenesis 
the neural plate is folded towards the midline, 
when folded half the structure is called keel (B, 
13 hpf). At the end of the folding the shape is 
cylindrical and called neuronal rod (C, 16 hpf). 
At 20 hpf inside the neuronal rod the ventricle 
starts to swell, the structure is now called 
neuronal tube. Figure is a redraw from Papan 
and Camposortega (1994) and Gutzman, 
Graeden et al. (2008)  
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decrease dramatically (Kramer-Zucker, 

Olale et al. 2005). During the ventricle 

formation also the formation of motor, 

sensory and interneurons starts, this 

process is called the primary neurogenesis 

(Kimmel, Powell et al. 1982, Bernhardt, 

Chitnis et al. 1990, Chitnis and Kuwada 

1990). Surprisingly, these primary neurons 

are only used for a short period. They are 

completely replaced at the secondary 

neurogenesis, which takes place at 2 -

 3 dpf. On the third day the brain reaches 

its general shape built by forebrain, 

midbrain and hindbrain (Figure 6) (Bernhardt, Chitnis et al. 1990). Interestingly, the 

differentiation and the neuronal structuring of the zebrafish brain require the same 

molecular mechanisms like all other vertebrates. Therefore, it is possible to use 

zebrafish also as a model for brain development (Tropepe and Sive 2003).  

1.3.3 Two of one, whole-genome duplication of the teleost fish  

Almost two decades ago whole-genome duplication (WGD) events at the origin of the 

vertebrate lineage were proposed (Ohno 1970). Meanwhile, the analysis of the human 

genome and other vertebrates revealed convincing evidence for two WGD in the 

ancestral vertebrate lineage (Holland, Garcia-Fernandez et al. 1994, Gibson and Spring 

2000, Hughes, da Silva et al. 2001, Panopoulou, Hennig et al. 2003, Dehal and Boore 

2005). Interestingly, the comparison of the vertebrate and the teleost genome showed an 

additional copy of syntenic clusters which indicates a third WGD at the base of the 

teleost fish (Christoffels, Koh et al. 2004, Meyer and Van de Peer 2005).  

Most of the duplicated genes originating from a WGD are lost during evolution. 

However, some genes retain a subset of the ancestral gene function (subfunc-

tionalization) while others adopted a complete new function (neofunctionalization) 

(Christoffels, Koh et al. 2004, Hufton, Groth et al. 2008). Therefore, the knockdown of 

a gene present twice in a genome has to be carefully interpreted. 

 
Figure 6 Sketch of a zebrafish brain 3 - 5 dpf  
Brain is viewed lateral and dorsal. The forebrain 
consists of the telencephalon (yellow) and 
diencephalon (dark yellow). In the dorsal view the 
diencephalon is hidden by the midbrain (red). The 
last part of the brain is the hindbrain (green) which 
is connected to the spinal cord  
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1.3.4 Morpholinos - the smart knockdown tool  

One of the most important tools to work with zebrafish are morpholinos, which were 

first described by Summerton and Weller (1997). They created a synthetic DNA-like 

structure with a backbone based on a morpholino ring and a phosphorodiamidate group 

instead of a deoxyribose ring connected by a phosphate group. This synthetic backbone 

prevents the degradation and enhances the melting temperature in morpholino RNA 

hybrids. Therefore, morpholinos are highly efficient in a specific target gene 

knockdown by blocking the translation or splicing of the mRNA.  

Morpholinos offer two possible mechanisms to knockdown a gene. The first mechanism 

blocks the translation, therefore the morpholino sequence is designed complementary to 

the 5’ UTR of the target gene. The binding of the morpholino in this region will prevent 

the assembly of the ribosome so that the mRNA cannot be translated into a protein. 

Importantly, the morpholino does not induce the degradation of the mRNA. The mRNA 

will remain intact until its natural degradation, which releases the morpholino. 

Therefore, RT-PCR cannot be used to test the success of the knockdown (Summerton 

and Weller 1997, Nasevicius and Ekker 2000, Bill, Petzold et al. 2009).  

The second morpholino knockdown mechanism is the altering of the splicing, which 

leads to a misspliced mRNA. In this case the morpholino is designed complementary to 

an intron-exon (I-E) or exon-intron (E-I) junction. This will mostly result in an exon 

skipping during the splicing process (Figure 8, page 15). Only the morpholinos against 

the first or last exon are likely to cause an intron insertion (E1-I1; I3-E4 Figure 7). In 

some rare cases the morpholino blocking of a splice site can also lead to cryptic splicing 

(Draper, Morcos et al. 2001). In this case the splicing machinery uses an unpredicted 

splice site, which in most cases lead to a partial deletion or insertion. All splice blocking 

morpholinos generate a differently processed mRNA which can be identified by PCR. 

Simply two primers in the neighboring exons are needed to verify a shift of the 

amplified PCR product size. Both methods of morpholino induced knockdown show a 

 
Figure 7 Splice junction targets of morpholinos 
Illustration of a mRNA consisting of 4 exons (E) and 3 introns (I). Morpholinos are indicated as bars 
close to the mRNA at their targeting splice junction. 
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very high success rate (Summerton and Weller 1997, Bill, Petzold et al. 2009, Bedell, 

Westcot et al. 2011). 

The challenge when using morpholinos is that they have to be actively delivered into 

the cell. The easiest way to do this in zebrafish is the injection into the yolk ball. 

 
 

Figure 8 Mechanisms of splice blocking morpholino knockdown 
Represented is an mRNA with 4 exons (E) and 3 introns (I) before and after splicing. Morpholinos are 
indicated by bars above the mRNA at their targeting intron-exon junction.  
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Because of the superficial cell division the cell does not have a membrane towards the 

yolk and the morpholino can enter the cell by diffusion. The injection itself does not 

affect the development of the embryo so that all observed changes are attributable to the 

morpholino. However, it has to be kept in mind that the morpholino effect will reduce 

during development. The reason for this is the growing number of cells, which lowers 

the concentration of morpholinos per cell. Therefore, a morpholino is more likely to 

generate a knockdown rather than a complete knockout. However, the morpholino 

injection is the fastest way for reverse genetic investigation and offers the possibility to 

examine a knockdown in the most important time during the development (Nasevicius 

and Ekker 2000, Bedell, Westcot et al. 2011). 
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1.4 Information for selected genes of the 16p11.2 locus  

Due to the large number of genes within the human 16p11.2 locus only 7 were selected 

for further investigation in zebrafish. A detailed explanation of the reasons for this 

selection is given in the result section. For each of the selected human genes, the 

published information is summarized here.  

1.4.1 Aspartate beta-hydroxylase domain containing gene 1 

One of the selected genes from the 16p11.2 locus is the aspartate beta-hydroxylase 

domain containing gene 1 (asphd1). Hydroxylation is an important post-transcriptional 

modification facilitated by a group of enzymes named hydroxylases. The modification 

processed by these enzymes is the addition of a hydroxyl group to an amino acid (aa). 

Interestingly, hydroxylation is one of the few known removable post-transcriptional 

modifications (Gronke, VanDusen et al. 1989, Lavaissiere, Jia et al. 1996). The 

importance of hydroxylases can be shown by the well-known disease phenylketonuria, 

which is caused by mutations in the phenylalanine hydroxylase gene (Blau, van 

Spronsen et al. 2010). However, the function of the asphd1 gene is completely 

unknown. Therefore, the results of this thesis can help getting a better understanding of 

its function.  

1.4.2 Glycerophosphodiester phosphodiesterase domain containing gene 3  

In the human genome, five glycerophosphodiester phosphodiesterase domain containing 

(GDPD1-5) genes are found. These enzymatic proteins are highly conserved during 

evolution. They catalyze the hydrolysis of glycerolphosphorlipides to glycerol 

phosphate and an alcohol (Shi, Liu et al. 2008). Surprisingly, there was no publication 

about the 16p11.2 located GDPD3 available. However, the importance of these 

enzymes is shown by the known functions of the other members of the GDPD family. 

For example GDPD2, which is expressed during the osteoblast differentiation, is 

capable of changing the morphology of HEK293T cells from a spread to round 

phenotype (Corda, Kudo et al. 2009). Another member of the GDPD family, which was 

found to be expressed in the brain and spinal cord, is GDPD5. It was shown that 

GDPD5 is important for the differentiation of motor neurons and is also involved in the 

outgrowth of Neuro2A cells (Rao and Sockanathan 2005, Yanaka 2007, Yanaka, 
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Nogusa et al. 2007, Lang, Zhang et al. 2008). Due to the additional whole-genome 

duplication in teleosts, the zebrafish genome harbors two gdpd3 genes. The first is 

gdpd3a which is located on chromosome 3 and the second is gdpd3b located on 

chromosome 12. However, the function of both genes is unknown.  

1.4.3 kctd13 an interaction partner of the DNA polymerase   

In a yeast two-hybrid screen He, Tan et al. (2001) searched for interaction partners for 

the small subunit (p50) of the DNA polymerase delta (Pol ). The screen identified an 

open reading frame (ORF) which was coding for a 36kDa protein named polymerase 

delta-interacting protein (PDIP1). This protein encoded by the potassium channel 

tetramerisation domain containing gene 13 (KCTD13) is located at 16p11.2. In further 

pull down experiments He, Tan et al. (2001) showed that PDIP1 interacted 

simultaneously with the p50 subunit of the Pol  and the proliferating cell nuclear 

antigene protein (PCNA), which is a known coordinator of DNA replication and cell-

cycle progression (Waga and Stillman 1998).  

Interestingly, members of the KCTD family have already been shown to influence the 

human neuronal system. One of them is KCTD7, which it associated with progressive 

myoclonic epilepsy (PME) (Van Bogaert, Azizieh et al. 2007). Further, experiments in 

cultured mouse cortical neurons showed that the overexpression of KCTD7 reduces the 

excitability of the neurons (Azizieh, Orduz et al. 2011). Another interesting finding is 

the link of the brain-expressed KCTD15 with obesity (Willer, Speliotes et al. 2009).  

Because of the association of the KCTD family with neuronal diseases, KCTD13 

became interesting for others as well. In 2012, Golzio, Willer et al. published that the 

overexpression and knockdown of KCTD13 influences the head size of 4 day old 

zebrafish embryos. In their study, they tested the overexpression of each gene located in 

the 16p11.2 CNV. To verify a change in the brain size they measured the head size of 4 

day old mRNA injected embryos. They found that only the injection of the KCTD13 

mRNA reduced the head size of the embryos. Further, they tested the morpholino 

knockdown which resulted in an enlargement of the heads. To verify that the number of 

cells changed they counted them in slices of the telencephalon, diencephalon and 

mesencephalon. As seen in the head size measurement, the number of cells was 

decreased in the KCTD13 overexpression and increased in the knockdown. Golzio, 
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Willer et al. (2012) found out, that the increase of cells was accompanied by cell 

deviation (phosphor-histone H3 assay), whereas the overexpression resulted in a higher 

number of apoptotic cells (TUNEL assay). Yet the molecular reasons for these results 

remain unknown.  

1.4.4 MAPK3, a member of the Ras/Raf/ERK1 pathway  

The mitogen-activated protein kinases represent an evolutionary strongly conserved 

family, present in the three eukaryotic kingdoms: Animalia, Plantae and Fungi. Proteins 

of this family have been shown to be important in various cellular processes such as cell 

growth, proliferation, differentiation, survival and development. A member of this 

family is the mitogen-activated protein kinase 3 gene (MAPK3), which is located at 

16p11.2. This gene consists of eight exons which encode the extracellular signal-

regulated kinase 1 (ERK1) protein (Johnson and Lapadat 2002, Krens, He et al. 2006). 

The ERK1 protein is part of the Ras/Raf/ERK1 pathway which is involved in growth 

factor signaling, cytokine signaling and cancer pathogenesis (Bentires-Alj, Kontaridis et 

al. 2006). This pathway is associated with the neuro-cardio-facial-cutaneous syndrome 

(NCFC). Patients with this disease show several strong phenotypic changes like 

congenital anomalies, mental retardation, macrocephaly, heart defects and a general 

developmental delay (OMIM 115150) (Roberts, Allanson et al. 2006).  

From the zebrafish experiments by Krens, He et al. (2008), it is known that the 

knockdown of ERK1 and ERK2 results in a cell migration defect during development. 

Due to this defect the embryos present a reduced body axis with a small but 

distinguishable head. 

In 2011, the group of Xiaohong Li published a direct connection between the 

Ras/Raf/ERK1 pathway and autism (Yang, Sheikh et al. 2011, Zou, Yu et al. 2011). 

However, the publications based on mice and human brain tissue examinations were 

retracted in 2013. Therefore, further investigation to identify a link between MAPK3 

and ASD is needed.  

1.4.5 ppp4c - one gene many functions 

At the end of the 1930s, Carl and Gerty Coti found two forms of glycogen 

phosphorylases. However, it was a long way until the relevance of protein 

phosphorylation was accepted (Hubbard and Cohen 1993, Cohen 2002). Today three 
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protein phosphatase families are known: the phosphoprotein phosphatases, the metal-

dependent protein phosphatases and the aspartate-based phosphatases. The PPP4C gene 

located at 16p11.2 encodes a phosphoprotein phosphatase 4 catalytic subunit which is 

involved in a variety of processes. As an example, PPP4C is involved in the 

microtubule organization at centrosomes (Sunkel, Gomes et al. 1995, Helps, Brewis et 

al. 1998, Sumiyoshi, Sugimoto et al. 2002), in the maturation of spliceosomal snRNPs 

(Melki 1997, Matera 1999, Gubitz, Mourelatos et al. 2002), in the tumor necrosis factor 

(TNF)-alpha signaling (Zhou, Mihindukulasuriya et al. 2002), and in the regulation of 

histone acetylation (Cohen, Philp et al. 2005, Zhang, Ozawa et al. 2005). However, the 

role of PPP4C during the embryogenesis remains unknown. 

The first publication showing how ppp4c is influencing the embryogenesis was written 

by Kalén, Wallgard et al. in 2009. They performed a zebrafish reverse genetic screen on 

50 potential angiogenesis genes to test their influence on the heart and blood vessel 

formation. Surprisingly, three of them were serine/threonine phosphatases including 

ppp4c. Investigating the ppp4c knockdown embryos by microangiography revealed, that 

the circulatory loop in the trunk vascular system was not established at 48 hpf. To 

confirm their results Kalén, Wallgard et al. used two morpholinos per gene. Because of 

the teleost specific whole-genome duplication, some of the selected genes existed in two 

copies, in which case they performed double knockdown experiments. Since PPP4C 

has two orthologs in zebrafish, namely ppp4ca and ppp4cb, it must be concluded that 

Kalén, Wallgard et al performed a double knockdown. However, in their supplement 

the microangiography is only shown for ppp4ca and Kalén, Wallgard et al. are not 

mentioning the second ortholog of ppp4c. Most importantly the embryos were not 

investigated for changes in the nervous system. So it still remains unknown if ppp4c is 

affecting the neuronal development.  

During the experiments for this thesis, another ppp4c morpholino knockdown in 

zebrafish was published. Surprisingly, this one was different from the Kalén, Wallgard 

phenotype. Jia, Dai et al. (2012) showed that the ppp4ca and ppp4cb knockdown 

resulted in a dorsalization of the embryos. Further, they found that ppp4c is required for 

the ventralizing activity of BMP which is initiated by binding to Smad1/Smad5. For the 

knockdowns Jia, Dai et al. also used two independent morpholinos per gene.  
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The reason for the difference of the published phenotype by Kalén, Wallgard et 

al.(2009) (problems in trunk vessel formation) and Jia, Dai et al. (2012) (ventralization 

of the embryos) is unclear. Therefore, further investigation of ppp4ca and ppp4cb is 

necessary to clarify this difference.  

1.4.6 SEZ6L2, a gene with many variations in autism patients  

The human seizure related 6 homolog gene family consists of three genes. The first 

gene identified was SEZ-6. It was found in a study were cortical neurons were treated 

with the seizure-inducing reagent pentylenetetrazole (Shimizu-Nishikawa, Kajiwara et 

al. 1995). Since that time the two other members SEZ6L and SEZ6L2 have been 

identified. The seizure related 6 homolog (mouse)-like 2 (SEZ6L2) is located in the 

16p11.2 region (Kumar, KaraMohamed et al. 2008).  

Because of the relatively low resolution of aCGH, Kumar, Marshall et al. (2009) 

sequenced eight genes of the 16p11.2 region in 1106 autism patients to identify smaller 

variations important for ASD. As a result of the sequencing, they identified 12 sequence 

variations in the promoter and the coding sequence of SEZ6L2. However, they also 

found three variations in the SEZ6L2 gene of the control cohort (1161 persons). In 2011, 

Konyukh and Delorme et al. confirmed this study by testing 170 autism patients for 

variations in the SEZ6L2 gene. They identified seven previously unknown non-

synonymous mutations in ASD patients. However, surprisingly they also found six 

SEZ6L2 variations in the control cohort (282 persons). From these results Konyukh, 

Delorme et al. concluded that the high variability in the SEZ6L2 gene of ASD-

unaffected persons reduces its possible impact on ASD (Konyukh, Delorme et al. 2011). 

Nevertheless, the expression of SEZ6L2 in the human fetal brain (Kumar, Marshall et 

al. 2009) and the strong homology to the epilepsy and language disorder associated 

gene SRPX2 (Roll, Rudolf et al. 2006) make SEZ6L2 still a considerable candidate for 

being part of the complex genetic background in autism spectrum disorder. 

1.4.7 The Yippee like gene 3, potentially regulated by p53  

The first YPEL gene was found in Drosophila and named Yippee (Lanz-Mendoza, 

Bettencourt et al. 1996). Meanwhile, the increasing number of sequenced genomes 

uncovered Yippee like genes in all three eukaryotic kingdoms: Aninmalia, Plantae and 

Fungi. In 2004, Hosono and coworkers identified more than 100 different Yippee like 
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genes in 68 species (Hosono, Sasaki et al. 2004). By aligning the different Yippee like 

genes they uncovered a consensus sequence including a zinc finger binding motif. By 

comparing the human with the zebrafish genome five different ypel genes were found. 

Like all ypel genes also the zebrafish ortologs show a strong conservation. The strong 

conservation during evolution in animals, plants and fungi indicates an important 

function of ypel3 (Hosono, Sasaki et al. 2004), (Roxstrom-Lindquist and Faye 2001). 

The functions of the ypel3 gene are still not completely understood, but it was found 

that the human YPEL1-4 proteins localize at the centrosome and nucleolus during the 

interphase, visible as several dot-like structures. The human YPEL5 protein also 

localizes at the centrosome and nucleus during interphase, but in contrast to the other 

four YPEL proteins it localizes additionally at the spindle apparatus (Hosono, Sasaki et 

al. 2004). Other recent studies described YPEL3 as a downstream target of TP53 a 

known tumor suppressor gene, which under DNA damaging conditions, is capable to 

induce cell cycle arrest or senescence. They presented microarray studies where YPEL3 

reacted the same way like the TP53 expression level of the knockout or reactivations. 

Furthermore, it is known that a p53 binding site is located close to the human YPEL3 

promoter. Yet a direct link between p53 and YPEL3 is not known. However, it can be 

concluded that its function is upstream of p53 (Kelley, Miller et al. 2010, Berberich, 

Todd et al. 2011). 
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1.5  Aim of the thesis 

With an estimated prevalence of 1.0 - 2.6 % among the population, autism spectrum 

disorder is the most common neurological disorder (Fombonne 2010, Boyle, Boulet et 

al. 2011, Kim, Leventhal et al. , MMWR 2012). However, its complex genetic 

background disguises the molecular cause of the disease. The most commonly used 

technology to uncover genes directly associated with autism has been microarray-based 

comparative genomic hybridization (aCGH), which revealed more than 2000 CNVs and 

300 genes (AutDB) linked to ASD (Basu, Kollu et al. 2009). To be able to functionally 

analyze all these candidate genes, a model organism that: I) is evolutionary not very 

distant from humans, II) has got the potential of large scale screening, III) enables to 

perform the analysis in short time at an affordable price is required. This thesis aims at 

demonstrating the potential of zebrafish in fulfilling this role through the functional 

analysis of a zebrafish genomic region which is syntenic to the human 16p11.2 region, 

the most frequently deleted region in ASD patients. 

As a first step, the zebrafish orthologs of the human 16p11.2 region will be identified by 

phylogenetic analysis based on sequence conservation. Then suitable candidate genes 

will be selected based on synteny as this indicates a strong functional evolutionary 

conservation. Subsequently, the spatial and temporal expression of selected genes will 

be tested in embryos via in situ hybridization with the purpose of selecting only 

neuronal expressed genes for further analyses via morpholino-based knockdown 

studies. The aim of this thesis is to investigate the potential of zebrafish as a model 

system for studying the molecular pathways underlying ASD through the study of the 

zebrafish orthologs of the human 16p11.2 genes  
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2 Materials  

In this chapter all materials used in this thesis are listed.  

Table 1 Primer for antisense RNA design  

Primer name Primer sequence 5’ – 3’ 
ASPHD1-F CACTACAAGAGTATGCCAAGC 

ASPHD1-R AATTCACACTGAGCAGGAGTC 

GDPD3-F ACACTCGACGGATATGTTGTAG 

GDPD3-R ATGTAGTCAGACAGGACAGTC 

KCTD13-F CAAGATTGCTGAAGTCTGCTG 

KCTD13-R GGCTTACATTAGTCATTGAAA 

MAPK3-F TCCATTTGAACACCAGACCTAC 

MAPK3-R TACAAACAGATCGCCGACTTAC 

PPP4Ca-F TGACCTGGACAGACAAATTGAG 

PPP4Ca-R TGGAGCAGACCATACTGTCAAC 

PPP4Cb-F ATGGGTGACATGAGTGATCTG 

PPP4Cb-R TACAGCATACCGTGAGTCTGAG 

YPEL3-F CCTATCTGGACTCCTGTCATC 

YPEL3-R CTACACAATCATAACACATCTGC 

SEZ6L2-zf-F CGGCAGATTCCTCCTCCATC 

SEZ6L2-zf-R ACTTTACAGAAGGGCGGTGG 

Table 2 Primer for verification of morpholino splice site effects 

Primer name Primer sequence 
P-kctd13-e2-F GAGCGTTTGGACTGTGGTGT 

P-kctd13-e3-R GGGACGGGACAGTTCCTTTG 

P-kctd13-e4-R TGCAGAGGTTGTCACATTCCTA 

P-ypel3-e2-F ACACCTGGCCAATCACGATG 

P-ypel3-e5-R GCTCAACTCAAAGGCCTGCT 

P-ypel3-i3-R GCCTTTGTGGAGTTAAGCAAG 

P-mapk3-e1F TGACCGACTCCTCTTCGACT 

P-mapk3-e3-R CCTTGAGGTCACAGGTGGTG 

P-ppp4ca-e1F AGGCCTTTTCCCTTTCCCAA 

P-ppp4ca-e4-R GTGACAGGAGAATCTACACTCTGA 

P-ppp4cb-i3-R TTGGCCACGACCATTCATGT 

P-ppp4cb-e2-F CCGCATCTCTGGTGTGAGTG 

P-ppp4cb-e4-R GGTCATAAAACTGCCCGTGGA 

P-ppp4cb-i3-2-R CTTCTCTATGCAGTGTTTGTGA 

P-gdpd3-e1F CGAGCTGCCTGTACTACCTG 

P-gdpd3-e3R TCTGTGCCCACTTCAACAGC 

Table 3 Morpholino sequences and their target sites 
Morpholinos were purchased from Gene Tools LLC 

morpholino target gene target site morpholino sequence 
MO-kctd13 5’UTR CGAACCAGATGCCTCGGCAGACATC 

MO-kctd13 i2e3 CCAGCCTTCAATACAAATGGACACA 

MO-ypel3  5’UTR TTTTGGCCTTGGTCTGCTTCACCAT 
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morpholino target gene target site morpholino sequence 
MO-ypel3  e3i3 TTGAAAGAAGTCATACTCACACAGA 

MO-gdpd3 5’UTR AGTACAGGCAGCTCGCCATATTTCC 

MO-gdpd3 i2e3 CACCAGAACCTGAGGACAGAGAGCA 

MO-mapk3 5’UTR TACTGCCCGATTCCGCCATCGTTTC 

MO-mapk3 e2i2 TGTGAGTGTTTAAGGATACACATCC 

MO-ppp4ca  5’UTR AAGTCGCCCATGATGACACACATGC 

MO-ppp4ca  e2i2 TGGAGTAAAAGGAGTTACCTTGCTT 

MO-ppp4cb 5’UTR GGTCCAGATCACTCATGTCACCCAT 

MO-ppp4cb e3i3 TTTGTGAATACTCACCGTGACAGGA 

MO-asphd1 5’UTR AAGTCCAGAGACCAGGACATAATGC 

MO-sez6l2 5’UTR CATGGTTCAATATGACAGAACAGCC 

SCMO   CCTCTTACCTCAGTTACAATTTATA 

Table 4 List of used chemicals   

Chemical Company / distributor  Catalog-Nr. 
Agarose Invitrogen 15510-019 
Ampicillin Sigma A9393 
5-Bromo-4-chloro-3-indolyl 
phosphate p-toluidine salt (BCIP) 

Sigma B8503 

Betaine Sigma B2629 
BigDye-Terminator-Mix Lifetechnologies 4337458 
Bovine serum albumin (BSA)  Roth 8076.1 
Bromphenol blue Merck 1.081.220.025 
Calcium chloride Merck 1.023.821.000 
Chloroform Merck 1.024.312.500 
Citric acid Merck 1.064.481.000 
DEPC Sigma D5758 
Denhardt's Solution Lifetechnologies  750018 
DIG-RNA Labelling Mix Roche 1277073 
DNazol Invitrogen 10503-027 
dNTPs Pharmacia 27-2035 
DTT Invitrogen D-1532 
EDTA Sigma E4378 
Ethanol Merck 1.009.862.500 
Ethidium bromide Sigma E1510 
Formamid Merck 109.684 
Formamid (bioUltra 99,5 %) Fluka 47671 
Glucose Merck 1.083.422.500 
Glycerin Merck 104.093.100 
Heparin Sigma H9399 
HEPES Calbiochem 391338 
Hydrochloric acid Merck 1.090.571.000 
Hydrogene peroxide Merck 108597 
Isopropyl alcohol Merck 1.096.342.500 
Kanamycin Sigma K4000 
Lithium chloride Merck 1.056.790.250 
Magnesium chloride Merck 1.058.331.000 
Magnesium sulfate Merck 1.058.861.000 
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Chemical Company / distributor  Catalog-Nr. 
Maleic acid  Sigma-Aldrich M0375-1KG 
Methanol Merck 106009-2500 
Methylene blue Merck 1.159.430.025 
Nitro blue tetrazolium (NBT) Sigma N6876 
Paraformaldehyde (PFA) Sigma P6148-500G 
PBS - tablets  Geneaxxon D2002.010 
Penicillin Sigma P3032 
Phenol red Sigma P0290-100ML 
Paraplast (Paraffin) Leica  
Potassium chloride Merck 1.049.361.000 
RNA Storage Solution Ambion 7000 
RNasin Ribonuclease Inhibitor Promega N2511 
Rhodamine B isothiocyanate-
Dextran (wt~70.000) 

Sigma-Aldrich  R9379 

Sodium acetate Merck 1.062.681.000 
Sodium chloride Merck 1.064.001.000 
Sodium phosphate Merck 1.065.855.000 
Tricaine Sigma A5040-5G 
TRIS Merck 1.083.820.500 
Triton X-100 Sigma X100-5ML 
Triethanolamine Sigma T1377 
tRNA from yeast Sigma R6625 
Tween 20 Sigma P9416 
UltraClear clearing reagent   
X-Gal  Sigma B9146 

Table 5 List of used enzymes  

Name Company / distributor  Catalog-Nr. 
BstXI New England Biolabs R0113S 
Eco RI New England Biolabs R0101S 
Eco RV New England Biolabs R0195S 
Kpn I New England Biolabs R0142S 
Not I New England Biolabs R0189S 
Spe I New England Biolabs R0133S 
Xba I New England Biolabs R0145S 
Xho I  New England Biolabs R0146S 
NEB I buffer New England Biolabs B7001S 
NEB II buffer  New England Biolabs B7002S 
NEB III buffer  New England Biolabs B7003S 
NEB IV buffer  New England Biolabs B7004S 
BSA New England Biolabs B9001S 
T4 DNA ligase  New England Biolabs M0202S  
T4 DNA ligase buffer New England Biolabs B7003S 
M-MLV reverse transcriptase / 
reverse transcriptase buffer 

Promega M531A 

RNasin RNase inhibitor Promega N2511 
Sp6 RNA polymerase Roche 810274 
T7 RNA polymerase / 
transcription-buffer 

Roche 881767 
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Name Company / distributor  Catalog-Nr. 
Pronase E Sigma P69111G 
Phire Hot Start II DNA 
polymerase 

Thermo Scientific  F-122S 

Table 6 List of used DNA / RNA ladders  

Name Company / distributor  Catalog-Nr. 

2-log DNA ladder (0.1-10.0 kb) New England Biolabs N3200L 
RiboRuler RNA ladder Fermentas SM1821 

Table 7 List of used Kits  

Name Company / distributor  Catalog-Nr. 

QIAprep Spin Miniprep Kit Qiagen 27106 
QIAquick PCR Purification Kit Qiagen 28106 
QIAquickGel Extraction Kit Qiagen 20021 
peqGold Total RNA kit  Peqlab 12-6834-01 
TOPO TA cloning Kit dual promoter  Invitrogen  45-0640 
Dual Promoter TA cloning Kit Invitrogen 45-0007 
Anti-digoxigenin-antibody  Roche 11093274910 

Table 8 List of used devices  

Device  Manufacturer  
incubator BK700 Heraeus 
binocular Leica MZ8 Leica  
electrophoreses-chamber  Stratagene 
heating block Eppendorf 
magnetic stirrer  Heidolph 
micro injector FemtoJet Eppendorf 
micropipette puller P-97 Sutter Instruments 
borosilicate glass filament O.D.:1,0 mm 
I.D.:0.78mm 415-883-0128 Sutter Instruments 

microscope LSM510 Zeiss 
microscope inverse with micromanipulator Leica 
microtome HM 355 S Leica 
nanodrop Nanodrop 
precision scales Mettler Toledo 
shaker horizontal New Brunswick Scientific 
speed Vac Savant 
thermo cycler MJ Research Inc. 
table centrifuge  Eppendorf 
UV-Illuminator Alpha Innotech 
vortexer Bender & Hobein 
NM 355S Automatic Microtome  Thermo scientific  
axiovert 200M Zeiss 
AxioCam MR Zeiss 
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Table 9 List of standard solutions 

Solution   Chemicals for preparation  

Agarose gel loading buffer  4 mM TRIS (pH 8.0), 0.2 mM EDTA, 0.25 % bromophenol blue (w/v), 50 % 
glycerin (v/v) 
 

TAE-buffer 50x 1L 242 g Tris base, 100 ml 0.5 M EDTA, 57.1 ml glacial acetic acid add ddH2O to 1L 
 

E3 buffer 60x 5 M NaCl, 250 mM KCl, 0.5 M CaCl2, 1 M MgSO4 
 

Preparation of 4 % 
PFA/PBS  
 

For 50 ml: for 2 g paraformaldehyde add 40 ml DEPC H2O and 2 ml 1 M NaOH. 
 solve at 65°C. Add 1.6 ml 1 M HCl and 4 ml 10x PBS, 7 pH at room temperature 
(RT) (use pH paper).Add DEPC H2O up to 50 ml. Cool on ice 
 

Hybridization mix (HM+) / 
HM- without heparin and 
tRNA (WMISH) 
 

25 ml formamide (in the fridge), 12.5 ml 20x SSC (DEPC stock), 460 l citric acid 
(1 M stock solution), 250 l Tween (20 % stock solution), 250 l tRNA (50 mg/ml 
stock solution in -20°C freezer in freezer room), 50 l heparin (50 mg/ml stock 
solution in -20°C freezer in freezer room), add DEPC-treated water up to 50 ml 
 

Blocking solution 
 

PBST with 2 mg/ml BSA and 2 % sheep serum 

AP buffer 
 

1 ml NaCl (5 M stock solution), 5 ml Tris, pH 9.5 (1 M stock solution), 2.5 ml 
MgCl2 (1 M stock solution), 5 ml Tween (10 % stock solution), add sterilized 
water up to 50 ml 
 

PBST 1x PBS +-0,1 % Tween20 
 

Hybridisation buffer 1 ml Tris 1 M pH 7.5, 12ml NaCL 5 M , 200 µl EDTA 0.5 M, 1.25 ml SDS 20 % , 
25 ml Dextran Sulfat 40 %, 2 ml Denhardt’s , 2ml tRNA (yeast, Gibco 10 mg/ml), 
50 ml formamid , Add to 100 ml H2O DEPC , Aliquot 8ml store -20°C 

MABT-buffer 100 ml Maleic acid 1 M (pH7.0 ~70g NaOH pellets), 30 ml NaCl 5 M, 0.05 % 
Tween20, add to 1000 ml H2O bidistilled 
 

ALP-buffer 16 ml NaCl 5 M, 80 ml Tris 1 M pH 9.5, 40 ml Mg2Cl 1 M, 4 ml 
Tween20 10 %, add to 800 ml with H2O bidistilled 
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3 Methods  

3.1 From RNA isolation to a digoxigenin labeled antisense 
RNA probe 

To perform an in situ hybridization a digoxigenin (DIG) labeled antisense RNA probe is 

needed. To obtain this probe, RNA from zebrafish embryos was isolated and transcribed 

into cDNA. Afterwards, the cDNA served as a template for PCR amplification. The 

amplified DNA was cloned into a RNA expression vector. This vector was used to 

generate a DIG labeled antisense RNA probe. After RNA synthesis the probe was used 

for in situ hybridization. The detailed description of the process can be found below.  

3.1.1 RNA isolation and cDNA transcription  

RNA was isolated from zebrafish embryos at 3 dpf. 10 to 15 embryos were staged using 

a microscope and transferred into a 1.5 ml reaction tube. Afterwards the embryos were 

euthanized by snap freezing in liquid nitrogen. At this point the embryos were directly 

used for RNA isolation or stored at -80°C. For RNA isolation the peqGold Total RNA 

kit was used following the descriptions of the manufacturer. Lysis of the embryos was 

supported with 10-15 strokes of a micropestle. RNA quality was assessed on a 1 % 

agarose gel and the concentration was determined with the Nanodrop measuring system. 

Subsequently the RNA was stored at -80°C or directly used for cDNA synthesis.  

cDNA synthesis was performed with SuperScript II reverse transcriptase following the 

manual instructions. To obtain a full-length product and especially the 3’UTR, 

oligo(dT) primers were used. The yielded cDNA was stored in TE buffer at -20°C.  

3.1.2 Cloning of DNA fragments 

Amplified cDNA was used for the synthesis of the DIG labeled antisense RNA probe. 

To reduce the probability of non-specific hybridization, the 3’UTR is preferably used 

for generating DIG labeled antisense probes. Using 3’UTR which represents a less 

conserved part of genes, to construct labeled probes ensures that there is no false 

binding of the RNA probe to another member of the gene family. The primers to 

amplify the probe were designed to obtain DNA fragments between 700 bp and 

1500 bp. The PCR was performed according to the manufacturer’s instructions (Phire 
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Hot Start II DNA polymerase/ Thermo Scientific). The correct size of the amplified 

PCR product was verified by a 1 % agarose gel. To remove primer and nucleotides the 

PCR product was cleaned using the PCR purification Kit (Qiagen). Next, the PCR 

fragment was cloned into a dual promoter vector and transformed into E. coli TOP10 

cells according to the instructions of the manufacturer (TOPO TA cloning Kit dual 

promoter/ Dual Promoter TA cloning Kit, Invitrogen). The correct insertion of the PCR 

fragment was verified via colony PCR (M13 primer). Positive colonies were grown in 

overnight cultures (5 ml LB) and the plasmids were purified (QIAprep Spin Miniprep 

Kit, Qiagen). Afterwards, the inserts were tested for their orientation with asymmetric 

digestion and Sanger sequencing.  

3.1.3 Synthesis of DIG labeled antisense RNA probe 

The dual promoter vectors pCRII-TOPO and pCRII, used in the cloning process, carry 

an SP6 promoter on the one and a T7 promoter on the other side of the insert. Based on 

the orientation of the insert, the appropriate polymerase, which creates the required 

antisense RNA was chosen. Since RNA polymerases do not detect a stop codon a 

linearized template for the RNA amplification is required. Therefore, a M13 PCR was 

used to amplify a DNA fragment containing both promoter sites and the insert (standard 

PCR protocol, Phire Hot Start II DNA polymerase). To obtain a better quality of the 

RNA probe, the PCR product was purified of primers, nucleotides and polymerases 

prior to RNA probe synthesis (PCR purification Kit, Qiagen). Afterwards, the purified 

M13 PCR product was used for the RNA synthesis which was performed according to 

the protocol of the manufacturer (SP6 Polymerase / T7 Polymerase, Roche). For the 

synthesis process the DIG-RNA Labeling Mix (Roche) and the RNasin RNase inhibitor 

(Promega) were used according to the SP6/T7 polymerase manual. The RNA syntheses 

were followed by lithium ethanol precipitation as described in the SP6/T7 polymerase 

manual. The RNA was dissolved in 50 µl RNase free water and the fragment size was 

verified on a 1 % agarose gel. Finally, the RNA concentration was determined using the 

Nanodrop measuring system and the RNA was stored at -80°C. 
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3.2 Zebrafish methods  

The zebrafish (strain AB) used in this thesis were maintained in the animal facility of 

the Max Planck Institute for Molecular Genetics. The breeding and handling of the 

zebrafish were performed according to the guidelines of “The Zebrafish Book” 

(Westerfield 2000). Further, the experiments were declared and approved by the 

Landesamt für Gesundheit und Soziales (Anzeigennummer G 0133/13). 

3.2.1 Production and keeping of zebrafish embryos 

To obtain embryos, 12 zebrafish couples of one fish tank (~30 animals) were set in 

individual small breeding chambers overnight (12 hrs day/night cycle) at 27°C. The 

breeding chamber consists of a small fish tank, a cage and some filter floss. The cage 

which is slightly smaller than the fish tank separates the male and female during the 

night. The filter floss inside the fish tank serves as a replacement for vegetation and 

increases the amount of breeding couples.  

In the morning of an injection day, the male and female of each breeding chamber were 

set together into the cage. 30 min later, the embryos of all 12 couples were collected 

through one strainer. Afterwards the embryos were held in an E3 buffer filled Petri dish 

at 27°C until the embryos reached the required stage.  

3.2.2 PTU treatment to prevent pigmentation  

To improve the signal of the in situ hybridization, 1-phenyl 2-thiourea (PTU) was used 

to inhibit the melanization process. PTU blocks all tyrosinase-dependent steps in the 

melanin pathway so that the embryos remain transparent. According to Karlsson, von 

Hofsten et al. (2001) the embryos were transferred 24 hpf into 100 µM PTU E3 buffer. 

Until the embryos reached the required stage they were held in PTU E3 buffer.  

3.2.3 Paraformaldehyde fixing of embryos  

Embryos at the required stage were fixed overnight in a freshly made 4 % 

paraformaldehyde (PFA) PBS solution. The next day, the embryos were washed twice 

in 1xPBS and transferred into 100 % methanol for whole mount RNA in situ 

hybridization or in 100 % ethanol for RNA in situ hybridization on paraffin sections. 
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For methanol storage, embryos were transferred in a 2 ml reaction tube and washed for 

5 min with 100 % methanol. Finally the methanol was replaced with fresh 100 % 

methanol and the embryos were stored at -20 C.  

For ethanol storage, embryos were transferred into a 2 ml microreaction tube and 

washed in increasing ethanol concentrations each time for 20 min (25 %, 50 % vol/vol 

ethanol/1xPBS, 75 %, vol/vol ethanol/DEPC water, 100 % ethanol). Afterwards, the 

embryos were stored at –20 C. 

3.2.4 Whole mount RNA in situ hybridization 

Whole mount in situ hybridization (WMISH) was used to analyze the spatial and 

temporal gene expression patterns in the embryo. During this process, the DIG label 

antisense probe hybridizes to its corresponding mRNA. Afterwards, the double stranded 

RNA is visualized with an alkaline phosphatase (AP) conjugated anti-DIG antibody. 

The protocol can be performed within three days and is based on Thisse and Thisse 

(2008).  

On the first day, the PFA-fixed and methanol stored (-20°C) embryos were rehydrated. 

Afterwards, the embryos were permeabilized with proteinase K and hybridized with the 

probe overnight. The second day started with the removal of unbound probe by several 

washing steps, which were followed by overnight blocking with BSA to prevent 

unspecific binding of the anti-DIG antibody (anti-DIG AB). At the third day, the 

embryos were incubated with the antibody, followed by several washing steps and the 

staining of the embryos with 5-Bromo-4-chloro-3-indolyl phosphate p-toluidine salt 

(BCIP) and nitroblue tetrazolium (NBT).  

The detailed protocol for the WMISH can be found in the supplement 7.1, page 113.  

3.2.5 RNA in situ hybridization on paraffin section  

Because of the low resolution of the WMISH, an in situ hybridization on paraffin 

section (IHPS) was performed. The probe and staining method is likewise the WMISH. 

To perform the sections, the PFA-fixed and in ethanol stored embryos were imbedded 

in paraffin. Afterwards, 5 µm thick sections of the embryos were cut with a microtome 

(Leica HM553 S). Next, the sections were deparaffinized, rehydrated and fixed in PFA. 

Then the labeled RNA probe was added onto a slide and incubated overnight. The next 

day, the unbound probe was washed off and the surface was blocked with BSA. 
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Afterwards, the slides were incubated overnight with the anti-DIG antibody. On the 

third day, the slides were washed and stained with BCIP/NBT. After the desired 

staining was reached, the coloring reaction was stopped by washing in PBS buffer. 

Finally, the slides were sealed with a coverslip. 

The detailed protocol for the IHPS can be found in the supplement 7.2, page 114. 

3.2.6 Microinjection of morpholinos  

For the injection, a plate is needed to 

position the fertilized embryos. The 

injection plate was based on a Petri dish 

(92 mm) filled with a 1 mm layer of 1.5 % 

agarose. After the first layer is solidified, a 

second agarose layer was added in which a 

plastic mold was placed. Prior to injection, 

the plastic mold was removed and the 

embryo could be positioned into the 

resulting grooves. The teeth on the plastic 

mold have a pyramid shape with a 90° 

angle, a height of 1 mm and a base of 

1.5 mm (Figure 9) (Westerfield 2000, Bill, 

Petzold et al. 2009).  

The needles (glass filament outer diameter 

1.0 mm, inner diameter 0.78 mm), needed 

for the injection, were fabricated using a 

micropipette puller (Shutter Instruments, settings: heat 550, pull 80, velocity 120, time 

120). As visual control of the injection, the injection solution is mixed with phenol red 

(final concentration 0.05 %).  

Approximately 150-170 embryos were transferred with a 1.5 ml plastic pipette onto the 

injection plate and positioned into the grooves. Next, the embryos were injected using 

an inverse microscope (Leica) with an attached NM151 micromanipulator (Leica) and a 

FemtoJet injection pump (Eppendorf) to adjust the injected volume to approximately 

one tenth of the cell.  

 
Figure 9 Injection procedure 
A) injection plate, Petri dish filled with 
two layers of agarose. In the second layer 
a plastic mold is added. (Size of the plastic 
matrix can be found in “The Zebrafish 
Book” (Westerfield 2000) or at Bill, 
Petzold et al. (2009)). B) sketch of the 
injection into one-cell stage zebrafish 
embryo positioned on the injection tray.  
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After the injection, the eggs were rinsed with E3 buffer into a new Petri dish and 

incubated at 27°C until the required developmental stage was reached.  

3.2.7 Microangiography, visualizing the cardiovascular system 

For visualization of the blood flow a microangiography was performed. This technique 

is based on Weinstein, Stemple et al. (1995). For the injection, the same setup as 

described in the morpholino injection was used. The embryos were transferred onto an 

injection plate, anesthetized with tricaine and turned lateral. Next, approximately 5 nl of 

the fluorescent Rhodamine B dextran solution (5 mg/ml) were directly injected into the 

sinus venosus of the 3 day old embryos. Because of the high molecular weight of the 

coupled dextran, the Rhodamine B diffuses very slowly from the blood vessels into the 

tissue. Subsequent to the injection, the embryos were imaged using an Axiovert 200M 

microscope. 

3.2.8 Size determination of zebrafish embryos 

To identify differences in the cell count in the brain of the embryos, the head size and 

body length were measured as follows: embryos were anesthetized with tricaine 

(0.1 mg/ml) and positioned on an agarose injection tray using a shortened microloader 

tip (Eppendorf). Next, embryos were photographed using a stereomicroscope (Zeiss) 

and the length was measured with the AxioVision 4.8 software (Zeiss).  

3.3 Statistical methods  

To identify differences in the brain size, the head diameter was measured at 2 dpf, 3 dpf 

and 4 dpf. The reason for choosing the head size is that it is mainly based on the size of 

the brain. Since the embryos do not develop completely uniformly, the staging of the 

embryos is required to make the results comparable. Because this is a time-intensive 

process it was chosen to use the body length for comparability, because it is progressing 

approximately linear during the 2 - 4 dpf and is directly linked to the developmental 

stage of the embryos. For comparison, the head size and body length of the embryos 

were plotted and a regression function, which corresponds to the growth rate, was 

calculated (Excel 2003). Finally, the regression lines from the morpholino knockdown 

embryos and their corresponding control were tested for significant differences in their 
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distribution and slope (F-test, T-test). All statistical methods used in this thesis can be 

found in Angewandte Statistik (Sachs 2004). 

3.3.1 Comparing the correlation coefficients  

To test for a difference in the distribution of the head size/ body length regression, the r2 

of the morpholino knockdown embryos was compared to the SCMO injected embryos 

via a Fisher’s z transformation. Therefore, the z values of the morpholino knockdown 

and the SCMO injected embryos were calculated according to formula 1. Afterwards 

the ẑ  was calculated (Formula 2). If ẑ is lower than the significance threshold of 1.96 it 

can be assumed that r1 = r2. This would mean that there is no difference in the 

regression lines/growth rate between the knockdown and SCMO injected embryos. 

r
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
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1ln2

1  

Formula 1 Fisher’s z transformation of the correlation coefficient r 
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Formula 2 ẑ calculation for p-value determination 

3.3.2 Comparing the regression coefficients  

In order to test if the slope (β) of the head size / body length regression of injected and 

control embryos have no significant difference, the Formula 5 was used. The 

mathematical explanation for the rest variance ( 2
xyS  ) and the sum of the squared 

deviations (Qx) are given in formula 3 and 4. If t̂  is higher than the significance 

threshold of 1.99 (two-tailed) the null hypothesis H0 21    is rejected and the 

alternative hypothesis H1 21   is accepted (corresponds to a p-value of 0.05).  
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n
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Formula 3 sum of the squared deviations 
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Formula 5 Comparison of two regression coefficients, 
null hypothesis a) 21    one-tailed or b) 21    
two-tailed 
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4 Results 

4.1 Identification of syntenic regions within the 16p11.2 locus 

The evolutionary distance of 450 million years between humans and teleost fish 

required a selection of genes, to support the comparability between the identified 

phenotypes. Because of the known relation between evolutionary stable gene clusters 

and conserved developmental function throughout metazoan genomes, the zebrafish 

orthologs were investigated for syntenic clusters (Kikuta, Laplante et al. 2007).  

As first step the zebrafish genome was investigated with the Ensembl genome browser 

(release 72: Jun 2013; Flicek, Ahmed et al. (2013)) for orthologs of 16p11.2 CNV. This 

identified 22 zebrafish orthologs to 27 human genes of the 16p11.2 CNV. Because of 

the additional whole-genome duplication of the teleost fish, 6 of the 22 genes are 

present as duplicates. For identification of the syntenic regions the Genomicus genome 

browser was used (database version 69.01, Figure 10, Louis, Muffato et al. (2013)). 

 
Figure 10 Gene map of the autism associated deletion in 16p11.2 and its corresponding orthologous 
genes in the zebrafish genome  
Arrowheads represent the chromosomal order (5’ to 3’) and translational direction of the genes. Each 
orthologous gene is uniquely color coded. Black labeled human genes don’t have an orthologous gene in 
the zebrafish genome. White colored zebrafish genes are nonorthologs to the autism-associated deletion 
in human 16p11.2. The two syntenic gene clusters on zebrafish chr.3 are linked by dotted lines with their 
human orthologs. The data used to plot this syntenic map is derived from the Genomicus genome browser 
database version 69.01 (Louis, Muffato et al. 2013). 
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This browser visualizes orthologous and paralogous copies of a gene in its genomic 

context to all available metazoan genomes. This analysis revealed that most of the genes 

were located on zebrafish chromosome 3 and 12. Interestingly, two syntenic clusters are 

formed on chromosome 3. The first gene cluster consists of the three genes kctd13, 

sez6l2, and asphd1 and the second encompasses the four genes ppp4ca, mapk3, gdpd3a, 

and ypel3. Based on their syntenic structure, these genes were selected for further 

investigation. Because gdpd3a and ppp4ca have an orthologous copies, further analyses 

were required to decide, if the paralogs had to be included in the investigations to 

uncover a masking of the knockdown.  

To achieve an additional overview of the zebrafish orthologs, the conservation on 

protein level was compared (Table 10). A strong conservation of a protein would 

indicate an equal mechanistically function. The protein sequences were aligned in both 

directions: human to zebrafish and zebrafish to human. The reason for this is that a 

difference in the amino acid sequence length would affect the calculated identity. The 

calculated amino acid sequence identity for the orthologous genes was varying from 

22 % to 98 % with an average similarity of ~59 ± 21 % in both directions (Table 10). 

Besides the conservation between human and zebrafish orthologs, also the paralogous 

zebrafish genes were tested for their amino acid sequence identity. They showed a 

similar conservation pattern like the interspecies comparison, with nearly the same 

arithmetic mean in conservation of 65 ± 20 % (Table 11). Therefore the strong 

conservation of 93 % of the amino acid sequence between the zebrafish paralogs 

ppp4ca and ppp4cb is remarkable. This strong conservation of ppp4cb could mask the 

knockdown effect of ppp4ca. Therefore, ppp4cb was included in the further analysis.  

The other gene with a paralog was gdpd3a which only showed 59 % identity of the 

protein sequence compared to its paralog gdpd3b. Further analyses of the alignment 

revealed, that the first 55 aa of gdpd3b were truncated (Figure 11). Therefore, gdpd3b 

was not included in this study.  
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Table 10 Alignment of human 16p11.2 genes to their zebrafish orthologs  
Table is sorted for the alignment identity from low to high. Genes present in the first gene cluster are 
shaded in yellow and genes present in the second cluster are shaded in red. Gene names of the zebrafish 
paralogs are colored equally. The bottom row presents the average and the standard deviation. 

zebrafish orthologs similarity in % Difference in alignment 
directions in % zebrafish on human human on zebrafish 

prrt2 22 33 11 
hirip3 26 28 2 
maza 30 64 34 
mazb 40 40 0 
tbx24 40 20 20 
asphd1 41 45 4 
gdpd3a 47 47 0 
gdpd3b 48 48 0 
ino80e 48 51 3 
kif22 48 50 2 
taok2b 49 52 3 
taok2a 50 54 4 
sez6l2 52 53 1 
kctd13 61 61 0 
doc2a 63 62 1 
fam57ba 65 61 4 
fam57bb 65 66 1 
mvp 66 68 2 
coro1a 68 69 1 
ypel3 68 90 22 
c16orf53 69 21 48 
cdipt 69 69 0 
mapk3 83 81 2 
aldoaa 84 84 0 
aldoab 84 84 0 
ppp4ca 93 91 2 
ppp4cb 98 98 0 

Average ± standard 
deviation 58.41 ± 19.69 58.89 ± 20.84 6.19 ± 11.63 

 

Table 11 Alignment of paralogues zebrafish genes of the human 
16p11.2 deletion region 

Zebrafish genes similarity in % 
a b a to b  b to a 

ppp4ca ppp4cb 93 92 
aldoaa aldoab 93 93 
fam57ba fam57bb 74 75 
gdpd3a gdpd3b 59 59 
taok2a taok2b 57 59 
maza mazb 39 83 
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Figure 11 Truncation of zebrafish gene gdpd3b 
Section of the protein alignment of zebrafish gdpd3a GI:47085996, gdpd3b GI:528495324; gdpd3 fugu 
(Takifugu rubripes) ENSTRUG00000005467, gdpd3 medaka (Oryzias latipes) ENSORLG00000011954, 
gdpd3 macaque (Macaca mulatta) GI:302564980, gdpd3 human (Homo sapiens) GI:146198639 and 
gdpd3 mouse (Mus musculus) GI:110431345. Full alignment available in supplement Figure 64 page 
117.  
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4.2 Expression pattern of the syntenic genes in zebrafish 

The in situ hybridization is based on a digoxigenin (DIG) labeled antisense RNA probe 

binding to the mRNA of the gene of interest. Afterwards, the obtained double stranded 

RNA is targeted with an alkaline phosphatase (AP) conjugated anti-DIG antibody. In a 

coloring reaction the AP is used to visualize the spatial expression of the gene of 

interest. At first, the whole mount in situ hybridization (WMISH) was used to get an 

overview of the expression pattern. However, due to the increasing complexity of the 

embryos at 24 hpf, it was difficult to designate the stained tissues, especially the ones of 

the brain. Therefore, an in situ hybridization on brain and selected body sections was 

performed in addition to the WMISH. To ensure that the signal was caused by the 

hybridized DIG-labeled RNA and not by non-specific background interactions, each of 

the in situ experiments were accompanied by an in situ hybridization without DIG 

labeled antisense RNA. The results of WMISH and the IHPS are described in the 

following sections for each gene. Generally, all genes showed an ubiquitous expression 

within the head, only sez6l2 was specifically localized in the brain of the embryos.   

4.2.1 asphd1 is ubiquitously expressed in head and intestine  

The whole mount in situ hybridization showed a ubiquitous expression of asphd1 in the 

trunk and a strong signal in head and intestine (Figure 12). This was confirmed by in 

situ hybridization on sections which also results in an ubiquitous expression in all parts 

of the brain, the intestine, and weak in muscles. (Figure 13) 

 
Figure 12 Whole mount in situ hybridization of asphd1 
Whole mount in situ of asphd1 on 3d old embryo, anterior left, A, B) lateral, C) ventral. The expression 
of asphd1 (blue staining) is ubiquitous but strongest in the head and intestine, scale bar 200 µm 
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4.2.2 gdpd3a is homogenously expressed in head, heart and intestine   

The whole mount in situ hybridization of gdpd3a showed an expression in the head and 

heart of the embryos (Figure 14). This was confirmed by in situ hybridization on 

transversal sections, which showed an uniform expression pattern in all parts of the 

head, except the lenses, where no gdpd3a signal was observed. Additionally to the 

detection of the gdpd3a expression in the head, the in situ hybridization on sections also 

showed a gdpd3a expression in the heart and the developing internal organs like liver 

and gut which, in contrast, was not visible via WMISH (Figure 15). 

 
Figure 13 Ubiquitous expression of asphd1 on transversal sections  
A-F) transversal sections of a 3 day old embryo, from cranial to caudal. asphd1 expression is stained blue, 
which is strongly visible in the whole head and less in the somitic muscle (Sm). Abbreviations: 
telencephalon (Te), diencephalon (Di), mesencephalon (Me), cerebellum (Ce) caudal hindbrain (CH), 
Magnification 100x scale bar 250 µm  
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Figure 14 gdpd3a expression in the head and heart of a zebrafish embryo 3 dpf  
In all pictures anterior is left A) whole embryo, B) head detailed lateral/ventral, C) head lateral/dorsal D) 
head and heart viewed ventral. gdpd3a expression (blue staining) in the whole head and heart (Ha). Also 
the otic vesicle (Ov) appears to be stained. Scale bar 200 µm 

 
Figure 15 Transversal sections show gdpd3a in the head, spinal cord and intestine  
A-F) transversal sections of a 3 day old embryo from cranial to caudal. A-C) gdpd3a signal is visible in 
the whole head and heart. D-F) gdpd3a signal in the spinal cord (Sc), swim bladder (Sb) and gut. 
Abbreviations: diencephalon (Di), dorsal aorta (Da), mesencephalon (Me), cerebellum (Ce), olfactori 
placode (Op), notochord (Nc), pectoral fin (Pf), somitic muscle (Sm). Magnification 100x, scale bar 
200 µm 
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4.2.3 kctd13 is uniformly expressed in the head and strongest in the heart 

The whole mount in situ hybridization of kctd13 showed, that its mRNA is located in 

the head and heart of the embryos at 3 dpf (Figure 16). This was confirmed by in situ 

hybridization on sections. The expression of the gene was uniformly distributed over the 

whole head. However, the signal of kctd13 around the bulbus arteriosus and the 

proximal end of the pericardium was stronger compared to the surrounding (Figure 17). 

The bulbus arteriosus is a pear shaped chamber directly connected to the ventricle. This 

arterial structure can tolerate the high pressure of the heart and serves as a capacitor 

maintaining continuous blood flow (Bradford, Conlin et al. 2011). 

 

 

 

 

 

 
Figure 16 kctd13 expression in the head of a zebrafish embryo 3 dpf  
Embryos are orientated anterior left A) whole embryo lateral, B) head detailed lateral, C) head detailed 
viewed ventral. kctd13 (blue staining) is expressed in the whole head and heart. Also the otic vesicle 
appears to be stained (C). Scale bar 200 µm 
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4.2.4 mapk3 is expressed in head and heart  

The whole mount in situ hybridization of mapk3 showed a ubiquitous expression in the 

head, the heart, and the developing intestine of embryos 3 dpf (Figure 18). To localize 

the expression more precisely, an in situ hybridization on sections was performed. This 

confirmed the expression of mapk3 in the head. Furthermore, the mapk3 signal was also 

visible in the swim bladder, gut, pancreas liver, spinal cord, and pectoral fins. However, 

an expression of mapk3 in the lenses was absent (Figure 19).  

 
Figure 17 kctd13, ubiquitous expression in the head and strongest above the atrium  
A-G) show transversal sections of a 3 day old embryo, from cranial to caudal. Stained in blue is the 
kctd13 expression, which is visible in the whole head and heart. The expression is very strong around the 
bulbus arteriosus (Ba) and above the heart (arrowhead). Abbreviations: atrium (At), cerebellum (Ce), 
diencephalon (Di), lens (Ls), mesencephalon (Me), telencephalon (Te), ventricle (Vt). Magnification 
100x, scale bar 250 µm  
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Figure 18 mapk3 whole mount in situ hybridization 3 dpf  
Anterior left, view orientation is: A) lateral, B) lateral left side, C) ventral/lateral D) ventral, E) dorsal. 
Blue staining represents the mapk3 mRNA expression, which is visible in the whole head, the heart (Ha) 
and the developing intestine (arrowhead). Scale bar 200 µm 
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4.2.5 ppp4ca expression is present in head and intestine 

The ppp4ca expression was observable in head, intestine and pectoral fins (Figure 20). 

The sections of the embryos showed that the expression of ppp4ca is uniformly 

distributed in all parts of the brain and the developing intestines like gut, liver and 

pronephric duct, as well as the pectoral fins. Notably, the expression of ppp4ca was 

very low in somitic muscles, which could be the reason why it is not visible in the 

WMISH (Figure 21).  

 
Figure 19 mapk3 in situ hybridization on transversal sections of embryos 3 dpf 
A-G) transversal sections of a 3 day old embryo from cranial to caudal. The signal for mapk3 is visible in 
the whole head except the lenses (A-C), and in the spinal cord (Sc), swim bladder (Sb), gut, pancreas 
(Pa), liver (Li) and light pectoral fins (Pf). Abbreviations: cerebellum (Ce), dorsal aorta (Da), 
diencephalon (Di), lens (Ls), mesencephalon (Me), notochord (Nc), olfactori placode (Op), heart (Ha), 
pectoral fin (Pf), somitic muscle (Sm), telencephalon (Te). Magnification 100x scale bar 200 µm 
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Figure 20 ppp4ca expression in the head 
Whole mount in situ hybridization of a ppp4ca probe on a 3d old zebrafish embryo, anterior left, A) 
lateral B) dorsal, ppp4ca expression is stained in blue in the head, intestine (arrowhead) and pectoral fins 
(Pf); scale bar 200 µm 

 
Figure 21 ppp4ca in situ hybridization on transversal sections of an embryo 3 dpf 
A-F) transversal sections from cranial to caudal. The ppp4ca signal (blue) is visible in the whole head (A-
D) and in the spinal cord (Sc), glomerulus (Gl), gut, pronephric duct (Pt), pectoral fins (Pf) and liver (Li). 
Abbreviations: cerebellum (Ce),diencephalon (Di), mesencephalon (Me), notochord (Nc), olfactori 
placode (Op), pectoral fin (Pf), somitic muscle (Sm), telencephalon (Te). Magnification 100x, scale bar 
200 µm  
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4.2.6 ppp4cb is expressed in head and intestine  

The ppp4cb in situ hybridization resulted in a very strong signal of ppp4cb transcripts in 

the head of the embryos. The signal indicates a location in the brain, eye, ear, branchial 

arches, liver, gut and the swim bladder (Figure 22). To investigate the distribution of 

ppp4cb expression inside the embryos, transversal sections were stained (Figure 23). 

 
Figure 22 Whole mount in situ hybridization ppp4cb 
Whole mount in situ hybridization of ppp4cb on a 4d old embryo A, B) lateral, anterior up C) anterior 
right D, E, F) anterior left. Photographed side right (R), left (L), the whole head is stained in blue, also the 
swim bladder (Sb), branchial arches (Ba) and liver (Li). Scale bar 200 µm 

 
Figure 23 ppp4cb in situ hybridization on sections of embryo 3 dpf 
A-D) transversal sections from cranial to caudal. The signal for ppp4cb expression (blue staining) is 
visible in the whole head, the spinal cord (Sc), swim bladder (Sb) and gut. Abbreviations: diencephalon 
(Di), cerebellum (Ce),mesencephalon (Me), notochord (Nc), olfactori placode (Op), pectoral fin (Pf), 
somitic muscle (Sm), telencephalon (Te). Magnification 100x, scale bar 200 µm 
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The above in situ hybridizations on sections show that the ppp4cb signal is uniformly 

distributed in the head. Additionally, the signal is visible in the spinal cord, swim 

bladder, gut and less prominent in the somitic muscle. 

4.2.7 sez6l2 is specifically expressed in neuronal tissue  

The whole mount in situ hybridization showed a restricted sez6l2 activity to the three 

parts of the brain: the diencephalon, midbrain and hindbrain (Figure 24). This is also 

confirmed by in situ hybridization in transversal sections. Importantly, the sections also 

showed that sez6l2 is only expressed in the cell body of the neurons, which are forming 

the gray matter of the brain, and not in the axons. Besides the sez6l2 activity in the 

brain, the sections also displayed a very diffuse expression in the trunk (Figure 25).  

 

 

 

 

 

 

 
Figure 24 sez6l2 expression in the brain of a zebrafish embryo 3 dpf 
A) whole embryo lateral, anterior left, B) detailed view, head lateral, C) head viewed dorsal. Stained in 
blue are the sez6l2 expressing parts of the brain, telencephalon (Te), diencephalon (Di), midbrain (Mi) 
and hindbrain (Hi), note the unstained parts between the brain segments. Scale bar 200 µm 
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Figure 25 Specific brain expression of sez6l2 
A-I) transversal sections from cranial to caudal, embryo 3 dpf. The signal for sez6l2 expression (blue 
staining) is visible in all parts of the brain, the spinal cord (Sc) and pectoral fins (Pf) (A-I). 
Abbreviations:, diencephalon (Di), esophagus (Es), liver (Li), lens (Ls), mesencephalon (Me), 
myelencephalon (My), olfactori placode (Op), pectoral fin (Pf), somitic muscle (Sm), swim bladder (Sb). 
Magnification 100x, scale bar 200 µm 
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4.2.8 ypel3 is uniformly expressed in the head, heart and pericardium  

ypel3 is expressed in the head and the heart of the embryos (Figure 26). The expression 

in the head is diffuse and includes all parts of the head with the exception of the lenses. 

The pericardium and the heart showed the strongest expression of ypel3 (Figure 27). 

 
Figure 26 ypel3 expression at the head of a zebrafish embryo 3 dpf 
In all pictures anterior is left A) whole embryo lateral; head detailed B) lateral, C) head dorsal. Stained in 
blue is the ypel3 expression in the whole head and heart (Ha). Also the otic vesicle and intestine (black 
arrow head) appear to be stained. Scale bar 200 µm 
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4.2.9 Summary of the in situ hybridization results  

Generally, all target genes showed a ubiquitous expression in the head and brain. 

Therefore, all genes were selected for further investigation by morpholino knockdown. 

An exception was sez6l2, which was found to be localized specifically in the cell body 

of the brain cells. This was confirmed by in situ hybridization on sections which 

revealed an exclusive expression in the cell body of the neurons. Another specific 

expression is the very strong signal of kctd13 and ypel3 at the heart of the embryos. The 

expression patterns for all genes are summarized in Table 12.  

  

 
Figure 27 ypel3 is ubiquitously expressed in the head and specifically at the heart  
A-I) transversal sections of a 3 day old embryo from cranial to caudal. The signal for ypel3 expression 
(blue staining) is visible in the whole head: diencephalon (Di), mesencephalon (Me), cerebellum (Ce) (A-
F). Notably, there is also a strong signal at the heart and pericardium (arrowhead). Abbreviations: lens 
(Ls), notochord (Nc), otic vesicle (Ov), pectoral fin (Pf), somitic muscle (Sm). Magnification A-F, I) 
200x, G, H) 400x, scale bar 200 µm 
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Table 12 Summery of in situ hybridization experiments  
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4.3 morpholino knockdown of the syntenic genes 

The synthetic morpholino oligomers can achieve a gene knockdown by two different 

methods. For the first method the morpholino is designed complementary to the 5’UTR 

of the target gene to prevent the assembly of the ribosome. The second strategy is based 

on the interference of the RNA processing. Therefore, the morpholino is designed 

complimentary to a splice site of the gene of interest which causes a missense RNA. An 

advantage of this method is that a control of the missense RNA is possible by PCR. The 

main difficulty of the morpholino method is the delivery in to the cell, which in 

zebrafish experiments is most efficient by direct injection of the morpholino into the 

first cell of the embryo.  

4.3.1 Morpholino injection procedure causes small developmental delay 

To verify that the injection procedure itself does not cause an effect on the embryos, 

each experiment included an injection control. As control the standard control 

morpholino (SCMO) from GeneTools LLC was used. Embryos injected with the SCMO 

showed no anatomical change, but a developmental delay of approximately five hours. 

This short delay was also noticeable in the difference of body length and head size 

means (Figure 28). However, the difference was only significant for the 2 day old 

embryos (Bonferroni corrected p-value, body length p = 6.13 × 10-8, head size: p 

= 0.0189, Table 13 and Table 14). To verify that the difference in body length and head 

size was caused by the five hours developmental delay, the head size was plotted 

against body length (Figure 29). The regression lines, which represent the growth rate of 

the embryos, were added to both the uninjected and the SCMO injected data points. 

Both regression lines followed a linear progression with a difference in the gradient of 

only 0.0061 (uninjected: y = 0.2006x – 148.99, r2 = 0.8859; SCMO: y = 0.1984x –

 141.97, r2 = 0.8977). To test if there was a significant difference in the correlation of the 

distributions, a Fisher’s z transformation was performed and 689.0ˆ z  was calculated. 

Consequently, it can be assumed that the two correlation coefficients are equal (z = 1.96 

corresponds to a p-value of 0.05). Therefore, the SCMO injected embryos showed no 

difference in the distribution of the growth rate compared to the uninjected. To test if 

the morpholino injection affects the growth rate, the regression coefficients of the 

regression lines were compared. The result was 260.0ˆ t , therefore the H0 hypothesis 
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21    was accepted (t = 1.99 corresponds to p = 0.05). Consequently, the growth rates 

of SCMO injected and uninjected embryos showed no difference. This proves that the 

SCMO morpholino is not affecting the growth rate of the embryos.  

 
Table 13 Head size comparison of uninjected and SCMO injected embryos 
The number of measured embryos originates from two independent experiments. To test if the head size 
of the uninjected knockdown embryos differs significantly from the SCMO injected embryos a two-tailed 
student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Head size 

mean ± standard deviation 

Number of 
measured 
embryos 

uninjected 
/SCMO 

p-value 
(two-tailed 

student’s t-test) 

Corrected  
p-value 

(Bonferroni 
pad  =  n×p) uninjected SCMO 

2 485.41 ± 28.52 471.03 ± 24.03 58/46 0.0063 0.0189 
3 561.12 ± 20.63 562.62 ± 25.60 64/60 0.1482 0.4444 
4 616.49 ± 26.54 609.22 ± 21.57 62/65 0.0973 0.2811 
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Figure 28 Growth difference between SCMO injected and uninjected embryos 
Measured is the head size (left) and body length (right) of embryos two, three and four days of 
development. Most of the embryos showed no difference in head size or body length. Only the 2 d old 
SCMO injected embryos are significant smaller in body length and head size (** p-value < 0.01, two- 
tailed t-test), for the number of embryos used for comparison see Table 13 and Table 14.  
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Table 14 Body length comparison of uninjected and SCMO injected embryos 
The number of measured embryos originates from two independent experiments. To test if the head size 
of the uninjected knockdown embryos differs significantly from the SCMO injected embryos a two-tailed 
student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Body length 

mean ± standard deviation 

Number of 
measured 
embryos 

uninjected 
/SCMO 

p-value 
(two-tailed 

student’s t-test) 

Corrected  
p-value 

(Bonferroni 
pad  =  n×p) uninjected SCMO 

2 3169.74 ± 92.19 3059.90 ± 120.46 58/46 2.04 × 10-6 6.13 × 10-6 
3 3536.77 ± 89.68 3520.77 ± 104.90 64/60 0.2494 0.7482 
4 3812.19 ± 93.98 3791.64 ± 95.67 62/65 0.2245 0.6735 

 

4.3.2 asphd1 knockdown causes edema in muscle and developmental delay  

The comparison of asphd1 and SCMO morpholino knockdown embryos showed no 

visible structural or behavioral difference (Figure 30). However, the asphd1 knockdown 

embryos showed a developmental delay of approximately seven hours. This delay was 

also significant when comparing the head size and body length of knockdown and 

control embryos (corrected p-value < 0.01 × 10-5, Figure 31, Table 15 and Table 16). To 

confirm, that the significant difference in head size and body length is not affecting the 

growth rate, the head size was plotted over the body length. Afterwards a regression line 

from second to fourth day of embryo development was calculated for the asphd1 
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Figure 29 Effect of morpholino injection on body length and head size  
Embryos measured at 2 dpf, 3 dpf and 4 dpf, regression line uninjected: y = 0.2006x – 148.99, 
r2 = 0.8859, regression line SCMO: y=0.1848x – 90.96, r2= 0.9103, number of plotted embryos can be 
found in Table 13 and Table 14 
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knockdown embryos and the corresponding SCMO control (Figure 33). To test if the 

regression lines were different, the correlation coefficients were used in a Fisher’s z 

transformation and the ẑ  was calculated. The result was a 73.1ˆ z  (z = 1.96p = 0.05), 

consequently there was no difference in the distribution of the asphd1 knockdown and 

SCMO injected embryos. Furthermore, the slope of the regression lines was tested, 

which resulted in no significant difference ( 406.0ˆ t ; t = 1.99p = 0.05). Therefore, it is 

proven that the asphd1 knockdown is not affecting the brain size of the embryos.  

Interestingly, a detailed view at higher magnification revealed small edema in the 

somitic muscle (Figure 34). Similar edemas were also found in ppp4ca knockdown 

embryos, which display also difficulties in the formation of the blood system. 

Therefore, the asphd1 knockdown embryos were screened for changes in the blood 

flow. This was done by observation of the erythrocyte movement within the posterior 

end of the tail, which revealed that the blood flow was fully established in the 

intersegmental vessels and extended to the distal end of the tail (Figure 32).  

 

 
Figure 30 Development of asphd1 knockdown embryos 
Embryos positioned lateral, anterior up. A) 1 dpf B) 2 dpf C) 3 dpf D) 4 dpf, heart, head, eye and ear are 
developing normal like in the SCMO injected embryos (not shown), scale bars 500 µm. 
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Table 15 Head size of asphd1 and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the head size 
of the asphd1 knockdown embryos differs significantly from the SCMO injected embryos a two-tailed 
student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Head size 

mean ± standard deviation 

Number of 
measured 
embryos 
asphd1 
/SCMO 

p-value 
(two-tailed 

student’s t-test) 

Corrected  
p-value 

(Bonferroni 
pad = n×p) asphd1 SCMO 

2 408.33±24.77 456.68 ± 28.41 73/58 1.37 × 10-19 4.12 × 10-19 
3 477.90±38.22 542.82 ± 24.89 133/72 2.13 × 10-32 6.38 × 10-32 
4 538.92±43.30 620.62 ± 23.49 134/54 2.71 × 10-25 8.12 × 10-25 

 

 
Table 16 Body length of asphd1and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the body 
length of the asphd1 knockdown embryos differs significantly from the SCMO injected embryos a two-
tailed student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Body length  

mean ± standard deviation 

Number of 
measured 
embryos  
asphd1 
/SCMO 

p-value 
(two-tailed 

students t-test) 

Corrected  
p-value 

(Bonferroni  
pad = n×p) asphd1 SCMO 

2 2899.68±114.01 3048.33±119.04 73/58 6.31 × 10-12 1.89 × 10-11 
3 3220.29±144.85 3427.14±129.35 133/72 4.10 × 10-19 1.23 × 10-18 
4 3452.87±190.39 3803.78±104.94 134/54 3.15 × 10-24 9.45 × 10-24 
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Figure 31 Box plot comparison of asphd1 knockdown and SCMO injected embryos 
head size (left) and body length (right). The number of embryos used per experiment and p-values can be 
found in Table 2 and Table 16, *** p-value < 0.01 × 10-5 
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Figure 32 Normal blood flow in asphd1 knockdown embryo  
A) asphd1 knockdown embryo with normal blood flow extending to the distal end of the tail. A’) The 
caudal artery (CA) and caudal vein (CV) are highlighted in red and blue, respectively and are visible by 
movement of the erythrocytes under microscope. Detailed CA with erythrocytes (arrowheads). Scale bars 
500 µm 
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Figure 33 Growth rate comparison of asphd1 and SCMO knockdown embryos 
Plotted is head size to body length for 2d (blue), 3d (red) and 4d (green) old asphd1 (point) and SCMO 
(triangle) knockdown embryos. Regression lines represent the growth rate from second to fourth day after 
fertilization SCMO (black): y = 0.2071x – 169.99, r2 = 0.8996 and asphd1 (red): y = 0.2213x – 230.66; 
r2 = 0.8633 
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Figure 34 Edema in muscle of asphd1 knockdown embryos 
asphd1 knockdown embryo 3 dpf (A) and 4 dpf (B), embryos orientated lateral, anterior left, ventral 
down. Scale bar 200 µm. a’ and b’ represent sections, arrows indicate edema in the somitic muscle  

 

4.3.3 gdpd3a knockdown leads to a developmental block at 18 somite stage  

The gdpd3a knockdown was performed with a translational and a splice blocking 

morpholino. Interestingly, the morpholino against the 5’UTR induced no effect, 

whereas the splice blocking morpholino yielded a strong phenotype. At 24 hpf the 

knockdown embryos showed signs of cell death and denaturation. At 2 dpf, only 3 

embryos out of approximately 300 developed normally (two independent experiments; 

survival rate SCMO: 116 out of 300) (Table 17). The other knockdown embryos died at 

the 18 somite stage, visible by complete denaturation (embryos were white, 

untransparent and started to lose structural integrity). Additionally, this was 

accompanied by deformations in head and trunk. Due to the deformation and the early 

death of the embryos, a measurement of the head size and body length was not 

performed.  

To confirm the functionality of the splice site morpholino, a PCR with primers binding 

to the first and the third exon of the gdpd3a cDNA was performed. The PCR confirmed 

the loss of the 40 bp long exon 2 (Figure 36). Therefore, it can be expected that the 

gdpd3a phenotype is based on the effect of the splice site morpholino.  
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Figure 35 gdpd3 splice site knockdown is lethal 24 hpf, 5’UTR knockdown embryos develop normally 
A) gdpd3 splice site morpholino knockdown 24 hpf, embryos unjustified, white arrows indicate denatured 
tissue, embryos show problems in head and trunk formation. B) SCMO injection 24 hpf. C) gdpd3 5’UTR 
morpholino knockdown, embryos develop normally, as in the corresponding SCMO injected embryos 
(D). Embryos positioned lateral, anterior up. Magnification 25x, scale bar 500 µm. 

 
Figure 36 gdpd3a knockdown induces skipping of exon 2 
PCR template was the cDNA of uninjected and gdpd3a splice site morpholino injected embryos. Primers 
binding to exon 1 and 3 of the gdpd3a mRNA are amplifying the expected 196 bp fragment. The 
morpholino used in the knockdown is blocking the splice site i2e3. Therefore, the PCR product is reduced 
by the length of exon 2 to the expected fragment size of 156 bp. Both fragments are marked with arrows. 
Marker: 2lod DNA ladder (NEB). 
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Table 17 gdpd3a slice site knockdown embryos dying between first and second day 
Embryos injected with morpholino against the 5’UTR show no change in mortality rate. Whereas nearly 
all embryos injected with the splice site morpholino are dying. 

morpholino type 
morpholino 

concentration in 
mM 

Number of 
surviving embryos 

1 dpf  
(SCMO / 

uninjected) 

Number of 
surviving embryos 

2 dpf 
(SCMO / 

uninjected) 

surviving embryos 
from 1 dpf to 

2 dpf in % 

5’UTR 0.8 133 
(51/76) 

108 
(49/64) 

81.20 
(96/84) 

5’UTR 1.6 106 
(35/81) 

75 
(33/86) 

70.75 
(94/106) 

Splice site i2e3 0.8 24 
(37/50) 

3 
(36/45) 

12.5 
(97/90) 

Splice site i2e3 0.8 7 
(80/91) 

0 
(80/88) 

0.00 
(100/97) 
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4.3.4 Knockdown of kctd13 causes head size enlargement  

The injection of the kctd13 knockdown morpholino did not cause structural changes on 

the embryonic development during the 4 dpf observation time (Figure 37). Moreover, 

the embryos developed at a similar pace as the controls. Therefore, the measurement of 

the head size and body length was directly comparable to the SCMO injected embryos. 

Interestingly, this comparison displayed a significant difference in the lenght of the four 

day old kctd13 knockdown embryos (Figure 38). The measurement of the head size 

showed an increase of about 10 µm with a significance of p = 0.000371 (Bonferroni 

corrected p – value, Table 18). Conversely, the body length of the four day old kctd13 

knockdown embryos was 96 µm smaller when compared to the controls (Bonferroni 

corrected p –value p = 0.00886, Table 19). To test if this difference is affecting the 

growth ratio, the head size was plotted against the body length for each embryo (Figure 

39). This plot demonstrates that the growth rate of the kctd13 knockdown embryos is 

 
Figure 37 kctd13 knockdown embryos 
A) kctd13 knockdown embryos 24 hpf, B) SCMO injected embryos 24 hpf, C) kctd13 knockdown 
embryos 3 dpf, D) SCMO control 3 dpf; all embryos PTU treated, positioning is lateral, anterior up. Scale 
bar 500 µm 
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significantly higher ( 73.3ˆ t  > t = 1.99p = 0.05). Moreover, the significance of the growth 

rate difference increases when comparing the kctd13 knockdown embryos with the 

controls of all experiments performed within this thesis 97.6ˆ t  (Figure 40). Taken 

together, the kctd13 morpholino injected embryos showed no structural differences in 

the brain or body development. However, the head size of the kctd13 knockdown 

embryos was significantly larger compared to the controls. This indicates an increase in 

the cell mass of the brain or an enlargement of the brain ventricle.   

 
Table 18 Head size of kctd13 and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the head size 
of the kctd13 knockdown embryos differs significantly from the SCMO injected embryos a two-tailed 
student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 2). 

dpf 
Head size 

mean ± standard deviation 

Number of 
measured 
embryos 
kctd13/ 
SCMO 

p-value 
(two-tailed 

student’s t-test) 

Corrected  
p-value 

(Bonferroni 
pad = n × p) kctd13 SCMO 

3 522.60 ± 34.48 528.34 ± 23.45 107/66 0.195848 0.391695 
4 619.68 ± 46.11 609.22 ± 21.56 88/65 0.000185 0.000371 

 

Table 19 Body length of kctd13 and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the body 
length of the kctd13 knockdown embryos differs significantly from the SCMO injected embryos a two-
tailed student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 2). 

dpf 
Body length  

mean ± standard deviation 

Number of 
measured 
embryos 
kctd13 
/SCMO 

p-value 
(two-tailed 

students t-test) 

Corrected  
p-value 

(Bonferroni  
pad = n × p) kctd13 SCMO 

3 3431.84 ± 146.05 3439.20 ± 121.21 107/66 0.72101 1.44201 
4 3695.44 ± 185,57 3791.64 ± 95.67 88/65 0.00443 0.00886 
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Figure 38 Head size and body length of kctd13 knockdown embryos 
Comparison of head size (left) and body length (right) between kctd13 morpholino knockdown and SCMO 
injected embryos. kctd13 knockdown present a significant enlargement in head size and a reduction in 
body length at 4 dpf(** p-value < 0.01). The number of embryos used per experiment and p-values can be 
found in Table 18 and Table 19.  
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Figure 39 kctd13 knockdown embryos body length to head size ratio plot  
Plotted embryos are measured 3 (red) or 4 dpf (green). Regression lines represent the growth rate from 
third to fourth day post fertilization; SCMO (black): y = 0.1989x – 150.40, r2 = 0.8748 and kctd13 (red): 
y = 0.2596x – 356.24, r2 = 0.7138. 4 dpf kctd13 knockdown embryos show a bigger head size then the 
control embryos.   
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Figure 40 kctd13 knockdown, body length to head size ratio plot compared with controls  
Plotted embryos are measured 3 (red) or 4 dpf (green). Control embryos originate from all experiments 
and include SCMO and uninjected embryos measured at two, three and four days post fertilization. 
Regression lines represent the growth rate from second to fourth dpf; SCMO (black): y = 0.1989x – 
150.40, r2 = 0.8748 and third to fourth dpf kctd13 (red): y = 0.2596x – 356.24, r2 = 0.7138. Fourth dpf 
kctd13 knockdown embryos show a bigger head size then all measured control embryos.   
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4.3.5 Knockdown of mapk3 leads to severe deformations  

At 1 dpf the mapk3 knockdown embryos present a deformation of the notochord and tail 

in about 58 % of the embryos. In addition, the embryos were developmentally delayed 

(21- somite) compared to the SCMO controls (prim- 16). At 2 dpf most of the embryos 

still showed problems in axis formation as well as small heads and eyes. In the duct of 

Cuvier, where normally the blood is carried back to the heart, no blood is visible. At 

3 dpf the embryos were between long pec and pec fin stage. They did not form 

erythrocytes and presented a swollen pericardium with a thin long-drawn-out heart. 

Nevertheless, the heart contracted and beat at a very low frequency.  

The phenotype presented above was obtained with both morpholino types in 58 % of 

the embryos. In total, 390 embryos developed until 1 dpf in four independent 

experiments. However, after 3 dpf only 34 % of the embryos from day one were alive, 

 
Figure 41 mapk3 morpholino knockdown embryos at 1, 2 and 3 dpf 
After 1 day of development the notochord of the mapk3 knockdown embryos is deformed (B arrow). At 
the second day the embryos present small heads, reduced eyes and no blood flow (note the empty Duct of 
Cuvier (DC)). At 3 dpf still no blood is visible, the heart is thin and long-drawn-out. The pericardium (P) 
is swollen (arrow F, G). Magnifications (objective) B) 10x, D, F, G) 5x and A, C, E, H) 2.5x; scale bar 
200 µm 
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of which 51 % showed the described phenotype. This and the enhancement of the 

phenotype by increasing the morpholino concentration led to the suggestion that the 

phenotype is dosage dependent (Table 20).  

 

4.3.6 ppp4ca knockdown induces atypical blood vessel formation and edema 

The embryos injected with the ppp4ca morpholino 

against the 5’UTR and splice site share the major 

phenotypes in blood flow, muscle and swelling of the 

embryo. However, the loss of one otolith occured only in 

embryos injected with the translation blocking 

morpholino.  

The first notable difference between the ppp4ca 

morpholino injected and control embryos became visible 

at 1 dpf. In contrast to the normal developed SCMO 

injected embryos (high pec), the ppp4ca knockdown 

embryos only attain the prim-22 stage, which 

corresponds to a developmental delay of approximately 

seven hours. During prim-22 stage, normally the 

angiogenesis is initialized which results in the full 

established blood circulation at 2 dpf. However, in the 

Table 20 Effect of mapk3 knockdown  
Number of morpholino injected embryos per experiment for mapk3 ≈ 350, SCMO ≈ 175 and uninjected 
≈ 175 embryos. Listed is the number of total and deformed embryos for each experiment at 1 dpf and 
3 dpf. 

morpholino type 
morpholino 

concentration 
in mM 

Number of 
total embryos 

1 dpf  
(SCMO / 

uninjected) 

Number of 
deformed 
embryos 

1 dpf 
(SCMO / 

uninjected) 

1 dpf 
deformed 

embryos in % 

Number of 
embryos 

3 dpf 
(normal/ 

deformed ) 

5’UTR 1.6 128 (79 / 85) 123 (4 / 2) 96 (3/2) 3 / 11 

5’UTR 0.8 82 (62 / 77) 23 (6 / 2) 28 (10/2) 24 / 15 

Splice site e3i3 0.8 81 (45 / 55) 36 (13 / 2) 44 (28/4) 15 / 19 

Splice site e3i3 0.8 99 (65 / 64) 45 (5 / 7) 45 (7/10) 22 / 23 

 
Figure 42 ppp4ca knockdown 
shows skipping of exon 2 
Template for the PCR was cDNA 
from ppp4ca splice site morp-
holino knockdown and wild type 
embryos. The expected fragment 
size of untreated embryos was 
551 bp. Embryos treated with the 
ppp4ca splice site morpholino 
show skipping of exon 2, PCR 
fragment at 424 bp. Marker 2lod 
DNA ladder (NEB).  
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two day old ppp4ca knockdown embryos the blood flow is interrupted at the posterior 

cardinal vein and the erythrocytes accumulate in the distal end of the tail (83.7 % 

n = 98; 2 independent experiments). At 3 dpf most of the ppp4ca knockdown embryos 

reached the long pec stage and accomplished the formation of the posterior cardinal 

vein (Figure 44, page 71). Nevertheless, the loop from the caudal artery to the caudal 

vein does not outreach the posterior end of the tail in which erythrocytes are still visible. 

A severely affected embryo with a strong accumulation of erythrocytes in the last third 

of the tail is depicted in Figure 43.  

To test if the cardiovascular system of the ppp4ca knockdown embryos was affected by 

malformations of the blood vessels, a microangiography was performed. This method 

comprises the injection of a fluorescent dye into the ventricle to visualize the 

cardiovascular system. The outcome of the microangiography was that the dorsal aorta, 

the posterior cardinal vein and the intersegmental vessels developed normally. 

However, as expected the embryos showed no separation of the caudal artery and vein 

(Figure 45). 

At 3 dpf, the control embryos developed normal and reached protruding mouth stage. In 

contrast, the ppp4ca knockdown embryos only developed until long pec to pec fin stage, 

where they arrested until they were euthanized at 5 dpf. In addition, the knockdown 

embryos developed phenotypically abnormal. For example, the muscle fibers got 

untransparent until the notochord was no longer visible. Furthermore, the interstitium 

between yolk and body, eye and body and the pericardium started to swell. The heart 

within the pericardium was stretched out, the pace was slow and continuously, but with 

no sign of any erythrocyte transport (Figure 44). In addition, the embryos did not 

respond to physical stimuli and start to lose their structural integrity.  

 
Figure 43 Tail of a ppp4ca morpholino injected embryo 3 dpf 
Severe affected embryo, anterior left, erythrocytes accumulating in the tail (black arrow), also the muscle 
fibers appear thicker (black arrow head) and edema are visible within the muscle (white arrow).  
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Figure 44 Different stages of ppp4ca morpholino injected embryos  
A, C, F, F’, H) ppp4ca knockdown embryos at different time points. B, D, E) control morpholino injected 
embryos. Embryos 24 hpf A) ppp4ca knockdown shows no difference to B) control embryos. C) ppp4ca 
knockdown embryo 3 dpf, development stage corresponding to control embryos at 2 dpf (D). E) control 
embryos 3 dpf at expected development stage (protruding mouth). F, H) ppp4ca knockdown embryos 
5 dpf, developmental stage is between long pec and pec fin and equals 3 dpf. F’) detailed view of F. 
Black arrows indicate swollen parts, interstitium between the yolk and body, eye and body and the 
pericardium; black arrowhead otolith; red arrow dense muscle. H) dorsal view on embryo 5 dpf anterior 
left. A - F) same magnification, scale bar 250 µm 
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Interestingly, both morpholino types share the described phenotypical changes with one 

exception. The morpholino against the 5’UTR also induced the loss of at least one 

otolith per ear (88.2 %, embryos examined n = 145) (Figure 46). The loss is not 

completely penetrant, so that in some embryos the otolith loss was only present in one 

ear. 

 
Figure 45 Microangiography of a ppp4ca knockdown embryoat 3 dpf 
A) ppp4ca morpholino knockdown embryo, separation between caudal artery (CA) and caudal vein (CV) 
is not established. Dorsal aorta (DA), posterior cardinal vein (PCV) and intersegmental vessels (ISV) 
developed normally. In the ppp4ca knockdown embryo only one otolith (O) is present. B) 
Microangiography of an uninjected embryo 3 dpf. Injection site of the microangiography (I). Scale bar 
250 µm 
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To identify changes in the brain size, the embryos were also measured for their head 

size and body length (Table 21, Table 22). Nevertheless, due to the large developmental 

delay, a direct comparison of the ppp4ca knockdown embryos with the SCMO injected 

embryos was not possible (Table 24, Figure 47, Figure 48). Therefore, the head size was 

plotted over the body length to compare the growth rate (Figure 49) (regression line for 

ppp4ca knockdown: y = 0.1763x - 63.25; SCMO: y = 0.1873x - 103.63). To confirm the 

similarity of the growth rates, a Student’s t-test was performed on the slope of the 

regression lines. The calculated 27.1ˆ t  was lower than 1.99p= 0.05, therefore it can be 

assumed, that there is no difference in the growth rate. This was also confirmed for the 

distribution of the growth rate, which showed no difference between the ppp4ca 

knockdown and the SCMO injected embryos ( 2483.0ˆ z ). Consequently, the 

knockdown of ppp4ca did not affect the brain size of the embryo.  

 
Figure 46 Otolith reduction in ppp4ca knockdown embryos  
Knockdown embryos 2 dpf injected with morpholino against A) ppp4ca (5’UTR) and B) SCMO. Pictures 
taken in DIC mode, anterior - posterior axes in horizontal orientation. A’ and B’ are details, embryo 
orientate posterior up, ventral left, arrow indicates otolith in a’) ppp4ca injected embryos present one 
otolith per ear, b’) SCMO injected embryos two otolith per ear like the uninjected embryos (not shown). 
Scale bar 250 µm 
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Figure 47 Body length comparison of ppp4ca 5’UTR and splice site morpholino injected embryos 
Both ppp4ca knockdowns (5’UTR/ splice site) showed a significant reduction of the head size. The 
comparison of the head size between the ppp4ca 5’UTR and splice site morpholino injected embryos 
showed no difference. The number of embryos used per experiment and p-values can be found in Table 
23, *** p-value < 0.01 × 10-5 
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Figure 48 Head size comparison of ppp4ca 5’UTR and splice site morpholino injected embryos 
Both ppp4ca knockdowns (5’UTR/ splice site) showed a significant reduction of the head size. The 
comparison of the head size between the ppp4ca 5’UTR and splice site morpholino injected embryos 
showed no difference. The number of embryos used per experiment and p-values can be found in Table 
23, *** p-value < 0.01 × 10-5 
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Table 21 Body length of ppp4ca knockdown embryos and SCMO injected embryos 
Given is the mean of the body length and standard deviation for embryos injected with the morpholino 
against the 5’UTR and the splice site of ppp4ca and the corresponding SCMO. The last column presents 
the number of measured embryos (ppp4ca 5’UTR / SCMO / ppp4ca splice site / SCMO). 

dpf 
Body length mean ± standard deviation Number of 

embryos ppp4ca 5’UTR  SCMO ppp4ca splice 
site  SCMO 

2 2892.20 ± 109.12 3090.94 ± 115.56 2820.49 ± 101.08 3015.43 ± 126,93 69/ 24/ 47/ 23 
3 3123.23 ± 135.72 3485.91 ± 121.95 3153.30 ± 168.67 3561.69 ± 58.20 53/ 33/ 84/ 27 
4 3401.05 ± 199.73 3798.54 ± 92.14 3383.61 ± 201.62 3825.00 ± 28,28 58/ 40/ 55/ 46 

 

Table 22 Head size of ppp4ca knockdown embryos and SCMO injected embryos 
Given is the mean of the head size and standard deviation for embryos injected with the morpholino 
against the 5’UTR and the splice site of ppp4ca and the corresponding SCMO. The last column presents 
the number of measured embryos (ppp4ca 5’UTR / SCMO / ppp4ca splice site / SCMO). 

dpf 
Head size mean ± standard deviation Number of 

embryos ppp4ca 5’UTR   SCMO ppp4ca splice 
site  SCMO 

2 433.15 ± 24.68 476.51 ± 20.63 424.21 ± 23.98 463.60 ± 26.75 69/ 24/ 47/ 23 
3 479.50 ± 24.14 555.64 ± 26.90 498.49 ± 30.29 571.17 ± 21.43 53/ 33/ 84/ 27 
4 544.22 ± 29.82 617.28 ± 25.37 548.67 ± 26.31 612.99 ± 28.28 58/ 40/ 55/ 46 

 

Table 23 p-value comparison for ppp4ca and SCMO injected embryos 
 p-values for head size and body length comparison were calculated with Student’s t-test 
 2 dpf 3 dpf 4 dpf 
 head size body length head size body length head size body length 

ppp4ca 5’UTR; 
SCMO 5.70 × 10-11 7.75 × 10-9 7.84 × 10-20 1.88 × 10-20 1.37 × 10-22 1.90 × 10-22 

ppp4ca splice 
site ; SCMO 5.11 × 10-7 1.81 × 10-7 1.68 × 10-20 3.35 × 10-36 4.40 × 10-20 1.01 × 10-23 

ppp4ca 5’UTR; 
splice site  0.054 4.40 × 10-4 8.63 × 10-5 0.253 0.402 0.645 

SCMO 5’UTR; 
splice site  0.072 0.039 0.016 0.003 0.461 0.238 
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Figure 49 Head size to body length plot of ppp4ca knockdown embryos 
Embryos are from two independent morpholino injection experiments (0.8 mM). Regression line ppp4ca 
knockdown: y = 0.1763x - 63.25, r2 = 0.742; regression line controls: y = 0.1873x - 103.63, r2 = 0.870 
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4.3.7 ppp4cb knockdown embryos present large edema 

During the first day of development, approximately 50 % of the embryos injected with 

the morpholino against the 5’UTR of ppp4cb showed a developmental delay of up to 

10 hours, whereas the rest of the embryos developed normally (Figure 51). During the 

next two days of development, the embryos showed a high mortality with a surviving 

rate of only 38 % at 3 dpf (165 embryos at 1 dpf, two independent experiments). In 

comparison, 88 % of the SCMO injected embryos survived during the same phase (137 

embryos at 1 dpf, two independent experiments). In addition to the mortality, the 

ppp4cb 5’UTR morpholino knockdown embryos also showed a reduced body length 

and a swollen pericardium. The embryos, presenting these malformations, died during 

the next days. The remaining embryos developed normally until 5 dpf, where the 

pericardium, the eyes, and the interstitium between yolk and body started to swell. The 

heart inside the pericardium was long-drawn-out and 

slowly beating without transporting erythrocytes. The 

somitic muscle of the embryos, which are normally 

transparent, were untransparent and the muscle fibers 

appeared to be thicker than normal. Both of these 

abnormalities were comparable to the ppp4ca knockdown 

embryos. However, the loss of the otoliths was not 

recapitulated in the ppp4cb knockdown (Figure 51, 

Figure 52). 

In contrast to the 5’UTR morpholino the splice site 

morpholino knockdown embryos showed, besides a short 

developmental delay at 1 dpf, no phenotypical changes. 

To test the functionality of the splice site morpholino, the 

skipping of exon 3 was analyzed by PCR. Surprisingly, 

the PCR for the knockdown and the control embryos only 

showed a band at 307 bp, which is the expected size with 

the included exon 3. Therefore, it can be assumed that the 

morpholino did not prevent the splicing. Consequently, 

only the ppp4cb 5’UTR morpholino injected embryos 

were used for measuring the head size and body length. 

 
Figure 50 ppp4cb knockdown 
failed to induce exon skipping 
Template for the PCR was cDNA 
from ppp4cb splice site 
morpholino knockdown and wild 
type embryo. The expected size 
of the unaffected mRNA was 
307 bp. The ppp4cb morpholino 
binding to the e3i3 splice site 
should have induced the skipping 
of exon 3, leading to a lower 
band at 255 bp, but these band 
was not visible. The band at 
approximately 1500 bp represents 
the unspliced mRNA (1495 bp). 
Marker: 2lod DNA ladder (NEB). 
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Figure 51 ppp4cb knockdown embryos display swelling  
A-D) embryos without orientation, D-I) anterior up E) anterior left orientation. A) some ppp4cb 
knockdown embryos (5’UTR; 1 dpf) present a developmental delay of up to 10 h (arrows). D) At 3 dpf 
some ppp4cb knockdown embryos (5’UTR) were smaller and present a curved tail and swelling of the 
pericard (arrows). E) splice site morpholino injected embryos at 3 dpf showed a developmental delay of 
approximately 10 h (pec fin stage) compared to the control (F, mostly protruding mouth stage). G) At 
5 dpf the embryos injected with the morpholino against the 5’UTR present a swollen pericardium, 
interstitium between yolk and body, and eye (detail in Figure 52). H) splice blocking morpholino injected 
embryos at 5 dpf, showed no difference to the controls (I). Magnification 25x, scale bar red 250 µm, D) 
scale bar black 1000 µm  
 
 

 
Figure 52 ppp4cb knockdown embryo at 5 dpf  
Embryo orientated anterior left, swollen parts of the embryos like eye, pericardium and interstitium are 
indicated with arrows. Otic vesicles harbored two otoliths similar to the control (black arrowhead). The 
fibers of the somitic muscle appeared thicker than normal; note that the notochord is not visible through 
the muscle, which also represent edema (red arrowhead). (Detail of Figure 51 D) 
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Because of axis deformations, not all 5’UTR morpholino knockdown embryos could be 

used for the head size and the body length measurement. Hence, only normal appearing 

ppp4cb knockdown (5’UTR) and SCMO injected embryos are measured. The analysis 

of the measurement showed that the average body length and head size of the ppp4cb 

knockdown embryos was significantly smaller and the variance was much higher than 

in the SCMO injected embryos (Figure 53, Table 24, Table 25). To assess whether the 

ratio between head size and body length was changed in the ppp4cb knockdown 
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Figure 53 Head size and body length of ppp4cb knockdown embryos 
Comparison of the head size (left) and body length (right) between ppp4cb morpholino knockdown and 
SCMO embryos. The number of embryos used per experiment and p-values can be found in Table 24 and 
Table 25. Embryos originated from two independent morpholino injections (0,8 mM). In all measurements 
the ppp4cb knockdown embryos were smaller in head size and body length than the corresponding control. 
** p-value < 0.05, *** p-value < 0.01 × 10-5 

Table 24 Body length of ppp4cb and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the body 
length of the ppp4cb knockdown embryos differed significantly from the SCMO injected embryos a 
student’s t-test was performed. The p-values of the t-test were corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Body length  

mean ± standard deviation 

Number of 
measured 
embryos  
ppp4cb  
/SCMO 

p-value 
(two-tailed 

students t-test) 

Corrected  
p-value 

(Bonferroni  
pad = n×p) ppp4cb SCMO 

2 2873.27 ± 164.84 3054.00 ± 125.85 18/47 6.28 × 10-4 1.88 × 10-3 
3 3249.91 ± 358.72 3539.41 ± 87.35 55/32 1.45 × 10-8 4.34 × 10-8 

4 3466.91 ± 314.24 3803.78 ± 104.94 44/47 2.57 × 10-7 7.70 × 10-7 
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embryos, the head size was plotted against the body length (Figure 54). The resulting 

plot showed, that the distribution of the growth ratio was equally ( 23.0ˆ z ). In contrast 

to the distribution, the slope of the growth ratio showed a significant ( 62.5ˆ t ) 

difference. The slope of the ppp4cb regression line showed, that some of the embryos 

had shorter bodies and bigger heads at 3 dpf, whereas at 4 dpf some embryos presented 

smaller heads compared to the controls. 

Because of the swelling phenotype, which was similar to the ppp4ca knockdown 

embryos at 5 dpf, a microangiography was performed to identify changes in the vascular 

system. Interestingly, the microangiography on ppp4cb knockdown embryos showed no 

changes in the vascular system (Figure 55, page 81).   

Table 25 Head size of ppp4cb and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the head size 
of the ppp4cb knockdown embryos differed significantly from the SCMO injected embryos a two-tailed 
student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Head size 

mean ± standard deviation 

Number of 
measured 
embryos  
ppp4cb  
/SCMO 

p-value 
(two-tailed 

student’s t-test) 

Corrected  
p-value 

(Bonferroni 
pad = n×p) ppp4cb SCMO 

2 419.23 ± 30.64 470.19 ± 24.45 18/47 6.23 × 10-4 1.88 × 10-3 
3 514.69 ± 55.41 562.98 ± 20.22 55/32 6.16 × 10-18 1.85 × 10-8 
4 536.89 ± 40.05 620.62 ± 23.49 44/47 7.44 × 10-8 2.23 × 10-7 
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Figure 54 ppp4cb knockdown embryos, changing from small body with big heads to small heads  
Embryo measurements are from two independent morpholino injections. ppp4cb knockdown embryos at 
2 dpf are smaller than the control but fit the regression of the control embryos. At 3 dpf the embryos 
present a reduced body length and bigger head size compared to corresponding controls. At the fourth day 
this changes, the embryos still had a shorter body length, but the head size is smaller than in the controls. 
The result of this is a reduction in the slope of the ppp4cb knockdown regression line compared to the 
control. Regression line ppp4cb knockdown: y = 0.1362 x + 63.07, r2 = 0.710; regression line controls: 
y = 0.19159x – 112.79, r2 = 0916 
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Figure 55 ppp4cb knockdown has no effect on blood vessel formation  
Embryos 3 dpf, anterior left A) ppp4cb knockdown, B) control. Both present normally developed dorsal 
aorta (DA), posterior cardinal vein (PCV) and intersegmental vessels (ISV). Scale bar 200 µm 
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4.3.8 Knockdown of sez6l2 reduces head size 

The sez6l2 knockdown embryos developed phenotypically normal. At 2 dpf, the sez6l2 

and the SCMO knockdown embryos reached the long pec stage. However, a small 

developmental delay of the sez6l2 knockdown embryos was recognizable in eye size 

and pigmentation. At 3 dpf, the development of the sez6l2 knockdown embryos reached 

the pec fin stage, whereas the controls already entered the protruding mouth stage. 

Compared to the control, which already developed to the protruding mouth stage, this is 

consistent with the developmental delay at 2 dpf. Because of no distinctive 

developmental marks at 4 dpf, the difference between the sez6l2 knockdown and control 

embryos is not stageable. Nevertheless, it is still visible in a small difference of the yolk 

sac size (Figure 56).  

To identify differences in the brain size of the sez6l2 knockdown embryos, the head size 

and body length were measured as described in the methods section. The day-wise 

 
Figure 56 Comparison of sez6l2 and SCMO knockdown embryos at 2 dpf, 3 dpf, and 4 dpf  
The body length and head size for each embryo is shown next to it. Developmental stages of the embryos 
– 2 dpf sez6l2 and SCMO long pec (note that the SCMO is further developed, compare eye size and 
pigmentation); – 3 dpf sez6l2 pec fin close to protruding mouth, SCMO protruding mouth; – 4 dpf larva 
(the yolk sac of the sez6l2 is bigger than in the SCMO knockdown illustrating the developmental delay) 
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comparison of the head size and body length (Figure 57) showed a significant reduction 

in both features of the sez6l2 knockdown embryos (Table 26, Table 27). Nevertheless, 

the size reduction is supposed to occur from the short developmental delay of the 

embryos. To test this hypothesis, the head size was plotted against body length. 

Afterwards, the equations of the regression lines were calculated and plotted (Figure 

58). The comparison of the two regression lines showed a significant reduction in the 

slope of sez6l2 morpholino knockdown embryos ( 27.1ˆ t ). This shows that the head 

size, and therefore probably the brain size, is reduced in the sez6l2 knockdown 

embryos. 
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Figure 57 Head size and body length comparison of sez6l2 
Comparison of head size (left) and body length (right) between sez6l2 morpholino knockdown and SCMO 
embryos. The number of embryos used per experiment and p-values can be found in Table 26and Table 
27. *** p-value < 1·× 10-5 

Table 26 Head size of sez6l2 and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the head size 
of the sez6l2 knockdown embryos differs significantly from the SCMO injected embryos a two-tailed 
student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Head size 

mean ± standard deviation 

Number of 
measured 
embryos 
sez6l2 

/SCMO 

p-value 
(two-tailed 

student’s t-test) 

Corrected  
p-value 

(Bonferroni 
pad = n×p) sez6l2 SCMO 

2 422.66 ± 25.25 485.41 ± 28.52 122/58 5.36 × 10-26 1.61 × 10-25 
3 509.82 ± 26.35 536.88 ± 22.88 108/72 1.05 × 10-11 3.16 × 10-11 
4 568.98 ± 24.83 618.26 ± 25.26 102/54 4.33 × 10-21 1.29 × 10-20 
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Figure 58 Growth rate comparison of sez6l2 knockdown and SCMO injected embryos 
Regression lines represent the growth rate from second to fourth day after fertilization. The reduced slope 
of the sez6l2 morpholino knockdown regression line displays the reduction in head / body ratio. 
Regression line SCMO (blue): y = 0.2041x – 165.09, r2 = 0.864; regression line sez6l2: y = 0.1899x – 
133.03, r2 = 0.877 

Table 27 Body length of sez6l2 and SCMO injected embryos at different time points 
The number of measured embryos originates from two independent experiments. To test if the body 
length of the sez6l2 knockdown embryos differs significantly from the SCMO injected embryos a two-
tailed student’s t-test was performed. The p-value of the t-test was corrected for multiple testing using the 
Bonferroni method (n = 3). 

dpf 
Body length  

mean ± standard deviation 

Number of 
measured 
embryos 
sez6l2 

/SCMO 

p-value 
(two-tailed 

students t-test) 

Corrected  
p-value 

(Bonferroni  
pad = n×p) sez6l2 SCMO 

2 2941.63 ± 117.37 3169.74 ± 92.19 122/58 8.71 × 10-29 2.61 × 10-28 
3 3398.29 ± 104.75 3479.52 ± 96.18 108/72 2.91 × 10-07 8.73 × 10-07 
4 3668.70 ± 126.00 3803.95 ± 89.56 102/54 2.25 × 10-13 6.73 × 10-13 
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4.3.9 ypel3 knockdown is lethal at 1 dpf  

The injection of both, the 5’UTR and the splice 

blocking morpholino against ypel3 resulted in the same 

severe morphologically phenotype. At 1 dpf, the 

embryos reached the 20 somites stage and presented a 

bended chorda. At this stage 75 % of the embryos did 

not develop further and died between the 1-2 dpf (378 

embryos, 3 independent experiments, Table 28). The 

surviving embryos presented a ventral curved shortened 

tail, a smaller head and body size, and lack the 

development of erythrocytes. At 3 dpf, the embryos 

reached the long pec stage. The heart of the embryos 

was thin, long drawn-out and hardly beating (Figure 

60). Arrested in the long pec stage, the embryos started 

to die within the next day. In contrast to the high 

mortality rate of the ypel3 morpholino injected 

embryos, the non-injection and SCMO embryos 

developed normally and showed survival rates of 98 % 

and 99 %, respectively. To confirm, that the morphological effects were based on the 

morpholino injection, the ypel3 mRNA of the splice site morpholino knockdown 

embryos was assessed by PCR. The PCR proved the loss of the 44 bp large exon 3 and 

did thereby confirm the effect of the splice site morpholino (Figure 59).   

Due to the high mortality rate, a lower morpholino concentration was tested (0.2 mM). 

Surprisingly, this concentration yielded in a complete loss of the phenotype. Therefore, 

 
Figure 59 ypel3 morpholino 
induces loss of exon 3  
PCR on cDNA from wild type and 
ypel3 splice site morpholino 
knockdown embryos. Primers are 
located in exon 2 and 4 (208 bp). 
Knockdown induces loss of exon 
3. Therefore, the band is 44 bp 
shorter (164 bp) 

 
Figure 60 ypel3 morpholino injected embryos after 1, 2 and 3 days of development 
A) 1 dpf 20 somite stage, curved chorda marked by arrow B) 2 dpf high pec stage, curved tail and 
bloodless pericardium (arrow). C) 3 dpf, long pec stage, shorten tail and reduced body size. A) 100x 
magnification, B) and C) 50x magnification; scale bar 200 µm. 
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this concentration was not sufficient to block enough of the ypel3 mRNA.  

4.3.10 Summary of morpholino knockdown phenotypes  

The morpholino knockdown embryos displayed various phenotypes which are 

summarized in Figure 61. The most important phenotype, which was found in nearly all 

knockdown embryos, was the developmental delay. Another interesting phenotype was 

the formation of edema in the pericardium, eye and interstitium which was found in 

Table 28 Results of the ypel3 morpholino injection 

morpholino type 
morpholino 

concentration in 
mM 

Number of 
surviving embryos 

1 dpf  
(SCMO / 

uninjected) 

Number of 
surviving embryos 

2 dpf 
(SCMO / 

uninjected) 

of surviving 
embryos form 

1 dpf to 2 dpf in% 

5’UTR 0.8 95 
(49/58) 

31 
(49/58) 

32.63 
(100/100) 

Splice site e3i3 0.8 131 
(77/92) 

34 
(77/90) 

25.95 
(100/98) 

Splice site e3i3 0.4 132 
(89/69) 

39 
(85/70) 

29.61 
96/101 

Splice site e3i3 0.2 134 
(53/61) 

129 
(52/60) 

96.27 
(98/98) 
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Figure 61 Phenotypes of the morpholino knockdown embryos  
Red filling indicates difficulties in formation of tissues or differences to the corresponding control; green- 
developed like corresponding control; white- could not be defined. 
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mapk3, ppp4ca and ppp4cb knockdowns. As a muscle phenotype, deformations like 

thick muscle fibers or the appearance of small edemas inside the muscle were counted. 

A phenotype in blood formation / circulation was assessed when no blood was 

developed (ypel3), problems in the formation of the circulatory system (ppp4ca) 

occurred or the appearance of heart deformations. Notably, the swelling of the 

pericardium was always accompanied by the stretching of the heart, leading to a 

reduction or disruption of the blood flow. A knockdown was described as highly mortal, 

if the survival rate dropped below 40 % during the development or if all embryos died 

at a specific developmental stage.  
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5 Discussion 

As result of this thesis, the four genes KCTD13, SEZ6L2, MAPK3 and PPP4C, located 

in the human 16p11.2 region, have been identified to be potentially involved in ASD or 

accompanying symptoms. In addition, the crucial role of ypel3 and gdpd3a during early 

zebrafish development, reflected by a high embryo mortality rate after their knockdown, 

makes them attractive for further analysis. More importantly, the results of this thesis 

approve the great potential of zebrafish as a model for neuronal diseases and 

specifically autism 

5.1 KCTD13, a strong ASD candidate  

At the beginning of this thesis, no in situ hybridization data was available for kctd13. 

Here it was shown that kctd13 is expressed in the head of the embryos at 3 dpf. This 

phenotype was supported by Golzio, Willer et al. (2012). A so far undiscovered result 

was the strong expression of kctd13 within the bulbus arteriosus, which was revealed by 

in situ hybridization on sections. Moreover, it was shown that the kctd13 knockdown 

embryos displayed an enlargement of the heads. This was significantly confirmed by the 

direct comparison of the mean head size against the control embryos as well as in the 

plotted ratio of head size and body length. Interestingly, the head size enlargement 

phenotype was found to be initialized specifically at 4 dpf, which was supported by a 

publication by Golzio, Willer et al. (2012). They further showed, that the head size 

enlargement was accompanied by an increase in the cell mass of the brain. Another 

publication presenting a kctd13 knockdown was published by Blaker-Lee, Gupta et al. 

(2012). This publication focused on the ventrical formation of the embryos (24 hpf) and 

showed that kctd13 knockdown embryos have a reduced brain ventrical size and a less 

destinct midbrain-hindbrain boundary. Further, they discoverd a change in the axon 

trace formation.  

Together the results of this thesis and other publications demonstrate that the kctd13 

knockdowns affect head size, ventricle and axon trace formation. Still it is unclear what 

the reasons are for this phenotypic expression. It is known that the KCTD13 is 

interacting with the small subunit (p50) of the DNA polymerase delta (pol-) and the 

proliferating cell nuclear antigen protein (PCNA) (Waga and Stillman 1998, Kim, 
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Leventhal et al. 2011). The relation with the Pol  and PCNA indicates a regulatory 

association in DNA replication and cell-cycle progression. This could be a possible 

reason for an increase of cells in the kctd13 knockdowns, which would explain the head 

size enlargement. The question is if the change in the head size of the zebrafish can be 

associated with ASD. Strong indicators for this are the enlargement of the brain mass 

and the reduction of the ventricle, which leads to the prediction of a neurological 

function (Sawamoto, Wichterle et al. 2006, Gutzman and Sive 2010). 

Further, the potential relation KCTD13 with ASD is supported by another member of 

the KCTD family, which has a known connection to neuronal disorders. It has been 

shown that mutations in KCTD7 are associated with the appearance of progressive 

myoclonic epilepsy (PME) a syndrome linked with  myoclonic seizures, tonic-clonic 

seizures, and progressive neurological deterioration (Shahwan, Farrell et al. 2005, Van 

Bogaert, Azizieh et al. 2007, Azizieh, Orduz et al. 2011). Unfortunately, the 

mechanisms behind the PME are undiscovered. However, it is known that seizures are 

triggered by unpredictable interruptions of normal brain functions. All together, the 

effects of kctd13 and KCTD13 shown here and by others, as well as the connection of 

KCTD7 with neuronal diseases, make this a strong candidate for an involvement in 

ASD. Nevertheless, further investigation is required to clarify the function of kctd13. 

5.2 Head size reduction of sez6l2 knockdown embryos 
indicates association with ASD-like symptoms 

Because of its expression in human and mouse fetal brain tissue, the sez6l2 (seizure 

related 6 homolog (mouse)-like 2) was one of the strongest candidates within this study 

(Kumar, Marshall et al. 2009). Here it was shown, that sez6l2 is expressed in the cell 

bodies of nerve cells located in brain, during zebrafish development. The similar spatial 

expression indicates an evolutionary conservation, which supports the comparability of 

the knockdown phenotype. 

Interestingly, the sez6l2 morpholino knockdown resulted in a head size reduction of the 

embryos. Since the diameter of an embryonic head is mainly based on the size of the 

brain, it can be expected that in sez6l2 knockdown embryos the brain size is affected, 

which probably is comparable to the presence of microcephaly in ASD patients 

(Courchesne, Karns et al. 2001, Lainhart, Bigler et al. 2006). Unfortunately, the 
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publication by Konyukh, Delorme et al. (2011) does not contain specific information 

regarding individual symptoms of the patients, so that a relationship between head size 

and SEZ6L2 cannot be confirmed in humans yet. Interestingly, the SEZ6L2 gene shows 

a high frequency of potential damage causing sequence variations in the promoter and 

coding sequence, which are not only found in ASD patients, but also in healthy persons. 

A possible explanation for this could be the structure of the protein domains, which is 

repeated several times and therefore are possibly prone to the mutation. Another 

explanation is a multiple hit model, which is indicated by the non-mendelian inheritance 

of ASD. This model suggests that the co-occurrence of mutations in different genes 

could be the reason for the ASD formation. As a result of this model, SEZ6L2 would 

only be one amongst many genes causing ASD formation. 

Another point linking SEZ6L2 with neuronal diseases is its strong homology to the 

SRPX2 gene, which is associated with rolandic seizures - a syndrome causing oral and 

speech dyspraxia and mental retardation (Roll, Rudolf et al. 2006). Unfortunately, the 

molecular mechanisms of SRPX2 are not known yet. However, the relation of SRPX2 

with a neuronal disorder and the discovered mutations of SEZ6L2 in ASD patients 

support the relevance of SEZ6L2 as a strong candidate for ASD.  

5.3 The Ras/Raf/ERK1 pathway possibly links MAPK3 with 
neuronal disorders   

In this thesis it was demonstrated that mapk3 is expressed in the brain and intestine of a 

three day old zebrafish embryo. This is comparable to the results of Krens, He et al. 

(2006), who also showed an expression of mapk3 in the brain of zebrafish embryos at 

2 dpf. Surprisingly, the morpholino knockdown phenotype described by Krens, He et al. 

(2008) is not completely congruent to the one presented here. Both knockdowns showed 

the same effect in axis formation. However, a complete loss of the tail could not be 

recapitulated in this thesis, even at a very high morpholino concentration of 1.6 mM. 

Additionally, the embryos presented defects during the formation of the notochord, 

heart and blood, which were also visible in the figures of the publication but had not 

been mentioned by Krens, He et al. Interestingly, the morpholino used by Krens, He et 

al. (2008) was positioned directly upstream of the 5’UTR morpholino used in this 

thesis, with an overlap of one base pair. Moreover, Krens, He et al. (2008) injected the 

same volume and used a lower concentration (0.4 mM). This indicates that the 
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difference in the complete loss of the tail is based on a difference in the binding affinity 

of the morpholino rather than in the used concentration. However, the main character of 

the knockdowns is equal to Krens, He et al. (2008). Additionally, Blaker-Lee, Gupta et 

al. (2012) also performed a mapk3 knockdown and described the phenotype as 

“consistent” with Krens, He et al. (2008). However, the mapk3 knockdown embryos 

presented by Blaker-Lee, Gupta et al. (2012) showed milder deformation than the one 

presented here. Furthermore, Blaker-Lee, Gupta et al. (2012) did not mention the 

swelling of the pericard or heart defects as described by Krens, He et al. (2008) and this 

thesis. Because of the 92 % sequence similarity of the Blaker-Lee, Gupta et al. (2012) 

morpholino with the one used in this thesis, it is unlikely that this difference is due to a 

lower binding affinity. Therefore, it must be concluded that the difference of the 

reported mapk3 phenotypes are based on morpholino concentration or the injected 

amount. Taken together, the comparison of the knockdown phenotypes with Krens, He 

et al. (2008) and Blaker-Lee, Gupta et al. (2012) demonstrated the difficulty in 

interpreting the phenotypes and the comparison of the morpholino injection procedures. 

Nevertheless, the identical phenotype of the 5’UTR and the splice site morpholinos used 

in this thesis, which were injected in the same concentration and amount, proved the 

robustness of the system when performed at constant conditions. 

The question remains if MAPK3 is relevant for the manifestation of ASD. An indication 

for this, besides the effects on body axis and brain, is a deficiency in the axon tract 

development of the mapk3 knockdown embryos (Blaker-Lee, Gupta et al. 2012). This 

direct effect on the neuronal system indicates a relevance for ASD. Additionally, 

MAPK3, which encodes the ERK1 protein, is part of the Ras/Raf/ERK1 pathway. This 

pathway was found to be involved in formation of the neuro-cardio-facial-cutaneous 

syndrome (NCFC; OMIM 115150). Patients with this syndrome exhibit mental 

retardation and multiple congenital anomalies such as macrocephaly, a distinctive face 

with prominent forehead, absence of eyebrows, heart defects, pulmonic stenosis and 

hypertrophic cardiomyopathy. Sequencing of patients with this syndrome showed, that 

mutations causing NCFC are located in BRAF, KRAS, MEK1 and MEK2, which act 

upstream of ERK1 (Roberts, Allanson et al. 2006). This and the phenotype of the NCFC 

syndrome indicate a possible relevance of MAPK3 for ASD.  
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5.4 gdpd3a is suggested to be an important developmental 
regulator  

The results of the gdpd3 in situ experiments presented an expressed in the whole head, 

intestine and heart of a three day old embryo. This is comparable to the results of 

Blaker-Lee, Gupta et al. (2012) who showed an expression in the head of an embryo 

2 dpf. 

The embryos of the gdpd3a splice site morpholino knockdown experiment showed a 

strong phenotype. The embryos presented developmental defects, abnormalities in head 

and trunk formation and disintegrate at 2 dpf, while only developing until the 18 somite 

stage. In contrast to this, the 5’UTR morpholino showed no phenotypic change, even at 

a high morpholino concentration of 1.6 mM. However, because of the PCR verified 

skipping of exon 2, the functionality of the splice site morpholino was proven and 

therefore it is reasonable to conclude that the visible phenotype is reflecting the loss of 

gdpd3. This is also supported by the publication of Blaker-Lee, Gupta et al. (2012), who 

observed a similar gdpd3a knockdown, affecting the formation of brain, head and 

pigmentation of the embryo. In contrast to this thesis, Blaker-Lee, Gupta et al. (2012) 

did not mention the dying of the embryos. An explanation for the survival of the gdpd3a 

knockdown embryos is possibly a difference in the binding affinity or the concentration 

of the morpholino. Since the morpholino used by Blaker-Lee, Gupta et al is overlapping 

in 15 bp with the 5’UTR morpholino used here (Figure 62), a difference in binding 

affinity can probably be excluded. Therefore, the disparity is likely to be based on 

concentration differences. Comparing the gdpd3 and the mapk3 knockdowns of Blaker-

Lee, Gupta et al. (2012) with the ones in this study, their knockdown phenotype 

constantly show a lower manifestation, which supports the idea that a concentration 

differences have caused the phenotypical variations.    

Generally, the question remains if GDPD3 can be linked with ASD. Unfortunately, the 

CGTCCTCAATTGTTTTGGGAAATATGGCGAGCTGCCTGTACTACCTGCT
Blaker-Lee, Gupta et al. 2012

 

Figure 62 gdpd3 morpholino comparison  
Part of the 5’UTR and coding sequence of gdpd3 around the 5’UTR (ATG marked red). 
Overlap of morpholinos used by Blaker-Lee, Gupta et al. (2012) (green) and this thesis 
(blue). 
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phenotype presented in this thesis cannot contribute to answer the question yet. 

However, the developmental arrest and lethality impressively show the importance of 

gdpd3a during a developmental key step. Therefore, it can be suggested that a change in 

the expression level or the complete missing of gdpd3 must have a strong effect on 

human development as well. Furthermore, also other members of the GDPD family, 

have been shown to be important for differentiation like osteoblasts, motor neurons and 

the outgrowth of Neuro2A cells (Rao and Sockanathan 2005, Yanaka 2007, Yanaka, 

Nogusa et al. 2007, Lang, Zhang et al. 2008). These findings also emphasize the 

importance of GDPD3 and also draw a connection to neuronal processes which are 

maybe a hint to ASD.  

5.5 asphd1 knockdown induces edema in the muscle but 
cannot be linked with autism  

To date, no whole mount in situ hybridization data was available for asphd1. In this 

thesis it is shown that the asphd1 expression is ubiquitous in head, intestine and weak in 

somitic muscles of three day old embryos. To find out more about the function of 

asphd1, the reverse genetic morpholino knockdown tool was used. This approach 

showed a developmental delay in the asphd1 knockdown embryos which was visible in 

the mean of head size and body length. However, the calculated regression showed that 

there is no difference in the head size of the asphd1 knockdown embryos when 

compared to the control. Consequently, the brain size is not affected by the knockdown 

of asphd1. The only visible change in the knockdown is the presence of edema in the 

muscle similar to the ppp4c knockdown. Since the ppp4c knockdowns are known for 

difficulties in blood vessel formation, the vascular system of the asphd1 knockdowns 

was investigated. The result was, that no changes or deformation in the blood vessel 

development were visible in the asphd1 knockdowns. Therefore, the reason for the 

edema formation in the muscle is most likely not related to the circulatory system. 

Further, the hydroxylase function of asphd1, which processes basal post-translational 

modifications, also cannot direct explain the edema formation. It is possible, that the 

loss of asphd1 induced senescence or changes in the osmoregulation of the muscle 

(Hill, Bello et al. 2004). However, further research is required to understand the 

function of asphd1. Nevertheless, the experiments have shown that a link of ASPHD1 to 

ASD is unlikely. 
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5.6 ypel3 - a senescence inducer  

To date, it is known that YPEL3 is located at the centrosome during interphase 

(Hosono, Sasaki et al. 2004), but an expression in a whole organism has not been 

shown. Here, in situ hybridizations were used to show that ypel3 is ubiquitously 

expressed in the head and even stronger in the pericardium and the heart of zebrafish 

embryo, which interestingly, is also morphologically affected in the ypel3 morpholino 

knockdown. The heart is stretched out and beats at a low frequency. Furthermore, the 

embryos do not develop erythrocytes, present a small head, curved tail and high 

mortality rate between the 1 - 2 dpf during which time the embryos die and start to 

disintegrate indicating senescence. Surprisingly, the phenotype appears to be very 

sensitive to the morpholino concentration. The injection of 0.2 mM ypel3 morpholino 

was not sufficient to induce the phenotype, whereas it was fully penetrant at 0.4 mM. 

This and the strong phenotype lead to the suggestion that ypel3 dosage sensitive and 

involved in fundamental processes during embryonic development. An explanation for 

the senescence could be, that YPEL3 is acting downstream of p53. It has been shown in 

MCF-7 cells that upon induction of YPEL3 the cellular senescence increases, which 

could be a plausible link to the phenotype described in this thesis (Kelley, Miller et al. 

2010). However, the mortality of the ypel3 knockdown embryos and the relation of 

YPEL3 with p53 indicate no apparent relationship with ASD.  

5.7 Two ppp4c paralogs, one phenotype, but no direct 
connection to ASD 

ppp4c is a highly conserved protein known to be involved in many processes such as 

microtubule organization at centrosomes, maturation of spliceosomal snRNPs, as well 

as regulation of histone acetylation (Sunkel, Gomes et al. 1995, Melki 1997, Helps, 

Brewis et al. 1998, Matera 1999, Gubitz, Mourelatos et al. 2002, Sumiyoshi, Sugimoto 

et al. 2002, Zhang, Ozawa et al. 2005). However, its function during the development is 

uncertain.  

The challenge, of analyzing ppp4c, was the presence of two ppp4c paraloges in the 

zebrafish genome, which originated from additional whole-genome duplication in the 

teleost fish. Here it was demonstrated that both ppp4c genes have a similar expression 

pattern in the head and the intestine of an embryo at 3 dpf. This is consistent with whole 
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mount in situ hybridizations conducted by Jia, Dai et al. (2012), which showed a 

specific expression in the head for both ppp4c paralogs at 2 dpf. Interestingly, an 

expression located at the vascular system, like it was published for mouse, was not 

detectable (embryonic day 17.5, Kalen, Wellgard et al.2009). This is probably based on 

the different developmental stages of the embryos.  

Accompanying to the in situ hybridizations Kalen, Wallgard et al. (2009) presented a 

morpholino knockdown of ppp4ca and Jia, Dai et al. (2012) a knockdown of ppp4ca 

and ppp4cb. Both studies used two morpholinos against the 5’UTR of ppp4ca, of which 

one morpholino showed 80 % sequence identity (Figure 63). Surprisingly, the two 

described knockdown phenotypes were completely different. Jia, Dai et al. (2012) 

described a ventralization, leading to a reduction in head and tail formation at 24 hpf for 

both ppp4c genes, whereas Kalen, Wallgard et al. (2009) showed that the ppp4ca 

knockdown embryos had difficulties in the formation of the loop from the caudal artery 

and caudal vein. To confirm one of the published knockdown phenotypes, the 

morpholino experiments were repeated for both ppp4c genes within this thesis. 

Therefore, two morpholinos, one against the 5’UTR and another against a splice site, 

were used for each ppp4c gene. Both the morpholino knockdowns showed difficulties in 

the formation of the caudal blood loop, which was consistent with the ppp4ca 

phenotype described by Kalen, Wallgard et al. (2009).   

The publication by Kalen, Wallgard et al. (2009) also described, that the ppp4ca 

knockdowns had difficulties in the formation of intersegmental vessels, which was 

illustrated by microangiography of 2 dpf embryo. To confirm these results, the 

microangiography was repeated in this thesis. In contrast to Kalen, Wallgard et al. 

 
Figure 63 ppp4ca 5’UTR morpholino comparison 
Morpholinos used by Kalen, Wallgard et al. (2009) are indicated in different green shades and Jia, Dai et 
al. (2012) in blue shades, the morpholino used in this thesis is represented in grey, the transcription start 
is labeled in red.   
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(2009), the microangiography was performed at 3 dpf to compensate for the 

developmental delay of the ppp4ca knockdown embryos. The results of the 

microangiography confirmed the difficulties in the formation of the caudal blood loop. 

Nevertheless, in contrast to Kalen, Wallgard et al. (2009) the intersegmental vessels 

were fully developed in all tested embryos. The explanation for this difference is 

probably the developmental delay of the knockdown embryos. Assuming that the 

ppp4ca knockdown embryos of Kalen, Wallgard et al. (2009) showed the same 

developmental delay like the ppp4ca knockdowns in this thesis they would only have 

attained the prime 22 stage. This is the stage were the embryos are about to form the 

intersegmental vessel. Therefore, the embryos, which Kalen, Wallgard et al. (2009) 

investigated by microangiography, probably have been too young to present 

intersegmental blood vessels. Further, because of their observation time of 3 dpf Kalen, 

Wallgard et al. (2009) did not recognize the swelling between yolk and interstitium, 

around the eye, and the pericard as well as the formation of edema in muscle as part of 

the phenotype of the ppp4ca knockdown embryos at 5 dpf.  

Notably, the phenotypes for both ppp4ca morpholino knockdown experiments, 

generated within this thesis, were nearly identical. However, there were two striking 

differences between the splice site and the 5’UTR morpholino knockdown phenotype. 

The 5’UTR morpholino knockdown additionally induced an effect on the loop 

formation from caudal artery to caudal vein and the loss of one otolith. Because of the 

overlapping knockdown effects of the two morpholinos and the conformity with the 

Kalen, Wallgard et al. (2009) publication, the loss of the otolith is expected to be an off 

target effect of the 5’UTR morpholino. Candidate genes, which would influence otolith 

formation, are for example zomp-1, which encodes for the otolith matrix protein-1 

(Omp-1) or zotolin-1 (Lainhart, Bigler et al. 2006). However, the detailed mechanism of 

the otolith loss is not known yet.  

Compared to the ppp4ca knockdown, the knockdown of ppp4cb showed a much higher 

mortality rate. 50 % of the embryos were characterized by deformations and 

developmental delays that occured already at 1 dpf. Only 38 % of these embryos 

survived until the third day of development. Some of the embryos also displayed a 

swollen pericard at 3 dpf. These deformed embryos died quickly. At 5 dpf, the 

remaining embryos, which had developed normally before, also manifested a swelling 

of the pericard, around the eyes and between the interstitium above the yolk. 
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Additionally, also the muscle showed structural changes. These changes had also been 

observed in the ppp4ca knockdown. However, the effect on the blood vessel formation 

of the ppp4ca knockdown embryos was not recapitulated. Therefore, it can be 

concluded that the swelling of the ppp4ca knockdown embryos is not dependent on a 

change in the vascular system. The question is, which function of the ppp4c genes is 

responsible for the edema formation and the muscle alteration? Due to the wide variety 

of known and probably unknown functions of ppp4c it is difficult to suggest the causes 

for this phenotype. Possible reasons for the formation of edema like in the ppp4c 

knockdowns are for example problems in formation of the pronephric glomerulus or the 

calcium regulation (Fombonne 2010, Boyle, Boulet et al. 2011). Further investigation is 

required to identify causes for the edema formation in the ppp4c knockdown embryos.  

The main question in this thesis was if the zebrafish orthologs of the human genes 

within the 16p11.2 region can be linked with an autism-like disease pattern. Both ppp4c 

genes showed strong influence on embryonic development. Nevertheless, a change in 

the head size was not found for the ppp4ca knockdown. Interestingly, the ppp4cb 

knockdowns, which were generally smaller in body length, showed an extreme 

variability in head size and body length. To find out if the head size was affected by the 

knockdown, the head size was plotted over the body length and compared to the control 

injected embryos. However, the result of this was not conclusive. The distribution of the 

growth rate of the embryos was equal, whereas the slope was significantly different. 

Consequently, an effect on the brain size cannot be confirmed.  

Taken together the ppp4c knockdowns showed an induction of edema, muscle 

deformations and problems in formation of the caudal artery loop. Therefore, a direct 

link between the ppp4c genes and neuronal changes could not be shown. However, 

some patients with a 16p11.2 deletion also display malformations of the heart 

(Puvabanditsin, Nagar et al. 2010, Shen, Chen et al. 2011). The results of this thesis 

together with Kalen, Wallgard et al. (2009) indicate, that a loss of function mutation of 

the hemizygous ppp4c of patients with a 16p11.2 deletion could be the reason for this. 

This would also explain why not all patients with a 16p11.2 deletion have heart 

malformations. In order to prove this hypothesis, DNA sequencing of patients with a 

16p11.2 deletion and heart defects should be performed. A confirmation of a mutation 

in the ppp4c locus of these patients would be the identification of a new gene involved 

in heart formation, which would open new ways in diagnostics and therapy. 
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5.8 Zebrafish compared with other disease models  

The results of this thesis clearly demonstrate how useful the zebrafish is as a model for 

neurological diseases, even when lacking the most important diagnostic component of 

ASD, the language. The advantages of the zebrafish model are: a relatively easy and 

cheap maintaining, the availability of the complete genome sequence and a battery of 

genetic methods such as morpholino knockdown and Tol2 mutagenesis (Summerton 

and Weller 1997, Kwan, Fujimoto et al. 2007). Further, the zebrafish offers genetic 

resources, such as GFP reporter vectors, which enable the detailed analysis of a large 

number of non-coding regulatory elements (Woolfe, Goodson et al. 2005, Hufton, 

Mathia et al. 2009). Nevertheless, it is interesting to ask what alternative options 

researchers currently have that could help to enrich our understanding of ASD and how 

they compare to the zebrafish.  

Cell cultures of human cell lines or primary cells from patients offer the evolutionary 

closest, but probably also the simplest model. It has a high potential to test for example 

the effects of noncoding mutations on transcription or expression levels (Comoletti, De 

Jaco et al. 2004). However, the low complexity of this system prevents an initial 

identification of potential ASD genes. Another possibility is Drosophila melanogaster, 

a fly that has already been used successfully to model human neurological disorders like 

Huntington’s disease (Zhang, Feany et al. 2009) or schizophrenia (Dickman and Davis 

2009). Therefore, the fruit fly is an excellent and often discussed model organism to 

investigate neurological disorders (Sawa 2009, O'Kane 2011). The most important 

advantage is the availability of a large number of mutants which offers the possibility 

for extensive forward genetic screens. Nevertheless, the large evolutionary distance 

between insects and vertebrates only allows a comparison of strongly conserved 

mechanisms. Therefore, it is not possible to investigate all ASD candidate genes in 

Drosophila melanogaster.  

Compared to the fruit fly and zebrafish, the mouse is the evolutionary closest animal 

model to human. Consequently, the question is how the mouse compares to the other 

model organisms? The first issue noticeable, when working with mice, is the very high 

costs for maintaining and keeping. Additionally, generating a mice knockout is very 

time consuming. All these factors together make the mouse not the first choice for 

testing a large number of genes. However, a mouse model offers a larger spectrum of 
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social behavior. An example for this is the study about the postsynaptic protein 

SHANK3, a potential inducer for the Phelan-McDermid syndrome which is associated 

with ASD. In this study Peça, Feliciano et al. (2011) showed, that heterozygous Shank3 

knockout mice display self-injurious repetitive grooming and a deficiency in social 

interactions. Besides the behavioral phenotype, the Shank3 mutant mice also exhibit 

electrophysiological changes and defects in striatal synapses and cortico-striatal circuits. 

This was confirmed by another Shank3 study from 2011, in which the same social 

affiliations, the electrophysiological and the neuronal structural changes had been 

observed (Wang, McCoy et al. 2011). In addition, Wang, McCoy et al. showed deficits 

of Shank3 mutant mice in a larger spectrum of behavioral perspectives, for example in 

ultrasonic vocalization, repetitive behavior, as well as learning and memory. Taken 

together, the results of Wang, McCoy et al. (2011) and Peça, Feliciano et al. (2011) 

impressively showed the potential of single gene analysis in mice. Nevertheless, the 

mouse offers the possibility to investigate larger deletions comprising several genes. A 

great example for this is a publication by Horev, Ellegood et al. (2011). They 

engineered two mouse strains, one carrying a deletion and the other one a duplication of 

the chromosomal region corresponding to the human 16p11.2 deletion. Both strains 

showed changes in the gene expression profiles, viability, brain architecture and also 

repetitive behavior. However, the strongest effect was found in mice carrying a 

heterozygous 16p11.2 like deletion (df/+). For example, the df/+ mice as well as the 

control mice showed an increased behavioral activity when transferred to a new 

environment. However, in contrast to the control, the df/+ mice presented a second burst 

of activity, while the control animals rested after investigation of their new territory. 

Further, the df/+ mice showed ceiling-climbing behavior restricted to specific locations 

and stereotypical movement. Both behaviors could be analogue to the ASD phenotype. 

Another important finding was an enlargement of the brain in df/+ mice measured by 

high resolution magnetic resonance imaging (MRI). This corresponds to the finding of 

macrocephaly in patients with 16p11.2 deletion (Shinawi, Liu et al. 2010, Schaaf, Goin-

Kochel et al. 2011). Taken together, the df/+ mice offer the potential for further 

investigation of global 16p11.2 deletion effects.  

Generally, cell culture, fruit fly and mouse models offer individual ways to investigate 

effects of genetic mutations. Nevertheless, the zebrafish offers the best mixture of fast 

reverse genetic testing and evolutionary distance to human. Therefore, it is probably the 
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most suitable model for large scale screens of potential ASD candidate genes. To date. 

573 potential ASD candidate genes are listed in the autism database AutDB (Update 

September 2013). This demonstrates that there is a need for fast screening methods to 

identify potential ASD inducing genes that would enable us to dissect the molecular 

pathways that underline this complex disease, but also classify ASD patients in more 

specific groups, which in extent will help identifying additional ASD genes.  

5.9 The future of the ASD quest 

An interesting question is how the price reduction of whole-genome sequencing will 

change the identification of ASD causing genes. It is likely that, due to its much higher 

resolution, the next generation sequencing (NGS) will replace the aCGH method. 

However, this resolution increase will only help to advance our knowledge on the 

molecular pathways involved in ASD, if the method used to diagnose and categorize 

ASD patients progresses. In addition, both the aCGH and the NGS techniques will be 

most effective if applied on large patient cohorts. This will serve to overcome the 

complex genetic background of ASD.   

A recent example for the usage of NGS technology in autism research is a publication 

by Shi, Zhang et al. (2013). They sequenced the complete genome of the members of a 

large family with two autistic children and 6 siblings. As result they identified over 3 

million single nucleotide variances (SNV) per patient. After applying several filtering 

steps to analyze their data, they prioritized 33 non-coding SNVs. This illustrates two 

issues: first, even with single base pair resolution, it is difficult to identify potentially 

damaging mutations and second, even with this technique, a large number of potential 

genes will be found. Hence, a model to test all these candidates will still be needed, and 

as shown in this thesis zebrafish is a great candidate for this. 
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7 Supplementary  

7.1 Detailed protocol of whole mount in situ hybridization  

Re-hydration  
 75 % methanol / PBS 5 min 
 50 % methanol / PBS 5 min 
 25 % methanol / PBS 5 min 
 PBST 5 min 

Permeabilization and hybridization 
 Proteinase K 10 µg/ml in PBST 
 4 % PFA / PBS 20 min. 
 5 min PBST / repeat 3x 
 Wash in 50 % hyb(+)/ PBST 
 Wash in 100 % hyb(+)  
 Aliquote embryos into multiple tubes containing 0.5 ml hyb(+) mix and incubate at 65°C 

for 4 hrs. 
 replace with new hyb(+) (150 µl / tube) add DIG-labeled RNA probe (1 ng/µl) incubate at 

65°C overnight 

Post-hybridization washes 
 hyb mix (HM-), brief wash at 65°C 
 75 % HM- / 2x SSC 10 min at 65°C 
 50 % HM- / 2x SSC 10 min at 65°C 
 25 % HM- / 2x SSC 10 min at 65°C 
 2x SSC 10 min at 65°C 
 0.2x SSC 25 min at 65°C / repeat 3x 

The following washes are performed at room temperature (RT)  
 75 % 0.2x SSC / PBST 5 min 
 50 % 0.2x SSC / PBST 5 min 
 25 % 0.2x SSC / PBST 5 min 
 PBST, 5 min repeat 2x 

Blocking 

Replace PBST with blocking solution and incubate at 4°C overnight 

Antibody incubation 

Renew blocking solution add 1:5000 anti-DIG antibody. 4 h RT gently shaking (40 rpm) 

Washing  

 PBST 15 min repeat 6x 
 AP buffer 5 min repeat 2x 

Staining  

Transfer embryos into a 24-well cell culture plate, replace AP buffer with staining solution (10 ml AP 

buffer, 45 µl NBT, 35 µl BCIP). The coloring is light sensitive. 
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 when the desired staining is reached, stop coloring by taking of as much staining solution 
as possible 

 wash 3x with PBS 
 replace PBS with 100 % glycerol (shake gently overnight, 40rpm) 
 store at 4°C 

 

Solutions 

Hybridization mix (HM+) / HM- without heparin and tRNA 

 25 ml formamide (in the fridge) 
 12.5 ml 20x SSC (DEPC stock) 
 460 l citric acid (1 M stock solution) 
 250 l Tween (20 % stock solution) 
 250 l tRNA (50 mg/ml stock solution in -20°C) 
 50 l heparin (50 mg/ml stock solution in -20°C) 
 add DEPC-treated water up to 50 ml 

Blocking solution 

PBST with 2 mg/ml BSA and 2 % sheep serum.  

AP buffer 

 1 ml NaCl (5 M stock solution) 
 5 ml Tris, pH 9.5 (1 M stock solution) 
 2.5 ml MgCl2 (1 M stock solution) 
 5 ml Tween (10 % stock solution) 
 add sterilised water (not DEPC) up to 50 ml 

 

7.2 Detailed protocol of whole mount RNA in situ hybridization 

Day1  

Deparaffinization / re-hydration   

 2 x 15 min Ultra Clear  
 2 x 10 min 100 % EtOH  
 5 min 75 % EtOH / H2O-DEPC  
 5 min 50 % EtOH / PBS-DEPC 
 5 min 25 % EtOH / PBS-DEPC 
 2 x 5 min PBS-DEPC  

Post fixing  
 15 min 4 % PFA / PBS room temperature (RT) 
 Rinse in PBST-DEPC 
 2 x 5 min PBST-DEPC  
 Proteinase K 15 µl (20 mg/ml) in 200 ml PBS- DEPC 10 min 
 Rinse in PBST- DEPC  
 2 x 5 min PBST- DEPC 
 5 min 4 % PFA / PBS (RT), re-use PFA from before  
 Rinse in PBST-DEPC 
 2 x 5 min PBST-DEPC  
 Acetylation (prepare fresh 1 M stock at 4°C, keep in the dark) 

10 min 0.1 M TEA, 500 µl acetic anhydride, add to 200 ml H2O DEPC 
 Rinse in PBST-DEPC 
 2 x 5 min PBST-DEPC  
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Prehybridization  
 put slides into a wet chamber (5x SSC/ 50 % formamide) and apply 150 µl pre-warmed 

hybridization buffer and add coverslip on each slide 
 pehybridization for 1 - 4 h (longer prehybridization will give better results)  

Hybridization  
 Add 1 µl of labeled probe per 100 µl hybridization buffer and heat up to 65°C for 5 min 
 Carefully lift the coverslip and apply the probe  
 Incubate at 65°C overnight (seal chamber with tape) 

Day 2 

Post hybridization washes  
 prewarm solutions  
 set water bath at 37°C heat RNAse wash buffer to 37°C 
 lift cover slips in 5x SSC  
 30 min 1x SSC/ 50 % Formamide 65°C 
 10 min RNAse wash buffer 37°C  
 30 min RNAse wash buffer (200 ml) + RNAse (10 mg/ml) 400 µl 37°C 
 10 min RNAse wash buffer 
 20 min 2x SSC 65°C 
 20 min 0.2x SSC 65°C 
 20 min 0.2x SSC 65°C 

Antibody incubation  
 wash 2x, 5 min MABT (fresh) at room temperature (RT) 
 blocking in 20 % HISS/ MABT > 1 h at RT 
 (Prepare during blocking) antibody preincubation 5 % HISS/ MABT antiDIG AB 1:2500 

at 4°C > 2 h 
 add 0.05 % Tween20 to antibody solution 
 put 400 µl on each slide and cover with parafilm  
 incubate 4°C overnight in wet chamber  

Day 3 

Antibody detection / staining  
 lift cover slips in MABT 
 wash 3x 5 min MABT  
 10 min ALP- buffer (fresh)  
 coloring 200 ml ALP + 70 µl NBT/BCIP (each) 
 place cuvette aluminium wrap on rocking platform at day RT overnight or weekend 4°C 

Stop staining  
 wash in ALP  
 wash 2x, 5 min PBS  
 30 min 4 % PFA/PBS RT (re-use from day 1)  
 wash 2x, 5 min PBS  
 cover in hydro matrix, dry overnight  

 

PBST  

 1x PBS +-0.1 % Tween20 

Triethanolamine TEA 
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 Stock 1 M  

Hybridisation buffer  

 1 ml Tris 1 M pH 7.5 
 12ml NaCL 5 M  
 200 µl EDTA 0.5 M 
 1.25 ml SDS 20 %  
 25 ml dextran sulfate 40 % 
 2 ml Denhardt’s solution 
 2ml tRNA (yeast, Gibco 10 mg/ml) 
 50 ml formamid  
 Add to 100 ml H2O DEPC  
 Aliquot 8ml, store at -20°C 

MABT-buffer 

 100 ml maleic acid 1 M (pH7.0 ~70g NaOH pellets)  
 30 ml NaCl 5 M  
 0.05 % Tween20  
 Add to 1000 ml H2O bidistilled 

ALP-buffer  

 16 ml NaCl 5 M  
 80 ml Tris 1 M pH 9.5 
 40 ml Mg2Cl 1 M  
 4 ml Tween20 10 % 
 Add to 800 ml with H2O bidistilled 
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7.3 gdpd3 alignment 

 

 

 

 
Figure 64 gdpd3 alignment shows truncation of zebrafish gdpd3b 
Alignment based on zebrafish gdpd3a GI:47085996 and gdpd3b GI:528495324; gdpd3 
fugu (Takifugu rubripes) ENSTRUG00000005467; gdpd3 medaka (Oryzias latipes) 
ENSORLG00000011954; gdpd3 macaque (Macaca mulatta) GI:302564980; gdpd3 
human (Homo sapiens) GI:146198639; gdpd3 mouse (Mus musculus) GI:110431345 
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7.4 Gene IDs and Vectors  

Table 29 Gene list of the 16p11.2 CNV and the orthologous zebrafish genes   

Human Zebrafish   

Gene Ensembl ID Gene Ensembl ID Chr strand 
SPN ENSG00000197471 -  
QPRT ENSG00000103485 -  
C16orf54 ENSG00000185905 -  

HIRIP3 ENSG00000149929 hirip3  ENSDARG00000027749 3 - 
KCTD13 ENSG00000174943 kctd13 ENSDARG00000044769 3 - 
SEZ6L2 ENSG00000174938 SEZ6L2 ENSDARG00000076052 3 - 
ASPHD1 ENSG00000174939 ASPHD1 ENSDARG00000075813 3 + 
DOC2A ENSG00000149927 DOC2A ENSDARG00000078736  3 + 
MVP ENSG00000013364 mvp ENSDARG00000021242 3 - 
FAM57B ENSG00000149926 fam57ba ENSDARG00000026875 3 - 
CDIPT ENSG00000103502 cdipt ENSDARG00000070686 3 - 
TAOK2 ENSG00000149930 TAOK2 ENSDARG00000074899 3 - 
PPP4C ENSG00000149923 ppp4ca ENSDARG00000070570 3 + 
MAPK3 ENSG00000102882 mapk3 ENSDARG00000070573 3 + 
GDPD3 ENSG00000102886 gdpd3 ENSDARG00000074466 3 + 
YPEL3 ENSG00000090238 ypel3 ENSDARG00000055510 3 + 
CORO1A ENSG00000102879 coro1a ENSDARG00000054610 3 - 
ALDOA ENSG00000149925 aldoaa ENSDARG00000011665 3 + 

TBX6 ENSG00000149922 tbx6l ENSDARG00000006939 5 + 

c16orf53 ENSG00000185928 C12H16orf53 ENSDARG00000076966 12 + 
FAM57B ENSG00000149926 fam57bb ENSDARG00000074564 12 - 
MAZ ENSG00000103495 MAZ (1of2) ENSDARG00000063555 12 - 
TAOK2 ENSG00000149930 taok2b ENSDARG00000079261 12 - 
GDPD3 ENSG00000102886 GDPD3 (2 of 2) ENSDARG00000006944 12 - 
TBX6 ENSG00000149922 tbx6 ENSDARG00000011785 12 + 
PPP4C ENSG00000149923 ppp4cb ENSDARG00000076439 12 - 
ALDOA ENSG00000149925 aldoab ENSDARG00000034470 12 - 
PRRT2 ENSG00000167371 PRRT2 ENSDARG00000089367 12 - 
KIF22  ENSG00000079616 ENSDARG00000077375 12 - 

INO80E ENSG00000169592 INO80E ENSDARG00000022939  16 + 

MAZ ENSG00000103495 MAZ (2of2) ENSDARG00000087330 21 - 
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Table 30 Vector used for cloning of gene fragments for RNA synthesis  

gene fragment of vector  cloned by 

asphd1 pCRII Magdalena Ciurkiewicz 

gdpd3a pCRII Magdalena Ciurkiewicz 

kctd13 pCRII Magdalena Ciurkiewicz 

mapk3 pCRII Magdalena Ciurkiewicz 

ppp4ca pCRII Magdalena Ciurkiewicz 

ppp4cb pCRII Magdalena Ciurkiewicz 

sez6l2 pCRII TOPO Udo Georgi 

ypel3 pCRII Magdalena Ciurkiewicz 

7.5 Zebrafish measurements  

Table 31 Head size body length measurement of asphd1 knockdown and control embryos 

 

asphd1 5’UTR 
2 dpf 

asphd1 5’UTR 
3 dpf 

asphd1 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 
head size body 

length head size body 
length head size body 

length  head size body 
length head size body 

length head size body 
length 

 415,75 2952,54 408,5 3219,3 482,21 3442,63  487,82 3179,59 498,46 3249,83 617,43 3824,93 
 426,7 2924,62 467,19 3223,53 572,59 3650,96  524,88 3232,39 576,35 3543,47 596,04 3864,21 
 432,37 2979,93 497,25 3083,37 544,15 3430,71  472,41 3056,21 556,61 3548,68 613,85 3701,94 
 399,25 2918,59 452,78 3172,81 520,47 3506,31  418,74 2696,14 563,45 3591,79 606,5 3716,17 
 400,27 2926,78 491,6 3290,41 566,2 3696,77  480,45 3058,32 576 3560,84 618,97 3830,83 
 405,52 2894,84 434,86 3173,19 579,78 3814,53  479,75 3155,58 532,06 3426,61 606,85 3801,05 
 404,94 2938,25 516,45 3322,04 558,1 3345,73  491,76 3151,55 572,85 3585,19 667,44 4013,94 
 413,53 2882,67 493,15 3392,84 545,85 3386,68  458,98 3097,15 551,92 3469,59 574,52 3776,59 
 407,91 2982,31 505,1 3343,58 588,65 3703,74  451,47 3079,47 541,13 3428,08 651,66 3833,21 
 369,81 2737,35 456,85 3198,73 559,49 3571,92  478,35 3094,05 575,34 3412 594,05 3832,44 
 428,24 2989,84 518,12 3221,54 580,97 3519,11  438,57 3131,97 531,83 3450,53 607,21 3800,56 
 370,63 2871,74 471,17 3270,09 590,82 3562,97  473,42 3098,01 549,58 3598,5 636,95 3903 
 452,99 3085,22 468,58 3114,26 571,98 3526,87  479,91 3079,3 540,59 3292,16 602,8 3802,87 
 411,76 2884,24 491,89 3240,12 607,662 3614,94  475,53 2986,88 534,23 3331,61 614,29 3859,05 
 411,43 2951,23 499,59 3110,25 511,63 3283,44  422,42 3102,02 506,51 3274,79 630,45 3598,98 
 397,54 2751,79 540,81 3397,41 566,59 3604,82  412,36 2912,74 552,19 3369,94 645,64 4000,95 
 390,95 2809,73 494,54 3219,8 585,29 3458,94  459,88 3007,98 502,06 3124,8 654,2 4074,2 
 440,04 2991,01 522,7 3473,68 562,68 3463,62  451,68 3058,98 554,24 3545,07 643,86 3725,35 
 427,2 3142,71 484,28 3211,58 582,5 3640,5  488,51 3178,76 543,67 3437,95 626,01 3647,28 
 431,6 3013,01 522,62 3344,08 544,15 3546,8  484,68 3135,32 518,52 3286,81 602 3718,05 
 406,25 3006,29 532,11 3312,8 524,25 3355,9  431,54 2669,95 563,45 3554,78 654,2 3868,89 
 412,89 2926,23 463,86 3111,87 523,45 3505,58  483,64 3173,53 543,62 3375,49 636,53 3889,48 
 431,82 3121,09 533,33 3413,38 557,72 3487,07  463,08 3052,75 545,02 3340,53 617,41 3837,24 
 411,81 2820,62 468,75 3224,36 545,24 3570  430,61 3077,24 542,7 3494,19 623,47 3895,2 
 411,9 2887,37 464,84 3365,81 557,1 3517,34  453,03 2955,93 573,96 3616,64 643,29 3719,86 
 423,28 2945,21 473,15 3158,58 520,59 3225,68  472,71 3095,66 508,16 3346,32 626,01 3706,22 
 382,89 2871,62 495,67 3266,77 561,12 3405,1  466,62 3143,26 576,85 3496,28 628,76 3792,56 
 423,93 3059,9 451,1 2969,45 570 3575,14  418,32 2925,35 544,21 3565,2 584,72 3671,75 
 419,58 2769,05 554,23 3379,46 560,64 3543,24  450,8 2983,41 556,61 3443,87 646,81 3773,99 
 404,94 2822,11 434,01 3122,3 523,05 3347,29  475,39 3130,47 551,42 3456,38 574,52 3753,09 
 407,91 2913,87 437,04 3130,26 562,06 3632,33  487,73 3058,12 544,6 3434,21 606,47 3719,11 
 357,89 2650,58 491,42 3257,46 527,56 3393,52  509,49 3082,66 544,55 3524,78 606,99 3768,08 
 419,72 3157,3 505,32 3312,4 487,4 3362,91  467,62 3116,19 576 3538     
 386,03 2828,72 473,6 3185,3 558,52 3756,58  378,84 2809,01 559,8 3572,2     
 393,7 2871,37 490,65 3217,51 481,8 3246,55  401,61 2872,44 543,59 3601,95     
 377,18 2674,53 537,35 3308,71 488,39 3302,48  400,46 2908,21 551,43 3595,92     
 404,12 2762,51 477,76 3261,96 584,72 3481,07  467,25 3142,18 543,83 3350,89     
 374,23 2739,47 455,13 3164,56 601,34 3753,46  491,03 3179,63 521,34 3383,17     
 388,67 2778,94 476,31 3230,07 573,36 3569,69  430,61 3081,72 541 3476,16     
 438,64 2943,39 462,72 3135,51 536,53 3506,57  468,63 3184,27 530,8 3238,46     
 381,5 2900,06 502,85 3034,15 543,25 3498,96  467,19 3221,81 571,27 3448,82     
 405,51 2931,34 513,61 3150,18 527,65 3452,55  438,51 3080,08 563,93 3403,14     
 366,37 2697,7 507,03 3295,86 584,72 3467,34  484,19 3226,38 547,59 3587,81     
 415,46 2840,22 514,89 3235,78 542,22 3372,61  479,75 3172,01 571,82 3520,42     
 435,44 3129,49 493,29 3195,36 568,87 3684,04  424,95 2839,96 568,04 3523,89     
 454,95 2944,89 479,96 3250,24 512,21 3005,05  407,77 2952,91 555,94 3578,5     
 408,27 2892,31 513,69 3217,85 541,5 3374,99  447,36 3030,32 555,71 3480,12     
 451,02 3005,81 387,88 2815,98 585,29 3692  471,34 3118,56 544,36 3389,84     
 402,35 2867,78 483,42 3233,82 619,29 3779,24  448,95 3087,69 517,7 3471,85     
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asphd1 5’UTR 
2 dpf 

asphd1 5’UTR 
3 dpf 

asphd1 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 
head size body 

length head size body 
length head size body 

length  head size body 
length head size body 

length head size body 
length 

 333,63 2825,57 488,85 3257,99 521,54 3547,84  463,08 2975,58 482,38 3331,27     
 435,1 2869,39 500,83 2965,3 592,1 3605,2  427,65 2793,03 574,74 3533,57     
 403,31 2827,15 501,47 3361,91 562,06 3534,97  462,28 3073,8 570,76 3437,09     
 399,25 2867,78 460,03 3174,67 552,86 3371,83  438,66 3027,75 509,47 3376,99     
 407,53 2874,35 442,35 3113,22 548,62 3364,78  434,87 3083,86 506,79 3310,74     
 421,57 2906,54 550,12 3516,62 533,79 3370,76  476,5 3115,39 505,02 3076,05     
 425,03 3013,36 449,86 3119,51 572,26 3593,15  460,19 3076,5 535,8 3399,6     
 400,66 2989,92 504,86 3230,26 451,78 2885,8  454,69 3046,83 517,75 3100,62     
 415,66 2920,66 473,06 3143,5 438,48 3121,28  476,11 3104,51 512,47 3442,73     
 390,25 2811,23 507,03 3274,48 560,64 3423,67  474,75 3090,85 524,33 3371,61     
 346,43 2633,4 512,52 3330,83 563,05 3554,85  459,05 3099,55 543,83 3484,8     
 361,8 2655,85 423,53 3025,03 548,2 3409,1  462,86 2983,31 498,96 3090,07     
 420,07 2995,58 488,27 3410,75 578,76 3670,74  439,18 2906,78 554,24 3441,66     
 406,44 2901,67 529,89 3343,34 516,67 3308,76  442,61 2971,55 560,22 3509,92     
 434,95 2949,33 523,75 3276,95 521,75 3399,86  415,6 2931,07 576,72 3356,96     
 427,15 2969,2 449,26 3038,63 509,09 3331,72  446,69 3094,47 563,04 3402,95     
 415,34 2922,03 402,59 3004,04 429,91 3153,9  497,89 3125,64 469,88 3226,73     
 404,06 2884,48 469,95 3247 570,78 3479,08  414,63 2873,78 540,35 3505,04     
 431,6 2929,46 525,02 3541,97 499,12 3240,57      528,4 3309,36     
 411,31 2854,75 381,31 2996,18 548,8 3415,81        
 374,51 2711 466,3 3145,54 554,18 3430,62        
 434,42 2979,04 440,72 3117,7 594,48 3687,23        
 457,45 3023,05 473,75 3092,97 529,59 3488,88        
 413,53 2973,33 432,9 3067,17 537,38 3527,05        
     500,61 3331,06 483,14 3192,45        
     542,09 3489,82 541,19 3505,04        
     432,41 2961,97 566,95 3526,68        
     449,86 3011,64 582,95 3596,07        
     565,41 3624,2 495,28 3439,79        
     448,78 3224,8 543,54 3580,28        
     486,81 3393,67 481,01 3283,8        
     455,19 3108,04 576,76 3776,49        
     476,88 3233,64 549,79 3595,74        
     450,14 3093,43 575,94 3321,95        
     481,09 3372,93 477,34 3274,2        
     418,23 3051,72 557,51 3484,48        
     443,82 3182,24 560,11 3573,19        
     505,72 3322,36 450,88 3048        
     478,96 3337,5 507,95 3355,86        
     501,89 3358,36 499,48 3304,94        
     451,76 3027,85 576,95 3522,77        
     535,19 3446,86 511,53 3462,23        
     447,13 3201,21 571,38 3607,98        
     428,13 2913,87 528,99 3400,24        
     453,08 3019,71 527,9 3300,28        
     438,92 3190,67 495,16 3327,34        
     476,58 3225,74 543,44 3446,03        
     409,82 3167,8 503 3209,39        
     421,18 3017,45 523,86 3467,54        
     476,41 3258,48 542,43 3605,34        
     540,45 3425,13 556,52 3651,33        
     477,2 3361,81 612,46 3689,92        
     436,48 3073,31 540,06 3538,47        
     411,98 3014,26 627,89 3943,43        
     545,41 3507,88 554,27 3477,54        
     477,01 3385,34 600,13 3793,25        
     390,16 2969,54 510,44 3484,16        
     442,81 3068,49 575,59 3699,6        
     518,01 3494,05 562,95 3628,86        
     508,05 3383,51 537,9 3252,97        
     524,14 3462,79 493,33 3318,06        
     450,23 3114,11 483,86 3161,64        
     469,93 3213,01 534,11 3462,24        
     490,65 3200,92 586,72 3683,46        
     442,54 3217,46 508,99 3462,16        
     490,51 3217,97 504,45 3205,45        
     489,78 3350,59 582,8 3698        
     486,95 3277,76 506,02 3235,89        
     415,43 3090,81 550,58 3420,37        
     429,46 3161,06 438,61 3204,76        
     471,45 3105,63 483,96 3264,6        
     546,55 3360,94 500,18 3282,04        
     455,81 3131,16 446,22 3215,61        
   477,41 3117,83 498,74 3232,72        
   487,75 3198,75 518,01 3135,59        
   463,06 3210,53 492,87 3310,81        
   442,22 3116,78 492,33 3310,25        
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asphd1 5’UTR 
2 dpf 

asphd1 5’UTR 
3 dpf 

asphd1 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 
head size body 

length head size body 
length head size body 

length  head size body 
length head size body 

length head size body 
length 

   473,57 3188,28 613,27 3709,67        
   490,4 3241,54 541,34 3338,36        
   445,67 3121,36 402,4 2926,53        
   481,38 3220,16 447,11 3110        
   466,04 3283,43 588,02 3614,03        
   566,52 3549,75 600,13 3784,69        
   468,2 3119,65 456,76 3145,51        
          563,82 3530,43        

Average 408,33 2899,68 477,90 3220,29 538,92 3452,87  456,68 3048,33 542,82 3427,14 620,62 3803,78 
Standard deviation 24,77 114,01 38,22 144,85 43,30 190,39  28,41 119,04 24,89 129,35 23,49 104,94 

Number of embryos 73 73 133 133 134 134  67 67 68 68 32 32 

 

Table 32 Head size body length measurement of kctd13 knockdown and control embryos 

 

kctd13 5’UTR 
3 dpf 

kctd13 5’UTR 
4 dpf  SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length  head size body 
length head size body 

length 
 448,89 3146,06 554,36 3506,05  545,82 3446,69 612,1 3719,45 
 452,95 3279,11 563,91 3509,01  541,53 3334,71 624,93 3938,76 
 460,7 3296,25 591,4 3519,17  520,19 3189,24 602,6 3775,22 
 462,67 3234,74 564,79 3526,12  538,25 3429,87 588,91 3613,04 
 468,34 3059,66 583,76 3537,97  503,59 3403,25 626,15 3869 
 470,38 3277,68 595 3540,11  492,75 3316,73 577,32 3674,45 
 472,2 3350,75 598,56 3546,06  549,26 3427,75 616,49 3914,87 
 473,24 3307,97 603,63 3546,38  532,55 3312,17 560,33 3606,46 
 474,16 3373,21 637,97 3548,84  514,92 3444,75 591,32 3797 
 477,39 3360,71 581,59 3557,39  548,65 3421,17 606,69 3806,76 
 477,6 3460,87 642,62 3558,3  516,63 3228,87 601,61 3709,7 
 478,15 3207,1 561,81 3582,34  523,71 3464,18 566,11 3696,31 
 478,24 3400,6 568,11 3595,4  527,46 3542,43 610,65 3827,62 
 481,48 3342,4 610,46 3597,45  543,81 3395,74 616,95 3763,24 
 482,02 3293,35 616,83 3605,04  509,9 3163,93 554,45 3647,66 
 484,37 3249,31 575,39 3608,46  497,3 3295,02 628,03 3770,55 
 484,75 3404,45 588,38 3613,05  556,05 3473,68 595,82 3765,75 
 485,35 3256,24 593,75 3625,04  540,21 3388,85 547,35 3698,7 
 485,35 3333,44 580,44 3626,06  554,9 3604,32 630,67 3733,81 
 485,63 3272,24 615,75 3629,81  502,38 3477,23 607,88 3582,44 
 488,08 3274,96 644,83 3638,04  516,58 3404,73 605,65 3807,91 
 490,81 3328,67 641,36 3642,44  532,55 3361,3 556,32 3607,31 
 491,39 3309,77 666,67 3643,49  504,04 3307,37 602,17 3722,91 
 491,69 3406,16 620,27 3650,92  562,5 3498,31 613,8 3763,07 
 491,82 3421,65 640,29 3658,36  535,69 3465,91 607,16 3800,21 
 494,53 3307,7 573,76 3659,13  551,74 3589,91 603,63 3725,14 
 495,21 3368,03 618,96 3666,85  502,64 3282,46 633,16 3989,94 
 495,83 3452,4 681,76 3669,6  441,99 3239,53 601,57 3646,44 
 496,24 3406,83 677,88 3673,12  574,92 3521,93 623,28 3882,24 
 498,76 3363,77 603,86 3674,15  521,31 3239,4 613,14 4000,9 
 498,89 3340,17 670,8 3675,03  534,69 3480,55 638,34 3858,43 
 502,01 3421,9 583,73 3675,21  558,37 3500,56 618,51 3810,45 
 502,34 3318,62 695,04 3678,99  534,82 3375,48 623,5 3749,81 
 502,64 3299,48 583,73 3680,14  568,15 3483,84 589,13 3809,36 
 502,64 3368,31 646,02 3680,19  506,34 3329,74 610,24 3788,01 
 503,13 3600,39 646,02 3680,19  541,35 3431,05 641,75 3987,65 
 503,35 3322,55 610,89 3680,85  518,97 3506,29 607,63 3881,03 
 508,34 3314,61 609,21 3684,48  520,99 3308,43 627,44 3819,76 
 510,88 3284,75 573,78 3685,39  553,59 3537,9 609,3 3883,76 
 511,24 3084,54 638,91 3696,96  541,35 3500,6 598,6 3633 
 511,92 3184,33 614,23 3697,59  559,43 3541,34 641,67 3941,23 
 512,63 3448,83 667,12 3697,79  553,59 3641,5 623,28 3853,78 
 513,32 3364,57 587,07 3698,33  509,09 3475,62 606,31 3833,45 
 513,81 3199,85 612,86 3699,23  539,38 3525,75 630,83 3848,72 
 514,92 3319,03 597,32 3718,32  506 3321,35 599,37 3787,18 
 514,95 3424,24 627,03 3722,98  539,65 3637,91 613,14 3822,47 
 515,79 3593,69 602,09 3727,38  519,52 3565,25 598,78 3857,36 
 516,88 3356,2 674,31 3729,67  518,06 3739,62 642,12 3855,42 
 520,72 3357,37 576,49 3730,12  539,65 3522,31 612,77 3762,35 
 522,88 3452,41 597,91 3734,69  531,02 3559,75 611,54 3733,63 
 522,88 3618,27 698,41 3738,02  538,06 3555,77 609,58 3747,88 
 523,65 3391,8 690,91 3741,07  512,48 3553,52 591,78 3787,05 
 524,3 3530,58 610,96 3743,41  539,65 3642,31 641,29 3728,43 
 525 3429,17 645,31 3745,24  558,25 3518,87 635,8 3993,37 
 525 3435,8 656,02 3747,08  533,51 3568,79 632,28 3794,45 
 525,53 3404,19 610,83 3748,59  548,05 3534,91 627,06 3812,31 
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kctd13 5’UTR 
3 dpf 

kctd13 5’UTR 
4 dpf  SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length  head size body 
length head size body 

length 
 526,42 3527,03 664,02 3758,62  498,98 3307,85 589,98 3819,38 
 526,79 3450,75 633,75 3769,14  502,44 3345,43 623,5 3846,83 
 527,12 3403,54 598,98 3773,43  546,48 3459,27 608,37 3741,47 
 527,85 3562,64 593,04 3774,75  483,53 3251,77 619,66 3819,21 
 530,73 3351,01 718,06 3778,65  541,81 3490,71 598,6 3702,12 
 530,73 3466,85 670,91 3780,88  495,52 3401,01 609,28 3797,74 
 531,13 3553,85 619,98 3790,13  538,66 3523,13 622,23 3876,44 
 533,88 3556,74 634,5 3792,11  502,87 3277,52 636,67 3772,35 
 536,58 3476,15 656,14 3803,54  525,44 3461,27 582,44 3843,97 
 537,81 3337,48 680,02 3816,27  506,69 3438,57     
 538,25 3437,07 602,75 3830,75        
 539,47 3389,37 648,4 3840,49        
 539,47 3422,4 672,84 3843,55        
 539,6 3492,84 596,02 3849,86        
 539,94 3408,47 699,58 3851,17        
 540,6 3577,46 604,07 3865,67          
 541,81 3331,18 670,91 3874,31      
 541,94 3427,22 655,76 3886,25      
 543,49 3449,19 623,74 3888,01      
 543,81 3378,16 723,43 3890,72      
 543,81 3615,07 613,43 3894,56      
 545,3 3525,3 687,87 3917,09      
 545,82 3539,5 658,49 3918,29      
 546,18 3450,78 649,8 3933,15      
 546,75 3583,84 646,18 3982,79      
 548,05 3607,11 680,79 3998,23      
 548,08 3446,73 630,29 4004,44      
 549,17 3575,43 655,56 4005,6      
 549,26 3476,5 644,92 4038,36      
 549,58 3469,99 630,29 4049,57      
 550,3 3457,92 643,49 4052,18      
 550,68 3460,93 657,73 4143,35      
 550,68 3605,35          
 553,59 3558,05          
 555,26 3469,45          
 556,18 3480,63          
 558,25 3577,4          
 560,78 3534,12          
 561,78 3665,66          
 561,87 3530,33          
 562,94 3466,1          
 564,58 3428,33          
 564,79 3633,91          
 570,83 3601,38          
 571,89 3616,04          
 572,87 3523,11          
 577,54 3584,27          
 585,15 3704,86          
 601,57 3835,5          
 610,65 3815,67          
 619,73 3957,28          

Average 522,61 3431,85 628,31 3736,22  542,82 3427,14 620,62 3803,78 
Standard deviation 34,49 146,06 39,30 141,37  24,89 129,35 23,49 104,94 

Number of embryos 107 107 88 88  68 68 32 32 

Table 33 Head size body length measurement of ppp4ca 5’UTR morpholino knockdown and control 
embryos 

 

ppp4ca 5’UTR 
2 dpf 

ppp4ca 5’UTR 
3 dpf 

ppp4ca 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 470,02 3112,93 464,57 3110,53 512,54 3478,33  424,13 2729,23 537,67 3322,86 598,03 3699,57 
 408,93 2976,54 429,86 2877,32 551,91 3539,62  471,93 3011,04 521,31 3331,87 587,77 3715,45 
 426,45 2840,69 477,55 3130,12 580,72 3496,27  450,05 2973,74 566,86 3595,3 670,65 3946,74 
 450,09 2970,03 494,58 3229,27 552,18 3454,34  500,74 3209,09 513,03 3367,83 628,24 3829,59 
 435,15 3030,89 510,12 3154,23 563,07 3586,65  482,1 3184,68 573,59 3477,24 605,74 3666,36 
 440,71 2864,72 513,48 3059,13 536,85 3393,53  487,76 3252,52 535,82 3222,53 634,23 3819,55 
 432,89 2876,44 501,3 3191,23 553,65 3449,6  494,08 3096,6 573,41 3377,07 632,28 3946,03 
 397,96 2734,09 465,61 2845,14 523,28 3500,01  484,46 3020,65 527,37 3492,48 609,21 3666,68 
 422,78 2833,02 456,77 3134,74 565,29 3239,55  470,99 3144,55 570,56 3598,39 581,24 3733,04 
 439,35 2834,26 490,35 3118,82 535,62 3424,87  495,02 3202,46 559,61 3662,38 624,35 3758,55 
 462,43 3039,59 481,3 3105,39 539,88 3550,91  436,93 3007,93 558,66 3448,59 594,13 3738,5 
 432,89 2817,13 472,21 3195,41 533,76 3430,1  495,02 3103,47 587,77 3515,76 653,05 3838,74 
 446,32 2853,68 470,48 3267,54 539,96 3418,22  465,42 3084 542,36 3420,51 667,27 3874,12 
 433,13 2927,7 500,2 3244,24 531,52 3385,69  457,02 2890,35 581,3 3478,67 611,54 3929,74 
 404,73 2822,51 454,61 2973,57 578,44 3580,47  474,71 3102,32 552,31 3506 652,69 3864,99 
 430,13 2970,1 467,76 3151,34 541,18 3207,47  503,49 3197,59 570,73 3563,05 606,49 3857,5 
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ppp4ca 5’UTR 
2 dpf 

ppp4ca 5’UTR 
3 dpf 

ppp4ca 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 410,89 2891,94 510,87 3288,77 598,87 3647,6  482,1 3123,82 584,44 3569,75 631,62 3702,35 
 446,72 3054,13 462,75 2970,66 579,96 3554,87  485,26 3124,4 585,06 3654,97 618,51 3841,8 
 427,98 2924,79 491,36 3299,66 594,52 3605,57  478,18 3189,73 545,5 3535,82 627,18 3638,94 
 437,31 3005,12 473,4 3182,86 585,24 3635,77  452,8 3115,69 529,62 3339,16 621,13 3965,24 
 437,75 2969,98 494,85 2951,44 533,69 3353,09  483,29 3190,52 581,53 3600,88 620,27 3847,24 
 455 2981,33 499,82 3409,85 521,69 3501,57  477,29 3066,8 588,7 3580,91 620,27 3628,25 
 454,6 2996,11 466,56 3006,54 560,43 3333,04  475,66 3030,98 571,62 3501,83 607,16 3809,5 
 386,59 2762,32 539,62 3305,03 499,66 3388,8  507,79 3130,37 526,79 3556,22 660,66 3946,12 
 445,69 2796,13 459,52 2953,28 531,7 3185,53      528,53 3329,74 602,12 3737,06 
 450,43 2925,93 444,29 3157,8 582,27 3520,85      576,77 3633,28 603,35 3692,49 
 345,35 2863,9 436,04 3105,07 542,91 3257,78      592,26 3556,37 596,02 3909,73 
 401,7 2947,59 481,3 3163,45 552,71 3560,71      511,39 3556,42 621,9 3823,92 
 438,08 2855,44 470,83 3030,66 533,68 3456,89      575,17 3521,93 644,12 3865,58 
 437,65 2683,81 459,82 2994,46 531,35 3450,29      500,3 3153,52 605,64 3780,52 
 465,5 2984,26 504,84 3301,72 588,36 3668,46      516,88 3479,46 573,58 3705,24 
 432,66 2827,21 426,5 3114,89 576,33 3644,82      568,64 3554,36 598,52 3782,74 
 440,23 2809,84 499 3422,55 498,35 3464,78      580,45 3530,03 552,2 3740,81 
 401,37 2843,9 440,63 3070,16 478,53 2826,05          619,93 3804,87 
 370,03 2673,16 450,33 3132,52 539,8 3056,78          612,93 3815,65 
 442,11 2938,02 475,87 3175,51 491,57 2929,88          579,29 3727,23 
 398,24 2699,14 477,23 3297,41 553,65 3579,08          634,9 3803,74 
 448,99 3061,49 489,73 3035,33 556,1 3451,97          640,57 3908,95 
 418,92 2765,75 487,22 3087,47 587,77 3611          611,49 3711,95 
 440,23 2903,8 494,7 3064,41 531,9 3629,92          631,05 3866,34 
 447,31 2943,15 469,94 3247,08 454,16 2977,07             
 438,93 3057,2 474,55 2951,92 555,54 3325,1             
 413,33 2703,69 457,74 3204,56 540,16 3293,67             
 446,01 2946,44 478,4 2982,98 531,84 3301,15             
 442,19 2757,58 452,14 2941,23 559,66 3450,8             
 423,7 2726,53 490,53 3021,96 520,51 3410,77              
 462,62 3003,97 496,39 3149,33 560,91 3378,77        
 468,59 2921,54 474,55 3075,44 585,23 3605,39        
 394,44 2824,35 503,96 3038,61 568,2 3567,64        
 475,19 2970,67 499,8 2963,48 506,54 3360,6        
 465,95 3008,24 500,2 3282,61 527,7 3419,69        
 417,98 2843,3 531,62 3383,44 498,85 3348,77        
 440,1 2628,03 496,01 2979,2 571,78 3426,78        
 451,77 2919,89     549,86 3283,21        
 444,39 2851,12     518,74 3341,46        
 457,02 2992,1     525,15 3180,87        
 458,87 2921,27     558,84 3424        
 441,23 2910,02     540,16 2714,99        
 399 2982,85                
 434,5 2876,82                
 386,39 2679,06                
 437,11 2936,3                
 434,5 2784,57                
 422,7 2914,67                
 452,94 3103,76                
 456,2 2934,59                
 459,63 2959,11                
 414,78 2871,91                
 432,47 2919,52                

Average 476,51 3090,94 555,64 3485,91 617,28 3798,54  463,60 3015,43 571,17 3561,69 612,99 3825,00 
Standard deviation 20,64 115,56 26,90 121,95 25,37 92,14  26,75 126,93 21,44 58,20 28,28 114,01 
Number of embryos 24 24 33 33 40 40  23 23 27 27 46 46 

Table 34 Head size body length measurement of ppp4ca splice site morpholino knockdown and control 
embryos 

 

ppp4ca splice site 
2 dpf 

ppp4ca splice site 
3 dpf 

ppp4ca splice site 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 390,01 2878,27 514,46 3434,62 547,5 3544,25  482,69 3155,58 596,49 3551,97 658,17 3906,38 
 419,72 2736,36 467,54 3099,86 553,2 3384,11  478,1 3084,59 547,35 3523,93 656,11 3844,47 
 479,98 3158,97 529,08 3366,59 523,71 3254,86  436,53 2878,05 570,73 3578,65 610,24 3769,44 
 413,76 2866,86 541,52 3232,63 549,64 3059,52  460,41 2911,01 606,71 3680,11 625,32 3772,57 
 419,56 2804,35 540,97 3643,1 568,14 3637,48  500,73 3181,35 562,99 3451,39 650,71 3768,34 
 419,83 2699,26 485,44 3116,11 514,35 3068,39  445,8 2989,07 580,8 3641,06 630,3 3877,82 
 452,15 2944,74 505,28 3054,13 531,5 3219,18  454 3083,01 604,48 3603,16 616,83 3961,84 
 441,42 2881,01 527,89 3372,27 555,77 3278,71  460,75 2980,29 592,48 3589,28 582,93 3741,74 
 456,58 2775,08 518,12 3256,69 528,03 3235,27  481,52 3060,08 592,57 3529,33 648,01 3946,82 
 421,04 2776,99 451,66 2924,2 596,13 3758,97  497,58 3152,95 559,45 3635,5 614,26 3837,58 
 452,04 2855,33 443,29 2863,53 603,07 3558,26  467,24 2923,76 548,84 3584,07 609,37 3815,97 
 418,72 2748,65 505,79 3179,69 534,6 3314,47  487,6 3169,38 579,3 3547,51 602,6 3795,72 
 428,7 2941,07 466,03 3050,7 552,69 3333,29  498,38 3069,49 576,06 3606,37 575,17 3661,85 
 403,91 2696,8 472,77 3205,14 509,94 3407,95  441,05 3029,58 551,59 3526,42 614,79 3771,59 
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ppp4ca splice site 
2 dpf 

ppp4ca splice site 
3 dpf 

ppp4ca splice site 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 412,74 2746,1 492,08 3132,19 590,7 3578,51  461,98 3114,93 568,06 3495,86 559,34 3695,17 
 394,24 2721,98 514,39 3248,94 569,91 3583,58  434,33 2787,03 591,02 3683,46 632,35 4015,9 
 452,82 2857,93 495,22 3026,48 552,23 3629,4  463,44 3056,49 507,4 3485,77 623,95 3917,39 
 383,27 2772,29 520,97 3204,96 534,18 3452,63  487,09 3070,86 551,24 3500,8 554,14 3750,01 
 430,06 2870,32 482,64 3090,7 582,77 3700,88  481,35 3101,22 560,31 3477,93 594,86 3831,03 
 427,41 2892,65 482,15 2868,87 561,93 3515,52  436,93 2902,96 562,6 3555,99 604,77 3833,83 
 435,28 2763,54 462,37 3059,24 499,7 3366,85  392,32 2768,31 555,51 3556,97 620,39 3922,78 
 413,38 2792,85 455,35 2912,91 526,03 3504,71  481,27 3102,99 598,4 3566,033 646,25 3975,9 
 437,64 2708,69 511,73 3149,06 528,95 2976,79  431,76 2781,94 580,69 3566,1 606,31 3782,88 
 450,73 2942,47 506,76 3221,87 550,61 3496,04      571,37 3551,44 625,45 3874,22 
 392,77 2928,32 470,28 3051,87 561,4 3166,93      564,58 3501,21 635,11 4080,83 
 442,96 2846,02 479,57 3230,55 567,27 3674,06      568,97 3588,64 609,71 3691,88 
 430,84 2685,28 506,25 3205,15 567,24 3271,48      571,62 3586,8 548,82 3581,28 
 459,42 2799,98 529,63 3271,67 589,69 3568,26        598,78 3915,71 
 429,46 2634,14 466,33 3010,59 608,34 3687,5        600,09 3897,48 
 431,44 2808,32 512,25 3235,77 578,4 3229,85        567,17 3518,78 
 378,93 2639,2 473,3 3193,84 545,73 3380,75        614,51 3832,85 
 408,03 2768,06 439,15 2875,12 591,2 3610,92        585,58 3725,12 
 440,55 2906,62 496,94 2785,23 520,12 3341,41        601,66 3740,13 
 400,12 2858,12 456,27 2982,1 501,57 2883,52        640,18 3800,68 
 386,39 2791,8 508,09 3178,77 543,09 3507,98        599,8 3918,87 
 425,45 2813,1 448,49 3071,55 520,66 3264,94        605,87 3862,79 
 403,16 2804,01 463,25 3162,08 564,54 3418,46        632,35 3891,69 
 418,43 2778,25 532,86 3382,72 541,83 3555,97        650,89 3673,15 
 446,36 2844,99 486,22 2936,01 532,73 3506,37        560,31 3675,44 
 477,23 2901,26 524,26 3242,62 576,03 3094,64        647,28 3959,67 
 417,37 2887,78 505,68 3037,5 518,83 3085,21        588,71 3886,8 
 412,23 2760,27 450,17 2931,3 515,3 3302,55        630,58 3976,43 
 381,13 2816,73 481,01 3029,5 536,4 3134,09        650,75 3865,4 
 444,76 3009,19 546,37 3298,64 553,81 3422,24        642,5 3787,64 
 407,99 2680,96 479,76 3175,35 561,19 3470,16        615,75 3714,96 
 432,55 2981,16 511,7 3166,5 564,04 3367,5          608,66 3881,05 
 415,51 2786,88 510,01 3121,69 526,03 3182,96        
   504,85 3224,05 562,07 3451,58        
   508,36 3158,55 523,28 3462,8        
   478,81 3090,9 519,72 3142,58        
   482,28 3196,83 579,01 3564,8        
   445,59 2976,64 539,35 3533,23        
   511,6 3095,2 538,75 3229,04        
   463,61 3208,57 527,01 3166,78        
   457,15 3050,11 536,76 3560,32        
   489,26 3343,9          
   508,03 3178,58          
   557,88 3652,98          
   508,53 3307,96          
   511,39 3262,51          
   579,62 3502,89          
   482,38 3076,56          
   536 3180,1          
   481,01 3048,09          
   507,75 3316,76          
   495,09 2954,4          
   498,33 2946,68          
   525,35 3033,32          
   449,51 3097,91          
   562,41 3422,2          
   527,17 3149,45          
   524,66 3247,08          
   479,57 3086,81          
   516,46 3277,14          
   529,35 3515,92          
   466,93 3070,82          
   505,79 3022,92          
   529,35 2975,2          
   463,13 2978,15          
   514,67 3138,67          
   511,72 3015,22          
   536 3153,4          
   528,83 3426,32          
     523,49 3204,06            

Average 424,21 2820,49 498,49 3153,30 548,67 3383,61  463,60 3015,43 571,17 3561,69 612,99 3825,00 
Standard deviation 23,99 101,08 30,29 168,67 26,32 201,62  26,75 126,93 21,44 58,20 28,28 114,01 

Number of embryos 47 47 84 84 55 55  23 23 27 27 46 46 
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Table 35 Head size body length measurement of ppp4cb knockdown and control embryos 

 

ppp4cb 5’UTR 
2 dpf 

ppp4cb 5’UTR 
3 dpf 

ppp4cb 5’UTR 
4 dpf  SCMO 2 dpf 

 
SCMO 3 dpf 

 
SCMO 4 dpf 

 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 403,97 2902,42 472,6 2835,53 526,15 3143,97  484,88 3137,4 532,55 3607,35 598,03 3699,57 
 409,55 2910,45 485,09 2964,63 545,08 3564,26  477,92 3087,38 531,13 3512,55 587,77 3715,45 
 411,61 2927,63 520,32 3024,11 577,95 3894,58  484,4 3165,65 565,83 3463,61 670,65 3946,74 
 390,8 2788,28 429,31 2828,2 525,86 3439,9  488,55 3311,01 526,01 3500,1 628,24 3829,59 
 413,04 2873,63 490,11 3126,5 495,05 2607,56  506,1 3156,57 556,15 3577,26 605,74 3666,36 
 452,48 3004,14 444,26 2850,13 544,08 3325,79  527,9 3186,7 543,49 3421,7 634,23 3819,55 
 365,57 2616,17 395,47 2675,64 578,09 3425,47  508,67 3228,85 529,79 3584,94 632,28 3946,03 
 487,79 3115,79 466,35 3192,46 528,27 3137,71  466,54 3177,19 516,63 3314,66 609,21 3666,68 
 377,05 2751,62 459,71 3379,44 493,59 3352,66  424,13 2729,23 540,26 3454,88 617,43 3824,93 
 437,92 2601,08 534,69 3529,32 541,94 3839,45  471,93 3011,04 587,79 3641,38 596,04 3864,21 
 421,41 3060,23 573,27 3541,19 465,02 2804,87  450,05 2973,74 573,96 3579,72 613,85 3701,94 
 447,86 3019,07 480,55 3226,5 520,2 3494,11  500,74 3209,09 592,2 3599,23 606,5 3716,17 
 431,09 3012,38 470,11 2917,35 479,91 2791,2  482,1 3184,68 560,22 3655,2 618,97 3830,83 
 428,7 2754,78 495,27 3285,12 556,03 3591,69  487,76 3252,52 577,25 3555,56 606,85 3801,05 
 436,04 3002,29 429,31 2666,47 539,15 3537,12  494,08 3096,6 570,3 3532,8 667,44 4013,94 
 392,83 2632,44 491,63 2976,14 561,2 3882,12  484,46 3020,65 524,33 3585 574,52 3776,59 
     538,65 3375,66 443,98 2903,21  470,99 3144,55 547,43 3568,87 651,66 3833,21 
     480,12 2749,73 524,52 3292,83  495,02 3202,46 579,56 3552,81 594,05 3832,44 
     495,85 3409,54 540,55 3865,85  436,93 3007,93 530,65 3475,29 607,21 3800,56 
     541,14 3544,85 567,47 3974,09  495,02 3103,47 570,3 3630,17 636,95 3903 
     520,94 3517,44 577,65 3636,48  465,42 3084 575,94 3578,9 602,8 3802,87 
     434,2 2629,23 573,33 3561,31  457,02 2890,35 559,57 3592,84 614,29 3859,05 
     517,65 3158,64 503,76 3406,27  474,71 3102,32 563,15 3631,34 630,45 3598,98 
     461,27 2901,29 524,7 3303,56  503,49 3197,59 549,58 3604,79 645,64 4000,95 
     464,56 2906,19 576,47 3774,24  482,1 3123,82 577,25 3477,07 654,2 4074,2 
     464,59 3406,45 458,01 3046,96  485,26 3124,4 563,33 3669,82 643,86 3725,35 
     444,4 2936,72 528,91 3495,68  478,18 3189,73 536,7 3354,9 626,01 3647,28 
     505,5 3090,8 656,27 3825,36  452,8 3115,69 566,54 3514,96 602 3718,05 
     519,86 3422,48 581,93 3708,02  483,29 3190,52 553,48 3329,83 654,2 3868,89 
     425,22 2772,52 569,25 3757,38  477,29 3066,8 569,7 3658,54 636,53 3889,48 
     562,67 3440,08 532,25 3451,49  475,66 3030,98 550,06 3459,2 617,41 3837,24 
     591,9 3726,65 514,08 3443,62  507,79 3130,37 508,65 3369,42 623,47 3895,2 
     585,84 3609,24 525,38 3437,51  482,69 3155,58 544,75 3469,77 643,29 3719,86 
     623,23 3720,25 570,52 3641,12  478,1 3084,59 568,68 3532,61 626,01 3706,22 
     533,67 3118,76 552,51 3551,96  436,53 2878,05 572,45 3699,18 628,76 3792,56 
     542,86 3014,56 507,32 3335,31  460,41 2911,01 558,93 3563,09 584,72 3671,75 
     503,9 2910,81 513,78 3396,54  500,73 3181,35 553,48 3496,64 646,81 3773,99 
     433,58 2801,92 471,27 3133,93  445,8 2989,07 537,2 3481,61 574,52 3753,09 
     517,74 3328,79 529,58 3481,78  454 3083,01 562,68 3465,67 606,47 3719,11 
     578,05 3790,54 575,59 3627,09  460,75 2980,29 556,54 3515,58 606,99 3768,08 
     574,21 3656,34 574,43 3523  481,52 3060,08 541,39 3446,56     
     591,64 3723,91 560,38 3522,73  497,58 3152,95 586,36 3472,06     
     570,07 3805,62 520,87 3926,98  467,24 2923,76 596,38 3544,28     
     494,54 3055,81 571,01 3687,39  487,6 3169,38 554,24 3475,9     
     458,37 2846,53      498,38 3069,49 606,03 3580,52     
     594,33 3800,5      441,05 3029,58 589,42 3508,51     
     567,65 3428,76      461,98 3114,93 579,5 3656,77     
     586,66 3265,75      434,33 2787,03 543,66 3523,69     
     565,47 3811,87      463,44 3056,49 580,27 3605,33     
     559,12 3615,8      487,09 3070,86 593 3597,32     
     561,05 3151,12      481,35 3101,22 576,13 3625,35     
     558,69 3445,5      436,93 2902,96 578,68 3562,86     
     545,04 3158,13      392,32 2768,31 557,29 3629,56     
     590,13 3741,3      481,27 3102,99 547,98 3440,51     
     565,53 3936,02      431,76 2781,94 546,82 3386,43     

Average 419,23 2873,28 514,69 3249,91 536,89 3466,91  470,19 3053,99 562,98 3539,41 620,62 3803,78 
Standard deviation 30,64 164,84 55,41 358,49 40,05 314,24  24,45 125,85 20,22 87,36 23,49 104,94 
Number of embryos 16 16 55 55 44 44  47 47 47 47 32 32 

Table 36 Head size body length measurement of sez6l2 knockdown and control embryos 

 

sez6l2 5’UTR 
2 dpf 

sez6l2 5’UTR 
3 dpf 

sez6l2 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 471,12 3011,86 524,61 3377,53 576,52 3716,66  484,88 3137,4 532,55 3607,35 598,03 3699,57 
 428,91 2789,02 495,96 3292,06 589,13 3799,01  477,92 3087,38 531,13 3512,55 587,77 3715,45 
 386,03 2903,36 532,33 3515,36 566,2 3593,46  484,4 3165,65 565,83 3463,61 670,65 3946,74 
 446,97 3036,23 493,86 3297,16 609,99 3668,67  488,55 3311,01 526,01 3500,1 628,24 3829,59 
 463,06 2968,03 486,71 3266,48 556,86 3770,22  506,1 3156,57 556,15 3577,26 605,74 3666,36 
 462,16 3016,91 529,27 3491,41 587,45 3639,4  527,9 3186,7 543,49 3421,7 634,23 3819,55 
 427,15 2966,95 525,99 3446,06 561,27 3351,29  508,67 3228,85 529,79 3584,94 632,28 3946,03 
 425,79 2988,3 554,4 3593,33 580,36 3586,29  466,54 3177,19 516,63 3314,66 609,21 3666,68 
 394,38 2832,07 544,3 3402,78 579,78 3713,14  426,16 3034,1 555,95 3437,34 581,24 3733,04 
 413,62 2977,93 464,48 3135,81 558,1 3582,28  484,38 3221,73 520,69 3354,1 624,35 3758,55 
 429,62 2799,42 510,55 3451,41 543,84 3609,28  447,79 3110,5 522,62 3443 594,13 3738,5 
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sez6l2 5’UTR 
2 dpf 

sez6l2 5’UTR 
3 dpf 

sez6l2 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 425,39 2827,17 514,96 3368,65 561,29 3576,25  484,38 3031,51 526,31 3513,24 653,05 3838,74 
 425,03 2955,86 518,15 3371,42 561,27 3708,27  481,84 3114,33 534,5 3350,93 667,27 3874,12 
 442,46 2945,85 496,08 3295,35 582,5 3643,67  481,26 3116,12 545,37 3467,25 611,54 3929,74 
 420,86 3016,58 562,94 3510,23 602,71 3953,7  457,39 3093,74 566,63 3402,5 652,69 3864,99 
 381,44 2695,25 479,67 3335,25 577,41 3667,75  461,31 3074,07 524,49 3513,59 606,49 3857,5 
 431,41 2823,29 481,66 3380,5 562,68 3674,06  520,97 3231,14 546,24 3519,91 631,62 3702,35 
 389,58 2961,09 519,8 3518,79 546,46 3746,2  518,42 3262,39 527,13 3306,13 618,51 3841,8 
 377,28 2791,1 497,33 3253,61 629,58 3797,33  469,61 3134,53 509,35 3458,66 627,18 3638,94 
 441,52 2987,4 516,35 3489,22 609,95 3783,11  538,76 3345,09 566,63 3664,21 621,13 3965,24 
 451,71 3122,22 508,12 3458,7 578,31 3795,74  474,54 3182,51 579,95 3485,76 620,27 3847,24 
 406,44 2561,48 510,73 3284,14 558,98 3724,62  509,87 3214,69 512,44 3515,03 620,27 3628,25 
 410,5 3025,09 534,2 3428,23 558,19 3589,51  452,71 3083,52 537,96 3379 607,16 3809,5 
 438,94 2889,99 530,02 3323,29 517 3607,13  485,67 3100,19 491,96 3345,23 660,66 3946,12 
 387,45 2799,71 544,89 3494,61 593,66 3642,37  474,82 3066,85 523,65 3551,51 602,12 3737,06 
 402,85 2796,15 565,16 3546,64 572,26 3584,97  453,65 3133 524,77 3464,08 603,35 3692,49 
 423,35 3011,25 534,2 3439,06 597,37 3806,21  465,57 3079,58 512,13 3417,59 596,02 3909,73 
 444,54 2968,31 502,9 3261,83 580,36 3689,27  534,66 3279,96 531,15 3558,67 621,9 3823,92 
 434,01 2993,06 516,73 3356,71 572,59 3807,88  534,66 3279,96 506,09 3334,91 644,12 3865,58 
 408,05 2877,01 512,51 3333,7 586,44 3753,24  473,57 3253,5 526,81 3563,35 605,64 3780,52 
 411,76 2824,45 538,17 3498,31 607,28 3762,25  455,72 3075,5 507,4 3298,83 573,58 3705,24 
 465,15 3008,93 501,45 3343,03 555,33 3591,83  518,25 3334,9 504,14 3487,65 598,52 3782,74 
 373,73 2642,61 530,7 3339,02 540,93 3551,25  505,26 3213,84 557,41 3470,12 552,2 3740,81 
 443,12 2935,33 520,5 3371,06 601,32 3786,42  499,01 3269,06 541,76 3511,18 619,93 3804,87 
 449,1 2938,87 551,81 3410,22 546,94 3577,33  491,6 3185,05 496,79 3476,22 612,93 3815,65 
 450,93 2961,03 510,73 3226,12 583,7 3754,94  437,22 2943,18 551,59 3501,99 579,29 3727,23 
 454,65 3000,99 529,44 3385,27 552,12 3697,01  478,11 3104,06 556,05 3526,68 634,9 3803,74 
 462,16 2924,8 548,23 3404,6 566,59 3772,18  543,21 3348,22 570,48 3492,24 640,57 3908,95 
 391,69 2864,62 538,78 3504,63 551,9 3478,96  506,33 3248,7 502,87 3372,75 611,49 3711,95 
 370,71 2740,94 544,86 3437,74 578,76 3685,15  493,43 3208,4 575,74 3525,31 631,05 3866,34 
 377,13 2943,93 511,81 3480,27 616,75 3827,39  464,31 3176,83 549,71 3591,61 658,17 3906,38 
 451,14 3046,38 518,12 3436,58 612,54 3783,37  517,77 3133,76 558,25 3562,66 656,11 3844,47 
 427,15 3030,59 509,43 3343,09 600,17 3801,63  492,02 3247,34 558,79 3638,06 610,24 3769,44 
 455,39 3039,95 495,69 3272,13 588,38 3770,75  529,88 3326,2 522,62 3304,25 625,32 3772,57 
 427,89 2911,2 466,23 3383,34 614,35 3882,7  454,8 3111,05 534,44 3540,67 650,71 3768,34 
 449,84 3003,06 459,75 3289,81 576,52 3742,22  506,38 3236,62 518,34 3444,33 630,3 3877,82 
 419,88 2980,91 522,93 3429,55 592,16 3652,57  428,92 3113,51 565,29 3587,66 616,83 3961,84 
 427,15 2973,23 522,93 3410,92 531,47 3586,67  421,07 2945,61 494,33 3259,77 582,93 3741,74 
 443,34 3007,44 527,82 3406,07 607,61 3862,26  505,35 3166,07 545,12 3555,82 648,01 3946,82 
 404,5 2867,37 505,59 3397,09 586,19 3796,23  474,13 3100,6 506,9 3453,29 614,26 3837,58 
 398,6 2924,93 505,1 3314,78 563,93 3719,5  496,43 3197,81 568,97 3580,71 609,37 3815,97 
 446,44 2982,64 504,62 3353,88 555,33 3572,39  493,65 3225,08 523,9 3388,71 602,6 3795,72 
 431,13 3017,4 510,72 3310,12 532,61 3661,67  503,15 3228,28 548,74 3462,55 575,17 3661,85 
 442,94 2959,91 504,78 3474,05 563,47 3665,55  476,91 3240,68 545,28 3516,48 614,79 3771,59 
 457,93 2993,88 520,7 3217,63 521,75 3456,79  472,52 3198,35 562,99 3652,58   
 365,58 2724,9 494,05 3432,08 566,59 3603,06  479,32 3229,08 522,53 3478,97   
 385,9 2685,47 507,03 3352,83 585,9 3731,58  470,72 3089,34 520,25 3373,83   
 463,7 2961,68 533,18 3468,5 583,26 3859,47  461,44 3054,2 570,06 3651,89   
 469,47 3090 518,14 3239,61 572,59 3616,4    516,88 3499,44   
 386,49 2815,81 473,41 3208,39 541,77 3432,64    532,06 3522,01   
 434,71 2880,13 511,51 3426,69 586,63 3815,6    530,34 3425,62   
 457,98 2977,93 464,14 3131,35 591,41 3844,73    556,4 3438,93   
 421,2 2938,62 549,65 3482,7 550,53 3512,19    524 3498,75   
 427,41 2978,79 494,57 3239,84 563,62 3533,95    534,44 3670,77   
 382,89 2944,55 492,1 3414,21 523,96 3575,47    517,18 3304,49   
 423,28 2848,96 487,27 3359,4 534,26 3804,79    533,26 3558,4   
 408,54 2958,23 485,31 3387,54 568,14 3643,77    551,24 3551,88   
 403,31 2850,25 520,6 3430,6 569,47 3635,25    514,51 3353,85   
 450,24 3030,11 489,8 3526,09 559,18 3606,85    564,02 3497,53   
 391,86 2887,8 501,86 3509,85 572,33 3678,33    591,22 3420,96   
 439,37 2860,11 513,59 3524,8 547,77 3483    579,42 3584,23   
 394,38 2711,2 514,17 3364,25 534,26 3707,26    535,59 3463,4   
 402,44 2995,81 546,62 3572,46 561,43 3480,33        
 428,25 2977,08 491,04 3487,96 576,62 3602,71        
 419 3033,46 499,59 3373,73 592,83 3831,9        
 434,67 2838,8 534,45 3575,19 552,29 3791,95        
 404,79 3011,64 491,51 3380,31 545,41 3493,37        
 416,31 3004,69 515,61 3402,97 544,94 3711,14        
 431,09 2934,56 449,51 3208,13 504,03 3585,94        
 369,29 2585,66 494,56 3317,37 521,6 3580,48        
 380,99 2666,92 475,76 3328,76 542,42 3737,98        
 417,99 3036,15 521,62 3467,1 592,04 3808,8        
 437,53 3024,91 429,1 3364,27 601,25 3613,11        
 419,35 2942,44 474,77 3477,5 589,46 3785,11        
 438,94 3186,95 528,29 3466,34 574,95 3809,06        
 436,04 3089,17 536,91 3492,73 598,27 3569,17        
 434,17 2995,25 524,31 3343,03 545,19 3735,94        
 438,58 3112,88 544,04 3561,91 577,81 3732,82        
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sez6l2 5’UTR 
2 dpf 

sez6l2 5’UTR 
3 dpf 

sez6l2 5’UTR 
4 dpf  SCMO 2 dpf SCMO 3 dpf SCMO 4 dpf 

 head size body 
length head size body 

length head size body 
length  head size body 

length head size body 
length head size body 

length 
 413,76 3025,88 536,13 3343,91 580,07 3626,87        
 405,38 3025 485,09 3416,6 613,96 3878,29        
 458,15 3208,16 459,46 3472,94 571,36 3622,36        
 363,62 2727,74 495,61 3522,18 586,39 3776,2        
 400,21 2927,51 515,64 3493,35 580,89 3693,17        
 431,44 3023,92 431,85 3343,22 580,8 3614,86        
 430,85 2980,68 505,63 3589,56 588,29 3728,75        
 426,42 3012,19 475,76 3059,47 557,37 3585,87        
 381,51 2859,28 501,23 3337,95 563,52 3746,28        
 439,34 2919,85 532,13 3486,28 539,46 3379,83        
 448,93 2997,44 495,22 3389,79 586,69 3781,76        
 416,16 3072,02 519,86 3409,12 571,36 3649,27        
 409,79 2923,99 543,08 3526,97 558,6 3776,92        
 393,35 2968,41 479,9 3451,87 562,49 3803,41        
 419,44 2846,4 497,82 3415,59 568,44 3521        
 469,43 3144,94 520,94 3400,95 571,36 3742,07        
 434,67 3156,96 480,12 3512,31 539,34 3304,95        
 427,82 3058,25 543,08 3515,37 527,27 3282,25        
 431,66 2879,35 504,03 3270,57 551,89 3726,6        
 436,72 2959,96 519,95 3580,32 541,08 3638,82        
 404,79 2826,13   568,44 3655,55        
 431,04 2855,02   521,6 3470,7        
 433,71 2969,62   552,76 3545,15        
 431,25 3062,32   580,18 3703,34        
 396,82 2974,01   568,62 3597,7        
 427,74 3034,39   517,36 3739,86        
 401,23 3050,4   580,04 3556,75        
 430,85 2875,57   604,21 3789,15        
 442,36 3042,91   557,74 3583,76        
 401,89 2988   583,64 3477,78        
 428,15 2988,53   569,82 3871,65        
 432,55 3125,1   576,12 3636,38        
 403,66 2917,07   605,41 3610,59        
 419,44 3007,24   523,08 3444,46        
      556,01 3713,16        

Average 422,66 2941,63 509,82 3398,29 568,98 3668,70  485,41 3169,74 536,88 3479,52 618,26 3803,95 
Standard deviation 25,25 117,37 26,35 104,75 24,83 126,00  28,52 92,19 22,88 96,18 25,26 89,56 
Number of embryos 122 122 108 108 123 123  58 58 72 72 54 54 
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