
Chapter 2

The Classical Methods

2.1 Weighted Regression Methods

These methods use the idea of a generalized linear model to explain variation in treat-

ment effects by covariates [4, 17, 29, 32, 36].

Let yi be the observed treatment effect in the i-th study, for i = 1, . . . , k. The yi

can be the observed log-odds ratio or log-relative risk in a trial with binary outcome or

the observed mean difference in a trial with continuous outcome. In our case, yi is the

observed log-relative risk. It is assumed that yi are independently distributed as

yi ∼ N(θi, vi) (2.1)

where θi is the true treatment effect in the i-th study, and vi is the variance of the

log-relative risk in the i-th study.

For the fixed-effects model, it is supposed that there are p known covariates z1, . . . , zp

which are presumed to account completely for variation in the true effects, so θi is

specified by β ′zi, where β is a column vector of regression coefficients (β0, β1, . . . , βp)
′

and zi is a column vector that contains the values of p covariates for study i.

yi ∼ N(β ′zi, vi) (2.2)

and the fixed effects regression model for treatment effect estimate becomes

yi = β ′zi + ei (2.3)

where ei is the error of estimation of study i. Each ei is statistically indenpendent with

a mean of zero and variance vi.
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Estimation of regression coefficients is usually carried out via weighted least squares

algorithms. The analysis can be conducted using standard computer programs (e.g.,

in SAS, SPSSX, or BMDP) that compute weighted multiple regression analyses. The

weights can be defined by the reciprocal of the sampling variances as wi = 1/vi. The

standard errors of regression coefficient estimates can be computed as the square roots

of the diagonal elements of the inverse of the weighted sum of squares and cross products

matrix.

For the random-effects model, it is assumed that the true treatment effects θi vary

randomly across studies and are independently distributed as

θi ∼ N(µ, τ 2) (2.4)

where µ is the mean of the distribution of θi across studies, and τ 2 is the variance of

the distribution of θi across studies.

To incorporate the covariates and thus account for heterogeneity among studies, µ can

be specified by β ′zi

θi ∼ N(β ′zi, τ
2) (2.5)

and the random effects regression model for treatment effect estimate becomes

yi = β ′zi + δi + ei (2.6)

where δi is the random effect of study i, that is the deviation of study i’s true treatment

effect from the true mean of all studies having the same covariate values. Each random

effect, δi, is assumed to be independent with a mean of zero and variance τ 2, and ei is

the error of estimation of study i. Each ei is statistically independent with a mean of

zero and variance vi.

The design vector zi and within-study variance vi are assumed to be known, and

regression coefficient vector β and between-study variance τ 2 are estimated from the

data. Notice that equation (2.6) has two components in its error term, δi + ei, which

are assumed to be independent, leading to a covariance equal zero, so that the marginal

variance of yi is

v∗
i = V ar(δi + ei) = τ 2 + vi (2.7)

Estimation of regression coefficients are also obtained by weighted least squares algo-

rithm with weights w∗
i = 1/v∗

i and τ 2 must be explicitly estimated in order to undertake

the weighted regression. The details and discussion of the estimation of the between-

study variance can be reviewed in detail in Berkey and Thompson. [4, 36]. The statisti-
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cal literature describes equation (2.6) as a mixed effects linear model with fixed effects

β and random effects δi.

Notice that equation (2.6) is identical to the fixed effects regression model given

in equation (2.3), with one important exception: the addition of the random effects δi.

The treatment effect estimates in the random effects regression model correspond to the

mean value of log-relative risk for all studies with a specified combination of covariates.

The treatment effect estimates from a fixed effects model, in contrast, correspond to

the single true value for that combination of covariates because between-study variance

τ 2 equals zero [4].

A particular disadvantage of this modelling is the inappropriate identity link which

is used to link covariate information to relative risk, since it does not guarantee that

the relative risk estimates are positive, which would be an essential requirement for a

relative risk. This problem is overcome using the canonical link which guarantees that

relative risk estimates are positive.

The second disadvantage is a potential violation of the normality assumption of

both the observed treatment effects and the random effects. For example, it has been

assumed that the log-relative risk is normally distributed, however, this may not be

appropriate for small studies or small number of events. Moreover, in practice, the vi

are rather estimated from the data than known, so the correlation between estimates

of log-relative risk and their variance estimates may produce bias in the estimates of

regression coefficients [4]. These problems are overcome by directly using the structure

of the binary data, binomial or poisson.

2.2 Logistic Regression Methods

These methods use directly the binomial structure for the binary data. Let yij be the

number of events in the j-th group (j = 0 control, j = 1 treated) of study i and

nij be the number of subjects in the j-th group of study i. Also let πij denote the

risk (probability) of an event in the j-th group of study i. It is assumed that yij is

independently distributed as

yij ∼ Binomial(πij, nij) (2.8)

Suppose there are p known covariates z1, . . . , zp which might be the sources of variation

between studies. Let zij be a column vector that contains the values of p covariates in
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the j-th group of study i, and uj be an indicator variable for the treatment group (0

for control, 1 for treated).

The conventional logistic regression model can be written as

logit(πij) = αi + β∗uj + β ′zij (2.9)

where αi is the intercept parameter in study i, β∗ is the overall average value of log-odds

ratio adjusted for covariates, and β is a column vector that contains the log-odds ratio

per unit change for p covariates.

For the conventional logistic regression model, it is assumed that αi is a fixed pa-

rameter and β∗ is a fixed effects parameter. However, there is no allowance for effect

heterogeneity in this model.

One method to incorporate effect heterogeneity into the models is the multi-level

approach [3, 36, 37]. An appropriate model can be written as

logit(πij) = αi + β∗
i uj + β ′zij (2.10)

where αi is the fixed intercept parameter in study i, and β∗
i is the log-odds ratio in study

i which varies randomly across studies and has an independent normal distribution as

β∗
i ∼ N(β∗, τ 2) (2.11)

Notice that in equations (2.9) and (2.10), it is assumed that αi is a fixed parameter.

However, the number of αi parameters increases with the number of centers, leading to

the Neyman-Scott problem [26].

An alternative multi-level model in which intercept parameter αi are regarded as

random rather than fixed is written as follows:

logit(πij) = αi + β∗
i uj + β ′zij (2.12)

where the αi are independently distributed as

αi ∼ N(α, τ 2
α) (2.13)

and where the β∗
i are independently distributed as

β∗
i ∼ N(β∗, τ 2

β). (2.14)

and also cov(αi, β
∗
i ) = ρτατβ , where ρ is the correlation coefficient.
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An alternative formula of equation (2.12) can be written as

logit(πij) = α + γi + β∗uj + δiuj + β ′zij (2.15)

where the γi are independently distributed as

γi ∼ N(0, τ 2
α) (2.16)

and where the δi are independently distributed as

δi ∼ N(0, τ 2
β ). (2.17)

This is the simplest and most conventional multi-level model together with random

effects model for β∗
i which could lead to an extension of the univariate random effects

model to a bivariate normal model. It is important to consider the covariance between

the αi and β∗
i in a bivariate normal model. If cov(αi, β

∗
i ) is assumed to be zero, the

between-study variance of the log-odds across control groups is equal to τ 2
α, while that

across treatment groups is equal to τ 2
β + τ 2

α. The between-study variation in control

groups is thereby forced to be less than or equal to the between-study variation in

treatment groups. This assumption may not be appropriate for the general situation.

When cov(αi, β
∗
i ) is rather estimated than assumed to be zero, the variance-covariance

matrix of the bivariate log-odds parameter estimates is modelled by a combination of

the three parameters τα, τβ and ρ. This non-zero covariance assumption allows the

model to investigate a relation between baseline risk and treatment effect. However,

this alternative model presents an extended complexity in the multi-level approach.

This issue has been discussed in Turner et al. [37].

Notice that in equations (2.9), (2.10), and (2.12), two kinds of parameters occur.

The first type is the parameter of interest, that is the coefficient of indicator variable

β∗ and the coefficients of covariates β. The second type is the nuisance parameter,

that is the intercept parameter αi. However, the nuisance parameter is not our major

interest parameter, but it is necessary for a complete description of the model. Also, it

complicates the inference. All these models, based on the binomial structure of data,

suffer from dealing with the nuisance parameter αi. Therefore, it appears attractive

to investigate the profile likelihood approach which eliminates the nuisance parameter

before dealing with the inference for parameter of interest, and thereby, keeping the

dimensionality of the approach low.
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