## 4 Results

### 4.1 Gene expression analysis with cDNA microarrays

To search for genes differentially expressed between SHHF strain and the control of WKY or SHRSP, expression analysis was carried out using rat heart cDNA microarray filters with subtractive suppressive hybridization probes. Sequences from 23 clones were analyzed and genes were identified by homology search using the Blast algorithm at the NCBI database. The chromosomal locations of these genes were located for rat, mouse and human using sequence Blast at Ensembl (Table 4.1).

Table 4.1 Candidate genes selected from rat heart library (619)

| cDNA clone-ID | Expression | Sequence result and gene description | Chromosomal location |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rat | Mouse | Human |
| M011, M125 ${ }^{\text {a }}$ | Down | Cytochrome oxidase subunit II gene (COXII) | 16 | 16 | 5 |
| $\begin{aligned} & \mathrm{O} 1040, \mathrm{H} 2130, \\ & \mathrm{H} 1653^{\mathrm{b}} \end{aligned}$ | Down | Cytochrome oxidase subunit I (COXI) | 14 | 5 | 17 |
| $10764{ }^{\text {b }}$ | Down | Cd36 antigen | 4 | 5 | 7 |
| K0331 ${ }^{\text {b }}$ | Down | Phospholamban exon 2 | 20 | 10 | -- |
| J2312 ${ }^{\text {b }}$ | Down | Similar to musculus titin (Ttn) | 3 | 2 | 2 |
| L2350, D0768 ${ }^{\text {b }}$ | Down | ND4 (NADH-DH subunit4) | 16 | 1 | 8 |
| H168 ${ }^{\text {b }}$ | Down | Golgi SNAP receptor complex member 1 (Gosr1) | -- | 9 | 10 |
| L0410 ${ }^{\text {a }}$ | Up | Hybrid protein | 6 | 16 | 18 |
| D1911 ${ }^{\text {a }}$ | Up | Clear sequence, part identical to Homo sapiens polymerase I transcription factor RRN3 | 4 | 6 | 2 |
| M2112, P2418 ${ }^{\text {a }}$ | Up | Heat shock 27 kD protein 2, HSPB2 | 8 | 9 | 11 |
| $\mathrm{C} 095{ }^{\text {a }}$ | Up | Cytochrome c oxidase subunit IV, COX4 | 3 | 7 | 14 |
| J1510, N1222 ${ }^{\text {b }}$ | Up | Similar to RE70703p (Drosophila melanogaster) | 1 | 16 | 19 |
| F1749 ${ }^{\text {b }}$ | Up | Similar to heat shock protein family, HSPB7 | 5 | 4 | -- |
| J1816 ${ }^{\text {b }}$ | Up | Laminin receptor $1 / 40 \mathrm{kDa}$ ribosomal protein | 1 | 4 | X |
| D1745, J114 ${ }^{\text {b }}$ | Up | Ribosomal protein L14 (Rpl14) | 8 | 9 | 12 |
| D1754 ${ }^{\text {b }}$ | Up | Subunit of NADH, ubiquinone oxidoreductase | 6 | 5 | 13 |

[^0]
### 4.2 Gene expression profiling with Affymetrix chip

Affymetrix RG-U34A and RG-U34B chips, which include 7000 genes, 9000 EST, and control sequences, were used to obtain comprehensive gene-expression analysis. In order to screen candidate genes related to heart failure and cardiomyopathy, five, three and two samples of rat heart tissue from the strains SHHF, WKY and SHRSP were used to prepare targets hybridized with both RG-U34A and RG-U34B chips respectively.

### 4.2.1 Targets preparation

The quality of the RNA is essential for the success of the analysis. The integrity of total RNA was verified by agarose-formaldehyde gel electrophoresis (Fig. 4.1). RNA yield was quantified by spectrophotometric analysis; all RNA samples were well purified according to the A260/A280 ratio that were between 1.9 and 2.1 for all samples. cRNAs were synthesized and labeled with biotin by in vitro transcription reaction. The A260/A280 ratios for all cRNAs were over 2.0. Distribution sizes of fragmented cRNAs ranged from 35 to 200 bases that fit well to the right sizes (Fig. 4.2).


Fig. 4.1 Formaldehyde agarose gel of total RNA isolated from rat heart tissue
$1-5 \mu \mathrm{~g}$ of total RNAs isolated from rat heart tissue of SHHF (lane 1-5), WKY (lane 6-8), and SHRSP (lane 9-10) using Trizol method were loaded on $1.2 \%$ formaldehyde agarose gel. M, $1 \mu \mathrm{~g}$ of RNA ladder from MBI.


Fig. 4.2 Formaldehyde agarose gel of fragmented cRNAs
$1 \mu \mathrm{~g}$ of fragmented cRNA from SHHF (lane 1-5), WKY (lane 6-8), and SHRSP (lane 9-10) was loaded on $1.2 \%$ FA gel. M, $0.5 \mu \mathrm{~g}$ of 1 kb DNA ladder from Life/Tech.

### 4.2.2 Hybridization result with Test chips

Hybridization cocktail from each sample was first used to hybridize with the test chip. Test chip hybridization results were scanned after washing and staining (Fig. 4.3). All probe sets were selected as normalization factor and batch analysis was preformed. There are 107 probe arrays including hybridization controls and housekeeping gene sequences on the test chip. About $30-40 \%$ of transcripts on the test chip were present in hybridization result and rat housekeeping genes (e.g. Actin, Gapdh, and hexokinase) were also present. However, the gene GAPD from human was absent. Those results suggested that all targets could be further hybridized with working chips.


Fig. 4.3 Hybridization result from one of the Affymetrix test chips
The microarray suite software displayed a picture of the image data file (*.dat) and automatically generated the *.cel file from the *.dat file (a). One area that was randomly selected showed white, gray or black squares in different intensity (b). Four corners of the picture showed clearly white and black squares (c).

### 4.2.3 Hybridization and analysis of RG-U34A and RG-U34B chips

RG-U34A and RG-U34B were separately hybridized with the above hybridization cocktails. Hybridization results were briefly checked on the ${ }^{*}$.cel file. Global scaling was used to minimize differences of non-biological origin from multiple probe arrays in our study.
An absolute expression analysis was first performed for every chip after hybridization. From absolute analysis, $34.6-41.5 \%$ of transcripts on RG-U34A and 29.5-40.8\% of transcripts on RG-U34B were present, 57.0-64.1\% of transcripts on RG-U34A and 57.3-68.8\% on RGU34B were absent (Table. 4.2). Measured images of one transcript AF072411 on ten chips hybridized with samples from the strains SHHF, WKY and SHRSP showed this gene was downregulated in SHHF strain compared with that in the other two controls (Fig. 4.4).

Table 4.2 Outline of the hybridization result for Affymetrix chips

| Hybridized chips | Present | Absent | Marginal | Total |
| :--- | :---: | :---: | :---: | :---: |
| C2_RG-U34A | $3179(36.1 \%)$ | $5481(62.3 \%)$ | $139(1.6 \%)$ | 8799 |
| C3_RG-U34A | $3647(41.5 \%)$ | $5014(57.0 \%)$ | $138(1.6 \%)$ | 8799 |
| C4_RG-U34A | $3512(39.9 \%)$ | $5151(58.5 \%)$ | $136(1.6 \%)$ | 8799 |
| C5_RG-U34A | $3220(36.6 \%)$ | $5456(62.0 \%)$ | $123(1.4 \%)$ | 8799 |
| C6_RG-U34A | $3498(39.8 \%)$ | $5168(58.7 \%)$ | $133(1.5 \%)$ | 8799 |
| W18_RG-U34A | $3044(34.6 \%)$ | $5644(64.1 \%)$ | $111(1.3 \%)$ | 8799 |
| W19_RG-U34A | $3326(37.8 \%)$ | $5338(60.7 \%)$ | $135(1.5 \%)$ | 8799 |
| W22_RG-U34A | $3383(38.5 \%)$ | $5291(60.1 \%)$ | $125(1.4 \%)$ | 8799 |
| SP24_RG-U34A | $3211(36.5 \%)$ | $5484(62.3 \%)$ | $104(1.2 \%)$ | 8799 |
| SP25_RG-U34A | $3313(37.7 \%)$ | $5352(60.8 \%)$ | $134(1.5 \%)$ | 8799 |
|  |  |  |  |  |
| C2_RG-U34B | $3008(34.2 \%)$ | $5643(64.2 \%)$ | $140(1.6 \%)$ | 8791 |
| C3_RG-U34B | $3396(38.6 \%)$ | $5226(59.5 \%)$ | $169(1.9 \%)$ | 8791 |
| C4_RG-U34B | $3586(40.8 \%)$ | $5034(57.3 \%)$ | $171(1.9 \%)$ | 8791 |
| C5_RG-U34B | $2712(30.8 \%)$ | $5921(67.4 \%)$ | $158(1.8 \%)$ | 8791 |
| C6_RG-U34B | $2764(31.4 \%)$ | $5865(66.7 \%)$ | $162(1.8 \%)$ | 8791 |
| W18_RG-U34B | $2834(32.2 \%)$ | $5814(66.1 \%)$ | $143(1.6 \%)$ | 8791 |
| W19_RG-U34B | $2597(29.5 \%)$ | $6044(68.8 \%)$ | $150(1.7 \%)$ | 8791 |
| W22_RG-U34B | $2798(31.8 \%)$ | $5841(66.4 \%)$ | $152(1.7 \%)$ | 8791 |
| SP24_RG-U34B | $2716(30.9 \%)$ | $5916(67.3 \%)$ | $159(1.8 \%)$ | 8791 |
| SP25_RG-U34B | $3219(36.6 \%)$ | $5414(61.6 \%)$ | $158(1.8 \%)$ | 8791 |

C_, Hybridization results of SHHF strain; W_, Hybridization results of WKY strain. SP_, Hybridization results of SHRSP strain.


Fig. 4.4 Intensity of hybridization for transcript AF072411 on RG_U34A
The images showed intensity of the transcript AF072411 on RG_U34A chips that hybridized with bio-labeled cRNA from 10 different samples. PM, Perfect match; MM, Mismatch.

A comparison expression analysis was carried out to compare the cell intensity data of an experiment (result from SHHF strain) and a baseline probe array of the same probe array type (result from WKY or SHRSP strain). The hybridization result was statistically analyzed from each chip by making difference call valuable with $1,-1,0.5,-0.5$ or 0 instead of Increased, Decreased, Marginally Increased, Marginally Decreased, and No change. The total value of the difference call for each transcript was summed. The transcripts with an absolute value over half of the total absolute value were selected. Afterwards the genes showing differential expression in SHHF strain compared with WKY (SHHF/WKY) or SHRSP (SHHF/SHRSP),
as well as the genes showing differential expression in the SHRSP compared with WKY (SHRSP/WKY) were acquired.
Another comparison expression analysis was performed on mean chip method. Three mean chips of the SHHF, WKY, and SHRSP strains were produced using the cell intensity data. Absolute and comparison analyses were further carried out on mean chips. The transcripts, which were selected using both mean chip and individual chip analyses, were explored by Microsoft Excel Match analysis. Analysis results using the two methods were outlined (Table 4.3). Transcripts showing similar expression change by two comparison methods were 46.2$85.2 \%$ in selected transcripts by each comparison analysis. In order to reduce the false positive rates and stand out important genes, the analyzed genes that showed similar differential expression by these two methods were selected as potential genes for further analysis (see in Appendix, Table 11.1-2).

Table 4.3 Overview of genes selected using two different comparison methods

| Methods | Total of selected <br> transcripts | Same result using two <br> methods | Differential result using <br> two methods |
| :--- | :---: | :---: | :---: |
| C/W_U34A_Individual | 122 | $104(85.2 \%)$ | $18(14.8 \%)$ |
| C/W_U34A_mean | 147 | $104(70.7 \%)$ | $43(29.3 \%)$ |
| C/SP_U34A_Individual | 115 | $73(63.5 \%)$ | $42(36.5 \%)$ |
| C/SP_U34A_mean | 116 | $73(62.9 \%)$ | $43(37.1 \%)$ |
| SP/W_U34A_Individual | 130 | $68(52.3 \%)$ | $62(47.7 \%)$ |
| SP/W_U34A_mean | 92 | $68(73.9 \%)$ | $24(26.1 \%)$ |
| C/W_U34B_Individual | 59 | $49(83.1 \%)$ | $10(16.9 \%)$ |
| C/W_U34B_mean | $49(46.2 \%)$ | $57(53.8 \%)$ |  |
| C/SP_U34B_Individual | 106 | $47(75.8 \%)$ | $15(24.2 \%)$ |
| C/SP_U34B_mean | 62 | $47(53.4 \%)$ | $41(46.6 \%)$ |
| SP/W_U34B_Individual | 88 |  | $43(59.67 \%)$ |
| SP/W_U34B_mean | 87 | 45 | $32(42.7 \%)$ |

C/W_U34A_individual or C/W_U34A_mean, Comparison analysis of SHHF strain versus WKY using RG_U34A individual chip or mean chip; C/SP_U3̄3A_individual or C/SP_U34A_mean, Comparison analysis of SHHF versus SHRSP; SP/W_U34A_individual or SP/W_U34A_mean, Comparison analysis of SHRSP vs. WKY.

### 4.2.4 Gene expression profiling in rat heart tissue

The genes showing differential expression in SHHF/WKY, SHHF/SHRSP and SHRSP/WKY were set up after the above comparison analyses. Of the 126 genes ( 153 probe sets) showing differential expression in the SHHF/WKY comparison, 44, or $34.9 \%$, were downregulated and 82 , or $65.1 \%$, were upregulated (Appendix, Table 11.1). Among of the 104 genes (120 probe sets) exhibiting differential expression in the SHHF/SHRSP comparison, 46 genes, or $42.2 \%$, were downregulated and 58 , or $55.8 \%$, were upregulated (Appendix, Table 11.2). Many genes tested with more than one probe set on the Affymetrix chips were found similar expression change in the study (Marked in bold in Appendix, Table 11.1-2).
To identify genes related to heart failure and cardiomyopathy in SHHF strain, genes showing the same expression changes in the groups SHHF/WKY and SHHF/SHRSP were selected (blue and red area in Fig 4.5), SHRSP strain was used to balance hypertensive background. Twenty-eight genes tested in 38 probe sets were found significantly differential expression in SHHF strain compared with the two controls (Table 4.4). Among of them, genes involved in fatty acid metabolism, e.g., Cd36, pyruvate dehydrogenase, were exclusively downregulated. However, genes related to glucose metabolism, such as fructose bisphosphatase 2, uncoupling protein 1, and retinoid X receptor were upregulated. Sequences of these selected genes were downloaded from the Genbank at NCBI and were further located on the chromosome of rat, mouse and human using Blast algorithm.


Fig. 4.5 Groups of genes selected from Affymetrix chips
Three circles represent selected genes from the groups SHHF/WKY, SHHF/SHRSP, or SHRSP/WKY after two comparison analyses with individual or mean chips. The areas in blue and red show genes exhibited differential expression in the comparisons of SHHF/WKY and SHHF/SHRSP. The areas in green and red show the genes that were differential expression in the comparisons of SHHF/WKY and SHRSP/WKY.

Table 4.4 Genes with differential expression in the SHHF/WKY and SHHF/SHRSP

| No. | Probe set ID | $\frac{\mathbf{C}}{\mathbf{A C}}$ | C/W <br> C/SP <br> DC | $\frac{\mathrm{C} / \mathbf{W}}{\mathrm{FC}}$ | $\frac{\mathrm{C} / \mathrm{SP}}{\mathrm{FC}}$ | Chromosomal location |  |  | Gene description ${ }^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Rat | Mouse | Human |  |
| 1 | AF072411_g_at | P | D | -3.4 | -3.2 | 4 | 5 | 7 | cd36 antigen (Cd36) |
| 2 | L22654_at | A | D | -5 | -6 | 4 | 6 | 2 | Anti-acetylcholine receptor antibody gene |
| 3 | M20131cds_s_at | A | D | -3.3 | -2.4 | 1 | 7 | 10 | Cytochrome P450 2E1 <br> (Cyp2e1) |
| 4 | Rc_AA955251_at | P | D | -2.5 | -3.1 | 14 | 15 | 10 | Interferon-induced protein 616 precursor |
| 5 | U44948_at | P | D | -2.1 | -2.5 | 20 | 10 | 3 | Smooth muscle cell LIM protein (Csrp2) |
| 6 | Rc_AA998152_at | P | D | -3.5 | -2.4 | 10 | 11 | 17 | Insulin receptor tyrosine kinase substrate protein p53. |
| 7 | M12822cds_f_at ${ }^{1}$ | A | D | -9.1 | -4.9 | 4 | 6 | 2 | Ig kappa-chain gene C-region |
| 8 | Rc_AA945750_at | A | D | -15.3 | -23.1 | 13 | 1 | -- | Dimethylaniline monooxygenase (FMO 1) |
| 9 | AF034577_at | P | D | -3.1 | -4.6 | 4 | 6 | 7 | Pyruvate dehydrogenase (Pdk4) |
| 10 | Rc_AA942718_at | P | D | -2.1 | -1.9 | 3 | 2 | 20 | Bcl2-like 1 (Bcl2l1) |
| 11 | Rc_AI639060_at ${ }^{1}$ | P | I | 13.5 | 3.4 | 7 | 10 | 19 | Unknown EST |
| 12 | X03894_at | P | I | 10.5 | 5.8 | 13 | 8 | 4 | uncoupling protein 1 (Ucp1) |
| 13 | M64795_f_at | A | I | 8.8 | 5.1 | 20 | 17 | 6 | MHC class I antigen |
| 14 | AJ005046_g_at | P | I | 5.2 | 3.5 | 17 | 13 | 9 | Fructose-1,6-bisphosphatase (Fbp2) |
| 15 | Rc_AI009603_at | P | I | 3.7 | 3.5 | 5 | 4 | -- | HRPAP20 short form |
| 16 | Rc_AA849518_at | P | I | 3.4 | 2.7 | 2 | 3 | 4 | Similar to group XII-1 phospholipase protein |
| 17 | $\begin{aligned} & \text { Rc_AA946457_g } \\ & \text { at } \end{aligned}$ | P | I | 2.7 | 2.6 | 6 | 17 | -- | Hypothetical protein KIAA0846 |
| 18 | AF037272_at | P | I | 2.6 | 3.1 | 19 | 8 | 16 | WAP four-disulfide core protein (Wfdc1) |
| 19 | Rc_AA849841_at | P | I | 2.5 | 2.5 | 5 | 4 | 4 | Syncoilin |
| 20 | Rc_AA859805_at | P | I | 2.5 | 2 | 8 | 9 | 15 | Mus musculus, Similar to lysyl oxidase-like 1 |
| 21 | Rc_AI043601_at | P | I | 2.4 | 1.8 | 8 | 9 | 15 | Hypothetical WD-repeat protein alr3466 |
| 22 | $\text { K01934mRNA }{ }^{\#} 2$ at | P | I | 4.2 | 2.8 | 1 | 7 | 11 | Hepatic product spot 14 <br> (Thrsp) |
| 23 | M69246_at | P | I | 2.1 | 4.3 | 1 | 7 | 9,11 | Collagen-binding protein (Serpinh1) |
| 24 | Rc_AI060197_at | P | I | 2 | 2.2 | 11 | 8 | 21 | Membrane protein C21or f4 |
| 25 | U02553cds_s_at | P | I | 2.9 | 5.8 | 10 | 17 | 5 | Protein tyrosine phosphatase (Ptpn16) |
| 26 | Z49858_at | P | I | 1.8 | 2.8 | 19 | 8 | X | Plasmolipin |
| 27 | D26393exon_s_at | P | I | -4.8 | 2.9 | 4 | 6 | 2 | HK2 gene for type II hexokinase |
| 28 | M25804_g_at | P | I | 3.1 | 3.1 | 10 | 11 | 17 | Thyroid hormone receptor alpha |

1, The genes also showed differential expression in the SHRSP/WKY comparison. 2, Gene symbols were marked in bold. AC, Absolute call; DC, Difference call; FC, Fold change; C, SHHF; W, WKY; SP, SHRSP. --, No hit on the chromosome.

The SHRSP strain has some similar syndromes as SHHF, like hypertension. Thus genes exhibited the same expression change in the groups SHHF/WKY and SHRSP/WKY were also selected (Area in green and red in Fig. 4.5). These genes maybe play roles in hypertension and other similar phenotypes in SHHF and SHRSP (Appendix, Table 11.3).

### 4.3 Comparison analysis of candidate genes using Real Time PCR

To verify the differential expression analysis from the microarrays, quantitative Real Time PCR was performed using primers specific to the selected genes (Table 2.5). In order to get rid of any effect from the contamination of genomic DNA, cDNA quality was approved by PCR amplification of the Gapdh gene (Fig. 4.6 a), and the purity of cDNAs was confirmed by PCR amplification using angiotensinogen intron primers (Fig. 4.6 b). Relative quantification of gene expression was calculated from $\mathrm{C}_{\mathrm{T}}$. All quantitations were normalized to an endogenous control (18s rRNA) to account for variability in the initial concentration of the different samples. Relative quantification of gene expression in the comparisons of SHHF/WKY or SHHF/SHRSP was calculated.


Fig. 4.6 Analysis of cDNA using PCR with Gapdh and angi_intron specific primers
PCRs were amplified from cDNA acquired from SHHF (C), WKY (W), SHR (S), SHRSP (SP), and rat genomic DNA (G) using the rat housekeeping gene Gapdh specific primer (a), or using primers designed from two close introns of the rat angiotensinogen gene sequence (b). M, $0.2 \mu \mathrm{~g}$ of PhiX174 BsuRI (HaeIII) DNA marker.

Sixteen genes selected from the Affymetrix chip were further detected using Real Time PCR with SYBR Green (Fig. 4.7). Except for the gene cytochrome P450 2E1 (Cyp2e1), other nine genes, Cd36, pyruvate dehydrogenase (Pdk4), smooth muscle cell LIM protein (Csrp2), protein tyrosine phosphatase (Pnpn16), uncoupling protein 1 (Ucp1), fructose-1, 6bisphosphatase ( $F b p 2$ ), WAP four-disulfide core protein (Wfdc1), collagen-binding protein (Serpinh1), and anti-acetylcholine receptor were found similar expression change in SHHF strain compared with control WKY and SHRSP both in Affymetrix arrays and using Real Time PCR analysis. The genes, nuclear protein 1 (Nuprl), sulfotransferase family 1A
(Sult1a1), alpha 1 collagen III (Col3a1), interleukin 2 receptor (Il2rb), and cyclin D2 (Ccnd2) showed consistent changes in the SHHF/WKY comparison with Real Time PCR and Affymetrix chips. The upregulation of the gene synaptic glycoprotein (SC2) in the SHHF/SHRSP comparison was also confirmed using Real Time PCR.



Fig. 4.7 Verification of differential expression of candidate genes using Real Time PCR
The upper part of the diagram shows downregulated genes detected using Real Time PCR. The lower part shows upregulated genes detected using Real Time PCR.

### 4.4 Molecular basis of Cd36 in SHHF model

### 4.4.1 Expression level of Cd36 in SHHF strain

In the SHHF/WKY and SHHF/SHRSP comparison, Cd36 showed downregulation detected from 7 probe sets on the Affymetrix chips. These probe sets represent different parts of the $C d 36$ cDNA sequence (Fig. 4.8). The first five probe sets were close on the side of the 5 ' end of Cd36 cDNA. Expression level of Cd36 in SHHF was 2.8 to 7.5 times downregulated compared with that in WKY and SHRSP. The sequence of the probe set rc_AA925752 locates between the end of the open reading frame (ORF) and the beginning of the 3 ' untranslated region, where a large cDNA fragment in SHHF Cd36 cDNA sequence was different compared with WKY cDNA sequence from our later study (Fig. 4.11). Therefore, the result on the Affymetrix chips of the probe set rc_AA925752 reflected not only the expression level of Cd36 but also its mutation in SHHF. The last probe set rc_AA946398 locates at the 3' end of Cd36 gene, where SHHF Cd36 cDNA sequence (long transcript) shows about $92.7 \%$ identity to that of WKY. The decreased expression of Cd36 in SHHF was also found with Real Time PCR (Fig. 4.7) and cDNA array analysis (Table 4.1).


Fig. 4.8 Expression level of Cd36 in SHHF strain compared with WKY or SHRSP
The upper part of the diagram, Expression of Cd36 in the SHHF/WKY or SHHF/SHRSP comparisons by expression profiling using Affymetrix chips. The lower part, Relative positions for sequences of Cd36 probe sets on WKY Cd36 cDNA sequence.

### 4.4.2 Different transcripts of Cd36 in SHHF strain

To determine the basis of the differential hybridization signals for $C d 36$ from the microarrays, expression of Cd36 in SHHF and control strains was analyzed using northern-blot with its 5, and 3' probes (Fig. 4.9 a). In SHHF and SHR/mol rat heart tissue, two major transcripts (about 3.5 kb and 5.0 kb ) were seen, which were not present in the controls. However, the 2.8kb transcript observed in WKY and SHRSP rat heart tissue was not detected in SHHF and SHR/mol. The two major transcripts in SHHF heart tissue were also detected using Smart Race method and were confirmed as specific fragments for Cd36 with southern blot analysis (Fig. 4.9 b, c).


Fig. 4.9 Analysis of Cd36 transcripts by northern blot and southern blot
a, Northern blots of total RNA from SHHF (C), SHR/mol (S), WKY (W) and SHRSP (SP) rats. Each filter was hybridized with $\alpha-\mathrm{P}^{33}$ labeled PCR products from near 5'end of WKY cDNA, 3' end of WKY or SHHF cDNA. Gapdh was used as endogenous control. b and c, Cd36 3' RACE PCR products using SHHF Cd36 gene specific primer GSP3 and UPM (The left part, lane C). Both of the two fragments were confirmed as specific transcripts for Cd36 in SHHF heart tissue using southern blot with $\alpha-\mathrm{P}^{33}$ labeled PCR products G and D1 (The right part). G, PCR products from SHHF cDNA (nt 2061-2483) using Cd36 G primers; D1 and D2, PCR products from WKY (nt 1626-2305) or from SHHF (nt 1579-4617) using Cd36 D primers; M1, $0.2 \mu \mathrm{~g}$ of PhiX174 BsuRI (HaeIII) DNA marker; M2, $0.5 \mu \mathrm{~g}$ of 1 kb DNA ladder from Life/Tech.

### 4.4.3 SHHF and WKY Cd36 cDNA sequences

To obtain the Cd36 cDNA sequence, five primer pairs were designed to amplify the entire $C d 36$ cDNA from SHHF and WKY by RT-PCR in five overlapping segments. One large unexpected fragment D ( 3039 bp ) was found in SHHF and SHR/mol, instead of the 680 bp fragment observed in WKY and SHRSP (Fig 4.10). Then the fragments D from SHHF and

WKY were cloned and sequenced respectively. The two different cDNA draft sequences from SHHF and WKY were acquired by assembling all sequenced fragments with Seqman from DNAStar program.


Fig. 4.10 PCR products amplified from SHHF and WKY cDNA
The upper part of the diagram, PCR products using Cd36 primers A (A), B (B), C (C), D (D), E (E), and F (F). PCR products were absent in WKY and SHRSP using primer F. W, WKY; C, SHHF; S, SHR; SP, SHRSP; G, genomic DNA from WKY; M1, PhiX174 BsuRI (HaeIII) DNA marker; M2, 1kb ladder marker. The below part, $C d 36$ primers A, B, C, D and E were designed from the published Cd36 cDNA sequence (GenBank accession number L19658). Primer F was designed from the SHHF Cd36 cDNA sequence (acquired in this study, unpublished, nt 1621-2122). Expected PCR products amplified using above primers from WKY and SHHF cDNA were compared.

To get full length of the cDNA sequences, $5^{\prime}$, and $3^{\prime}$ RACEs were performed. Two 3' PCR fragments with different length were detected in SHHF heart tissue (Fig. 4.9 b). The sequences of the $5^{\prime}$ and $3^{\prime}$ ends of SHHF and WKY Cd36 cDNA were acquired by sequencing 5 to 10 positive clones for every RACE PCR fragment (Fig. 4.11). WKY Cd36 cDNA sequence ( 2653 bp ) and two cDNA sequences of SHHF (SHHF Cd36_cDNA_long, 4960 bp and $C d 36$ _cDNA_short, 3366 bp ) were obtained after being assembled with the two draft cDNA sequences respectively. The lengths of two SHHF Cd36 cDNA sequences were similar to the size of the two transcripts detected in this strain by northern blot (Fig 4.9 a). Except for part of the last exon (nt 3367-4960) of SHHF Cd36_cDNA_long, SHHF Cd36_cDNA_short was $100 \%$ identical to it at nt $1-3366$. WKY Cd36 cDNA and SHHF Cd36_cDNA_long were also compared (Fig. 4.12). The gene Cd36 open reading frame (ORF) was complete in SHHF Cd36 cDNA, followed by a long untranslated sequence divergent from WKY Cd36 cDNA sequence. Compared with WKY, the first upstream ORF was absent in SHHF Cd36 cDNA.


Fig. 4.11 Positive clones including Cd36 5' and 3' RACE PCR products
Plasmids were digested using EcoRI and loaded on $0.8 \%$ agarose gel. C1, C2 and C3, Positive clones include SHHF Cd36 $3^{\prime}$ RACE PCR products (C1: 1357 bp and C2: 2945 bp :) amplified using GSP2 and UPM and 5' RACE PCR product (C3: 1216 bp ) amplified using GSP1 and UPM. W1 and W2, Positive clones include WKY Cd36 3' RACE PCR product (W1: 1163 bp ) amplified using GSP4 and UPM and WKY Cd36 5' RACE PCR product (W2: 1880 bp ) amplified using GSP4 and UPM. P, Digested pDriver cloning vector as negtive control; $\mathrm{M}, 0.5 \mu \mathrm{~g}$ of 1 kb DNA ladder from Life/Tech.
GAGATCAGTGACTCTGTAMCCTTGCAMCTGCAT TT TGATGGT TCCTT TAA CTCGTGCACTTGTACTCTCTCCTCGGAMTGCCTAGCTGATT ACTTCTG
G-T GTADTTACAMATGATTCGAETGT TGAACTTTCTGACTCTCAATGAMCTATTTCTCACACAACTCAGATACTGCTGT TCATGCATGATTAG

TGALCAGCCACATAGAMGCATTGRATTGTACCTGTGAGTTGGCAMFAMGCAMGTGCTCTTOCTGATTCTGCTGCACGAGGMGCAGMATGGGCTC








ACTCAGGAOCCAM GACAGCACTGTCTCTTTTGTACAACCCMATGGACCCATCTTTGACCTTCACTGTCTGTTGGACAGAGAATCACAACTTCACAG SHHFCd36_CDNA_long









CATTTGCAGFTCCATCTATGCTGTGTT TGAMTCTGAGGGADCTTAMAGGATCCCCGTATACACATTTGTCTTCCAGCCA.ACGCCTTTGCTCCCCA SHHFCd36_cDNA_long
СТСДGA









TGGAMATMAGTA

----------------------------------------------------------------------------------------- wkycd36 dNA

-
-GTGGATGACCTAC TTATGCACTAGCTACATTTTGETAMACCATCTCC whycd 36 CNA






ATCTTGTATT TT TTCAAGTCCATCATCTGCAACTGAGTGGACTTCAATT TCTGCAGA.ACCAATTATCTT TTT TGGTTCTGATTGAC-GATT TATTTTCCC SHHFCd36_CDNA_long



ATGTCCTTGTGACTGTCAGCACATCATATGTCATAMGGATTATATCATTTTAAGATTTAAGGAGAAAAMTGACAATTCACATATGACCATTGTTG SHHFCd36_cDNA_long
ATATATTGTT TAACCTCTCCCTCTCTGGTGTCCTTGGCAACAACAAQECCAGGTATCACAGATATTTTTTCTTTTTACTTTCTTACACAGMECTTATA w wyed36 סDNA
ATATATTGTT TAATCCTCTCCCTCTCTGETGTCCTTGGCAMCACAADECAGGTATCACAGATACTTTTTTCTTTTTACTTTCTTACACAGACCTTATA SHHFcd36_cDNA_long






TGTCTTAMATTCA
TGTTCTTASA
SHFCd $\bar{\sigma}_{-}$CDN_long

## Fig. 4.12 Alignment of Cd36 cDNA sequence

The Cd36 cDNA sequences from WKY (wkycd36_cDNA) and SHHF (SHHFcd36_cDNA_long) were aligned using MegAlign of the DNAStar program. About 3.3 kb of SHHF Cd36 cDNA sequences are omitted, where do not match to WKY cDNA sequence. Exons are labeled as intervals using dark gray and light gray; sequences marked in yellow are shared by two close exons. The mismatches between two sequences are marked in red.

### 4.4.4 Blast analysis of Cd36

Blast analysis of WKY and SHHF Cd36 cDNA sequences was performed against the rat genome database at NCBI. Three and a half quite similar homologue fragments at the Cd36 locus on rat genome chromosome 4 q 11 were matched. Thirty-three exons and 3 genes were found in this genomic region spanning 248794 bp (Fig 4.13). Three genes are LOC360376 (hypothetical gene), LOC362310 (similar to fatty acid translocase/Cd36) and LOC296786 (similar to fatty acid transport protein). All these three model genes carry a Cd 36 family domain. WKY Cd36 cDNA sequence showed higher homology with the first two model genes than with SHHF Cd36 cDNA sequence (Fig 4.14), especially the sequences of exons 2 to 4 were $100 \%$ identical to the exons at the beginning of the first model gene. The sequence nt 521-4960 in SHHF Cd36 cDNA (including exons 5 to 14) is $99.6 \%$ identical to the exons of the gene LOC296786. However the cDNA from nt 56 to nt 523 (exons 2 to 4 ), which is identical with WKY Cd36 cDNA sequence, is only $95 \%$ identical to the exons of the gene LOC296786. WKY Cd36 exon 1, which is $92 \%$ identical to mouse musculus Cd36 gene upstream promoter, is quite different from SHHF exon 1 sequence.


Fig 4.13 Evidence viewer Rattus norvegicus NW 047687.1 acquired from NCBI
C, contig; M, model mRNA; R, RefSeq mRNA; G, GenBank mRNA. XM 346685, model mRNA for hypothetical gene LOC360376; XM 342623, model mRNA for gene LOC362310; XM 216076, model mRNA for gene LOC296786. BC008406, L06850, M24795, M98398, NM_000072, and S67532, homo sapiens CD36 antigen. AB005743, mRNA for fatty acid transporter; AF07241, mRNA fatty acid translocase/CD36; AF111268, fatty acid transport protein (CD36/FAT); AF113914, cell surface protein Cd36 mRNA; L19658, FAT mRNA. NM_031561, Cd36 antigen.


Fig. 4.14 Blast analysis of the Cd36 cDNA sequence against the Rat genome
The left part of the diagram shows the blast result of WKY Cd36 cDNA sequence against the rat genome at NCBI. The right part shows the blast result of SHHF Cd36 cDNA sequence (the long transcript).

### 4.4.5 Cd36 copy number and deletion breakpoints in SHHF strain

The sequences of Cd36 intron 4 and intron 3 acquired from the genomic sequence NW_047687.1 from Genbank were compared. Five repeat regions within exon 4 and its boundary were found. Seven primer pairs (Table 2.3) were designed to amplify the boundary of exon 4, intron 3, and intron 4 . One or two PCR fragments observed in WKY amplified with intron 3 IV or intron 4 III primers respectively were not detected from SHHF genomic DNA (Fig. 4.15, Fig. 4.16). Only one fragment was found from SHHF genomic DNA when amplified with other primers (Fig. 4.15). PCR fragments of intron 3 I, intron 4 I, and II from SHHF genomic DNA were sequenced and compared with corresponding parts of published genomic sequences. A deletion of about 165.4 kb from the beginning of the first intron 4 to the last repeated intron 4 was identified in SHHF Cd36 DNA sequence (Fig. 4.16). The upstream and downstream limits of the breakpoint were designated as the region where the pattern of sequence variants observed in intron 4 of SHHF Cd36 gene changed from being identical to LOC360376 and different from LOC296786, to always being different from LOC360376 and always identical to LOC296786. Comparison of the sequence data from the first 900 bp of intron 4 in SHHF indicated that breakpoint was between nt 9 and nt 630 away from the first repetition exon $4 /$ intron 4 boundary (Fig. 4.17).


Fig. 4.15 Analysis of Cd36 deletion in SHHF strain
PCRs were performed from rat genomic DNA from SHHF (C), WKY (W), SHR (S), SHRSP (SP) with primers intron 4 III (a), intron 3 I (b), intron 3 III (c) or intron 3 IV (d).

NW047687.1


Fig. 4.16 Analysis of Cd36 deletion in SHHF strain
NW047687.1, Rattus norvegicus chromosome 4 WGS supercontig from 7705272 to 7953265.

## GGAAGTTGTCCTTGAAGAAGGAACCATTGCTTTCAAAAACTGGGTGAAAACGGGCACCACTGTGTACAGACAGTTTTGGATCTTTGACGT Majority



GCAAAACCCAGAGGAAGTGGCAAAGAATAGCAGCAAGATCAAGGTTAAACAGAGAGGTCCTTACACATACAGGTGAGTGGGCTCTTCAGG Majority


AGTAGTGGTCTCACTCTGTTTCTGAGAACTCTTCCTCCTAAGGAATTCCATGGCATTGAAGTGTACTTAAT-CTTGCCAACAAAATTTAC Majority


ATCAAAATGTTTTCCCTACAAGTAAAGGATCCTAGTCTACAGATTTAGGTTCTACCAATATATGCTACCCAAATGTTACCATATATTATA Majority Nw_047687.1_34248_35358 NW_047687.1_52572_53682 NW_047687.1_53591_54701 NW_047687.1_134157_135267 Nw_047687.1_198926_200036 sequence from SHHF

TCAAAAAGAGCTGTAGAATTTATTGCAAGTTTAAAGCTACTAAGTAGCTCCCCTACTAAAAACTTTATGGATGGTT-GTTTGACACTTGA Majority


```
&..................................................................................... nw_0.047687.1_53591_54701
```



```
    sequence from SHHF
```

GTCATGTTCCAAAATGTCCAGTTGGCATACTGAGAGATTTATGAATACATGATGAACATCTTAGAAGGAAACAGGTATCTTACTTCTGTG Majority


ATTATCCTGGTGTGGCCTCTAGGTCAGAAACAACCGTAACACCCGTCAACTGCTACAACAAGTGGATGGAACAGACTCTACCTGGTTATT Majority


Fig 4.17 continued to next page


Fig. 4.17 SHHF Cd36 exon 4 and intron 4 sequence compared with published sequence
The sequence of SHHF Cd36 exon 4 and intron 4 (1-900 bp) were aligned with the corresponding parts of the sequence NW_047687.1 using MegAlign of DNAStar program. The sequences (1-162 bp) are exon 4. The limits of the breakpoint are marked with arrows. Other SHHF sequence variants that were observed different from the others may be sequence variations between SHHF and BN, since the genome sequences are derived from the BN rat. Decoration 1, Hide (as '. ') residues that match the Majority exactly. Decoration 2, box residues that differ from the majority.

### 4.4.6 Western blots of Cd36 protein in SHHF heart tissue

To determine whether the SHHF transcripts translate to a normal Cd36 protein. The protein Cd36 was analyzed by western blots. Cd36 was detected in plasma membrane from WKY and SHRSP heart tissue but not detectable from SHHF and SHR/mol heart tissue (Fig.4.18).


## Fig. 4.18 Western blot of Cd36 protein

$40 \mu \mathrm{~g}$ of microsomal and plasma membrane proteins in WKY (W), SHRSP (SP), SHHF (C) and SHR/mol (S) were separated on $8 \%$ SDS-PAGE gel, Cd36 was visualized using a polyclonal rabbit anti- human Cd36 antibody (a) and monoclonal human Ig M anti-human Cd36 antibody (b).

### 4.4.7 Comparison of predicted protein sequence of Cd36

Cd36 coding sequence (cds) was 1419 bp , with 472 amino acids in length, and about 52.73 KDa of its predicted protein. Cd36 had multiple polymorphisms among the different rats from their predicted amino acids sequence (Fig. 4.19), SHHF Cd36 ORF that was consistent with SHR/NCrlBR had 11 amino acids variation compared with WKY. For the SHRSP, there's only a point mutation (G/A, Arg262/Glu) compared to WKY (Collison et al., 2000). From comparisons of amino acids sequences, WKY Cd36 was more similar to the XP_346685 (from model gene LOC 360376), however SHHF Cd36 fit better to the XP_216076 (From model gene LOC296786). These further confirmed that WKY Cd36 cDNA was transcribed from the gene LOC360376 and SHHF Cd36 from the gene LOC296786. Although Cd36 amino acid sequence of WKY also had 9 amino acids variation compared with that of Sprague-Dawley, it might cause by the strain difference.


Fig 4.19 Comparison of Cd36 amino acid sequence
Wistar-dark agouli, from WKY Cd36 cDNA (from this study), AF072411 (Wistar), AF113914 (dark agouti); XP_346685, from XM346685; SHHF-SHR, from cds of SHHF Cd36 cDNA (from this study) and AF111268 (SHR); XP_216076, from XM216076; Sprague-Dawley, from L19658. XP342623, from XM342623.

### 4.5 Functional study of Cd36 in SHHF rat using linkage analysis

### 4.5.1 Genotype of F2 animals

The cross of SHHF with WKY strain was set up to further characterize the phenotype and to facilitate gene identification. (SHHF $\times$ WKY) F2 animals were genotyped by Cd36 HinfI RFLP analysis. The animals were scored as SHHF homozygotes if the complete HinfI digestion showed only the 77-bp fragment, and as either SHHF/WKY heterozygotes or WKY homozygotes if both the 77 bp and 107 bp bands were present (Fig. 4.20, Fig. 4.21).


Fig. 4.20 Analysis of PCR products amplified from cDNA and genomic DNA
a, PCR products were amplified from cDNA and genomic DNA of strains SHHF (C), WKY (W), SHR/mol (S), and SHRSP (SP) with Cd36 Hinf primer. b, PCR products were further analyzeded by HinfI digestion on 4\% agarose gel (for small DNA from Biozym).


Fig. 4.21 Genotype results of $F 2$ animals by hinfI RFLP analysis (example)
PCR products amplified from genomic DNA of (SHHF $\times$ WKY) F2 (F2, 1-12), SHHF (C), WKY (W), SHRSP (SP) and (SHHF $\times$ WKY) F1 with Cd36 Hinf primer were analyzed on $4 \%$ agarose gel after Hinfl digestion. M1, PhiX174 BsuRI (HaeIII) DNA marker.

### 4.5.2 Expression of $\boldsymbol{C d} 36$ in $\mathbf{F} 2$ animals

The expression of Cd36 in F2 heart tissue was detected. The normal transcript of Cd36 was confirmed absent in SHHF Cd36 homozygotes, and present in both WKY homozygotes and

SHHF/WKY heterozygotes by HinfI RFLP analysis (Fig. 4.22). Cd36 showed 2.2-fold downregulation in SHHF homozygotes compared with WKY homozygotes and two-fold downregulation compared with SHHF/WKY heterozygotes with TaqMan quantitative PCR.


## Fig. 4.22 Expression of Cd36 in (SHHF $\times$ WKY) F2 animals

PCR products amplified from cDNA of SHHF Cd36 homozygotes (Lane 1, 2), WKY Cd36 homozygotes (Lane 3, 4), SHHF/WKY heterozygotes (Lane 5, 6), SHHF (C), and WKY (W) with Cd36 Hinf primer were analyzed on $4 \%$ agarose gel after HinfI digestion. U, Undigested PCR products; M1, PhiX174 BsuRI (HaeIII) DNA marker.

### 4.5.3 linkage analysis by MapMaker

The F2 animals were also genotyped by the markers D4Rat6, D4Rat221 and D4Bro1 on either side of $C d 36$ (Table 4.6). The calculated hemodynamic parameters were used as indicators of cardiovascular performance in response to heart failure. The linkage analysis with MapMaker was performed on the original data following a normal distribution or transformed data that more closely fit the normal distribution (Table 4.8). The LOD scores above 1.5 were listed in Table 4.7. The highest LOD score of 2.07 was detected at marker D4rat 221 in male rats for the cardiac output, which indicates the locus on chromosome $4 q^{11-12}$ showing suggestive linkage to heart failure (Fig. 4.23) (Lander and Kruglyak, 1995). Cd36 is less than 1 cM away from this marker.

Table 4.6 Positions of Cd36 and three markers on chromosome 4

| Marker | Chr_start (bp) | Chr_end (bp) | Expected size | Estimated distance <br> to Cd36 |
| :--- | :--- | :--- | :--- | :--- |
| D4bor1 | 6115283 | 6115445 | 162 | $7,331,555$ |
| D4rat6 | 10298232 | --1 | 173 | $3,148,595$ |
| Cd36 | 13447000 | 13695000 |  |  |
| D4rat221 | $90925354^{2}$ | 14388573 | 158 | 693,573 |

[^1]

Fig 4.23 MapMaker result for Cardiac output

Table 4.7 MapMaker results of the LOD scores above $\mathbf{1 . 5}$

| Gender | Markers | MDP | Tau | SV | CO | HGmg | LUNGmg RNmg | LNmg |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Male |  |  |  |  |  |  |  |  |  |
|  | D4Rat221 $(0 \mathrm{cM})^{1}$ | 1.148 | 0.569 | 1.652 | 2.071 | 0.347 | 0.475 | 2.025 | 1.399 |
|  | D4Rat6 $(4.9 \mathrm{cM})$ | 1.605 | 1.529 | 0.613 | 1.333 | 0.689 | 0.178 | 2.038 | 1.448 |
|  | D4Bro1 $(12.3 \mathrm{cM})$ | 1.42 | 1.174 | 0.826 | 1.016 | 1.085 | 0.049 | 2.002 | 1.556 |
| Female | D4Rat221 $(0 \mathrm{cM})$ | 0.2 | 0.004 | 0.117 | 0.367 | 0.758 | 1.026 | 0.157 | 0.261 |
|  | D4Rat6 $(4.9 \mathrm{cM})$ | 0.101 | 0.207 | 0.196 | 0.184 | 1.03 | 1.568 | 0.682 | 0.771 |
|  | D4Bro1 $(12.3 \mathrm{cM})$ | 0.023 | 0.102 | 0.412 | 0.326 | 1.155 | 2.53 | 0.418 | 0.479 |
| All | D4Rat221 $(0 \mathrm{cM})$ | 0.463 | 0.081 | 1.117 | 0.737 | 1.017 | 0.085 | 1.328 | 0.885 |
|  | D4Rat6 $(4.9 \mathrm{cM})$ | 0.407 | 0.537 | 0.267 | 0.451 | 1.534 | 0.419 | 2.039 | 1.568 |
|  | D4Bro1 $(12.3 \mathrm{cM})$ | 0.301 | 0.354 | 0.66 | 0.41 | 2.052 | 0.452 | 1.805 | 1.412 |

1. Relative position of the three markers.

### 4.5.4 Comparison analyses by t-test and anova

From t-test analysis that performed between SHHF Cd36 homozygotes and WKY Cd36 homozygotes or SHHF/WKY Cd36 heterozygotes, combined anova analysis that performed among SHHF homozygotes, WKY homozygotes and SHHF/WKY heterozygotes divided by genotype result of Marker D4Rat221, Cardiac output showed significant difference among SHHF homozygotes, SHHF/WKY heterozygotes and WKY homozygotes in F2 male rats (Table 4.8, $\mathrm{P}<0.05$ ). Time constant of relaxation and Mean diastolic pressure also showed
significantly difference among two homozygotes and heterozygotes in male rats according genotype result of Cd36 combined with Marker D4Rat 6 (Table 4.8, $\mathrm{P}<0.05$ ).

Table 4.8 Comparison analyses of (SHHF $\times$ WKY) F2 animals by t-test and anova

| Parameters | Data transformation |  |  | Values of t-test analysis ${ }^{1}$ |  |  | Values of anova analysis ${ }^{2}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Female | Male | All | Female | Male | D4Rat221 | D4Rat6 | D4Bro1 |
| PMAX | 1 div | 1 div | 1 div | 0.311 | 0.606 | 0.294 | 0.764 | 0.327 | 0.324 |
| PMIN | sqrt | sqrt | sqrt | 0.033 | 0.157 | 0.069 | 0.211 | 0.055 | 0.074 |
| PBD | sqrt | sqrt | sqrt | 0.109 | 0.252 | 0.169 | 0.458 | 0.21 | 0.254 |
| PED | 1div | 1 div | orig | 0.439 | 0.844 | 0.053 | 0.066 | 0.038 | 0.061 |
| PES | 1 div | 1 div | 1 div | 0.14 | 0.612 | 0.168 | 0.521 | 0.174 | 0.253 |
| DP | 1div | 1 div | 1 div | 0.41 | 0.63 | 0.486 | 0.954 | 0.584 | 0.425 |
| SEP | 1div | $\log$ | $\log$ | 0.884 | 0.159 | 0.201 | 0.347 | 0.263 | 0.675 |
| DFP | sqrt | sqrt | sqrt | 0.826 | 0.207 | 0.406 | 0.8 | 0.375 | 0.328 |
| MSP | 1 div | 1div | 1 div | 0.253 | 0.596 | 0.25 | 0.633 | 0.278 | 0.345 |
| MDP | $\log$ | $\log$ | sqrt | 0.198 | 0.641 | 0.025 | 0.083 | 0.025 | 0.051 |
| CT | 1 div | 1div | - | 0.1 | 0.213 | - | - | - | - |
| RT | orig | orig | orig | 0.322 | 0.739 | 0.099 | 0.266 | 0.08 | 0.079 |
| DPMAX | orig | orig | orig | 0.593 | 0.953 | 0.44 | 0.997 | 0.757 | 0.727 |
| DPMIN | orig | orig | orig | 0.686 | 0.904 | 0.626 | 0.866 | 0.877 | 0.779 |
| CI | - | orig | - | - | 0.275 | - | - | - | - |
| TAU | orig | orig | orig | 0.254 | 0.88 | 0.035 | 0.281 | 0.0302 | 0.087 |
| VMAX | orig | orig | orig | 0.607 | 0.81 | 0.338 | 0.063 | 0.343 | 0.228 |
| VMIN | orig | orig | orig | 0.352 | 0.607 | 0.093 | 0.162 | 0.324 | 0.218 |
| EDV | orig | orig | orig | 0.776 | 0.688 | 0.437 | 0.061 | 0.396 | 0.28 |
| ESV | orig | orig | orig | 0.356 | 0.63 | 0.114 | 0.149 | 0.361 | 0.206 |
| SV | orig | orig | orig | 0.334 | 0.43 | 0.129 | 0.027 | 0.257 | 0.163 |
| CO | orig | orig | orig | 0.295 | 0.208 | 0.014 | 0.011 | 0.051 | 0.109 |
| EF | $\log$ | $\log$ | $\log$ | 0.418 | 0.723 | 0.106 | 0.286 | 0.435 | 0.256 |
| SW | orig | orig | orig | 0.757 | 0.255 | 0.302 | 0.041 | 0.318 | 0.218 |
| EA | 1div | 1 div | 1div | 0.109 | 0.805 | 0.047 | 0.051 | 0.173 | 0.122 |
| HR | $\log$ | $\log$ | $\log$ | 0.725 | 0.324 | 0.172 | 0.546 | 0.125 | 0.147 |
| ANIMALG | n_log | $\log$ | $\log$ | 0.253 | 0.642 | 0.048 | 0.079 | 0.16 | 0.502 |
| HGMG | n_log | $\log$ | $\log$ | 0.432 | 0.227 | 0.987 | 0.456 | 0.215 | 0.084 |
| LUNGMG | n_log | $\log$ | $\log$ | 0.242 | 0.267 | 0.527 | 0.339 | 0.676 | 0.897 |
| RNMG | n_log | $\log$ | $\log$ | 0.004 | 0.618 | 0.001 | 0.012 | 0.01 | 0.022 |
| LNMG | $n \_\log$ | $\log$ | $\log$ | 0.024 | 0.803 | 0.004 | 0.045 | 0.034 | 0.045 |

1 , t-test results of all rats (191), male rats (105) or female rats (86) were analyzed between SHHF Cd36 (-/-) homozygotes and WKY Cd36 (+/+) homozygotes or WKY/SHHF Cd 36 (+/-) heterozygotes. 2, Anova results of the male rats were analyzed among SHHF homozygotes, WKY homozygotes and SHHF/WKY heterozygotes divided separately according the genotype result of Marker D4Rat221, D4Rat6 or D4Bro1. -, The transformation is not allowed.


[^0]:    a, SSH probe was prepared using SHHF strain as tester and SHRSP as driver; b, SHH probe was prepared using SHHF strain as tester and WKY as driver. Genes marked in bold were retested using Real Time PCR. --, No hit on the chromosome.

[^1]:    1, primer 2 of D4rat6 could not be mapped. 2, primer 1 of D4rat221 hits for a different contigs on chromosome 4.

