Appendix C

The renormalization group

C.1 The renormalization group transforma-
tion

The idea behind the renormalization group [68] is concerned with the
basic physics of phase transitions, namely the long wavelength fluctuations
that are the cause of singularities at the critical point.

For a D-dimensional physical system near a critical point, the number of
degrees of freedom interacting with each other is of the order of £2, where
¢ is the correlation length. At the critical point, this number diverges, since
there the correlation length is infinite.

The renormalization group method consists in systematically reducing
the number of interacting degrees of freedom by integrating over short-
wavelength fluctuations. Suppose we start with a physical system on a lattice
of lattice spacing a, then the minimum wavelength for fluctuations is of or-
der a. If we integrate over fluctuations having wavelengths ¢ < A < sa,
where s > 1 is called the dilatation factor, this makes no difference to the
behavior of correlation functions G(x) for z > sa: integration over short-
wavelength fluctuations assigns to the original system a corresponding one
with the same long-distance behavior. The transformation from one to the
other is called a renormalization group transformation (RGT). It can be it-
erated by integrating over fluctuations having wavelengths sa < \ < s%a,
etc., thus establishing a whole sequence of corresponding physical systems,
all with the same long-distance behavior.

After the first RGT, the effective lattice spacing of the transformed system
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128 APPENDIX C. THE RENORMALIZATION GROUP

is sa. Accordingly, one associates with each RGT a dilatation of the unit of
length by a factor s, thus making it possible to compare the original and the
transformed systems in a lattice common to both.

The dilatation of the unit of length links two correlation functions of
arguments = and /s, respectively. This is not equivalent to simple di-
mensional analysis, since the integration over short-wavelength fluctuations
changes (renormalizes) the system parameters.

C.2 Critical surface and fixed points

To give a more precise formulation to the concepts we wish to discuss in
this section, let us consider a physical system which, near the critical point,
is described by the generalized Ginzburg-Landau Hamiltonian

Ho = [ AP [H(V)? + Lrod” + Juod' + duod® +1]  (C1)

The coupling constants define a parameter space for the system under
study, we shall write them collectively as

w = {ro, ug, vo, - - *}- (C.2)

Each possible state of the system is described by a point in parameter
space, and an RGT R, maps a point u of this space into another such point
1, such that

W = Rsp = {rgy, ug, vy, - - -} (C.3)

The renormalization group strategy consists in iterating R, many times,
and one can thus define the nth iterate Ry = R,...R,. Suppose we are
at the critical point, where the correlation length & diverges. After applying
an RGT, the transformed correlation length £ = £/s remains infinite, that
is, the system is still critical. The locus of points in parameter space that
correspond to systems at the critical point (§ = oo) is called the critical
surface Soo. An RGT applied to a point in S, always transforms it on a
point likewise in S,,. On the other hand, if we start from a point far from
the critical surface, each RGT will move it further away, since each operation
divides the correlation length by s. Under iterations of the RGT each point
in parameter space describes a trajectory, and the set of all trajectories is
called the renormalization flow.
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Although the behavior of the points in S, arising from successive ite-
rations of an RGT is in principle arbitrary, the physically interesting case is
that where there is a fized point, characterized by a set p* of parameters such
that

pr= Rsp*. (C4)

In general, the position of the fixed point is related to the values of the
parameters at a phase transition (if, for example, one of the parameters is the
temperature, the value of the coordinate of the fixed point on the temperature
axis in parameter space will correspond to the critical temperature), and it
depends on the particular form chosen for the RGT. On the other hand,
universal physical quantities, such as critical exponents, do not depend on
the explicit form of the RGT.

C.3 Linearization near a fixed point

Let 1 = {g1,92,---} be a point in parameter space near the fixed point
p* = {g;}, with
9i = g; +0g;, (C.5)
and let y' = Ryu be its transform under an RGT. If y and p* are close
enough, the relation between dg; and dg; is approximately linear:

8g; ~ T;;09;, (C.6)
where iy
Ty(s) = 22| (C.7)
995 |,

Since by the definition of the RGT, T'(s1)T'(s2) = T'(s152), for an infinitesimal
dilatation parameter s = 1+ 4§, T'(s) must have the form

T(s) =exp(T Ins), (C.8)
with T
T= dws (C.9)

Let e* be an eigenvector of 7;;, corresponding to an eigenvalue y,:

Tije; = Yat;- (C.10)
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Accordingly

Tijef = s¥ej. (C.11)

Any point in parameter space has a representation in the basis of the eigen-
vectors {e”}:

0g; = ta€y, (C.12)

and, in the linear approximation
8g. = tys¥ el = s¥dy;. (C.13)

The coefficients ¢; are called scaling fields. According to (C.13), three cases
are possible:

e y, > 0: the scaling field increases under iterations of the RGT: ¢; is
called a relevant field.

e y, = 0: the scaling field remains constant (in the linear approximation)
under iterations of the RGT: t; is called a marginal field.

e y, < 0: the scaling field decreases under iterations of the RGT: ¢; is
called an #rrelevant field.

We thus see that, to be at the critical point, one must set all relevant
fields equal to zero: if they are nonzero, the RGT will move the point u'
further away from the fixed point. The most frequent case is when there is
only one relevant field (usually corresponding to the temperature).

C.4 A simple example: the Ginzburg-Landau
model

To illustrate the renormalization method, let us consider the Hamiltonian

(C.1), and disregard the terms proportional to powers of ¢ higher than four.

As we shall see, these terms are irrelevant for D > 4.
The partition function is given by

716] = [ Doe el (C.14)
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and we calculate it as an a expansion in powers of uy, in the standard per-
turbative approach. The effective Hamiltonian is then, to second order in
the expansion,

kgT A dPk  w
— dD 1 2 1 B 0 2
" / x{ 3(VO) +3 lTO * 2 Jass 2m)P k2 41y ¢
3kgT A dPk u?

2 Jass (2m)P (/f2+7'0)]¢4}’ (C.15)

According to the renormalization group prescription, we integrate over fluc-
tuations with wavelengths between a and sa, this is equivalent, in Fourier
space, to integrating over wavenumbers between A = 1/a and A/s.

The second step of the RGT consists in the dilatation of the unit of
length by a factor s, z — x/s; accordingly, in momentum space we have k —
sk. Due to the rescaling of the coordinates, the field variable ¢ transforms
as ¢ — s%¢. In general, dy does not simply assume the value found by
dimensional analysis, but it is influenced by fluctuations, and depends on
the fixed point under consideration. However, to the order to which we are
now working, fluctuations do not affect the gradient term in (C.15), and we
may therefore set d, = D/2 — 1, the canonical dimension of the field. The
effective Hamiltonian is, after the dilatation,

kT A dPk w
Dy {1 4142 B 0 2
H= /d { 2 V¢ 2 [TO + 2 A/s (27T)D k? + ’f‘()‘|

pLghD Ly 3kgT A dPk u? ng
a 2 Jass (2m)P (k2 + 1o)?

+% luo —

(C.16)
The transformation laws for the coupling constants are therefore
kgT
— 2 B
r = sy (1 ~ g2t In s) ) (C.17)
. 3kgT
u = s (1 ~ Tgz In 3) ) (C.18)

where we have carried out the integrals in D = 4 — € dimensions, for small e.
Equations (C.17) and (C.18) can be transformed into differential equa-
tions, by considering an infinitesimal dilatation factor s = 1+4. One obtains

dr(s) kT
Tl s 2r(s) — 167r2u(s)r(s), (C.19)
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du(s)

dlns cu(s) - 1672
These equations are known as the flow equations, and they make it easy to
calculate the position of the fixed points. The system of equations above
allows two fixed points, namely r = v = 0 or r = 0,u = u*, with v* =
16em?/3kgT. Let us now analyze their stability.

kel 2s). (C.20)

C.4.1 The Gaussian fixed point

Let us start with the trivial, or Gaussian fixed point r = u = 0. We have

T=<§ S), (C.21)

with eigenvalues and eigenvectors given by
1 1
e={y) 0= 2, (C.22)
62=<(1)>, Y = E. (C.23)

Thus r is a relevant field, and for D > 4 (e < 0), u is an irrelevant field.
Provided that D > 4, all higher order terms are also irrelevant, the sixth-
order term v, for example, transforms as

v = 552y, (C.24)

being therefore irrelevant. The parameter r vanishes at the critical point,
as expected. However, the model with v = 0 is not defined for r < 0, since
there it becomes unstable.

For D < 4, u becomes relevant, and the Gaussian fixed point is no longer
adequate to describe the transition. A non-Gaussian fixed point appears,
whose properties we will investigate in the next section.

C.4.2 Non-Gaussian fixed point

For the fixed point » = 0, u = u*, we have

T=<26§ O). (C.25)
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Thus r is again a relevant field, an v is irrelevant for D < 4. Now the model
is well defined both for » > 0 and for » < 0. At the phase transition, the
relevant parameter r vanishes.

The flow diagrams for D > 4 and D < 4 are sketched in Fig. (C.1).
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Figure C.1: Flow diagrams for D < 4 and D > 4. For D > 4 the fixed point
at the negative u* is unphysical, the transition is described by the Gaussian
fixed point at the origin. For D < 4 the situation is reversed.
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