Chapter 7

Conclusions and Perspectives

Several aspects of systems consisting of fluctuating fluid membranes have
been considered. Firstly, the issue of the renormalizability of the Canham-
Helfrich model for fluid membranes has been investigated. In contrast to
former studies, where the model had been expanded in a power series in
the displacement field and treated perturbatively with help of Feynman di-
agrams, we kept the full Canham-Helfrich energy throughout the whole cal-
culation. With help of the derivative expansion method, we were able to
determine the renormalization of the full surface and bending energy terms,
and proved the renormalizability of the model at one-loop order.

Following the investigation of the classical Canham-Helfrich membrane,
we extended the model to account for quantum fluctuations. While inade-
quate for biomembranes, which typically exist at high temperatures, our
model provides a good description of quantum interfaces, such as the Helium
liquid-vapor interface at very low temperatures, or the He? film on top of
the He* bulk in He?-He* mixtures. Both perturbative one-loop calculations
and a non-perturbative approach in a large number of dimensions of the
embedding space showed that the model displays a crumpling transition, and
the critical temperature was determined as a function of the bending rigidity
of the membrane. An investigation of the crumpled phase in large embedding
space dimension revealed the existence of a persistence length determining
the minimum lateral size a membrane must have to appear crumpled, even
above the critical temperature. This persistence length, derived in the non-
perturbative approach, was shown to agree with the perturbatively obtained
de Gennes-Taupin persistence length for fluid membranes.

In addition, we studied a system consisting of a parallel arrangement of
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membranes separated by thin layers of solvent. The lamellar structure of
such a stack of membranes was shown in a perturbative one-loop calculation
to undergo a melting-like transition into a vertically disordered phase. This
transition does not take place in the simple Helfrich model for a stack, which
contains only a harmonic curvature energy, being equivalent to de Gennes’
theory of smectic-A liquid crystals. In our perturbative calculations, we
extended the Helfrich model to contain curvature energy terms of up to
fourth order in the displacement field. The phase transition we found is
caused between a competition between the compressibility energy of the stack
and the softening of the bending rigidity due to thermal fluctuations, an
inherently anharmonic effect. The critical temperature for the transition was
determined as a function of the bending rigidity and the critical exponents
for the compressibility and specific heat of the stack were calculated. To
characterize the disordered phase, not accessible by perturbative methods,
we resorted again to a non-perturbative calculation in a large number of
dimensions of the embedding space. In this way, we were able to calculate the
full phase diagram of the model as a function of temperature and interlayer
separation. While the melting transition predicted by our model may not be
observed in stacks of lipid membranes separated by water, due to their large
bending rigidity, our results are still applicable to diluted smectic systems,
which are found experimentally to have very low rigidities, depending on
the solvent. Another application field of our model also may be systems of
oil and water separated by soap films, where the transition carries lamellar
phases into microemulsions. Also, our system is very similar to a smectic-A
liquid crystal. The vertical melting transition we predict is equivalent to the
smectic-to-nematic transition in these systems.

The non-perturbative approach used both for the quantum membrane
and for the stack of membranes revealed that the common assumption of in-
plane incompressibility of fluid membranes cannot be maintained for systems
of very small rigidities. In this case, the in-plane elasticity energy of the mem-
branes should be taken into account. It would be interesting to investigate
the effect of such terms on the critical exponents of the melting transition.
This implies including the effect of the in-plane flow of molecules within the
membrane, thus allowing for more degrees of freedom in the energies of both
the quantum membrane and of the stack. Another important point, which
was left out of our previous discussions, is the possibility of topology changes
of the membrane. Although rendering practical calculations more difficult,
the inclusion of the Gaussian curvature, which characterizes the topology of
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the membrane, would render fluid membrane models more realistic, and thus
applicable to experimental situations.
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