Chapter 6

Stacks of Membranes

As we have seen in the previous chapter, the thermal fluctuations of quan-
tum fluid membranes induce a crumpling transition. This effect is mainly
due to the extra degree of freedom introduced in the Canham-Helfrich model,
namely, the time. A similar phenomenon can be observed in a system of many
membranes on top of each other. Although the mathematical description of
a stack of membranes appears almost identical to that of a quantum mem-
brane, the physics of the two systems is quite different, as we shall see in this
chapter.

Under suitable conditions, lipid membranes in aqueous solution form
lamellar structures, characterized by a parallel arrangement of the mem-
branes alternating with thin layers of water [82]. The existence of such
structures is in contrast to the behavior of a single tensionless membrane
subject to thermal fluctuations, which is always in a disordered, crumpled
phase, filling the embedding space completely, as discussed in the previous
chapters. In a stack, this phase is suppressed by the steric repulsion between
the membranes which prevents them from passing through each other [82],
thus constraining the amplitude of the height fluctuations of each membrane
to be less than the distance to its nearest neighbors.

The lamellar phase, however, does not alway exist, since at sufficiently
high temperatures thermal fluctuations can destroy the vertical order [83],
as we will see.

Such a transition does not take place in the simplest model of a stack
proposed by Helfrich [82], where the membranes possess only a harmonic
curvature energy and repulsive term accounting for the vertical forces in the
stack, approximating in a rough way the steric repulsion. In this purely
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Figure 6.1: Schematic representation of a stack of membranes.

harmonic approximation, the theory is equivalent to de Gennes’ theory of
smectic-A liquid crystals, having only an ordered phase [84].

6.1 The model

We consider a generalization of the Helfrich model due to Janke and
Kleinert [85], in which a multilayer system is made up of (/N + 1) fluid mem-
branes, parallel to the xy plane of a Cartesian coordinate system, separated
a distance [, as shown in Fig. 6.1. If the vertical displacement of the mth
membrane with respect to this reference plane is described by a function
Um(x) = u(x,, ml), where x; = (z,vy), the energy of the stack reads:

E = Z/deL\/g_m [7‘0 + %KOan + %(um — Up1)?| . (6.1)
m

Here, H,, is the mean curvature of the mth membrane, and g¢,,;; = d;; +
O;UumO;up, the induced metric, with i,j = 1,2, &, = 0/0z,0, = 0/0y and

gm = det[gpm,i;]. The parameter By is the compressibility of the stack.
In the original Helfrich model, the surface tension ry was not included
because the membranes in the stack are tensionless. We have included rg
in the energy (6.1), since, as discussed in Chapter 2, it is the renormalized
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/ D

Figure 6.2: The normal gradient term assures that the shortest distance
between two neighboring membranes be accounted for when computing the
energy (6.2).

surface tension that should be set equal to zero, not the bare one. After
carrying out the various integrals, the physical tension will be set equal to
Z€ero.

For slow spatial variations, the discrete variable ml may be replaced with
a continuous one, and u(xy,ml) — u(x), where x = (x,,2). In this limit,
the energy (6.1) reduces to

L
By = /0 "dz / &2/ o0+ SKoH? + L Bo(8.u)?] (6.2)

Here we have introduced bulk versions of the surface tension oy = 70/l
and bending rigidity Ko = ko/l, and defined L = NI. The vertical gra-
dient energy (d,u)? should now be replaced by the normal gradient energy
(N - Vu)?2, which is physically more correct and has the advantage of being
reparametrization invariant (see also Ref. [66, 67]). Moreover, the normal
distance between neighboring membranes is the relevant one for steric repul-
sion, as illustrated in Fig. 6.2. In the following, we shall derive all results for
both terms and analyze the difference between the two.

6.2 Perturbative calculation

Let us first study the stack perturbatively, starting with the lamellar
configuration, and expand the theory in the inverse parameter oy = 1/K,
which is assumed to be small. To keep our notation in conformity with the
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literature, we use K; throughout the text and resort to its inverse only when
necessary.

Expanding the energy (6.2) up to fourth order in the displacement field
u(x), we arrive at

E = /OL&Z deL[ 500(0u)* + 3 Ko(07u)” + 3 Bo(0,u)?
—500(0u)*(9ju)” — §Ko(0; )’ (0ju)”
—Ko(0iu)(0;u)(8:0;u) (G5 u)
+1By(0.u)*(9)?), (6.3)

where the lower sign in the last term refers to the more physical normal gradi-
ent energy (N - Vu)?. For zero surface tension, the lowest-order contribution
to the energy due to longitudinal displacements is of the usual elastic form
2 By(9,u)?, while that due to transverse displacements is of higher order, viz.
SKo(02u)?.

The one-loop contributions are calculated in a derivative expansion. Since
the stack is periodic and of finite extent in the z-direction, the Fourier trans-
form includes a sum (1/L) Zi\l v /o Over the discrete wavevector components

2T
Wy = —N.
Ly

(6.4)
We take into account the interlayer spacing [ in a rough way by restricting
the values of the discrete variables to |w,| < 7/l, so that the summation
index n lies in the interval —%N <n< %N.

The phase transition we wish to describe is caused by a competition
between the softening of the bending rigidity due to thermal fluctuations and
the stack-preserving vertical elastic forces. To understand this competition
we study how thermal fluctuations renormalize the parameters of the theory.
To one-loop order, the bare parameters are renormalized to

oot = 00(1+ 1), Kex = Ko(1 —2L), Beg = Bo(1+31), (6.5)
where
kT N/2 d2 l&wi_ 2 _ 3Ko,4
L= = / Cuz o0 2 QL2 L qi (6.6)
Ly T (27)? Bow; + 00q] + Kogl
kT N2 d2q, 7
5 L / 2 2 2 - (6.7)
I n=—ny2 (2m)? Bowy, + 00q? + Kogq'
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For ease of notation we dropped the subscript eff from the renormalized
parameters. Here, as in the rest of this chapter, renormalized quantities
will carry no subscript. We regularize the integrals in the ultraviolet by
introducing a sharp transverse wavevector cutoff A, as we did in Chapter 5.
Actually, the divergent contributions to the above integrals are independent
of By. This is due to the discrete nature of the stack. By restricting the
values of the discrete wavevectors w, to account for the interlayer spacing,
as explained above, all divergences proportional to By are suppressed.

The renormalization flow is obtained by integrating out transverse wave-
vectors in a momentum shell A/s < ¢, < A, and subsequently rescaling the
coordinates, following Wilson’s procedure [68] (for details see Appendix C).

We thus obtain,
1 kgT 1

Since these results are independent of o, we can safely set the surface ten-
sion to zero, thus describing a stack of tensionless membranes, characterized
by the two remaining parameters, B and K. Under a rescaling x;, — x, /s of
the coordinates in the plane and z — z/s* along the stack axis, the expan-
sion parameter of perturbation theory o = 1/K scales like @« — s *, and
the compressibility scales like B — s*~%*B. Here, 2, allows for the possibility
of anisotropic scaling. From Eq. (6.3) with o = 0, it follows that z. = 2 in
the Helfrich model. Using the above results, one readily generates differential
recursion relations to lowest nontrivial order

da 3 knT

= a2 AN+ .
Tins 20+ o I a’(N +1) (6.9)
dB 1 ksT

— (- 2)B+ "B Ba(N +1). 1
dms ~ Uz BE g mBalN D) (6.10)

Besides the Gaussian fixed point (o = 0,B = 0) which is stable in the
infrared, the flow equations also admit a nontrivial, unstable fixed point at

A Ly oz
3 kgTN+1’

*

B=0. (6.11)
The latter implies the presence of a phase transition at a critical temperature

kgl = — ————. (6.12)
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According to Eq. (6.11), the ratio x*/kgT for the critical bending rigi-
dity k* = l/a* of a single membrane is very small, of the order 0.1. Lipid
membranes, on the other hand, have usually bending rigidities of a few units
of kgT, thus making it rather unlikely that the melting transition predicted
by Eqs. (6.11) and (6.12) be observed experimentally. There exist, however,
light scattering measurements on samples of diluted lamellar phases which
reveal a significant reduction of the bending rigidity. For some solvents,
k ~ 0.8kgT[86], and the bending modulus K for the stack is found to be
two orders of magnitude smaller (~ 1073 /N) than the value commonly en-
countered in smectic systems (~ 107''V). Since the result (6.11) gives this
order of magnitude for the bending rigidity, one may hope that a vertically
molten phase might be observed in such extremely dilute smectics. A more
important application field of our model also may be systems of oil and wa-
ter separated by soap films, where the transition carries lamellar phases into
microemulsions.

The flow diagram corresponding to the above system of differential equa-
tions is shown in Fig. 6.3. For T" < T¢, the inverse bending rigidity o flows

!
B

Figure 6.3: Flow diagram in the (o, B)-plane. The diagram is plotted using
the lower sign in the last term in Eq. (6.10).

to the Gaussian fixed point at the origin. In this low-temperature phase,
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the bending rigidity of the membranes increases with their lateral size, and
thermal fluctuations are suppressed. This weak-coupling phase is the lamel-
lar phase, where the translational symmetry is spontaneously broken. For
T > T, on the other hand, o flows with increasing length scales away from
the nontrivial fixed point at o in the opposite direction. As « increases, the
bending rigidity decreases and the membrane fluctuations become stronger.
At the critical point o, the stack disorders vertically and the system enters a
strong-coupling disordered phase. Note that the critical temperature (6.12)
depends only weakly on the number (N + 1) of membranes.
The flow equations (6.9) and (6.10) can be integrated exactly, yielding:

% 4/2c—14+1/3
B=cat3|2 "% , (6.13)

«

where ¢ is an integration constant. For z, = 2, the exponent is equal to
1+ 1/3. Explicitly, as we approach T, from below, B goes to zero as

B~ |T —T,|'*/3. (6.14)

The free energy density of the model in the lamellar phase can be calcu-
lated in the harmonic approximation, as in Ref. [82]. For a finite stack, it
reads
1 kgT (B

1/2
Il

f

Thus, as T approaches 7. from below, the free energy density behaves for
z. = 2 like

o [T = T 218, (6.16)

and the specific heat of the stack diverges as
C ~ |T = T,| 73?18, (6.17)

Figure 6.4 shows a plot of the free energy density and specific heat of the
stack for the lower sign in Eqgs. (6.16) and (6.17).

We thus see that by using either the vertical gradient energy (0,u)? or
the more physical normal gradient energy (N-Vu)?, the qualitative behavior
of the stack of membranes is not altered, but the critical exponents of the
melting transition differ from each other. This is due to the fact that the
normal gradient energy is zero for the in-plane flow of molecules inside the
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T, T

Figure 6.4: Free energy density and specific heat of a stack of membranes,
with the lower sign in Eqgs. (6.16) and (6.17).

membranes. The vertical gradient energy (9,u)?, on the other hand, includes
the energies of the tangential flow. Incompressibility effects have been shown
by David [51] and by Kleinert [87] to be irrelevant for the renormalization of
a single membrane. Our result implies that this is not the case for a stack of
membranes.

The properties of a single membrane are obtained by letting N — 0 and
2. — 0. In particular, the flow equation (6.9) of the bending rigidity reduces
in this limit to the known result (2.60). It has no fixed point other than the
trivial one, which is unstable now, implying that a single membrane is always
in the crumpled phase.

6.3 Large-d calculation

By its nature, the perturbative expansion is able to give a satisfactory
description only for the ordered phase. For a description of the disordered
phase and a better understanding of the entire transition, let us analyze the
behavior of a stack of tensionless membranes exactly for very large dimension
d of the embedding space. Since the model is exactly solvable in this limit, we
can calculate all its relevant properties explicitly, in particular its complete
phase diagram as a function of the interlayer separation /.
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6.4 The model in large d

For arbitrary d, the vertical displacement of the mth membrane in the
stack becomes a (d — 2)-vector field u,,(x,). We again consider g;; as an
independent field [74], and impose the Monge parametrization metric for each
membrane with help of a Lagrange multiplier A\;;. The partition function is a
functional integral over all possible configurations u,,(x,) of the individual
membranes in the stack, as well as over all possible metrics g, ;;. After taking
again the continuum limit, the partition function reads:

7= / Dg DA Du e Fo/kaT (6.18)
with
Ey = / dzd’z.\/g {00+ 1Bo(0.u)’ + LKo(dFu)?
+3 Ko\ (83 + Oudju — gij) — 2eoM2}, (6.19)

where u is a (d — 2)-dimensional vector-function of x,,z. Note that the
functional integral over A in (6.18) has to be performed along the imaginary
axis to result in a J-function. We have introduced a term proportional to
A%, as in Chapter 5. This term is necessary to renormalize the theory, and
its coefficient ¢y corresponds to the large-d in-plane compressibility of the
membranes. Since we take the membranes to be incompressible, we shall set
the renormalized ¢ equal to zero at the end of our calculations.

The functional integral over u in Eq. (6.18) is Gaussian and can be carried

out to yield an effective energy

Egq = Ey+ Ei, (6.20)
with } 3
EO = /dZ dQl'J_\/E [0’0 + %Ko)\zj(éij — gij) — iCO)\ZQZ] ; (621)
and J_9
E, = ksT Trin [Bow?” + Ko(g] — aiA\g5)] (6.22)

where the functional trace Tr is here an integral over space as well as the inte-

: 2 2 ij 2
gral over wavevectors q; and w, after replacing 0; - —w* and ¢¥0,0; - —q".
Note that the discrete nature of the stack restricts the integral over the
wavevectors w to the first Brillouin zone |w| < 7/1.
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In the large-d limit, the partition function (6.18) is dominated by the
saddle point of the effective energy (6.20) with respect to the metric g;; and
the Lagrange multiplier \¥. For very large membranes, the saddle point can
be assumed to be symmetric and homogeneous [76, 77, 78]:

9ij = 000ij; A = Xog¥ = 9—35”, (6.23)

with constant gy and Ag. At the saddle point the effective energy (6.20)
becomes the free energy of the system.

In the following we shall investigate both the case of an infinite and a
finite stack of membranes. As we will see, the large-d approximation allows
for the vertical melting even in an infinite stack [88], which is not found
perturbatively [82].

6.4.1 Infinite stack

Let us first analyze the case of an infinite stack. To simplify our calculations,
we assume the number N + 1 of membranes in the stack to be very large,
making the distance [ between them very small. In this regime, we may
extend the limits +7/l of the integral over w to infinity. The explicit (-
dependence will be introduced later into our calculations.

After evaluating the functional trace in Eq. (6.22), we obtain

dkgT / AY A2 4N?
E, = B /dzdngo BO{SW+87(1)'A +%l1—21n</\0>]}

(6.24)
where ultraviolet divergences are regularized by introducing a sharp trans-
verse wavevector cutoff A and d — 2 has been replaced by d for large d.

We may now absorb the first term in (6.24) by renormalizing oy, so that

dksT [K,
= —A 2
o oy + 167 B() (6 5)

is the physical surface tension, which is set equal to zero. The second,
quadratically divergent term in (6.24) is used to define the critical tempera-
ture as

(6.26)
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The next divergent term, proportional to A, is regularized by introducing a
renormalization scale p and modifying the in-plane compressibility to

dksT [Kq A2
C=C —+ 327‘(‘ FO ln (46 / E . (627)

The physical in-plane compressibility c is now set equal to zero, as explained
in the previous section.
The effective energy thus becomes

Eur = /dz 42z, K)o { (é - 1) + % + j—%x lln (;) _ %1 } . (6.28)

with the constants a = dkg /647 B, X = p?e'/2.
From the second derivative matrix of F with respect to ¢ and A we find
that the stability of the saddle point is guaranteed only for A < .
Extremizing the above expression with respect to g, we find two solutions
for A\, namely A = 0 and A = A\, with

Aoy [111 (%’") - %1 - g (% - Tl) . (6.29)

For T' < T, this equation has no solution for A,. In this case, the only
possible solution is A = 0, which corresponds to the ordered phase as we
shall verify later. For T" > T, the saddle point lies at A = A\, which is now
well-defined. This is the vertically disordered phase.

The free energy density at the extremum is given by

f=KX (6.30)

and its behavior is similar to the one found perturbatively in Ref. [83]. (see
Fig. 6.5).

Extremizing the effective energy (6.28) with respect to A, we find p as a
function of temperature. For 7' < T it is given by

T
-1
=1-—. 6.31
o- T (6.31)
This as T" approaches T from below, indicating the vertical melting at 7.
In the disordered phase, p is found to be

= - 6.32
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Figure 6.5: Free energy density of an infinite stack of membranes. The dashed
curve indicates the unphysical branch of the solution of Eq. (6.29).

As T approaches T, from above, A\ tends to zero, and g goes again to infinity.
The positivity of p and the stability of the saddle point imply that there

is a maximum temperature, given by
I
T T VK’

below which our assumption that the membranes in the stack are in-plane

(6.33)

incompressible does not lead to a stable system.

6.4.2 Finite stack of many membranes
Let us now analyze the case of a finite stack of size L. Now the functional
trace in (6.22) involves a sum over the discrete wavevectors w,, given by (6.4).

For small )y, a series expansion (see Appendix D.2) leads to

T
ks (6.34)

Qo€1,

FE = /dzd20
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with
Ky, = [By1 Koo (EL B
e = — — =5 — A7
' B, 12\ K, Lﬁ B 47rL|| L\ K,
Ko

20039y 421 L /B
+647T Bol T n(smv L Koﬂ

22m7Tm BO F( )

As in the case of the infinite stack, we absorb the logarithmic divergence
by renormalizing the in plane compressibility via Eq. (6.27), setting ¢ equal
to zero for incompressible membranes. The surface tension receives now an
L-dependent renormalization

dkBT K() 4 BO
o =0+ 167 ” BOA dkBT24” KO L2, (636)

and o is again set equal to zero to describe a stack of tensionless membranes.
Extremization of the renormalized combined effective action (6.21) and
(6.34) with respect to p leads again to two possible solutions for the saddle

point, namely A =0 or A = Ay, with
iy I? 1 |B
L W e

/\Lu 1
)\L” [ln( /\ ) 2] +)\L”

00 (—_1\Ym+1ym—1 m=2 m—
(=1)™FAL e (K) 7 (7L

+327°/ mzz3 — L (g @) ((m—1)
_ g (% _ TLL”) (6.37)
where )
1 1 L B
%” = i + dSi:K—L” In (ﬁ ?> (6.38)

is the inverse critical temperature for a stack of size L .
For T' < Ty, Eq. (6.37) has no solution. In this case, the stack is in the
ordered phase, the only available solution for the saddle point being A = 0.
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For T' > Ty, , there exists a nonzero solution Ay , where the system is in the
vertically disordered phase.

Let us now examine the saddle point solutions for p. In the vertically
disordered phase, where A = Ap is nonzero, we may expand the effective
energy in a small-L; series. Extremization with respect to )\L” leads to

-1 T aAL”T
ol= 1o
I VK
dkgT & (=)™ AL 2\ ., (K\"T
Y e \/777'12:3 92mm (“E) o (E)
L")
2 ~((m—1). (6.39)
I'(%)

The positivity of p and the stability of the saddle point again define a maximal
temperature, given by

1 1 dkgT 1 (167r \/BK>

Ll " T 167KL, \dksT. X

max

(6.40)

above which our assumption that the membranes in the stack are in-plane
incompressible cannot be maintained.

In the ordered phase, the situation is more delicate. For A = 0, p can be
calculated exactly, and we obtain

. 8T KL
sl dkgT 0 sinh ( dkpTe ) (6.41)
B 87TKL|| % % ’

with an infrared regulator L, equal to the inverse lateral size of the mem-
branes in the stack. If the size Lj of the stack is large, (6.41) may be ap-
proximated by

ol (6.42)

For smaller stacks, however, the positivity of g is not guaranteed. For a fixed,
but small stack size L, and for fixed lateral size L of the membranes in the
stack, there is a characteristic temperature defined by
. 8TK LH

 dkg In(167vBKL? /dkgT,)’

*

(6.43)
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above which p changes sign, and (6.41) is no longer applicable. Interestingly,
for all L, and for all finite sizes L of the stack, the critical temperature 77,
is lower than 7™, so that the vertical melting still occurs. The behavior of p
is depicted in Fig. 6.6.

Ty, T* T T

Figure 6.6: Behavior of p~! as a function of 7. The solid lines indicate the

solutions of the saddle point for p~! for a finite stack. Above Ty, o' is given
by (6.39), and below Tp, by (6.41). The dashed lines indicate the behavior

of p~! for an infinite stack.

Note that Eq. (6.43) reflects the existence of a characteristic horizontal
length scale. At fixed temperature 7y < 7" < T*, and for membranes of
lateral size L ; smaller than

(6.44)

ArK L
L,=A"texp (77T |> ,

dkgT
the height fluctuations of the individual membranes are not strong enough to
destroy the ordered phase. The characteristic length L, corresponds to the

the de Gennes-Taupin persistence length &, [25] of the individual membranes,
below which crumpled membranes appear flat.

6.4.3 Finite number of membranes

Until now we have performed our calculations in the somewhat unphysi-
cal continuum approximation, by letting the interlayer separation [ be very
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small making the number of membranes in the stack very large. Let us now
investigate the properties of the stack for a fixed number N + 1 of membranes
at a finite interlayer distance /.

For this purpose, we replace the continuum derivative 92 in the z-direction
with the discrete gradient operator V2, whose eigenvalues are given by

vy, = 2o med), (6.45)

where g, is an eigenfunction of V2. The discrete wavevectors w, are now
given by
nm
NI’
For small interlayer separation [ , the free energy is given by (6.34) with

K 1 [B

B, Nl2 o

KO KO

Ropz InN + 2N 1In {1y] 072
+87r B, +47er[ nav n< Bo )]
e 42
Ao [Rody o (22
+647T Bol n<)\0

—1) NGy (Ko T D(EY) -
Z 1 925 ! <§0) I )CN(m—l), (6.47)

Wy = n=12---,N. (6.46)

™ ‘

NE

where we have defined the modified Zeta-function
_ N 1
(v(m) =3 . (6.48)
E e ()
We proceed by renormalizing the in-plane compressibility via Eq. (6.27),

setting ¢ equal to zero for incompressible membranes as before. The surface
tension receives an [-dependent renormalization

AT Ko\, dkaT [By
AL i) ]2 4
7=t 6\ B T INEVE, (6.49)

and o is set equal to zero to describe a stack of tensionless membranes, as
before. But now the bulk bending rigidity is also modified to
dkgT . A?

In = .
o (6.50)

K:KO
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Note that this renormalization agrees with the known result (4.23) for a single
membrane.
The saddle point for A is now given by A =0 or A = \;, with

m+1ym—1 m-2
Mlm<Aﬂ-—q-+wvﬁ§:——lj¢%—4m4(5)
A = m2¥s B
(L) VK (1 1
2v(m=1)=— (= — =
F(g) a \T T,
(6.51)
where
1 1 dkg [K_\ 1
fl_Tc+87er{ InN + 2N |(In (l B/\)+2 } (6.52)

is the inverse [-dependent critical temperature, and x is the bending rigidity

of a single membrane in the stack. The two solutions for A again imply

the existence of two different phases, with a phase transition at the critical

temperature 7;, which, as in the perturbative case, depends only weakly on

the number of membranes in the stack. The corresponding solutions for p,

obtained by extremizing the effective energy with respect to A, are given by
T

l=1- 2, .
T (6.53)

for T' < T}, that is, in the ordered phase, and
1 T 1 CL)\[T

R T

_ngaKézb_§:3m4<1—§ﬁpn2<5>ﬁ;
(L)
()

in the vertically molten phase, where T > T;.
The stability of the saddle point requires a minimum interlayer separation

B 1 ATk
lmin = -2 —N <—) -
H \/ K exp dkgT, (6.55)

Cn(m = 1), (6.54)
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Disordered phase

Figure 6.7: Qualitative phase diagram in the [ x T plane. The critical line
is plotted for I > [, for a fixed number N + 1 of membranes in the stack.
As [ increases, the critical temperature 7; goes asymptotically to zero.

below which the stack becomes unstable. [, is inversely proportional to de
Genne’s penetration depth /K /B [89], which is of the order of the interlayer
separation in smectic liquid crystals.

The phase diagram of the stack is depicted in Fig. 6.7

6.5 Properties of phases

Let us now characterize both phases in more detail. For temperatures
higher than 7}, the solution of the saddle point is A = );. This corresponds to
the disordered phase, where the stack melts. The normals to the membranes
are uncorrelated beyond a length scale )\;1/ 2, as can be derived from the
expression for the orientational correlation function, which in the limit N —
00,! — 0, with constant NI = L;, reads:

Biu(xy, 2)0u(x!,, 2)) ~ ;e VXL =X0] 6.56
j ]

The length scale )\l_l/ 2 may thus be identified with the persistence length &,
[2].

In the low-temperature phase, the solution of the saddle point is A = 0.
This corresponds to the ordered lamellar phase as can be seen by examining
the orientational correlation function in the planes of the membranes. We
find in the limit N — oo,! — 0, with constant NI = L;:

5

~; .
x, —x|

(Qu(x, 2)0u(x' , 2)) (6.57)
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This slow, algebraic fall-off of the correlation function implies that, at large
distances, the normal vectors to the membranes are still parallel, so that the
surfaces remain flat on the average. The effect of thermal fluctuations is
suppressed, and they do not disorder the stack.

Another important characteristic is the vertical fluctuation width or rough-
ness ¢ of a membrane in the stack defined by the mean square height fluc-
tuation as #> = (u?) [90]. In the harmonic approximation, it is given by the
one-loop integral

k‘BT N2 /A dQQJ_ 1
1

62 — 2 —
W) Ly .- /oy (2m)? Bw? + Kqt’

(6.58)
—N/2

where, in the absence of a surface tension, the largest wavelength is equal to
the inverse lateral size 1/L, of the membranes. As first observed by Peierls
and Landau, the mean square fluctuations diverge in the infrared. They thus
destroy the long-range positional order in the layered system at any finite
temperature. More specifically, one finds [90, 89]

kgT [ L% n 1
2 | KL vVBK

P2 In(L, /a)| . (6.59)
The first contribution, only present in a finite stack, stems from the n = 0
term in the sum in Eq. (6.58). It corresponds to a super soft mode, where
the membranes undulate coherently with constant interlayer distance. The
second contribution, on the other hand, is also present when the stack is
infinite. This contribution increases slowly with the lateral size.

Before proceeding, let us pause for a moment and consider the roughness
of the two limiting cases of our theory: a single, tensionless membrane and
an infinite, continuum stack of such membranes. In this way, we find

/ dDQJ_ ]{IBT

(2m)P kg’

/dqdeQJ_ kBT
(2m)P+! Bg2 + Kqt’

(single membrane)
2 _

(6.60)

(infinite stack),

where instead of a 2-dimensional membrane we consider a D-dimensional
object. It follows that for D > D, = 4 — z., the roughness is finite in the
infrared, indicating that D, = 4 — 2, is the upper critical dimension. Recall
that for a single membrane z. = 0, while for an infinite stack z. = 2. To
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determine the lower critical dimension, we consider the mean square normal,
or orientational fluctuations (0 u)?). This results in an additional factor of
¢ in the numerator of the integrands in (6.60). The resulting expressions
are finite in the infrared for D > D, = 2 — 2., identifying D, as the lower
critical dimension. Hence, in going from the limit of a single, tensionless
2-dimensional (D = 2) membrane to the opposite limit of an infinite stack,
we go from the lower critical dimension of the former to the upper critical
dimension of the latter.

Another characteristic of the weak-coupling phase of low-temperature is
the behavior of the structure factor

Sn(x) = (exp{ingo[u(x) — u(0)]}), (6.61)

where qq is parallel to the z—axis, with |go| = 27/I. This correlation function
can be directly observed in X-ray scattering experiments, where the fluctua-
tion spectrum is expressed as half-widths at half-maximum of the anomalous
Bragg peaks. As in smectic-A liquid crystals [91, 92|, the Fourier transform
of the structure factor has algebraic singularities at ¢, = ngq:

5n(0,¢:) ~ (g — ngo) "2, S(q.,0) ~ g+, (6.62)

with exponent 7. In the harmonic approximation, n can be calculated from
Eq. (6.61) and turns out to be the same as for an infinite stack [91]
ksT g5
= — : 6.63

"= S VBR (6.63)
The algebraic singularities in (6.62) reflect the quasi-long-range periodic or-
der along the stack axis. As for smectic-A liquid crystals, the exponent 7 is
temperature independent. This can be seen by remembering that by simple
scaling arguments [82]

(ksT)2 1
Kk (l—w)?

for a stack of membranes of rigidity x and thickness w. Specifically,

0~ (1 - %)2 (6.65)

For smectic-A liquid crystals, this expression was confirmed experimentally
[93]. In the high tenperature phase, on the other hand, the structure factor
Sn(x) behaves, for z = 0, like

Sn(x1,0) = exp(—2n*nA|z_|?), (6.66)

B ~ (6.64)
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revealing the absence of periodic order along the z-axis.

Our system is very similar to a smectic-A liquid crystal, which consists of
vertically oriented rod-like molecules layered along the z-axis. Experimen-
tally, the spontaneously broken translational symmetry along this axis and
the spontaneously broken rotational symmetry in the layers are restored in
a two-step melting process. In the first transition, which can be of first or
second order, the smectic melts via dislocation loop unbinding into a trans-
lationally disordered nematic. In the second, which is always first order, the
orientations of the molecules in the nematic becomes disordered to yield a
fully isotropic liquid. If we try to interpret our model as a smectic-A li-
quid crystal, we see that our vertical melting transition is analogous to the
smectic-to-nematic one. The physical mechanism by which our transition
takes place, however, is quite different from the dislocation loop unbinding
of the defect model. Our membranes cannot split to form dislocations. Ins-
tead, they become rough (see Fig. 6.8). This is similar to the two possible
ways of representing the superfluid transition in helium: in a defect model,
it is explained by a proliferation of vortex lines, whereas in the complex
¢*-theory by a roughening of the order field.

i

H

@ (b) ©

Figure 6.8: Interpretation of the vertical melting of the stack as a smectic-
to-nematic phase transition. (a) Smectic-A layers at T = 0, (b) Layers at
0 < T < Tj: still smectic, (c) Interpenetrating rough layers at T > T:
nematic.

Our model does not contain any information about the orientation of
the molecules, and is thus unable to describe the second transition. The
molecules may be imagined as being attached to the surface in the vertical
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direction. The normal vectors to the layered membranes have no relation
to the molecule orientation — they are a purely geometrical property of the
surfaces.

Let us now calculate the entropy loss in the ordered phase. By a simple
scaling argument [82], this quantity should be inversely proportional to the
quadratic interlayer spacing,

a
~TAS = 5, (6.67)

where a is a temperature-dependent proportionality constant. As we shall
see, as the interlayer distance increases, logarithmic corrections must be
added to (6.67).

The entropy loss in the ordered phase can be computed by calculating
the difference between the free energy density of a single, isolated membrane,
an the free energy density of the stack. For small values of A, it is given by

1 /B T 1 A MK
—TAS = §Vf<1+COtE>N—l2_Q_ﬂ(1_ln5 E)

N

nmw
In sin ——. 6.68
27 NI n; 1N (6.68)

Strictly speaking, the ordered phase corresponds to A = 0. In that case,
(6.68) agrees with (6.67), and we see no correction to the entropy loss. How-
ever, if the size of the membranes in the stack is smaller than the characteris-
tic length L,, an ordered phase still exists for small values of A [see discussion
after Eq. (6.44)], in which case the corrections to the first term in (6.68) will
appear.



