Chapter 5

Quantum Fluctuations of Fluid
Membranes

In the previous chapter we verified that thermal fluctuations soften fluid
membranes without destroying the covariance of the elastic energy (4.1).
According to the results derived in Chapter 2, in particular Eq. (2.60), the
softening of the membranes due to thermal fluctuations does not induce a
phase transition: fluid membranes always appear crumpled at large length
scales.

This is no longer true if one considers fluid membranes subject to ther-
mal and quantum fluctuations[61]. While it may seem unnecessary to take
quantum fluctuations into account when considering biomembranes, since
they typically exist at high temperatures, a model incorporating the effect of
quantum-fluctuations to the Canham-Helfrich energy may serve as a starting
point for studying quantum interfaces, such as the Helium liquid-vapor in-
terface at very low temperatures [62, 63]. In He®-He! mixtures, the He? film
on top of the He* bulk is a suitable candidate for the quantum membrane
[63].

Moreover, quantum oscillations, analogous to the superconducting Joseph-
son effect, have recently been detected in samples of superfluid He?[64, 65].
The apparatus involved in these experiments consists of an inner cell, filled
with He?, contained in an outer cell, also filled with He3. The two containers
are separated by a rigid membrane glued to the bottom of the inner cell, and
by a softer one attached to its top. The lower membrane contains an array of
small apertures allowing for exchange of atoms between the cells, equivalent
to the superconducting weak link. By manipulating this membrane, the pres-
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sure between the two systems can be kept at a fixed value, and the resulting
mass current is determined by the displacement of the upper membrane from
its original position. Josephson current oscillations at the weak link are then
observed as oscillations of this membrane.

It is thus of interest to investigate whether the membranes themselves
display quantum fluctuations, and to what extent such effects may be ob-
servable.

5.1 The model

The quantum-statistical partition function can be obtained from the
quantum-mechanical one, that we encountered in Chapter 3 (see definition
(3.4)) by continuing the time interval ¢, — ¢, to the negative imaginary value
[55]

ty — to = —— = —ihf. (5.1)

This simple formal reason makes the quantum-mechanical partition function
contain all information on the thermodynamic equilibrium properties of a
quantum system.

For a quantum membrane described by a Lagrangian £, the quantum-
statistical partition function is a functional integral over all possible time-
dependent surface configurations X(a, 7):

7 = / DX exp(—So[X]/h), (5.2)
with the Euclidean action
B .
So = / dr d20,/gL(X, X), (5.3)
0

and the Wick-rotated time 7 = it/hf.

To obtain the Lagrangian for the quantum membrane we have to add a
kinetic term to the classical Canham-Helfrich energy (2.17). For an incom-
pressible membrane, the kinetic term reads, in Euclidean spacetime [66, 67],

T = 2%0 /d%\/g (X -N)?, (5.4)
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where 1/v, is the bare mass density, and we allow only for the normal com-
ponent of the velocity vector, since the tangential components correspond to
the in-plane flow of molecules inside the membrane.

The resulting Euclidean action for the quantum membrane is

B 1 - 1
S:/dd2 [—X-N2+r+—HX2, 5.5
o= [ drdoyg |5 - (X- N o+ 5 —H(X) (55)
where ag = 1/kq is the inverse bending rigidity of the membrane, and H (X)
is its mean curvature, as defined in Sec. 2.2. As discussed in Chapter 2, oy
is proportional to the true expansion parameter

ueno = kT oy (5.6)

for perturbation theory, and we shall make use of this parameter from now
on, in order to simplify the notation and the calculations.

We shall in this chapter study the quantum statistical mechanics of a
membrane described by this action.

5.2 Perturbative calculation

5.2.1 Zero temperature

Let us first study the effect of quantum fluctuations alone, by setting the
temperature equal to zero. We shall again work in the Monge parametriza-
tion, where, as described in Chapter 2, a point on the surface embedded
in three-dimensional space is described by a displacement field ¢(&,7) with
respect to a reference plane 6 = (01, 07), such that

X(a,7) = (7,0(7,7)) . (5.7)

Inserting this parametrization in the action (5.5), and expanding the resulting
expression up to fourth order in powers of the displacement field ¢, we obtain

171 . 1 1 .
So = [arao {5 |8 +ra(@0) + (0] - 1-¢* (00"

OO %%(ai(m?(a?as)? (5.8)

(0:6)(09)(0:0:0) (%) }. (5.9)

1
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The displacement field describes the undulations of the surface. Its spectrum,
w? = c2¢?, is gapless with ¢; = |/rov the velocity of the transversal waves.

In the one-loop approximation, the exponent in (5.2) may be expanded
up to second order around a background configuration ®(&,7) extremizing
Sp. The resulting integral is Gaussian and yields the effective action

825,
¢(a,7)og(a’, ')

where the expression in square brackets is a functional matrix given by the
second functional derivative of Sy, and Tr denotes the functional trace, i.e.,
the integral [ dr d?c, as well as the integral [ dw d?q/(27)? over the (angular)
frequency w and the wavevector q.

Using the derivative-expansion method explained in Chapter 3 [53], we
expand the one-loop correction S; in Eq. (5.10) in powers of the derivatives
of the field ¢(a,7), as in Chapter 4[58]. To obtain the renormalization of the
parameters ry, ag and vy, it suffices to keep only the first three terms of the
expansion:

Sun[®] = So[®] + 4[] = Sof®] + gTr In

J . (5.10)

$1= 0 [drdo (18 + L@+ L@ +..], (511

with
1 [dw d%g q?
vy ] 21 (2m)2 w2/ + 1o + ¢4/
dw d?q 3w?/vy —rog® — 3¢*/
o (27)2 w? /vy + Tog® + ¢*/ g
31 rdw d%g q*
20 21 (2m)2 W2 [y + ro@® + ¢

L = (5.12)

I

(5.13)

Ig ==

(5.14)

After the integrals over the loop energy w have been carried out, the result-
ing momentum integrals in Egs. (5.12)—(5.14) diverge in the ultraviolet. To
regularize them, we introduce a wavenumber cutoff A. Contributions pro-
portional to positive powers of A are irrelevant to the renormalization group,
and will be ignored. In dimensional regularization, where the number D of
space dimensions of the membrane is analytically continued to be less than
two, D = 2 — ¢, these powerlike divergences never appear in the first place.
Only logarithmic divergences arise as poles in 1/e, as discussed in Chapter
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2. We now adopt regularization with a cutoff, since, as we shall see later, it
proves useful when deriving the renormalization group equations for coupling
constants with nonzero dimension. Substituting the results of the integration
into Eq. (5.11), we obtain the effective action
1 2 [1:9 2, L 9 \9

Sur = §/de o[58 + (00 + ~(%9) + .|, (5.15)
with the renormalized inverse mass density v, surface tension r, and inverse
rigidity o

1 1 1
; = ]/_0 [1 + Euqm,() In (qum,O)] y (516)
r = 7“0, (5.17)
1 1 3
— = — |14+ —uqmoln(Aégmo)|, 5.18
« Qg [ + 167Tu01 0 n & ’0)] ( )
where the dimensionless parameter
Ugm,0 = hroas* vy (5.19)

is the (bare) expansion parameter in the quantum regime. Here, as in the
following, we drop the subscript eff of renormalized quantities; to simplify
the notation they will carry no subscript. Note that the surface tension
is not renormalized by quantum fluctuations at this order. The parameter
Eqmo = 2//Toqq in the argument of the logarithm in Egs. (5.16) and (5.18)
defines a characteristic length scale of the problem. It sets the scale at
which the tension and stiffness terms in the action (5.15) become equally
important. At larger scales, the second term in the expansion (5.15) becomes
more important and the undulations are dominated by tension, while at
smaller scales, the third term dominates and the undulations are controlled
by stiffness.

To obtain the renormalization flow, we apply Wilson’s procedure (ex-
plained in Appendix C)[68]. Integrating out a momentum shell A/s < ¢ < A,
rescaling the coupling constants 7 — s %v, 7 — s~ 3, & = s o, we
arrive at

ov 1

B,(v,r,a) = 55s = (e —3)v— To, tam? (5.20)
or

Gr(v,r, ) = 55 = —(e—3)r, (5.21)
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o

3
5o _ =(e—1)a— —ugmo, (5.22)

falvyr0) = L 16m

where ¢ = 2 — D is assumed to be small and will be set to zero at the end
of the calculation. The coefficients of the first terms on the right-hand sides
denote the scaling dimension of the scaling fields (see Appendix C). For small
€, the scaling fields v and « are irrelevant, while r is relevant. Criticality is
obtained by setting the relevant fields to zero, i.e., r = 0 in this case. Starting
somewhere on the critical surface » = 0, the system flows towards the trivial
fixed point ¥ = a = 0. This guarantees the stiffness of the membrane at large
scales. There is no crumpling transition at the absolute zero of temperature;
the membrane is always flat, where the normal vectors to its surface are
strongly correlated. More specifically, the correlation function between the
normal vectors to the surface behaves at large scales as

lo— o3

(0:X(a,7)-0;X(a',7)) ~ (5.23)
Details of the calculation of this correlation function can be found in Ap-
pendix D.1. This algebraic fall-off implies the absence of a persistence length
which would define the length scale above which the normals become uncor-
related and the surface becomes crumpled.

To investigate this further, let us calculate the Hausdorff dimension dy
of the membrane. It can be defined by the relation between its mean surface
area (A), where

A= / d20.,/3, (5.24)

and the frame, or projected area Ay = [d%c. This relation is
(A) ~ AGH7, (5.25)

so that the Hausdorff dimension is given by

_ ,0In(4)

dH N 28111140 )

(5.26)

Since the frame area Ay scales with the cutoff A as

Ay = / d20 ~ A2, (5.27)
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Eq. (5.26) can also be written in the form

01n(A)
OlnA -~

At the one-loop level, the mean surface area is

W = (fslie or . )

h rdw d?q q>
= Ayl1+ = 5.29
( 2/ 2 2n)? 2/uO+roq+q4/ao> (5.29)

dy = — (5.28)

so that we obtain from relation (5.28) the Hausdorff dimension

1

dg=2+— 16 Vam: (5.30)
For large membranes, ugm — 0, implying a Hausdorff dimension dy = 2.
Expressed in group theoretic terms, the SO(d) rotational symmetry of d-
dimensional space is spontaneously broken to its SO(d—2) x SO(2) subgroup.
According to the Mermin-Wagner theorem [69], long-range order is destroyed
in a two-dimensional system at any finite temperature. Since we are studying
quantum fluctuations, where the membrane has an extra (time) dimension,
this spontaneous symmetry breaking does not violate the Mermin-Wagner
theorem. The algebraic decay found in Eq. (5.23) is an immediate conse-
quence of this symmetry breaking and identifies the two resulting Goldstone
modes.

5.2.2 Finite temperature

Let us now investigate how the high-temperature regime, dominated by
thermal fluctuations, where the membrane is found to be always crumpled,
goes over into the low-temperature regime dominated by quantum fluctua-
tions, where the membrane remains flat.

To investigate this temperature dependence, we adopt the imaginary-time
approach to thermal field theory [55]. It can be derived from the corres-
ponding Euclidean quantum theory at zero temperature by restricting the
Euclidean time to the finite interval 0 < 7 < h/kgT, and substituting

do o kT

S 9(w) > Y gl (531)

n
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where ¢ is an arbitrary function, and w, denote the Matsubara frequencies,
wy, = 2mnkgT/h, n=0,£1,+2---. (5.32)

Using this substitution in the zero-temperature integrals (5.12)—(5.14), as
well as the formula [70]

kT 1 1 ha
- > i coth ( ) (5.33)

to carry out the sum over the Matsubara frequencies, we arrive at

1 1 1
- = —|l== mFTA’] 5.34
v 1/0[ grr - am0 URYE (5-34)
1
r = T [1 — 2—uqm,0FQ(T, AI):| s (535)
7
1 1 3
== [t e AT )| 5.36
o) ao[ g Lm0 (T A (5-36)
with
A 2 coth(Lvoq' /T + ¢
Fl(T, AI) — dq/q Co (QrYOq q )’ (537)
VI+q?
A 3,12 14 th(i ' /1 2
FQ(T,A,) — dq/(4q +q )CO (270(] +q ) (538)
VI+q?
Here, we rescaled the integration variable ¢’ = ¢€4m0/2, and therefore A’ =

Aéym,0/2; and introduced vy = hroaé/ 21/3/ 2 /kgT. This dimensionless parame-
ter can be expressed as the ratio of the expansion parameters in the quantum
and classical regime,

Yo = Uqm,0/ Uth,0- (5.39)

The integrals in Eqgs. (5.38) and (5.37) diverge in the ultraviolet as A" —
00. As before, we disregard powerlike divergences, and consider only the
logarithmically diverging terms. We thus arrive at:

1 1 1 1

i = (T {20 LGOI (540)
1

ro= 1 [1+Euth,oln(A')], (5.41)

1 1 3 1

o = oo ar (o rama) (). (542)
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One may check that as the temperature 7' and, consequently, uwyo o< T
tend to infinity, Eqs. (5.41) and (5.42) reproduce, up to finite terms, the
high-temperature results (4.14) and (4.23). On the other hand, in the limit
usho X T'— 0, we recover the zero-temperature results (5.16)—(5.18).

In order to explore the behavior of the membrane at large length scales,
we compute the flow equations corresponding to the three parameters of the
theory, as we did above. They are given by:

B.(v,r,a) = (e=3)v+ % (uth - %uqm) v, (5.43)
ﬂr(l/a r, 05) = _(6 — 3)7' + %’Ulth’/', (544)
ﬂa(lj, r, Oé) - (6 - 1)0! + % <Uth — iuqm) . (545)

This system of equations admits two possible fixed points (see Fig. 5.1), viz.
the trivial one at ¥ = r = a = 0 which we already found above at T = 0,
and a new one at v =r = 0, = ¥, with

47

o' = gl — o) (5.46)

Note that this fixed point exists even for a two-dimensional membrane (e =
0). The scaling field r is found to be relevant, while v is found to be irrelevant
with respect to both fixed points. Criticality is obtained by setting r = 0.
The scaling field o behaves differently: it is irrelevant with respect to the
trivial fixed point, but relevant with respect to the new one. The presence of
the unstable fixed point implies the existence of a crumpling transition for a
two-dimensional membrane at a critical temperature

4 1

T,=——.
3kB %

(5.47)
For T' < T¢., o flows away from «* and towards the trivial fixed point o = 0.
The correlation between the normals to the surface is long-ranged, and the
membrane remains flat. For 7" > 7., on the other hand, « flows away from o*
in the other direction, that is @« — oo. In this case, thermal fluctuations domi-
nate. The correlation between the normals to the surface is short-ranged, and
the membrane is found to be crumpled. As the temperature tends to infinity,
the time dimension shrinks to a point, making the integration [ dr disappear
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Figure 5.1: Flow diagrams in the («,v)-plane. As T becomes finite from
above (middle panel), a nontrivial fixed point («* # 0) starts to move to the
right away from the origin, and disappears at infinity when 7 tends to zero
(right panel).

from the action (5.5). This implies that the parameter € in the flow equations
(5.43)—(5.45) must be set equal to e = ¢’ + 1 [71, 72], with ¢ =0 for D = 2.
We see that the fixed point (5.46) reduces in the limit 7" — oo to the trivial
one for a two-dimensional membrane. A similar nontrivial fixed point to the
one in (5.46) was found in Refs. [40, 2] for a (2 + |¢'|)-dimensional membrane
(¢ < 0) described by the classical Canham-Helfrich model embedded in 3+ €|
dimensions, as discussed in Chapter 2. In our case, due to the presence of
the extra time dimension, the nontrivial fixed point (5.46) exists also in two
dimensions.

5.3 Large-d calculation

Let us now analyze the behavior of the quantum membrane for very large
dimension d of the embedding space at all temperatures, and make use of the
fact that the model is exactly solvable in this limit. We will calculate all of
its relevant properties, in particular its order parameter and phase diagram
[73]. This is not possible in the perturbative approach, since, by its nature,
the perturbative expansion we used in the previous section breaks down as
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the membrane crumples.

5.3.1 Simplified model for large d

The surface describing the membrane is parametrized by a vector field
X(7,7) in the d-dimensional embedding space. In this parametrization, the
Canham-Helfrich energy (2.17) reads

B = [ @0y [ro + %%(AX)2 , (5.48)

where

is the metric induced by the embedding, and A = ¢g~1/29,9"g'/29; is the
Laplace-Beltrami operator. As in the previous section, we add to the Hamil-
tonian (5.48) a kinetic term to account for quantum fluctuations:

R B 2
T=5, /d 0/gX2, (5.50)

where 1/vy is the bare mass density'. The Euclidean action describing the
quantum membrane is thus

1 . 1
So=[drdoys [2—VOX2 1+ 5-(AX)2). (5.51)

5.3.2 Auxiliary field variable approximation

For large d it is useful to consider g;; as an independent field [35], and
impose relation (5.49) with help of a Lagrange multiplier \;;. We consider the
case where the classical action will have an extremum around an almost flat
configuration. In the d-dimensional generalization of the Monge parametriza-
tion of an almost flat surface, the metric tensor becomes g;; = d;; +0;X-9;X.
The partition function for the membrane can then be written as

7= / DygDADX ¢S50/, (5.52)

IThe kinetic term X2 has the unphysical feature that it is not invariant under time-
dependent reparametrizations. It should therefore be replaced by the normal gradient
energy (N - X)2, as discussed in the previous section [66, 67]. However, in the limit of
large d, which we are going to investigate, the difference between the two kinetic terms
will be negligible.
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with the Euclidean action

1 g
So = /dT d’c\/g { — X% 41y + Y [(AX)2 + A (6, + 0, X - 0;X — gz’j)]

Z)\?,-} : (5.53)

We have added a term proportional to A2, with the proportionality con-
stant ¢y being the in-plane compressibility of the membrane. This is necessary
to absorb infinities, and the renormalized compressibility ¢ will be set equal
to zero at the end to describe an incompressible planar fluid. Note that the
functional integration over the Lagrange multipliers )\;; in (5.52) has to be
performed along the imaginary axis for convergence.

The functional integral over all possible surface configurations X (7, 7) in
(5.52) is Gaussian, and can be immediately carried out, yielding an effective
action Sog = Sy + Sy, with

N i ¢
— 2 A ) — 052
Sy = /de /g lro + 2an (04 — 9ij) 2 )\“] , (5.54)
and
S = "dTrin [ 92 + 2% - a,.x'ﬂ'a,-)] . (5.55)
2 (6))

For large d, the partition function (5.52) is dominated by the saddle
point of the effective action with respect to the metric g;; and the Lagrange
multiplier A, and we are left with a mean-field theory in these fields. For
very large membranes, translational invariance allows us to assume that this
saddle point is symmetric and homogeneous [75, 76, 77, 78], such that g;; =

0005, A7 = Xog" = Xo/ 00 0", with constant gy and Ag. There, the functional
trace in (5.55) becomes an 1ntegral [drd%o [dwd?q/(27)? over the (2 + 1)-
dimensional phase space, after replacing 97 — —w? and ¢/ 9;0; — —’.

5.3.3 Zero temperature

At zero temperature, the phase space integral in (5.55) yields

At A2 4A\?
d/de 0901/ {87r+87rA +64 [1 21n</\0 )]}, (5.56)
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where the ultraviolet divergences of the integral have again been regulari-
zed by a wavevector cutoff A. The first term in (5.56) is a constant and
renormalizes the surface tension to
r=ro+ ——A\" 5.57
0 167 Qp ( )
The quadratically divergent term renormalizes the bending rigidity in the
second term of (5.54). The logarithmically divergent term proportional to A3
modifies the in-plane compressibility to

hd [v A?
c=co4 ——/—1In[4e 2= ], (5.58)
327\ ap 12
where p is a renormalization scale. We now set r and ¢ equal to zero, to des-
cribe a critical incompressible membrane. The renormalized effective action
is then

St = /deZJQ/\ {é G - 1) + \/(% + \%A lln (;) - %1 } L (5.59)
where we have defined the critical bending rigidity 1/a. = h’d?vyA* /25672
and the constants a = hdv'/?/(647), A = p%e~'/2. From the second-derivative
matrix of Seg with respect to p and A we find that the stability of the saddle
point is guaranteed only for A < A. Note that the integration over ); in
(5.52) along the imaginary axis requires a maximum of (5.59) with respect
to A for stability.

The extremization of (5.59) with respect to o leads to two different solu-
tions for the saddle point, namely

A 1 1 1 1

These describe two different phases existing at zero temperature. For a <
¢, A = 0 is the only possible solution for the saddle point. This solution
corresponds to the flat phase, as we shall verify below. For o > «., on
the other hand, there exists a solution of the second equation in (5.60) for
nonzero A. This solution corresponds to the crumpled phase. The behavior
of the effective action (5.59) is shown in Fig. 5.2. As a approaches the critical
point from below, i. e. the membrane softens, A becomes nonzero (see Fig.
5.3), and the surface crumples.
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crumpled

/
Seff

/
flat
a > o

a < ag

Figure 5.2: Effective action at 7' = 0 in units of a. The physical solution of
the saddle point equations (5.60) lies at the maxima.

Note that, in the crumpled phase, the effective action reduces to

A
Seff = /deQO' -, (5.61)
«
thus providing us with the physical interpretation of the Lagrange multiplier
A : it is proportional to the effective, spontaneusly generated surface tension.
Also, by definition,
(4)
= — 5.62
p AO ? ( )
i. e., the parameter p corresponds to the ratio of the mean total area of the
surface to its projected area.
To determine the saddle point solution for ¢ we extremize (5.59) with
respect to A. In the flat phase, where A = 0, we obtain

ol=1- (3)1/2, (5.63)

O

showing that the total area of the membrane increases as « approaches a.
from below, with a crumpling transition at a.. In the crumpled phase, g is
given by

a\1/2

oo = (—) ~1—aya), (5.64)

O{C
with nonzero A\. As a approaches a. from above, A tends to zero, and p
goes again to infinity. The positivity of o and the stability of the saddle
point imply that there is an upper bound for the bending rigidity, given by
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1/al2 = 1/al/? — a) below which an incompressible membrane becomes

unstable. The behavior of A in the two phases is shown in Fig. 5.3. The
behavior of ¢~! is shown in Fig. 5.4.
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Figure 5.3: Physical branch of the solution of Eq. (5.60) for A as a function
of the stiffness a«~!. The dashed curve indicates the unstable extremum of
the action.

5.3.4 Finite temperature

At finite temperature, the phase space integral in (5.55) involves a sum
over the Matsubara frequencies [55] w, = 2mnkgT /h, n = 0,41, £2--- asin
Sec. 5.2.2. For small )\, a series expansion (see Appendix D.2) leads to

S, = / drd2ogpd 1L Vo _ hd” al kBT LRy [Pope
167 (&7} 167 Q)
dkgT 2kBT
A In (2272~
Ao 8m ( I I/0>
2
0

)\0L2]€BT (o))
— 2y 4 2Ip (22 2B [0
|:3 ’Y‘i‘ n<8 A2 h 140

“+a

\/070
)m+1)\m h m—2 (Vo)mTl
+ \/_mz?’ m22mgm  \ kgT Qo

L) 1)}. (5.65)

r(3)

2

X
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As in the zero-temperature discussion, we absorb the logarithmic divergence
by renormalizing the in-plane compressibility via Eq. (5.58), setting ¢ equal
to zero for incompressible membranes. The surface tension receives now a
temperature dependent renormalization

1/0 hd’ﬂ' (%)) kBT
T_TOJFE ao [ &0 ( ) (5.66)

and ry is chosen to make r = 0 at all temperatures. Extremization of the
renormalized combined effective action (5.54) and (5.65) with respect to p
leads again to two possible solutions for the saddle point, namely A = 0 or
A= )\T; with

)\T 1 L2 kBT (0%
/\T lln<7>—§]+AT [1—’y+ln<87r h ;)]

()™=t R\ T
3/2
w3 ¢ m22mgm \ kT (_> r(é) (m—=1)

m=3 o 2
1 1/2 O 1 1
where
1 1 |1 1 dkgT kT [
EELINPOR I I oIn (L2282 /= 5.68
arpl/2 7 12 [2 + J 4 + gr e ( h Vv (5.68)

is the critical bending rigidity at finite temperature. Alternatively, we find
the critical temperature at a fixed bending rigidity 1/a:

kBT (0% & 1 1
Toln [ L27B7¢ /2 L .
g ( n 1/> dks ( W) ’ (5.69)

in qualitative agreement with the perturbative critical temperature. For
a < ar, Eq. (5.67) has no solution for Ar. In this case, the membrane is in
the flat phase, the only available solution for the saddle point being A = 0.
For a@ > ap, Ar is nonzero, and the membrane is crumpled.

Let us now examine the saddle point solutions for g. In the crumpled
phase, where A = At is nonzero, we may expand the effective action into a
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high-temperature series. The details of the calculation of the series expansion
can be found in Appendix D.2. Extremization with respect to Az leads to

o7l = [(i)m - 1] [1 — a2 (1 e ] — avarr

_hdagg?)% (1_%) <kBiT>m—2 (9’”71
X%C(m ~1). (5.70)

The positivity of g and the stability of the saddle point again define an upper
bound for the inverse bending rigidity, given by

LS (5.71)
,/agax B v ®max 2 2 Tstab .
with )
T
kg Toan = _ 5.72
B~ stab doumax In(167 /Rd\ /v \) ( )

For temperatures lower than T, the effective action becomes unstable if
the rigidity is lower than 1/ arflax. Above T,1, the membrane is stable at all
rigidities. In the flat phase, the situation is more delicate. For A = 0, o can
be calculated exactly, and we obtain

dkwT sinh ( 2% —
ol=1-a 8]; In h(d’“‘f V_;) , (5.73)
sz 5L

with an infrared regulator L equal to the inverse lateral size of the membrane.
For low temperatures, (5.73) may be approximated by

ot~ ll _ (0%)1/2] l1 — a2 (1 - Z—; ] . (5.74)

At high temperatures, however, the positivity of o is not guaranteed. For
fixed, but high temperatures, and for fixed membrane lateral size L, there is
a characteristic value of the inverse bending rigidity defined by

81

" dkyTn (ZEE)

*

(5.75)
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above which p changes sign, and (5.73) is no longer applicable. Interestingly,
for all L and at all temperatures T, the critical bending rigidity 1/ar is larger
than 1/a*, so that the crumpling transition still occurs. The behavior of p
is depicted in Fig. 5.4.

Figure 5.4: Behavior of p~! for fixed L2. In the flat phase, p is given by
(5.73), and in the crumpled phase by (5.70). The transition happens at ar,
where the flat phase becomes crumpled. The dashed lines show the behavior
of p~! at zero temperature.

Note that the existence of the characteristic inverse rigidity o* reflects the
existence of a persistence length. At fixed temperature, for ar < a < o,
the membrane is flat at scales smaller than L, = A™'exp(47/dkpT ), and
crumpled at larger scales. This agrees with the de Gennes-Taupin persistence
length &,. As the projected area Ay = L? of the membrane approaches infini-
ty, the root ar of the branch gjrl (see Fig. 5.4) goes to zero, and the branch
0~! becomes unphysical. The phase diagram of the quantum membrane is
plotted in Fig. 5.5. As the lateral size L of the membrane goes to infini-
ty, the inverse critical bending rigidity ar goes to zero, and the crumpling
transition is washed out. In the limit of infinite area, the ratio o*/ar = 1.
The membrane is crumpled at large scales, and flat at scales smaller than
the persistence length. Its behavior can thus be described by the classical
Canham-Helfrich model alone.

Let us finally characterize the two phases in terms of the correlation
functions between the normal vectors to the surface of the membrane. For
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\ crumpled

flatif L < L,

nstable
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Figure 5.5: Phase diagram of the quantum membrane. At 7" = 0, there is
a crumpling transition as the rigidity 1/« falls below 1/a,.. For membranes
of fixed lateral size L, the crumpling transition still takes place at higher
temperatures. The critical inverse rigidity tends asymptotically to zero as
the temperature goes to infinity. Below the dotted line the membrane is still
flat if its lateral size is smaller than the persistence length. The unstable
region disappears for nonzero in-plane compressibility.

the solution A = 0, this correlation function coincides with the one we found
perturbatively for the zero temperature case, namely

5

o —a']>

(0, X(,7) - X (3", 7)) ~ (5.76)
This solution corresponds to the flat, low temperature phase, where the nor-
mal vectors are strongly correlated. Such behavior can incidentally also be
obtained in the large-d limit at high temperatures by adding curvature terms
of higher orders to the Canham-Helfrich Hamiltonian (2.17) to stabilize a ne-
gative bending rigidity 1/aq [79, 80, 81]. For nonzero A = At the correlation
function behaves as

(0.X(5,7) - 0X(5",7)) ~ Sup exp(—/Arl7 — 7). (5.77)

In this case, the normals to the membranes are uncorrelated beyond a length
scale )\%1/ ®. The exponential decay of the correlation function shows that
this solution corresponds to the crumpled phase. The length scale )\}1/ 2 may
also be identified as the persistence length &, [2, 22, 78].
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