Chapter 4

Derivative Expansion for Fluid
Membranes

After the discussion of the derivative expansion method in the previ-
ous chapter, we are now ready to apply it to the renormalization of fluid
membranes.

Our starting point will be the modified Canham-Helfrich energy in the
Monge parametrization (2.22), that is
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We will show that the ultraviolet divergent parts of the one-loop correc-
tions induced by thermal fluctuations are of precisely the same form as in
(4.1), and in particular, that the three terms in the curvature energy renor-
malize in the same way, resulting in an overall renormalization of ky alone
[58].

To apply the derivative expansion we write the partition function as a
functional integral over the displacement field

7= / D exp (—BEy), (4.2)

with each field configuration weighted with a Boltzmann factor.
In the one-loop approximation, the exponent in (4.2) may be expanded
up to second order around a background configuration ®(z) extremizing Ej.

(4.1)
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A nontrivial background requires the presence of an extra source term. For
brevity, this term will not be written down explicitly when setting §Ey /0P =
0. The resulting integral is Gaussian and yields an effective energy

6*(BEo)
6p(2)09(y)

where the expression in square brackets corresponds to the matrix of second
functional derivatives of E, and the trace Tr stands for the trace of this
matrix, i.e., the integral [ d%z over space, as well as the integral [ d?k/(27)?
over momentum [53].

The one-loop correction F1[®] to the energy will now be calculated in
a derivative expansion for an arbitrarily tilted, but nearly flat background
configuration. A background configuration parallel to the reference surface is
too trivial to generate a derivative expansion. The expansion has the general
form

Eut[®] = Eol®] + By [®] = Eo[®] + %Tr In l

J, (13)
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where we introduced the abbreviation V; = 9;®, while V, Z*, 2%, and Z}

ijmn
are functions of V; to be determined. Following Ref. [53], we set Vi(z) =
Vi + vi(x), where V; denotes the constant part of V;(z), and expand Eq. (4.4)

in powers of v;(x) and its derivatives, to obtain
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with space-independent V(V;) and Z(V;)’s. These functions will now be
extracted from the expansion of the Tr In in (4.3) up to quadratic terms in
v; and O;v;, in the same way as discussed in the previous chapter.
The functional derivatives in (4.3) are again calculated using the Euler-
Lagrange formula
of
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with F[¢] = [d%zf(¢,Di¢,0;0;¢,...). To keep track of the many terms
appearing in the resulting expression we have used the algebraic computer
program FORM [59]. A detailed description of the FORM programs can be found
in Appendix A.

We consider first the renormalization of the surface tension. Since the
energy density /1 + V2 does not contain derivatives of V;, we may set v;(x)
to zero and consider F,[V;] only,

BE: V] = —3TrIn(1 + V?) + 1 TrIn[G(p)], (4.7)
where p; = —i0;. Here, G™*(p) denotes the inverse propagator:
G (p) = (ro + Kop”)p* — (ro + 260p”) (U - p)* + ko (U - p)* (4.8)

where U; is the constant vector
Vi
In dimensional regularization, the first term on the right-hand side of (4.7)

is zero. To evaluate the remaining TrIn, we apply a standard trick and first
differentiate (4.7) with respect to 7o to obtain

aEl[V;C] N kBTTI‘ p2 - (U p)2
org 2 (ro + Kop?)p? — (ro + 2k0p?) (U - p)? + k(U - p)* |
(4.10)
Since the integrand contains no space-dependence, the spatial part of the
trace in (4.10) yields a volume factor LY = [ d”z, and we are left with the
momentum integral

U= (4.9)
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Being interested only in the ultraviolet divergent terms, we obtain, in
dimensional regularization

OEL[Vi]  ksT 1 [ , —
= — 1 2, 4.12
5o /dm/+V (4.12)
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After integrating again with respect to ry and comparing the result with (4.4)
we find (up to an irrelevant additive constant)

ro 1 ro 1
V(Vi) = ksT' —\/1+V2:kBT4 ~y/1+ (09)2, (4.13)
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where we replaced Vj, with the full background field Vi (z), to obtain the first
term in (4.4). Note that this one-loop correction is precisely of the same form
as the surface term contained in the original energy expression (4.1). This
term can consequently be combined with the original one by introducing the
renormalized tension e e 1
reff:ro—l—j—ﬁl:—(;z. (4.14)
This result, corresponding to o/ = 1 in (2.39), is in agreement with Refs.
[41, 47] and with our discussion in Chapter 2. This proves the covariance, at
least to one-loop order, of all terms in the expansion of the surface energy
since the full expression has been maintained.
We continue to investigate the renormalization of the bending rigidity.
Since the three terms involved contain derivatives of the background field V;,
we now have to employ the derivative expansion. As a first step, we expand

the logarithm in (4.3) as:
BE[Vi + vp(2)] = BEL[Vi] = 3TrIn[l + G(p)A(z,p)]

= 1Tr[G(p)A(p, z)]
— TG (p)A(z, p)G(p)A(z,p)] + - - -, (4.15)

where G(p) is the propagator defined in (4.8) and A(x,p) contains the z-
dependent terms obtained from functionally differentiating E, twice, setting
0;®(z) = Vi(z) = V; +vi(z) and expanding up to second order in v; and d;v;.

The first term in (4.15) can be calculated in a similar fashion as V(Vj).
In the second term, all momentum operators have to be moved to the left
[53], by repeatedly applying the identity

f(@)pig(x) = (pi +10:) f(x)g(x), (4.16)
where f(z) and g(z) are arbitrary functions and the derivative 0; acts only
on the next object to the right, as discussed in Chapter 3.

The typical momentum integrals showing up at one-loop order are of the
form

Pk . km+D=1=2n " infrared
L = / (27r)Dk G (k) ~ /dk{ kmtP=1=4n  yltraviolet ’ (4.17)
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with m,n > 0. They diverge in the infrared when m+D—1—-2n < —1, and in
the ultraviolet when m+D—1—4n > —1. For D = 2 these conditions become
m —2n < —2, m — 4n > —2, respectively, and the two types of divergences
are seen to be separated by a wedge of finite integrals in the (m,n)-plane
starting at (—2,0), as depicted in Fig. 4.1. The explicit calculation of these
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Figure 4.1: Behavior of the one-loop integrals I, , in Eq. (4.17).

momentum integrals can be found in Appendix B.

After a lengthy calculation, involving of the order of 10* terms, done with
help of a program written in FORM [59], we obtained the divergent terms to
second order in derivatives of the field v; (for details see Appendix A ):
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In deriving this expression we also encountered infrared divergences. These
are regularized in the same scheme as used to regularize the ultraviolet di-
vergences. To distinguish the two we gave epsilon an index ir in case of an
infrared divergence. We leave the discussion of the infrared divergences to
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the next paragraph, and first analyze the ultraviolet ones. Comparing (4.18)
to (4.5) with V(V}) given by (4.13), we see that the terms proportional to g
precisely correspond to the first two terms at the right-hand side of (4.5), as
it should be. Moreover, we conclude that the Z-functions in (4.5) are given
by
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By replacing the constant Vj, with the full background field V;(x) = 0;,®(z),
we obtain for the UV-divergent parts of the expansion (4.4) the explicit form

kBT 2 3%0 [ (82(13)2 81<I>8]<I>818J<I>62<I>
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We see that the thermally generated terms at the one-loop level are precisely
of the same form as those present in the original energy expression (4.1). In
addition, the relative weights of the curvature terms produced by the fluctu-
ations are the same as those found there. They can therefore be combined
with the original terms by introducing the renormalized rigidity

3kgT 1
At €’

Keff = Ko — (4.23)
whose value is in agreement with [40, 41, 42, 43, 44].

As seen in (4.18), the one-loop corrections seem to have introduced in-
frared divergences in the theory. A closer inspection reveals that the infrared-
divergent contributions all stem from the surface energy term in (4.1), so that
it suffices to analyze the one-loop corrections to the truncated energy

%:m/ymh+w@z (4.24)

Infrared divergences in this model have previously been studied in [60], where
they were shown to disappear for an infinitely small dimension D of the
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membrane to all orders in D. In our calculation the problem arises for D =
2 — e. When calculating the effective action, we expand (4.24) around the
background field ® extremizing Ej, i.e.,

SE}
=0, 4.25
= (425)

which reads explicitly

8°® 8, 28,, 99,0, P
[1+(00)2]12 1+ (8D)23/2 =0 (4.26)

The presence of the implicitly assumed sources turns this equation into a
nontrivial one. Rewriting 9;®(x) = V; + v;(z), expanding to linear order in
v;, and substituting the resulting expression in (4.18), we see the infrared
divergences to vanish for a two-dimensional membrane.

In conclusion, we have demonstrated that all logarithmically divergent
one-loop corrections induced by thermal fluctuations are precisely of the same
form as in the original energy (4.1), so that they can be removed by a renor-
malization of the surface tension and bending rigidity.
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