Chapter 2

General Properties of Fluid
Membranes

2.1 Canham-Helfrich model

Closed lipid bilayers, such as red blood cells, can have an unswollen shape.
At equilibrium, they minimize their free energy with respect to both volume
and surface independently, thus yielding a vanishing surface tension. In this
situation, one witnesses a ‘flickering’ phenomenon, i. e., the enhanced light
scattering due to oscillations of the membrane, first observed in the 19th
century [29].

In order to explain this effect, Canham [19] suggested that the behavior
of red blood cell membranes is governed essentially by curvature energy. He
proposed the curvature elastic energy of a membrane to have the form
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where R; and R, are the principal curvature radii of the membrane surface
(see Fig. 2.1), k is its bending rigidity and the integral is over the total area
of the membrane. The equilibrium configuration of a vesicle governed by this
elastic energy reproduces the biconcave shape found in red blood cells, thus
supporting Canham’s model.

A more precise formulation of this model was given by Helfrich [20]. By
introducing local Cartesian coordinates on the membrane, imposing that the
z-axis be parallel to the surface normal vector at each point, he defined
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Figure 2.1: Principal curvature radii of a surface

the two principal curvatures as follows. Expressing the normal vector n =
(ng, ny, ;) as a function of the coordinates x and y, the principal curvatures
at each point are given by the eigenvalues of the matrix
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If the orientation of the local coordinate system is chosen in such a way that
derivatives along its axes correspond to the largest and smallest curvatures of
the membrane surface, mixed derivatives vanish, and the principal curvatures

become 5 5
n n
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Since the membrane has rotational symmetry, only combinations of deriva-
tives of n(x,y) which are independent of the orientation of the z- and y-axis
may appear in the expression for the curvature elastic energy. They are

(2.3)
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The curvature elastic energy density then becomes
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where the linear term (2.4) has been incorporated through the membrane
spontaneous curvature Hy, and & is its Gaussian rigidity.

The second term (2.5) and the integrand in Eq. (2.1) are equivalent, and
correspond to the squared local mean curvature H? of the membrane. The
third term (2.6) corresponds to the Gaussian curvature K, which is sensitive
to topology changes.

2.2 A little differential geometry

Before proceeding in the study of the Canham-Helfrich model, it is use-
ful to introduce some rudimentary differential geometry concepts to help us
describe spatial configurations of a fluctuating surface.

A two-dimensional surface embedded in a three-dimensional Euclidean
space can be mathematically represented by a parametric equation X =
X(oy,09), where X = (z(01,02),y(01,09), 2(01,02)) is a three-dimensional
vector function of the parameters ¢ = (01,02). In the following we shall
assume that the vector function X, referred to as the parametrization of the
surface, is a smooth function of its parameters.

At each point, the tangent vectors t; to the surface are given by the partial
derivatives of the parametrization X, that is, t; = 0;X, where 0; denotes the
partial derivative with respect to the coordinate o; and 2 = 1, 2. If the surface
does not self-intersect and does not have overhangs, the tangent vectors t;
are linearly independent, and generate the tangent plane to the surface at
each point.

The infinitesimal Euclidean distance d¢ between two points on the surface
with coordinates ¢ and ¢ + do is given by

d€2 = [X((j’ + dé’) - X(&)]2 =t;- tde'idO'j = gide'idO'j, (28)

where
is the metric tensor or first fundamental form on the surface, with Einstein’s
convention of summation over repeated indices.

The area of an infinitesimal element of surface can be approximated by
the area of the parallelogram tangent to it, delimited by the tangent vectors
t; (see Fig. 2.2). It can be expressed as the absolute value of the cross product
between the tangent vectors:

dS = |t; x ty|dotdo?. (2.10)
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Remembering that
[t1 X to? = t3t3 — (t1 - t2)?, (2.11)

the infinitesimal element of area on the surface can be rewritten as
dS = /gdo'do?, (2.12)

where g = det|[g,;].

Figure 2.2: Infinitesimal element of area of a surface.

The unit normal vector to the surface is given by

t1 X to

= Xt 2.13
‘tl X t2| ( )

and the surface is said to be orientable if it is possible to uniquely define
a field of normal vectors on it. In the following we shall always consider
orientable surfaces.

Each point of a surface is characterized by a local curvature tensor. The
notion of curvature is more intuitive for a planar curve in two dimensions. In
this case, the curvature tensor at each point is a scalar with magnitude equal
to the inverse radius of the circle that locally follows the curve, as shown in
Fig. 2.3.

By defining a field of normal vectors to the curve, thus specifying its
unique orientation, one may define the sign of the curvature k at each point.
If the curve rises towards its normal vector, the sign of k is positive, and if it
falls away from the normal direction, the curvature is negative (see Fig. 2.4).

A similar analysis applies to a two-dimensional surface embedded in three
dimensions. At each point on an oriented surface one may define a tangent
plane. Planes normal to the tangent plane intersect the surface in a planar
curve called a normal section. Each normal section has an associated curva-
ture at the tangency point. The magnitude of the maximum and minimum
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Figure 2.3: The circles tangent to the curves have a radius that is inversely
proportional to the curvature at the tangency point.
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Figure 2.4: Sign of the curvature of a planar curve.

curvatures of the normal sections define the two principal curvatures k; and
ks of the surface at each point. Their arithmetic mean defines the mean
curvature H = (ki + ko)/2 of the surface, and their product K = kiky the
Gaussian curvature at each point on the surface (see Fig. 2.5).

To formalize the notion of curvature of a surface one defines the extrinsic
curvature tensor K'ij by

also called second fundamental form on the surface. I_(ij is a symmetric ten-
sor, and it can be diagonalized at each point of the surface. Its eigenvectors
correspond to the directions of the two principal curvatures on the tangent
plane, and its eigenvalues to the principal curvatures. The mean curvature H
is thus given by H = $Tr[Kj;], and the Gaussian curvature by K = det[Kj;].

If the two principal curvatures are positive, that is, both the mean cur-
vature and the Gaussian curvature have a positive sign, all normal sections

curve towards N, as depicted in Fig 2.6. If both principal curvatures are
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Figure 2.5: Principal curvatures of a surface.

negative, that is, H < 0 but K > 0, all normal sections curve away from
N. If the principal curvatures have opposite signs, that is, K < 0, one is at
a saddle point, there are normal sections that curve both towards and away
from IN.

k1=0, k1>0, k1<07
ko=0 ko=0 ky=0
k1 <0, k1> 0, k1 >0,
ky <0 ka >0 ky <0

Figure 2.6: Different cases for the two principal curvatures.

An excellent discussion of the differential geometry concepts briefly re-
viewed here can be found in Refs. [30, 31].
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2.3 Monge parametrization

We are now ready to discuss the properties of the Canham-Helfrich model
in more detail. To investigate the role of thermal fluctuations, one must
determine the partition function for a membrane governed by the energy

Ec = %/dS (K0H2 + I_£0K2) s (215)

where the subscript 0 indicates that the bending and Gaussian rigidity are
bare, microscopic parameters whose values will be modified by thermal fluc-
tuations.

The partition function Z is given by the formal sum

7= exp(~fE,) (2.16)

over all possible spatial configurations S of the membrane. Here, and in the
following, we define § = 1/kgT, where kg is the Boltzmann constant and T
is the temperature of the system.

To calculate the sum (2.16), we must specify each configuration S of the
membrane by a parametrization of its surface. However, the same spatial con-
figuration may be represented by several parametrizations, and the invariance
of the properties of a surface with respect to changes in the parametriza-
tion is analogous to gauge invariance in electrodynamics. Consequently,
the choice of a particular parametrization is equivalent to gauge fixing, and
reparametrization invariance must be ensured via a Faddeev-Popov determi-
nant.

Since, as discussed in the Introduction, fluid membranes under normal
conditions are almost flat surfaces, a good gauge choice is the Monge parame-
trization, which is equivalent to specifying the height of the surface above a
reference plane (see Fig. 2.7).

The points on the surface are then specified by a vector field X(5) =
(01,09,0(5)), where ¢(5) denotes the vertical displacement of the surface
with respect to a base plane with Cartesian coordinates 6 = (o1, 03).

We are going to concentrate on small fluctuations around a flat configu-
ration, not allowing for topology changes. We may therefore disregard the
Gaussian curvature term in the energy (2.15), since its integral over a surface
with fixed topology amounts to a constant.
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Figure 2.7: Monge parametrization.

Let us consider the energy

By = /d%\/g (ro + SroH?) (2.17)

where we have introduced a bare surface tension ry. As discussed in the
Introduction, the physical surface tension of a fluid membrane is vanishingly
small. This applies to the effective surface tension, and there is no reason
why the bare parameter should be set to zero a priori.

In the Monge parametrization, the metric tensor is given by

gij = 0ij + 0;00;0, (2.18)
and so
g = det[gy;] = 1+ (8;0)>. (2.19)
The unit normal to the membrane surface is
1
N = ———=(010, 029, - 1), (2.20)
1+ (0i9)?

and the extrinsic curvature tensor is

Kij =0

%9 ] . (2.21)

1+ (0k9)?
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The modified Canham-Helfrich energy (2.17) becomes, in the Monge para-
metrization,

), 0:00;00:0;00°¢
&w%=/*0¢57a5%”+%“l1&@2?‘2[11@5VP
(@¢@¢@@¢V]}

1+ 060)7F (2.22)

The partition function (2.16) is now given by the functional integral
Z = [ Doexp (-BE[9), (2.23)

where the measure D¢ is defined as follows. One discretizes the reference
plane by introducing a square lattice of points (o;, 0;) separated by a distance

a, and defines a function ¢;; = ¢(0;,0;) at each point. The integration
measure D¢ is the defined as the limit
D¢ = lim 1;[ depi;. (2.24)

Note that we chose the Monge parametrization in an arbitrary way, with-
out worrying that reparametrization invariance be explicitly ensured. Before
proceeding, let us deal with the problem of gauge fixing in the proper way,
that is, by calculating the Faddeev-Popov determinant.

2.4 Faddeev-Popov determinant

Before choosing a special parametrization, the partition function should
read
Z = / DX exp(—FEo[X]), (2.25)

where the measure DX is defined on the space of all membrane configura-
tions. This measure should satisfy two conditions:

e reparametrization invariance
The weight of a configuration should not depend on its parametrization.

e Jocality
There are no long distance correlations on the surface, that is, defor-
mations of the surface at distant points must be treated independently.
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As discussed in Sec. 2.3, many configurations X (&) are equivalent under
a change of coordinates, and describe the same membrane. To avoid multi-
ple counting in the partition function while respecting the above mentioned
conditions, we use the same approach as in the functional quantization of
gauge theories:

e We choose a measure which is local and reparametrization invariant,
namely, Fujikawa’s measure [32, 33, 34, 35, 36|

DX =[] ] [dX*[g(o)]""*]. (2.26)

o u=1

e We pick up a set of inequivalent configurations (“gauge slice”) by a
gauge fixing condition. In the Monge parametrization, one fixes a refe-
rence surface X,(&) and requires that all other configurations X (&) be
of the form

X(6) =Xo(o) +x(0), (2.27)

with the condition that x() be orthogonal to the reference confi-
guration Xo(a). The gauge fixing condition is then implemented by
introducing the two constraints F;(3) = 0, with

Fi(5) =x(7) - 0:Xo(7). (2.28)

e The functional integral is written as an integral over the gauge slice,
and each configuration in the gauge slice is weighted by the volume of
the set of all configurations physically equivalent to it :

Z = [ DXI[8(Fi(0))Ar exp(—BEo[X]). (2.29)

The Faddeev-Popov determinant Ay is obtained by determining how
the constraints F;(&) are affected by an infinitesimal change of coordi-
nates o* — o' 4+ £%(7) :
6Fi(0) = 0[X(0) — Xo(0)] 0:Xo(0) = 6X(5)0:Xo(0)
= ejan(ﬁ)(?,-Xo(&)
= & [9;Xo(7) + 9;x(5)] 0 Xo(7)
= & [g%(5) + 9;x(5)0:X0(5)] ,
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hence

Ap =[] det (9%(3) + 0;%(5)0:X0(5)] , (2.30)
and since in the Monge parametrization ¢7;(3) = 4y and 9;x(7) -
0;Xo(a) = 0, the Faddeev-Popov determinant is simply equal to one
[22].

As we have seen, the Monge parametrization has the advantage that there
are no extra “Faddeev-Popov ghosts” in the partition function. We may
now take the partition function (2.23) with the elastic energy (2.22) as the
starting point of our calculations.

2.5 Harmonic approximation

The harmonic approximation to the modified Canham-Helfrich energy
(2.22), obtained by expanding the integrand in that expression up to second
order in ¢, is

Enamonie[d] = roL? + 1 [ &0 [ro(0:6)? + mo(@*0)?],  (231)

where L is the lateral size of the reference plane.

If the curvature term is dropped, Enarmonic becomes identical to the elastic
Hamiltonian of the xy-model. Since in this model phase fluctuations become
divergent at and below its lower critical dimension D} = 2, one may ask if
this is also the case in our membrane model. Let us calculate the positional
correlation function (¢?). Passing to Fourier space, we have

— kT / _ kT ( @L> L (2.32)

270q% + Kogt 27y Ko

The height fluctuations diverge with the lateral size of the surface, implying
that the average position of the membrane becomes less well defined as its
size increases: there is no long-range positional order. On the other hand,
the direction of the surface normal remains well defined. The deviation of
the normal vector from its average direction is, from Eq. (2.20),

(NP ~ (067) = T [ 4 - o ((2),

2roq? + Kog* 27“‘60 o
(2.33)
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where A is an ultraviolet cutoff proportional to the inverse size of a lipid
molecule. Thus, normal fluctuations remain finite as the system size in-
creases: the surface has long-range orientational order.

If the surface tension is set equal to zero, so that the curvature term
in Fharmonic alone determines the shape of the membrane, positional and
orientational fluctuations are much more violent. In this case

kT
= kT / L2 9.34
kB K)QC] 47_‘_&0 ) ( 3 )
and
(ON(@)?) = kT [ Co @kl gy (2.35)
B (27)2 roq? + Kog* 2Tk . ’ ’

so that there is neither long-range positional order nor long-range orienta-
tional order. This means that, for lateral sizes larger than the orientational
persistence length

2mo) (2.36)

& = A" exp ( kT

at which (|6N(7)|?) becomes of order unity, the assumption of an almost flat
membrane, with no overhangs, breaks down. &, is the de Gennes-Taupin [25]
persistence length for fluctuating surfaces in the harmonic approximation.

2.6 Anharmonic terms and renormalization

From our discussion of the harmonic approximation of the elastic energy
of a membrane we see that thermally excited fluctuations play a crucial role
in the determination of the spatial configuration of such a system. It was
first shown by Helfrich [37] that thermal fluctuations are not only controlled
by the bending rigidity, but also reduce it for long-wavelength undulations.

The fact that short-wavelength fluctuations modify the long-wavelength
bending rigidity is a fundamentally nonlinear effect, since in a harmonic
system modes of different wavelengths are decoupled. In addition, as we
shall see, thermal fluctuations induce spontaneous generation of a surface
tension, and that is the reason why we include a bare surface tension in our
calculations from the beginning.
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Explicitly, thermal fluctuations soften the bending rigidity at large length
scales, reducing it from the bare value k( as follows
kgT
Feft = ko — —— In(AL). (2.37)
47
Various authors derived different values for «, first « = 1 [37, 38, 39] was
obtained, later o = 3 [40, 41, 42, 43]. The second result has also been found
in computer simulations [44]. For either value of «, the rigidity disappears
at length scales larger than the persistence length

& = Aexp (é]{i—WT@) , (2.38)
beyond which the normal vectors of the surface become uncorrelated — the
surface looks crumpled. More recent calculations [45] suggest the value o =
—1, implying a stiffening instead of a softening of the bending rigidity. This
new result was argued to arise from the use of another integration measure
which respects the incompressible-fluid nature of the membrane from the
outset. This is, however, in contrast to previous studies of in-plane fluid [43]
and elastic effects [46] which did not show any change in the value @ = 3
(they only enter at the two-loop level [22]).

The effect of thermal fluctuations on the surface tension has also been
investigated by several authors. The results can be summarized by the for-
mula T

Fer = 70 + af—W,:—(; In(AL), (2.39)
with the value o = 1 found in [41, 47] and o = 3 in [40, 42]. In Ref.
[48], an attempt was made to reconcile the differences. An almost planar
surface without overhangs was considered in the Monge parametrization.
The modified Canham-Helfrich energy Eq. (2.22) was expanded to fourth
order in ¢. The relative weights of the resulting terms are fixed by their
covariant origin. The authors encountered considerable problems in showing
that this remains true after including the thermal fluctuations.

To illustrate the difficulties encountered when the first anharmonic terms
are added to the elastic energy (2.31), let us summarize the perturbation and
renormalization group calculations leading to the results described above.
The modified Canham-Helfrich energy (2.22) is now expanded up to fourth
order in ¢, and we consider the energy

Eanharmonic = Eharmonic + Eint: (240)
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where
Bis = [ d0[~4ro(0:6)(0,6)" — }ral:0)*(0%0)"
—#o(0:9)(8,0)(8:0,0)(0°4)) (241)

E;; may be regarded as a perturbation around the harmonic energy Eyarmonic,
and we calculate physical quantities as a series in the expansion parameter
kgT/ko. We are considering the situation where the ratio xo/kgT is large:
the persistence length &, (see Eq. 2.38) is much larger than the membrane
size, so that the membrane can be considered to be almost flat.

The partition function is written as

Z[h] = / D exp [—ﬂ(Eharmonic + Eis) + 8 / d%qﬁ(&)h(&)] . (242)

where the last term in the exponent serves to generate correlation functions,
and the field A shall be set equal to zero at the end of the calculations. The
effective potential reads

1
M[#] =~ 57 + / 4200 (5)h(0), (2.43)
where
1 6Z[h]
®(7) =(p(0)) = —— 2.44
9= 60D = 575 h) | (244
The effective energy can be expanded around ® = 0:
5’
I[®] =T0]+ 1 [ d°0d*0" ————— 0)® (o’ :
@] m}+z/dada weaE)|, )+ (2.45)
The Fourier transform I'®(g) of the second derivative term
5T
e, = ———w———— 2.4
@.9) = 56500, (2.46)

is used to define the effective surface tension r.¢ and bending rigidity keg as
follows

T (q) = kpT (reaq® + Kerq" + - (2.47)
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I'®(q) is calculated in the perturbation scheme, where the free propagator
is given by

1

Toq? + Kog*

Gol(q) = (2.48)

and there are three types of vertices corresponding to the three terms in Ejy:

gz g3
q1 q2

ro[(g1 - ¢2) (g3 - q4) + 2 permutations], (2.49)
gz q3
q1, 42
—kol(q1 - g2)g3g2 + 5 permutations], (2.50)
g4 qs3
q1, g2

—2k0[q? (g2 1) (g3 - 1) + 11 permutations].  (2.51)

To one-loop order, that is, to first order in the expansion parameter
kgT /Ko, the following diagrams contribute to I'®(q):

Y
A

TO/ d’k ¢*k* +2(q - k)?

A —
2 (271')2 ’f‘()k'2 + H0k4
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k
- Ko / &k ¢*k* + ¢°k*
- o - —
q " ~ D —q 2 (27T)2 T0k2 + K0k4’
k
@k k*(q-k)* +¢*(q- k)
> - - 2 . (2.52
q " \' D —q ’{0/ (271')2 7"0]€2 + /ﬁlok4 ( g )

Since all these diagrams are ultraviolet divergent for a membrane of D = 2
dimensions, we must introduce some regularization scheme before calculating
the integrals. Following Ref. [2] we adopt dimensional regularization to han-
dle the divergent integrals. The great advantage of dimensional regularization
over regularization with a momentum cutoff A is that terms diverging with
a strictly positive power of A are suppressed. Only logarithmic divergences
show up as poles in €, where ¢ = 2 — D. The connection between the two
types of regularization is, at one-loop order,

% s In(AL): (2.53)

with the lateral size L of the membrane representing the relevant long-
distance scale. The rationale for using dimensional regularization is that
contributions to the effective potential with strictly positive powers of the
ultraviolet cutoff are connected to 6 (5 = 0). These highly local terms are
uninteresting at large length scales [49, 50].
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After evaluating T (g) and using relation (2.47), we arrive at

kgT 1
off = 1 -1, 2.54
efl o ( * 4Ky 6) ( )
3kgT 1
off = 1-— —1. 2.55
Freft o ( dKg e) ( )

This result for 7., corresponding to o/ = 1 in (2.39), is in agreement with
Refs. [41, 47, 48], but disagrees with Refs. [40, 42] where the value o/ = 3
was obtained. To understand the differences, we note that in these last two
references, the energy (2.40) with ry = 0 was used instead. That is, the renor-
malization of the surface tension calculated by these authors was generated
solely by the curvature terms. However, the surface term also contributes.
In fact, it generates a contribution with o/ = —2, which, together with the
contribution obtained from the curvature terms, results in the value o = 1.
The result for keg reproduces the one from Refs. [40, 41, 42, 43, 44]. The
discrepancy between this result with o = 3 and the result a = 1 from Refs.
[37, 38| is due to the fact that in these References the authors treated the
fluctuations in a Hartree-like approximation, ignoring the contribution from
terms other than harmonic in (2.40). In Ref. [39] an attempt was made
to justify the result a = 1 based on the in-plane incompressibility of the
membrane. This argument has been invalidated in Ref. [51].

Let us now derive the renormalization flow for the parameters 7eg and Keg.
By dimensional analysis, 7.g is a relevant parameter, equivalent to the mass in
an usual field theory. Criticality is obtained by setting all relevant parameters
equal to zero, which is equivalent to being at the critical temperature in an
usual statistical field theory (remember that the critical behavior in the ¢*-
theory is obtained by treating the massless theory, and the mass m is defined
there as m? ~ |T — T|, T, being the critical temperature). We thus see that
only a tensionless membrane can exhibit critical behavior. The expansion
parameter kgT'/kKg, on the other hand, being dimensionless, is a marginal
parameter, and its behavior at large length scales determines also the phase
behavior of the membrane. To determine the beta-function corresponding to
Keft, We first rewrite Eq. (2.55) as

kT 1
S%p —>, (2.56)

4K €

k(1) = ko (1

where we introduced the momentum scale p, all other quantities being now
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dimensionless. The beta-function is then given by
Br)=p—| , (2.57)

where kg, kept constant, is kg = p k() Zx(k, €), and the renormalization
factor Z,(k, €) is given by the inverse of the term in brackets on the RHS of
(2.56). By expanding Z, in powers of kg7'/k and 1/e:

kgT 1
Ze=14A 2" 4., (2.58)
K €
one obtains, for the beta-function
B(k) = ek + AgkpT + - - -. (2.59)

From (2.56) and (2.57) one readily identifies the coefficient A, so that

3kgT
Ak )’

B(k) =k <e + (2.60)

For € = 0, that is, for a two-dimensional membrane, the beta-function has
no fixed point other than the trivial one (see Fig. 2.8), thus implying the
absence of a phase transition. From Eq. (2.60) we see that the membrane is
softened at large length scales. That means that, for scales larger than the
persistence length &, the membrane is crumpled, according to the general
discussion of the harmonic model.

Interestingly, for a hypothetical (2+¢)-dimensional membrane, with € > 0,
Eq. (2.60) implies the existence of a nontrivial fixed point (see Fig. 2.8) at

Ak

T, ="
" 3kp

e, (2.61)
corresponding to a crumpling transition: for T < T, the bending rigidity
increases with the lateral size of the membrane, and it behaves as a flat
object with £, = oco. For T" > T, on the other hand, the membrane is
crumpled, and &, is finite [2].

Contrary to the case of the p*-theory, where higher order terms are ir-
relevant to the renormalization flow, all terms generated by the expansion of
the curvature term in the modified Canham-Helfrich energy (2.22) are still
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B(a)

D >2

Figure 2.8: Beta-function for the expansion parameter kg7’ /k calculated to
order €. For D = 2 the theory is asymptotically free, corresponding to a
crumpled membrane. For D > 2 a crumpling transition fixed point is found.

marginal, and thus contribute to the renormalization. The relative coeffi-
cients of the contributions generated by each of these terms is fixed by their
geometrical nature. The same is true for terms related to the surface ten-
sion. As previously mentioned, the proof of the covariance of the theory with
respect only to the terms contributing to the renormalization of the surface
tension is extremely difficult [48]. An attempt to verify this covariance by
calculating the contributions from the higher order terms in the expansion
starting from the first anharmonic terms led to inconsistencies and showed
that thermal fluctuations introduce also infrared divergences in the theory
[52].

To solve the problems mentioned above, and to show the renormalizabili-
ty of the theory at least at the one-loop order, a treatment of the full energy
(2.22) is required. The most adequate way to do that is to use a deriva-
tive ezxpansion [53], which allows one to explicitly keep track of the many
terms resulting from the expansion of (2.22). Since the derivative expansion
method, though conceptually simple, involves highly technical calculations
when applied to membranes, we shall make a digression, and dedicate the
next chapter to illustrating this, before proceeding in our analysis of the
renormalizability of the Canham-Helfrich energy.
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