Chapter 1

Introduction

One of the underlying principles for the understanding of the structure
of all living matter is that of spatial organization. At the cellular level, this
occurs through the existence of membranes, the mediators of all interactions
between cells and their external environment. In fact, the apperance of the
external membrane may have been decisive for the origin of life, since it is
rather unlikely that a self-replicating mixture of macromolecules could evolve
to a higher organism without the enclosure by a membrane.

Experiments simulating the physical conditions of the primitive Earth
demonstrated that the four main classes of organic molecules (amino-acids,
sugars, nucleotides, and fatty acids) found in cells of all living organisms
could have been generated under such conditions. It has also been verified
that, in the pre-biotic period, nucleotide chains (polynucleotides) and amino-
acid sequences (polypeptides) could have emerged.

Polypeptides, or proteins, and polynucleotides, in the form of deoxyri-
bonucleic acid (DNA) and ribonucleic acid (RNA), are the most important
components of today’s cells. Polynucleotides are known to act as templates,
specifying the sequence of nucleotides in the polymerization process of a new
molecule. This is due to the fact that each one of the known nucleotide types
(adenine (A), thymine (T), cytosine (C) and guanine (G)) binds preferen-
tially to one of the others (that is, A binds preferentially to T, and C to G).
The pairing of complementary nucleotides probably played a determinant
role in the origin of life.

The information contained in nucleotide chains can be translated into the
specific sequences of amino-acids. Due to the versatility of RNA molecules as
well as to their catalytic properties, it is assumed that they led the primordial
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protein synthesis.

The synthesis of specific proteins, under the control of a certain RNA
type, and the posterior replication of this RNA, in a continuous process that
would give rise to the first life forms could not have occurred without a
compartmentalization of the molecules, preventing them from diffusing in
the ‘pre-biotic soup’. The answer to the need of compartmentalization came
in the form of an external membrane [1].

1.1 The chemical structure of cellular mem-
branes

Although it has been known since the last century that cells are sur-
rounded by a selectively permeable membrane, their molecular structure was
described adequately only in the 1970’s, after the development of molecular
biology.

The chemical composition of cellular membranes had already been known
since 1890 [2], and their main components identified as being phospholipids
and cholesterol, but only in the beginning of this century were the physical
properties of these molecules investigated in more detail.

Phospholipids are special types of fatty acids. Such molecules are made of
one or two long, chemically not very reactive hydrocarbon chains and a car-
boxylic head group, ionized in aqueous solution. The nonpolar hydrocarbon
chains are hydrophobic, that is, they are not soluble in water, while the polar
head group is said to be hydrophilic, and is readily soluble in water. Phos-
pholipid molecules are thus said to be amphiphilic. The chemical structure of
an amphiphilic molecule is depicted in Fig. 1.1. Mixtures of amphiphiles and
water can assume a variety of thermodynamically stable phases. Examples
are lipid monolayers in air/water interfaces, where the hydrophilic heads are
dissolved in water, while the hydrophobic chains remain in contact with the
air outside; lipid bilayers in water, where the nonpolar regions of two mono-
layers are isolated from water by the layers of hydrophilic heads; lamellar
and micellar phases (see Fig. 1.2).

The physical properties of such mixtures are governed mainly by the
hydrophobic effect. This can be understood as an interplay between entropy
and electrostatic attraction between water molecules. Due to their polar
nature, water molecules are bound to each other through hydrogen bonds. In
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Figure 1.1: Schematic representation of a phospholipid molecule

spite of their weakness (they are approximately 20 times weaker than covalent
bonds), hydrogen bonds are responsible for many of the physical properties
of liquid water, such as its high surface tension and specific heat. Hydrogen
bonds stabilize a regular structure of water molecules, even in liquid state.
Ions and polar molecules can be accommodated in this structure, since they
are also capable of establishing hydrogen bonds with the water molecules.
They are therefore hydrophilic, or soluble in water. Nonpolar molecules,
on the other hand, not being able to establish hydrogen bonds, disrupt the
‘lattice’ of water molecules. To minimize this energetically unfavorable effect,
hydrophobic molecules aggregate, being thus insoluble in water [1].

1.2 Biological membrane models

In 1890 C.E. Overton, working on cells of plant root hairs, detected a
strong correlation between the permeability of the membrane with respect to
certain molecules and their solubility in lipids. He discovered that lipophilic
molecules easily penetrate the cell, suggesting that the membrane is also
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Figure 1.2: Schematic representation of amphiphiles in aqueous solution

composed of lipids. This was confirmed in 1925, with the experiments of
Langmuir [2].

In 1925, E. Gorter and F. Grendel suggested that the basic membrane
structure is a lipid bilayer. They dissolved the membranes of red blood cells
in acetone, and spread them on a water surface to obtain a monolayer, and
then compared its surface area to that of dried red blood cells observed
under a microscope. From the comparison they concluded that the lipids in
the membrane must be arranged in a bilayer [2].

One of the first models that tried to explain the different permeability
and resistivity observed in artificial (pure lipidic) membranes and in bio-
logical membranes was proposed by H. Dawson and J. Danielli in the 50’s
[1, 2]. Their model assumed that membranes are composed not only of
phospholipids, but also of proteins covering the bilayer on both sides, like a
‘sandwich’. It was soon realized, however, that proteins, although present in
the membrane structure, did not cover it completely.

In 1972, S. J. Singer and G. L. Nicolson [3] proposed the fluid mosaic
model for the structure of biological membranes, which is the model currently
accepted. According to their model, the membrane’s constituent lipids are
found in a fluid state. This means that the membrane may be considered as a
two-dimensional lipid solution, with proteins dissolved in it. Both lipids and
proteins within the membrane may diffuse freely. The fluid mosaic model is
represented schematically in Fig. 1.3.

The basic function of biological membranes is that of allowing for the
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Figure 1.3: The fluid mosaic model.

existence of different intracellular compartments where the chemical reac-
tions responsible for cell maintenance take place. Membranes act as a highly
selective barrier for exchange of molecules between the cell and its external
environment, as well as between intracellular compartments. They are also
responsible for many other biological functions, such as signal transduction
and mechanical support for polymer lattices, for example.

A complete understanding of the physical properties of biological mem-
branes would require a thorough understanding of each of its components,
followed by the challenging problems of membrane-membrane interactions,
such as membrane fusion, pore formation, endo- and exocytosis and bud-
ding. The full system is current beyond the scope of analytical and numerical
methods, and one must resort to simplified membrane models which render
a physical, quantitative approach feasible.

1.3 Simplified membrane models

When trying to model the phase properties of membranes, a first ap-
proach is to extend the statistical mechanics of polymers to two (or more)
dimensions. Polymers in solution show universal large scale properties, ex-
plained by the renormalization group [4] , which have been extensively stu-
died, both analytically and numerically [5]. The relative simplicity of the
one-dimensional geometry of polymers allowed for considerable progress in
the field.

Although the extension of these systems to two-dimensional structures
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may seem natural, the statistical mechanics of the surfaces obtained in this
way is far more complex than that of polymers. Since two-dimensional ge-
ometry is much richer than the restricted geometry of lines, membranes with
distinct types of in-plane order (crystalline, hexatic, fluid) will, unlike poly-
mers, display distinct long-range behavior, and consequently a richer set of
universality classes [6].

1.3.1 Crystalline membranes

Crystalline membranes, sometimes termed tethered or polymerized mem-
branes, are the natural generalization of linear polymer chains to two-dimen-
sional structures. They possess in-plane elastic moduli as well as bending
rigidity, and are characterized by a fixed connectivity. Such membranes are
found in the cytoskeleton of cell membranes, the most studied example being
the cytoskeleton of red blood cells. It is a fishnet-like network of triangular
plaquettes formed primarily by the proteins spectrin and actin, bound to a
fluid phospholipid bilayer[6].

The microscopic model describing crystalline membranes, the so-called
‘spring and bead model’, consists of beads connected by springs, forming a
regular lattice. The model membrane is self-avoiding, since the beads cannot
intersect each other.

A continuous model to describe a self-avoiding membrane corresponds
to a generalization [7, 8] to two dimensions of the Edwards model [9] for
polymers. While the Edwards model is amenable to treatment either by a
direct renormalization method [4, 10, 11] or by identifying it with the N =0
limit of a scalar O(N) field theory [12], its generalization to membranes poses
serious mathematical difficulties, which have only recently been overcome (for
a review see [13] and references therein).

The nonlinear coupling of in-plane strain modes and out-of-plane height
modes of crystalline membranes leads to nontrivial and surprising properties.
Fluctuations at finite temperature in a crystalline membrane produce ran-
dom corrugations in random directions whose effect is to stiffen the bending
rigidity and soften the bulk shear moduli. As a consequence, these systems
may be found in three quite different phases: a collapsed compact phase, a
flat phase and an intermediate crumpled swollen phase [13].

A simpler model for crystalline membranes is obtained by allowing self-
intersections of the membrane. Calculations and numerical simulations show
that such ‘phantom’ membranes are found in a flat phase, if their bending
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rigidity is large enough, and in a crumpled phase for smaller rigidities [6, 13].

1.3.2 Hexatic membranes

Unpolymerized lipid bilayers at sufficiently low temperatures are an
example of membranes whose molecules, instead of being tied together by
covalent bonds, are bound together by the much weaker Van der Waals forces
[14]. If such a surface is constrained to be flat, its low temperature phase
becomes eventually unstable due to a proliferation of defects. According to
the celebrated Kosterlitz-Thouless argument [15], the entropy of a dislocation
grows logarithmically with the system size. A crystal melts when the contri-
bution of the entropy of dislocations to its free energy, at a sufficiently high
temperature, becomes larger than their energy cost. If a two-dimensional
crystal is allowed to buckle into the third dimension, an extraordinary re-
duction in the energy cost of disclinations can be obtained [16, 17]. This is
possible because the energy of disclinations can be compensated by curvature.
This is also true for the energy of dislocations, which becomes a constant,
independent of the system size. The entropy term in the Kosterlitz-Thouless
argument dominates at all nonzero temperatures, the resulting phase being
a fluid with hexatic order.

The positions of the molecules forming a so-called hexatic membrane are
strongly correlated, and they may exhibit in-plane crystalline order, forming
a kind of two-dimensional solid. The stretching elasticity associated with this
order conspires with the bending rigidity to make the membrane flat at long
distances [16]. One may thus observe a crumpling transition [18], separating
the flat phase from a crumpled phase.

In spite of displaying in-plane orientational order, hexatic membranes are
fluid membranes, and their mathematical description is very different from
those with crystalline order. Since, due to the fluidity of these membranes,
the description cannot depend on internal degrees of freedom, the free energy
must be invariant under reparametrizations of internal coordinates, that is,
it should depend only on geometrical quantities. The corresponding free
energy was first formulated by Canham [19] and Helfrich [20], and includes
only curvature energy. Hexatic membranes have an additional degree of
freedom, namely the bond angle, introduced as an extra vector field defined
on the surface.

The statistical mechanics of the above mentioned model for hexatic mem-
branes was worked out by David et al [21]. They showed the existence of a
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‘crinkled phase’, more rigid than a crumpled phase, but more crumpled than
a flat one. This phase exists within a radius of gyration controlled by a Flory
exponent that varies continuously with the hexatic stiffness. Both disclina-
tion unbinding transitions and finite crumpling transitions are possible in
hexatic membranes [14, 22].

1.3.3 Fluid membranes

Fluid membranes have rather special elastic properties. Since the shear
modulus within a fluid membrane is zero, there are only two types of elastic
deformations for such a membrane: stretching and bending [19, 20, 23]. The
stretching is also limited, since fluid membranes start to rupture as soon as
their surface area is changed by about one percent [24]. If the membrane is
able to exchange lipid molecules with its surrounding aqueous environment,
the elastic forces generated by a stretching deformation act only for a short
time, until the change in the surface area is compensated by incorporating
more molecules to the membrane. Similarly, elastic forces arising due to
curvature effects are compensated by a rearranging of lipid molecules, since
they flow freely within the membrane. The surface tension of such membranes
is thus vanishingly small.

In principle, a fluid surface that does not experience any lateral tension
but undergoes thermally-excited fluctuations starts to behave as a random
surface without any average orientation as soon as its size exceeds a certain
length scale, the so-called persistence length [25]. This length scale depends
exponentially on the ratio of the bending rigidity of the membrane and the
temperature. For lipid bilayers, this ratio is usually large [26, 27], implying
that the persistence length exceeds their largest accessible size. Therefore,
under normal circumstances, lipid bilayers appear to be flat.

Nevertheless, fluid membranes still exhibit thermal fluctuations, such as
bending undulations or protrusion modes. These shape fluctuations have a
strong effect on the interaction between the membranes. Actually, the simple
fluid membrane model proposed by Canham [19] and Helfrich [20], mentioned
in the previous section, displays a surprisingly rich phase behavior if the
topology of the membrane is allowed to vary [28].

The physics of fluid membranes is a complex and fascinating subject in
itself. Due to its relevance in many physical and biological systems and its
potential applications in material science, the experimental and theoretical
understanding of fluid membranes is one of the most active areas in soft
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condensed matter physics.

In the following we shall concentrate on the investigation of fluid mem-
branes. In the next chapter the Canham-Helfrich model will be discussed in
detail, and some results concerning the physical properties of the membranes
described by it will be reviewed.
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