Chapter 3

The Schwarz problem for analytic
functions in torus related domains

3.1 Introduction

The Schwarz problem in polydiscs is considered in [2]. However about the analytic functions of
the other torus related domains of €™ ( n > 1) there is nothing known from the literature. Its
study provides vital information for discussions of all kinds of boundary value problems related
to the Shilov boundary.

The set of all complex-valued functions f on the unit circle of the complex plane €' with
absolutely convergent Fourier series

+00 +oo
FO = act, ¢eoaD, | fllw=)_lax| < o0

is called the Wiener algebra , see [18]. We denote the one dimensional Wiener algebra on 0D
as W' or W (0D ; €'). By the Weierstrass theorem the Fourier series in the Wiener algebra are
also uniformly convergent. Because of the independence of the variables on the Shilov boundary
0D ™ n > 1, one can easily get the version W (0D ™; C') of the Wiener algebra :

+00 +oo
W= {1 £ =D ancs, Ceab™, | [ llwni= Y lagd < o0}

We focus our attention to the Wiener algebra as the function space under consideration. Just
for the same reason as in [28], i.e., having difficulties with the resolution the result is restricted
to the Wiener algebra. We were not able to get the same result in C*, 0 < a < 1. However
according to the Bernstein theorem C*(0D "; €') turns out to be a Wiener algebra for a > 1/2
see [16]. Thus our discussion will be in the Wiener algebra.

In one variable case there are several equivalent definitions of analytic functions. Most
important ones are via power series and Cauchy integral. In higher dimensional space, at least
for the torus, most studies about analytic functions started from defining an analytic function
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66 CHAPTER 3. THE SCHWARZ PROBLEM

by a Cauchy integral, see [7] and [17]. These considerations may be proper for some cases.
However it faces major difficulties when the connection between the Riemann-Hilbert problem
and the Riemann problem is considered even for the simplest cases. Taking these shortcomings
into account we applied another approach - we have made power series as the starting point
and derived the proper Cauchy kernel through a careful classification of the boundary values
of holomorphic functions of the torus.

As the final part of the chapter we discuss the well-posed formulation of the Schwarz prob-
lems, i.e., the Schwarz problems with and without solvability conditions.

3.2 The Cauchy kernel, division of the boundary value

Let the real valued function v belong to W (0D ; @'). Then v can be represented as
+o00 1 d(
V) =D at, ar=-— v(c)c-k? ke .

271
k=—o00 oD

From op =a_;, k € Z , it follows that

+00 +00
:Zak(k+2aka+ag, Ceob.
k=1 k=1

This means that ~(¢) is the boundary value of a harmonic function in D or equivalently the
real part of a function which is analytic in D . Moreover,

“+oo
>k, (€D
k=1

is the boundary value of an anti-analytic function in Dt or in other words it is the boundary
value of an analytic function in D~

Thus 7(¢) can be split into two parts: the boundary value of a function, which is analytic
inside the domain D' ; the boundary value of a function, which is analytic in the outer
domain D~ . In addition , each of them is the reflection of the other one with respect to 0D .

Let the real — valued 7 belong to W (9yD?; @) . Then

= 1 Cky ok AC1 Gy
MRS G 1o L =—./ (G, )G DL 9
v klz—ook:zz_oo PR oot (27)* Jaym> S G G
Ay, —ky = Qky ko » l{fl,kg e Z , (Cl,CQ) € 80@2. (31)

So for (1, () € 9yID? we have
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400 +00
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+oo 400 +oo 400
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Obviously, v(¢) can be split into the boundary values of two real pluriharmonic functions one
in D?=D"x D" and onein D ¥ x D~ respectively. This means that ~({) consists
of boundary values of four analytic functions in D™ x D+t , Dt x D~ , D~ x D' and
D~ x D~ | respectively. For each corresponding pair of these functions the reflection principle
holds and every one belongs to W (9,D % C') .

As we have seen a given real function v(¢) from 9yID? is not always the real part of boundary
values of a pluriharmonic function in D2 . It is if and only if

+o0o +oo

RG{ Z Z " {“C;’”} =0, (¢.¢)€db?

k1=1ko=1

Just from this point the solvability conditions occur for the Schwarz problem for analytic
functions in D ? | see [2] page 244.

From the split boundary values which are uniformly and absolutely convergent, we have the
respective analytic functions

+o0o0 +oo +o0o +oo
1 d¢, d¢
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similarly
+oo +o00
ke 1 1 d¢
ki _—ko
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pi—g K2=0 (2mi) doID 2 [1 (z71 ] ¢
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(2mi)? Joym2 z2—C ¢
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Although one can describe these analytic functions in the two-dimensional case very easily it
would not be very convenient to do the same in a higher dimensional space. One has to find a
better way of description. Therefore we introduce the following notation.

3.3 Definition

Let x = (X1, **, Xn) be a multi-sign, where
Xla"')Xn€{+a_}7 OSVSTL71§0'1<"'<O',/§TL7

1§0-V+1<...<0-n§n7 {0-17.“70-71}:{17“.7?7/}7XC71:_7‘..7X0'u:_7

XO'V+1 =+ y "y Xon = + 7X(V) = XUl“'Uu(V) ’

where v gives the number of minus (—) signs and the indices oy, - -, 0, show the position of
these minus sign components. x(v) obviously has (n — v) plus (+) sign components at the
positions 0,41, -,0, . In addition x(¥) = Xoy0, (V) = —Xprepn(n — V) = —x(n —v) , for

0<v<n and {p1, -, pn}t={Ll,---,n}\{o1---0,} = {0,41---0,}, when treating x(v) as
a vector.

Actually X,,..0, (), 0 < v < n, can be understood as signs of vertices of the n dimensional
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cube [ — 1,+1]". In the case n = 2 the signs (+,+), (+,—),(—,+),(—, —) correspond to the
signs of the vertices (1,1),(1,—1),(—1,1),(—1,—1) of the unit square. Therefore we denote
X" as the vertices of the [ — 1,41]" cube, while x represents the respective multi-sign.

Let the real-valued function ¢ belong to W(9yD™; ') . Then ¢ can be represented as

B . 1 _ede "
o(n) = Z a.n®, o, = @i /aozpn e(Q)" ra Ow=Q_y, KEZL". (3.2)

This Fourier series is absolutely and uniformly convergent to ¢(n) because of ¢ €
W(0yD"™; @) and it can be split into 2" parts:

n +o0o
H <Z Ct_kt>a—k1,~~,—kn — Qp,....0 = Z O‘—NC_E = wX(n)(C) )

t=1 k=0 |k|>0, kEZT
H (Z <Xt kt 5ia>aX9fk1,"wX’£kn = wX(U)(C>7 0<v<n,Ce D™, (33)
t=1 k=1

where . .
5)@ _ |Xt + Xt*+1 |
t 2 )
Obviously, the 6} ’s are 0 or 1 and about them there is an interesting fact

1<t<n, t"=tmod(n).

|Xt+1 + 1| i |Xr+1 - 1|

o +06, = =1, 1<t<n-1
+ 2 2 ) TSESRTL,
_ + 1] g -1
5 4oy = X o
+ 5 T

However this equality should not be used anywhere if we want to avoid any mistakes. Any
representation which leads to the sum §,” + §, is problematic. This can be shown very easily
(applying the above equality to the left-hand side in Lemma 6 for n=2). Every wX®")({) surely
can be viewed as the boundary values of a holomorphic function wX®")(z) in DX*) . The
correctness of this kind of partition (3.3) for any w € W (9D ™; ') can be shown by the
following lemmas.

Lemma 4 Let a;,bp €@, 1<t <n. Then

H(at +b) = Z Z Axy o xba gy by,

=1 1< <o <A<
1<A 1< <A <n

If b, =1,1<t<mn, then the lemma becomes Lemma 5.2 in [2]. The proof of this lemma is
trivial. So it is omitted. By this lemma, see [2], one can obtain

Lemma 5

n n

T (et a+1) = [T (o + 1) + ] (1) -1

t=1 t=1 t=1



70 CHAPTER 3. THE SCHWARZ PROBLEM

n t—1

— g E E aAl'..aAVa)\u+l ...a/At

=2 v=l o< <a<n
IS)\V+1<"'<>\75STL
Cd{/\1,...,/\z}:t

fora; e @,1<t<n.
Applying the last lemma we can obtain the following result.

Lemma 6 .

ﬁ(at+a—t+1>+1:§ > t];[l(aft+5;<>

t=1 1<o1<--<op<n

1<oy41<<on<n

= Vzn; > ﬁ(a[n +6;) ﬁ <a0t+5jt>

=v+1
1<o1<-<op<n t=v+
1<op41<<on<n

for 2<n, a; €C,1<t<n, where a,:=a, and

Cd{017'"7UV70V+17"'7UH}:n7XO'1:'“:XUVI_7 X0u+1:'“:X0'n:+'

Proof 1. Forn =2

3
—_

n

>, 1 (ai“ + 5?‘) = > (agl + 6;1) (agz + 6:2) = ) T, .

U i<or<icop<n 1 1<01<2 1<01<2

1<oy41<<an<n 1<09<2 1<09<2

1%

and
(amp+a+1D)(as+az+1)—(ar+1)(ae+1)— (@1 +1) (az+ 1) + 1 = ayaz + aya, .

Therefore the formula holds in this case.

Next we check the case for n = 3.

n—1 v n
> > (a(,t +5;) 11 <aat +5;>
v=1 1<oy < <oy<n t=1 t=v+1
1§;y+1<~~-<a;§n
2 v 3
:Z Z H(agt+5;> H <agt+5;>
v= =1 t=v+1

=1 =
1<01 < <0, <3 t
1<op41<<03<3

- ¥ (501 n 5&) f[ (am + 5;) + Y f[ (aot + 6;) (ag3 + 5;3)

= t=1
1<01<3 t=2 1<01<02<3

1<o2<03<3 1<03<3
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= El(ag + 1)&3 + alag(ag + 1) + (a1 + 1)(1253 + (61 + 1)62a3 -+ alag(ag, + 1) + al(ag + 1)53

and

~
—_

3
E E a)\l o 'a/\ua)\u-»—l Gy, = E a)\la)\Q +§ a)qa)\za)\s +§ :a)qa/\Qa)\s

=2 v=1 3 cca<3 1<)\, <3 1<)\, <3 1<\ <Xo<3

1< 1< <A <3 1< <3 1<X2<A3<3 1<A3<3

= aiay + 61@3 + asaq + 62a3 + Egal + E3a2 + Elagag
+asaias + azaiaz + a1G2a3 + a1a3as + a2a3a; .

So the Lemma holds in this case too. Now we look at the general case.

S 0% [M(a+5) TT (en+5) =TT (1)
v=0 t=1 t=v+1 =1

1<o1<<ouv<n
1<oy+1<<on<n

n—1 v

E)+E X () IT ().

t=1 v=1 1<y < <oy<n t=1 t=v+1

1<o, 1< <on<n

Denote
n—1 v n
R = - +
b= X (o) IT ()
v=1 1<oy < <op<n t=1 t=v+1
1<op41<<on<n
and
n t—1 n
Ig = E E,\l .. 'a)\,,aky+1 s a)\t = E Ig(t) .
t=2 v=1 t=2

1A < <A<
1<A 1 << <n
cd{A1,..., ¢ }=t

Since we have shown that the lemma holds for n = 2,3, one could automatically think about
induction method to prove the lemma in general. For the proof by induction see [19]. One has
to be very careful with applying the induction method here. This method does not lead to the
intended result very easily. So we prefer a direct proof and show that I, = I, holds. Applying
Lemma 4 we have

n—1 v
Ip = E |: § § aUal o aUatdaat+1 T 6oal,:|

v=1 t=0

1<o1<<ov<n 1< << <v

1<o, 1< <on<n 1<app1<<ay <v

n—v

+ +

% [Z Z Uoa, Qoa, 5"%+e+1 6‘70‘“]

£=0

v+1<a, 1< <ay40<n
v+1<a,4p41<-<an<n
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n—1 v
2D DD DENN D DU DT AW =N S R
v=1 t=1
1<o1<<ov<n 1<a < <a<v
1<op 1< <on<n 1<at+1<<ap<v
n—v
+ + + +
X [Z Z Tay,4q ag"‘lﬁ% 50'0ty+g+1 60'04»@ + 50’y+1 5Un] °
/=1

v+1<op 1< <oy 4e<n
v+1<ay 411 <-<an<n

Taking 1 < v <n-—-1
ke{oy, -,0,}and h € {o,11,""

into account we see that there exist always at least two integers
-, 0y} for which §; = 0 and §; = 0 respectively so that

- - p— + .« .. + p—
5y 0, =0, &8 -8k =0.
Therefore
n—1 v
L= ¥ (X X T, 0]
v=1 t=1
1<o<-<op<n 1<oy <-<ap<v
1<op41<<on<n 1<oi41<<ap<v
n—v
- + +
X |:Z Z CLo—c“thl aao‘v-M Oayipr1 5aan]
t=1 v+1<ap41<-<ay,4e<n
v+l<ay 1< <an<n
n—1

-3

v=

>

1<o1< <o, <n
1<op41<<on<n

v+l1<ap41<<anp—1<n

v+1<an<n

n—1

|:a01 o a/UI/ + Z ao-al T CLO-(XU71 Oﬂu + U + Z aaal 50&2 T 5Ual/i|
1<aj<-<ay—1<v 1<a1<v
1<a,<v 1<ae < <ap<v
- - + - + o8t
% [aa"“ Gy, + Za"%ﬂ Ao, (Saan + + Z Ao, 41 50'%4-2 5‘7%}
v+1<ap41<n
v+1<ay42<<an<n
+

-3

v=

2.

1
1<o1 < <op<n
1<op41<<on<n

'a'a'n : : ao'al

1< <-<ay—1<v
1<a, <v

Z a"'0‘1

1<a;<--<ay-1<v
1<a, <v

+a0',,+1 .

+agu+1 S

n

ao_yaau+1 [P a’U'n _|_ <aa'1 e EUV g a‘UaU+1 e

.-+

Gy 1Oy )+ (o D+ 0

Oap_1 Oap
v+l<ap41<-<apn—1<n
v+1<an<n

+ +

O'an
v+1<oy41<<an—2<n
v+l<ap-—1<an<n

= — +
aaau—l Oay Zao—au-‘—l aaan—l Tan
v+l<ap41<-<an—1<n
v+1<an<n

: : a/o—al e a/a—al/72 Ual/—l Ua,/) + o +

1< < <ay—2<v
1<ay1<av<v
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= — - - + +
( Z Zago‘l aao‘t 500‘t+1 50041/ Zaaau+1 aao‘u+l 5‘7au+é+1 6‘7‘171)

t+0=k 1< << <v v+1<ay 1< <y 4o <n
1<t<v, 1<U<k—v 1<a41<a, <y v+l<ay 4 pp1<-an<n
n n—1
E = - - E + + _ E
+ aoo‘l 50042 50.041/ agav+1 50&1/-9—2 §Uan:| o
1<a1<v v+1<ay,4+1<n k=2 v=1 1<o1<- <o, <n
1<asg<-a,<v v+1<ay42<-<an<n 1<op41<<on<n
+
( Z Za0a1 a“at 5U0‘t+1 Uauza"a i1 Qoo +L’5‘7%+e+1 U"‘ﬂ) Z I
t+0=k 1< <-<or<v v+1<ay 1< <, 4o <n
1<t<y, 1<U<k—v 1<a41<a, <y v+l<ay 4 pp1<-ran<n
Evidently
n—1
I,(n) = g Ugy * O, Og,yyy Aoy, = 1g(02)
=1 <o1<<oy<n
1<oy, 1< <on<n
About the second term we have
n—1
_ E = - E +
Ip(n - ]') - [ aal © g, aaau+1 Y a/o-o‘nfl(;a'ﬂn
v=1 1<o1<-<ou<n v+1<op 1< <op—1<n
1<oy41<<on<n v+1<an<n

_i_aa_y+1 [P a/o_n E aa_al . e aUaV,15Uay:|

1<ai<-<ay—1<v
1<a, <v

By the definition of the §’s we know that

= - + _ - _
Uy, *** Ug,_, 0, =0, Ugy *** g, 05, = 0.
Therefore
n—2
_ § : = = E : +
Ip(n - 1) - agl © g, agﬁ‘u+1 T aganflég&n
v=1 1<o1 < <op<n v+1<app1<-<an—1<n
1<op41<-<on<n v+l<an<n
+ g g Ao,y " " O, g Aoy, * " ag%flégau )
- 1<<71< <op<n 1<a < <oy 1<v
1<op 1< <on<n 1<a, <v
For an arbitrary given v € {1,---,n — 2} there are fixed number of sigmas, i.e. 0,41, -,0,
and they can arbitrarily have n — v values from {1,---,n}. As soon as «, takes an arbitrary
value among v + 1, - -+, n then the rest o, 1, -+, a,_1 are already fixed, because of their order.
Assume that 0,,1,- -, 0, are fixed. Then due to that «, varies from v+ 1to n we have

} : + + +
a’a'a,,+1 e aganiléaan - a’o'z/+2 T aa'ndo' V41 + ao'u+la’0'u+3 T a’o'n5a'l,+2

v+1<op 1< <an—1<n
v+1<an<n
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+ -
+ P _I_ aa_u+1 .. 'aUh—la'Uh+1 e ao_néah _I_ P _|_ aUU+1 .. .a'o'n—lé

On

n
_ +
- E Aoyyy " Qop_1Qopyq " aanaah

h=v+1
ie.,
n—2 n
_ E : — — +
]p(n - 1) = Aoy * " Qg § Aoyyq """ Qop_1Qopyq " 'a0n5ah
v=1 1<o1<-<o,<n h=v+1
1<oy41<<on<n
n—1 v
+ E E Qg1 " Aoy, E :aﬂl “ Oy 1 Qgyyq U, O,
v=2 1<o1< - <ov<n =1
1<o, 1< <on<n
If oy, -, 0, are fixed, then {041, -+, 0,} = {1,- - ,n}\{o1, -+, 0,} are also fixed. So for these
fixed {0,411, -,0,} we have
n n n—1
> 20 e = ) il
5Uh (s 50; aa;
ISoviissonsn h=vtl 1 i<ol, <<0l,_ <n, 1Soh<n i
! ! !
T#h {UV.H"":Un—l7an}:{0'u+17"'a0'n}
and for the {oy,---,0,} similarly

12 v
> 2% Il = 2. i, 117,
<gi<<oy<n h—
1so1<<ovsn h=1 r=1 1<o)<--<0,_,<n,1<0,<n
’

/ /
T;’éh {01"")UU_170'1/}:{0'1’"')0—1/}

Without loss of generality we assume that o, =k € {1,---,n}, h € {v +1,---,n} and note
k* = kmod(n) . By the definition of the §’s it is clear that ¢; is not zero if and only if

o1 =05+ 1 ie, 0 +1€{0o,41, --,0,}. This means
n—1 n—2
+ _ +
> o 11 an = > St [ an
<o), <<oty_y<n,1<k<n 0T 1<09, < <00 _,<n,1<k<n T=vtl
/ /
{O’U+1,---,O'n_1,k}:{(71,+1,---,O'n} {kvk*+1708+1:"'702_2}:{Uu+17'”a0n}
n—2 n—1
= § Ag*41 | | A0 = § | | CLU/TI
1<00,  <<od_p<n, 1<k*41<n 0T 1<o!l, | <ot <n, K LE{on o} T
" "
(k™ +1,09, 100yt ={ou 41,0} KE{L, I\t ,,00,0 101}
n—1
pry E | | ach
T=v+1

1<op41<<opn—1<n, K*+1€{ov41,,0n-1}
ke{l,-ni\{o1,,00,0041,,0n—1}
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and
> 5
1<oy<--<o, ,<n,1<l<n =1
! !

{Ul ""70'11—178}:{0—1""70V}
1<of<<09_,<n, 1< +1<n
{0?7"'702727Z7£*+1}:{017“'70-1’}

Thus

v=11<01 <<y, <n

n—1
Y

v=2 1<o,41<<on<n

-y T Gy o7

p(n_l)zz Zaal"

[ — E
Ir

1<o¥<<ol_,<n, 1<<n
{0—(1)7"'708_2)47Z*+1}:{01""aGV}

v—2
Qg 4+1 H 602 = E
T=1

v—2

5[Eg*+1 H Eog

=1

v—1
| | aU/T/ .

" " " " =1
1S01 <"'<O-U—IS” 5 e*+1€{01 7"'7Uy—1} 4

" 1"
Ze{lv"'vn}\{gl 7'“70-1,7170-114—17“'70-77,}

T, 2

1<o,41<<on—1<n, k*+1€{op41,,0n—1}
ke{1,-n}\{o1,,00,004+1,,0n—1}

v—1
CLUn E
" " " " =1
1<oy <-+<o,_1<n, *+1€{o; ;0 1} T
" Z
ge{lz'"7n}\{01 7'"70-1,7170'11-5»17"'»0'71}
a’Uua’Uu+1

1<o1<<op<n, 1<oy 1< <op—1<n
ke{l,--n}\{o1, 00,0041, ,0n-1} , k*+1€{ovt1,,0n-1}

n—2
LD DI DR

v=1 1<o,41<<0pn-1<n

o .. aO'7L71 E

E ao_l .. aUVaUV+1 .

=1
1<o1<-<op<n , 0*+1€{o1, 00} T
Le{l,ni\{o1,,00,0041,,0n—1}

1<o1<<op<n , 1<op41<-<op—-1<n
ke{l,-n}\{o1, 00,0041, ,0n-1}, k*+1€{opt1,,0n_1}

1<o1<<op<n , 1<o, 41 < <opn-1<n
Le{l,-n\{o1,,00,0041,,0n-1} , £*+1€{01,,00}

1<o1<-<o,<n

1<oy41<<op—1<n

And about the third term

—_

n—

Iy(n—2) = Z

N
Il
—

1<o1< <oy <n
1<op41<<on<n

E a/a'l DY a/UV a/o_y+1 ... aa_n

Aoy * Uo, Aoy * o,y = Lg(n—1).
- - +
(R DU

v+1<ap41<<an—2<n
v+l<an—1<an<n

n—1

II Qg,

T=v+1

14
[[2..
.. a’O'n71

—1

+

Oan

75
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§ :— = - E : +
+ Aoy, Aoa,_, 60% CLU%H Uoa,,_, 5chn

1< <<ay—1<v v+1<ap41<<an—1<n
1<a, <v v+1<an,<n

—|—CL0V+1 e agn Z aoal e CLUQU—Q 5(70[”715(,&”)

1< < <ay—2<v
1<ay—1<ap<v

Keeping { a1, ap | n <, 1 <@, <n} =0 in mind we have

n—2
_ — — + +
I(n—2) = E E Uy, -+ g, E R N 56%_1(50%
v=1

1<o1<<ov<n  v+1<ap1<-+<an—2<n

1<op 1< <on<n v+1<an—1<an<n
n—1
— = - +
+Z Z Uoa, a%wléaau Z a"%+1 a"anfl(soan

=1
v 1<o1<<op<n 1< <-<ay-1<v v+1<ap 1< <an—1<n

1<op41<<on<n 1<a, <v v+1<an<n

n—1

+ g E Ao,y " O, E Ao, " " Ooy (50%_1(50% .
V=l o cicon<n 1<) <<y _a<v
1<op 1< <on<n 1<ay 1<y <v

Again by applying the definition of § and paying attention to

= = + o5t — - +
oy Ty 00 04 =0, 0, 00, " 0y, 0 =0,

an—1 Oanp

Uy O 5jn:0, 0,0, gy - Qg =

an—2 Oa,_ 4 g1 02 n

[

@]

and that the first term of the third sum does not exist we get

n—3
_ — - + +
I(n—2) = E g Uy, -+ g, E Aoy, y """ Qo 5%%150%
v=1

1<o1<<ov<n v+1<ap41<-<an—2<n

1<op41<<on<n v+1<anp—1<an<n
n—2
= — - +
IS D Ty Toa, Oy D Gy o, 00,
V=2 1<oi<<o,<n 1<ar<<ay_1<v V1< 41 < <an_1<n
1<o, 1< <on<n 1<a, <v v+1<an<n
n—1
D D GenGen D T, 0n O
v=3 1<oi1< <o, <n 1<a1<<ay—2<v
1<o,41<<on<n 1<ay,_1<ay<v

Due to the fact that for fixed {0,411, -, 0.}

n—1 n—1
§ : + T N +
agau+1 agan72 50.0471_150-0471 - 6Un (6‘7n—1 HCLUT + 50’n—2 H aU"’
v+1<ay 1< <an—2<n T=v+1 T=v+1

v+1<anp—1<an<n T#n—1 T#N—2
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n—1 n—1 n—1
+ + +
+ +5an_k HCLUT +60 v2 HaUT +5Cf v+1 Haa")
T=v+1 T=v+1 T=v+1
T#n—k THV+2 T#V+1
n n n n
+ + + + +
+or 6 T aw +08  []aw + o +08 I o+ 465, [ ao
T=v+1 T=v+1 T=v+1 T=v+1
T¢{n—1,n—2} T¢{n—1,n—3} T¢{n—1,n—k} T¢{n—1,v+2}
n n n
+ + + + +
+50u+1 H g, )+ F 50k+1 k Ha"T T 5% 1 H g, £+ 0, H oy +
T=r+1 T=r+1 T=r+1 T=v+1
T¢{n—1,v+1} T¢{k+1,k} T¢{k+1,k—1} T¢{k+1,k—(}
n n
+ + +
U+2Ha0'-r+50' +1 HaUT) +50’ V43 U+2H aUT+5U V41 Hao'r)
T=v+1 T=v+1 T=v+1 T=v+1
T¢{k+1,v+2} T¢{k+1,v+1} T¢{v+3,v+2} T¢{v+3,v+1}
n n
+ + _ + S+
5Uu+250 +1 H Aoy = 2 : 2 : 5%15%2 H Qo
il 1<op41<<on<n v+1<hi<ha<n S
T¢{v+2,v+1} 7¢{h1 , ha}
we have
n—3 n
= = + 5+
I, (n—2) E E gy, - -+ Oy, E on, 91, H Qg
v=1 1<o1<-<op,<n vHlshi<hasn T=r+1
1<oy41<<op<n T¢{h1 , h2}
n—2 v n
+ > > 0, M@ > o, Il
v=2 1<o1<-<oy<n 1<h;<v 1 v+1<ha<n S
1§au+1<~--<an§n T#hl T;ﬁhg
v
+ z : z : Aoyyy * " Aoy, z : 5Uh1 60}12 H Qo
1<o1 < <o, <n 1shi<ha=v
1<o, 1< <on<n T¢{h1 , h2}
n—3
= E : z a(7'1 T ao'u z 60’  —1 0' H aO'T
T=v+1

v=1 1<o1<--<o,<n

n—2

3

=2
v 1<o1<<op-1<n

1<o,<n

>4,

1§0V+1 <"'<0’n72S7Z
1<op—1<on<n

v—1 n—1

= +
[ > o Il e
T=1 T=v+1

1<op41<<op-1<n
1<on<n
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78
n—1 v—2
+ g Ao,y =" Oy g 5%7150” | | ay., .
v=3 1<o,41<<on<n 1< <<oy_o<n =1
= V—a =

1<oy—1<o,<n

The second part is obvious from the discussion about I,(n — 1). It can be simplified as

w

3

E aa’1 o aa_yaa_y+1 . o ao_n72 .

1<01<-<ov<n , 1<oy 1< <opn—2<n
{UI7"'7UV’UV+17"'70.”*2}:{17"'7”}\{]617k2}7 kI+1€{Ulf"70D}7 k;+1€{UV+17"'7U7L72}

N
Il
—

For the first part we have

n—3 n—2
PDREED DEE SR (D DI A A DR N |
voh Isisesosn 10y 41 <<on_2<n 10, 1< r<onan T
1<ki<ko<n , ka—ki=1 1<ki<ko<n , 1<ka—ki
n—3
- Z Z Uy, Ty, Oy, - -~ O,
v=1 1<o1<<o,<n , 1<o, 1< <op—2<n
{100,001, 0n—2}={1,n}\{ka—1, k2} , k3 +1€{ovt1,,0n—2}
n—3
+ Z Ty, Tyl -~ O,
V= 1<01< <oy <, 10,41 <-<on_2<n

{o1,,00,0041,0n—2}={1,-n}\{k1, k2}, {k1+1, k’§+1|1<k2—k1}C{Ju+17“~70n—2} ,

— E aa_l N ao_yaa_y N a/o_n72 .

1<o1<<ov<n , 1<oy 41 < <opn—2<n
{o1,,00,0041,,0n—2}={1,-n}\{k1, k2|k1<k2} s {k1+1, k5 +13\{k1, k2}C{ovs1,,0n—2}

7
w

N
Il
—

Similarly for the third term it is easy to get

: : a’UI T ao'u72ao'u+l T a’o'n

1<o1<<op—2<n , 1<o,41<<on<n
{0100 —2,00 4 1,50m y={1, ;P\ {k1, ko ki <ka} , {k1+1, ki+11\{k1, ka}C{o1, 002}

[y

3

N
Il
@

i
w

= E Ugy " g, Uy yy " Aoy

1<o1< <oy <n , 1<o,41 < <opn—2<n
{o1,,00,0041,,0n—2}={1,--,n}\{k1, k2|k1<k’2} k141, k5 +13\{k1, k2}C{o1,-,00}

The second term we can split into two parts {ki, kolki < ka} {ky1 +1, k} + 1} and
{k1, kolky > ko} : {k¥ + 1, ko + 1}. Each belongs to two different zones of the plane. The
first and the third term represents another two parts. Thus we have four zones of the plane

N
Il
—

complete, i.e.,

n—3
Ip(n - 2) = E E Qgy g, Qg " Aoy _y
v=1 1<o1<<op<n, 1<0,41<-<op—2<n

{k17 k2}:{17"'7n}\{017"'70'V70'V+17"'7o'n—2} ’ {kf+1v k;+1}\{k17 kQ}C{Ul7"'7UV70U+17"'7Un—2}
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n—3
= § § Ugy g, Ay Aoy, = Tg(n —2).

—1
Y= <o <<ou<n

1<op41<<op—2<n

For I,(k) (2 < k < n) it is not difficult to see that the equalities

I<ap<--<oy<yl<aq<---<a, <v}

{ala"'7ataat+17"'aau

1<o<---<o0,<n}

:{17---’1/}’ {Ua17'"70-at70-at+17"'70-041,}:{0-17"'70-1/

actually are nothing more than

{o1,- o[l <oy < <oy <n}U{op, ol <op1<---<o,<n}

1<o;<--- <0, <n}.

:{017"'a0—1/

Since the same holds for the other part of I,(k), it can be written as

n—1 t v v+4 n
Lk =2 2. DR | A | 'S [Te 115
v=1 t+0=k 1<o1<-<ot<n T=1 T=t+1 1<op1<-<oy4e<n T=vHl T=vtiH
1<t<y, 1<Ul<k—v 1<ot41<-<o,<n 1<o,pp1<-<on<n
As it is stated by the notation of 6" it is obvious that 5:1'“1 = 1 if and only if x%, = xg,+1. If
Op, = Lthen x4, 11 = — ,ie., ki +1€ {01, -+, 0,}, but at this stage it is not yet clear if k; + 1 €

{o1,--+,0i} or ki +1 € {0441, -,0,}. To know this we look at whether there is §,, = 1 with
ko = ki + 1. If it is the case then {ki, k1 +1} C {0441, --,0,} , else ki +1 € {01, -, 04}
but {k1, ko} C {0441, -,0,} . Anyway for k; it is sure that {kT + 1}\{k2} C {01, -+, 0}
where ki, ko € {1,---,n}. Similarly 5+1 =1 can be considered. Thus

n—1
[p(k> e E E aUl N a’crta/a,,+1 e aglﬂré
=1
v t+l=k 1<o1<<or<n , 1<0, 1 1<<0y4e<n
1<t<v, 1<t<k—v 1<oip1<<ov<n , 1<o, 441 < <on<n

{otr1+1, 05 +1\{ot41, 00} C{o1,,0¢ }
{ovgot1+1, 0 F1 N\ {ow 041,00y C{Ov41, 0040}

n—1
— E E a)\l ...a)\ta)\t+1 ...a)\k
=l ek 1A <A<y 1< 1 <A<
1<t<v, 1<t<k—v {h1+1,-~~, hy—1—1+1, h$7t+1}\{h1,"‘,hu—t}C{)\l,"‘,)\t}

{ho—t+1+1,hp g1+ L% 1N\ {ho—it1, - bk JC{ 41,2k }
1<hi<-<hy—¢<n , 1<hy 1< <hp_p<n
Observing the set of indices about 0 s it is not difficult to see that we have two different
elements 0~ and 6" to fulfill n — k positions: the positions {hq,---,h,_;} with 0~ s and the
positions {h, 411, +*+, hp_x} withd"s. Duetol <v<n—1and 1<t <k—1itis clear that
v—te{0,1,---,n—k}. Forv—1t =0 from the set of indices we have {hy + 1, -+, h,_ 1 +
Las A1\ { Ay, ) hnk} € {\t1,- -+, Ak}, L.e. thereisno 0~ at all and that is only C?_, =1
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possible case. For v —t = 1 then there is one 6~ which position can be different with possibility
C! .. So for {0,1,---,n — k} we have altogether C° , + C} , + - 4+ C"_F = 2"=F different
cases. Each one illustrates exactly one block of a @ "% dimensional space, i.e. the set covers
the whole @ "~* space fully. Now it is more clear that every element of I,(k) comes exactly
from one block of the € "% space and it contains all the 2" % different blocks. In another word,
the restrictions caused by the set finally vanish completely. Thus we get

E g E a)\l ...a/\ta/)\t-kl ...a)\k

o t+0=k 1<A < <A <n, 1< A1 < <A <n
1<t<y, 1<b<k—v {hiy s ho—tho—t41s oy ke F={ 1, - n P\ { A1, A8, A e 1, A
{h1+1,---, hy—t—1+1, h;7t+17hu—i+l+17'”7hn—k—l+1yh;_k+l}\{hl7'”7hl/—tahlj—t+17 ey hnfk}
C{>\1,'-~,>\z,)\t+1,~~,)\k}

— E g a[o_l . e aO’taUH-l . e ao_k .

t+l=k 1<o1 < <ot<n
1<t<y, 1<l<k—v 1<oi41< <o <n

Paying attention to the fact that t+¢ =%k <n wehaveactually 1 <t <k—1, 1 </(<k—-1,
and t+ ¢ =k . Therefore the expression can be simplified as

E 60'1 e aa’ta’UtJrl [ aok .
t=1

1<o1<<ot<n
1<otp1<--<o<n

k-1

This means I,(k) = I,(k) and the proof is completed.
Applying Lemma 6 for

oo
*k
_Zax*kt ML G edDy Zlaxgkt|<oo, 1<t<n,
k=1 k=1
we see that
n 00
[T(>a+ S S LT
t=1 k=1 ki=1
n % n oo N
k =Kt
_|: <Z€tt+1> +H<2Ct +1> _1:|axik;17vx:1kn
t=1 k=1 t=1 k=1
n—1 v 00 .
—ky ko n
=> X I(Xar+a) 11 ( > 08, ) it
V=l picncoyen L ko=l t=v+1  kgy=1
1<op41<<on<n
n—1

= Z ﬁ (i Ctht + 6Xt>aX1k1, ~Xokn s # € b, (edbD”,

v=1 1§0’1<"'<0’y§7l t=1 ktil

1<oy41<<on<n
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where
n (@) oo k o0 o
ke —ht _ Xik1 ok
H( E G+ E Gy +1>ax;k1,-~~,x:kn = E E T IRTR CY N C R o
t=1 k:t=1 kjt:l klzfoo kn:foo

Therefore by this devision of boundary values, an arbitrary analytic function wX®)(z) in
DX¥) without loss of generality, possesses the form

n 400
T (R0 + 0 g = 0¥, 0<w<n, €D,
t=1 k=1

n —+00
[H <Z PR 1) — 1} Qtky ek = wX™ () =w X)), ze (D),

t=1 k=1

and they converge absolutely and uniformly even on 0yD™ . Obviously by means of (3.2) the
above analytic functions can be written as

wX(z) = (273@')" /aom“”(@ 2Oz, C)% (3.4)
where
| ﬁ[%”ﬁ“] L 0<v<n—1,zeDX¥
XM (z,¢) = _zig_l} | -
e , e

We call (3.4) the torus related Cauchy integral. For the function wX®)(2),0 < v < n , defined
by (3.4) there exist at least two integers h # k, h,k € {1,---,n}, such that

wX(”)(z) —0,he{o, 00} ; wX(”)(z) =0, ke{o,41, ,0n}. (3.5)

2Zp =00 2E=0

About wX(©)(z) and wX(™(z) there is nothing to say, except wX (co0) = 0. For the other part:
in the two dimensional case we do not have 6} # 0; but from three dimension on we have at
least n times ¢ = 1 and this means at least n times wX(”)(z)|Zt:Oo # 0 . In this sense (3.5)
is only a partial phenomena from three dimension on. Solving the problem in 2 dimensional
space does not mean that it always is the same as solving the problem really in n dimensional
space.

Naturally, for the torus related analytic functions it is necessary to satisfy condition (3.5).
This property holds at least for one pair of components of the variable but not for every pair.
In the case n =2k + 1,k € IN , there exists at least one component for which the function
fails to satisfy condition (3.5). In the case n = 2k ,k € IN there exists one and only one
pair of 4% — 2 analytic functions totally satisfying condition (3.5). Regarding the other 4% — 4
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analytic functions, for every analytic function there exist at least two pairs of components of
the variable and for one pair the function satisfies the condition (3.5), while for the second pair
it does not, see Appendix .

Interestingly

n +o0
w0 = [T (D€ + 6 ) ansiainn
t=1 k=1

=11 <Z(Cft)_xz + 5tXt>a_XTk1,~~,—xzkn =w (), (€D, 0<v<n

t=1 k=1

holds and wX®)(¢) can be seen as the reflection of w™X*)(¢) with respect to 9y ™ . This
property of boundary values will be quite useful in our further discussion.

It is known that if ¢* , ¢~ are boundary values of analytic functions in D+ , DD~
respectively and are continuous on 90D , then

1 N (/= g _ B _
O Gy OTECRT 700 e D

1 Lo )¢

b : / o (¢ — =0, zeDt.
) 2mi)" Jon ( )1—Z/C ¢

Repeatedly applying these two formulas leads to the following result which will be useful in the

sequel.

Lemma 7 Let ¢X)(¢) be boundary values of a function, holomorphic in DX") and contin-
uous on DXV U PyD™ . Then

1

¢
(2mi)™ <

¢
where CX'W(C.2) is defined as in (3.4) and ¢X¥)(C) is defined as in (3.3) .

/a e PO M (2, ¢) 0, 2¢dD", x(v) #x°(n), 0<wv,u<n, (3.6)

Proof If v =0, u=n, then by (a) for z € (ID 7)™ it is clear that

@ o O = L. O e 0T

If v=mn, p=0, then by (b) and (3.5) for z € D™ we have

1 —X(0 C %Z 1 —X(0 1 %: 1
(QWi)"/aozpn¢ Ry (QWi)n/(90Dn¢ T <2m'>“/aom

<O )+ G = g [ O =070 =0,
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In all other cases if y(v) # x"(n) then there exists at least an index ¢, ¢ € {1,---,n} such
that x; # x? ,ie., xs = —x? . This means we have to deal with

L /amtgbm(ct,.)[afuﬂ]@zi ¢—x?(<t")[5i<?+wﬁ

(27i) 1= (2G4 G (270) Job, 1— (2 G
1 0 Od . _ 40 Od
el I e B ]
(273) Jop, G (27m) Jop, Gt
where | 0 0 1 0|
oad = a0l e+ x
0 O = g e = 0, for s i € {11

and (a) or (b) were applied.
Thus (3.6) is always true in the sense of (3.3) and (3.4).

The sense of the Lemma is that by classifying the boundary values and defining the kernel
as in (3.3) and (3.4) for a given function on 9y ", for a kernel of the domain IDX") only
the domain D X") related part of the given functlon which is boundary value of a function,
holomorphic in D X*), produces a nontrivial result with the kernel of the domain D x®) .

3.4 The Schwarz problem for polydiscs

The Schwarz problem for analytic functions in polydiscs was considered in [2] Chapter 5. There-
fore we need to consider the Schwarz problem only for analytic functions in the other torus
related domains.

Lemma 8 Let ¢X*) be holomorphic in DX®) and continuous on DX¥) U9yD™ . Then

HO () = L /8 N (Rea*(()) [Qﬁ - 1}% +ilme0(0), e D™, (3.7)

(2mi)n ¢
X( 1 (0) Gk + 2, dC n
RegX©) (2) = i) /M (Re¢ 0)( )HR LDt (3.8)
x(n) 1 x(n) 1 9dC \n
00 = o [ (e 0) [ -] se@ 69
YR 2+ G 7dC n
Reg")(2) = (5o /MM (Reqsx )[HR e }C L ze D), (3.10)
x(v) . 1 x(v) - (chkj )Xk Xk %
) = G foe (21es <<>),£{ e T
O<v<n, zeDX¥, (3.11)
x oy — L T G S

O<v<n, z&DX¥, (3.12)



84 CHAPTER 3. THE SCHWARZ PROBLEM

The first part of the lemma is proved in [2] page 244. The second and the third part has to be
checked and it can be done by a similar method.

Proof From the Cauchy formula

o) = i [ o] 1] %

= o . (970 500 = -

i g PO F = 15

_ 1 x(n) 1 d< -
‘<2m>n/aom<2Re¢ )=z sen

follows. Passing to the real part leads to

1}%

RegpX(™(z) = (27;)” /aom <Re¢><<n>(g)) L ié_ + = iC - 2]% . ze (D). (313

To show this to be the same as (3.10) we apply induction.
Let n=2. Applying Re[(zx + )/ (zx — &) = 2/ (21 — ) + 2/ (Zx — (i) —

z1 Z1 29 )
+ 2 —1)( + 2 —1)—1
<21 -G zZi—( 22— C  Zog—(,

1 Z _1__51__52_ 94 G _Zg_ _21_ G2
—CQ2x—C zZ;—C( 72— 21—=C0Zy—C Z1—( 22— G
and by the Cauchy formula

1 — G ZQ %
(27i)2 /aolpz ¢ () 21— 0% (5 ¢

_ 1 / 5 G Co/Z2 dGidGy
(2mi)? Joom2 —01-(y/Z G G

1 T Cl ZQ %
(2mi)? /C‘)OD2 ¢ (g)zl —0zZ -G ¢

_ ! L S/E G dGdG
(2mi)? /80102¢ (01—21/51 20— G G G 0

etc. (3.10) is seen to coincide with (3.13) for n = 2. The remaining part is similar to the first
case in the proof of (3.7) and (3.8).

=0,

Again by the Cauchy formula

x(v) — 1 - Zka SX %
) = e [ O [ e e o]

k=1




3.4. THE SCHWARZ PROBLEM FOR POLYDISCS 85

n

N (2732')" /aom (0@ +om0) ] [1 —ZfZCZ T 5’?]%

k=1

n

1 Y (ZkC) X v ] dC
_(27Ti)” /80]Dn¢X( H [1 — (ZuCp) X o ] ¢

k=1

1 W) - (2rG )X L 14¢ W)
= G /MD" (2Rea*(0)) ]!"[1 [—1 e O ] ;o 0<v<n, zeD

follows. The second term above vanishes because for v (0 < v < n) there exists an integer

k (1 <k <mn)such that 0;* =0 and both the function and the kernel are analytic in C,fz and
therefore the integral vanishes.

Taking the real part gives

Reg*™)(¢) = (2732)?1 /80Dn <Re¢X(”) > [ﬁ (1 _Zk§Z< -+ (5,?’“)

k=1

(ZkCe) X w)1dC (v
+H<1—zkgkxk 5k>}?, 2 e DXV, (3.14)

In order to show this to be identical with (3.12) we consider

— 1 (v) T n (chk—l)x;; (Eka)XZ “ g
" <2m>"/aomn<¢x e (O>H[1—<zkgl>x:+1—<zk<k>xz”k]<

Applying Lemma 7 we have actually
1 - (2! d¢
I = 7/ [ k + 5Xk:| -
(2mi)™ Jaypn 1;[ 1— zkck ¢

1 oy T [ (G )Y o] 4¢ v)
o /Ww><<>H[1_(zk<k_1)xZ L] sep

k=1

and because of (a) or (b) we get

n

j— /Bomn¢X(V) H[ (2G5 ) t (Ekgk)xz * +5’,§,€]%

(2mi)" el T Zka 1 — (ZCr)X* ¢
1 E (zC, ") (ZCp) ¥ S
+(27Ti)" /aozpn g [1 - ch:k A (ZrC) X o } ¢
_ 1 ) - (2rGy )Y
=G g O LT R P o]

k=1

d¢

¢

1 - A d¢
- x(V) k— Xk | 25
+(27-(—7/)n \/OID”QS H [ 1— Zka ) +5 :| C

k=1
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_ ! (AT (24 ) ] 4€ X)
Gri) /aomn [QReng (C)} kllll [2Re1 — (Zkﬁlzl)xz + o) o ze D

and this shows that (3.14) coincides with (3.12).

Theorem 11 Let 7 be real-valued and belong to W(OD™; @) satisfying

3 Y G [ 00T -0, 5.15)

1=0 1<o1<<ou<n obn
ptvn—v  1<0, 11 <-<on<n

Then ) ) J
¢X(O)(Z’) = (27Ti)n /8 e ’7(§) [QW 1:| CC + ZCl , € D" ) (316)
x(n) — 1 # — % )"
) = s [ om0 =z 1] G e, (3.17)

1 Yl (G )N dg¢
QSXUI”‘UV(V) 2) = y / 27 C —_— + ok ) —= )
( ) (271—7/)” D" ( )kgl <1 — (Zk(k. 1)Xk F ) C
z€ DX 0 <y <o, (3.18)

are analytic functions in respective domains with arbitrary real Cy and satisfying
Reg™Xe1-ov M (¢) = ~(¢), (€ D™, (3.19)

where

Z Z X1y (V)(C) 7 (3.20)

1<o1< <o, <n
1<op41<<on<n

VXUI.H(,U H (Z CXt ky + 5Xk)05x*k1 XE ks 0<rv< n, C c aoﬂ)”’
t=1 k=1
n “+00
PO = Y ar= [H (Z Ry 1) - 1] S
|k[>0, kEZT t=1 k=1

1 T
= — H(X — .
Axv) = iy /a . ()¢ T ) T Q)

The condition (3.15) is not only sufficient but also necessary.

Due to v € W(0D"™,T) , by applying Lemma 7 and Lemma 8, the sufficiency proof of the
theorem is quite trivial.

Conversely suppose v € W(OD™; @) and the function ¢@Xo1-ov)(z) defined by (3.18) is
analytic in D Xe1-o(*) and satisfies on 9yD ™ condition (3.19). But this can be true if and only
if

yer Q) 447 () = 4(() ¢ € QD™
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By (3.20) this means condition (3.15) holds.

Remark In general Re¢X(?)(¢) = v(¢) could not be true anymore for n > 2 unless

3
—_

> e =0, (3:21)
1

1<o<-<op<n
1<op41<<on<n

v

or equivalently
,yxal...w(v)(o =0, 0<v<n.

This means for z € IDXe1-ov() we have

ao oy O L5 o) T (205 o) o

k=v+1

Thus (3.21) can be written as

1

1 > (2;)” /Wv(ok e f"zﬁf;;%+5;<;)

1<o1 < <o, <n =1
1<oy41<<on<n

n

v

I ) e

Applying Lemma 4, changmg the summation indices and paying attention to the 0y (0 < v <
n) one can get it in another form as

n p—1 v

1 Zo, oy 20.Co, d
X Y gy L0l =

p=2 v=1 k=1 Zoion k=v+1 1 - ZUkCUk S

I

=0,zeD"

1<o1 < <o <n
1<oy 1< <op<n

and this is just an equivalent form of Theorem 5.1 in [2].

3.5 Well-posed formulation of the Schwarz problem

3.5.1 Plane case

In the case of the unit disc the given real value on the unit circle is enough to determine the
real part of one analytic function in the unit disc or in the outer domain of the unit disc. In
another word, alone with the given real values on the circle, one can determine one analytic
function in the unit disc and one other analytic function outside the disc. The given real values
on the circle are sufficient to determine two analytic functions in domains which completely
cover up the whole space. To determine an analytic function in or outside the unit disc it is
necessary to have its real part on the unit circle. This means the given real value on the circle
is necessary and sufficient to determine analytic functions in the two domains which completely
cover up the whole space.
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3.5.2 Higher dimensional space

From two dimensions on we have two possible interpretation of the unit disc on the plane: unit
ball and unit polydisc. The boundary of the unit ball, the sphere divides the whole space only
in two parts. In this sense the unit ball is not very different from the unit disc. But for the
polydisc the situation is very different. The boundary of the unit polydisc can be defined in
two different ways: the whole boundary or the characteristic boundary - torus. This makes the
essential difference, see [14]. Since analytic functions in polydiscs can be described completely
by their values just on the essential boundary 9y[D ", see [27], we restrict our discussion to the
essential boundary - torus.

It is well known that all the torus related problems are accompanied always with some
solvability conditions due to the fact that the given values on the torus have more components
than necessary components for the problem under consideration. This phenomena appears
because of that the torus has more domains then simply pure inner and pure outer domains,
i.e., the torus has some domains which is neither a pure inner nor a pure outer domain. Without
taking these domains into consideration it is not possible to cover up the whole space with
domains of analytic functions by the given real values on the torus and that is why we have
to always accept some solvability conditions which do not exist in one variable case. In this
sense investigating the analytic functions in other torus related domains has major impact
on all kinds of torus related problem solving. After having the properly established analytic
functions for every domain of the torus it is obvious that concerning only one special domain of
the torus is always accompanied with some solvability conditions. These solvability conditions
are seen as natural phenomena for the torus. However this can be understood also as ill-posed
formulation of the original problem - we have usually more information than we need and less
equations than necessary. Taking into account that the original problem was established for
half of the space by the given values on the circle(the other half can be obtained by the given
value too), if we formulate the problem exactly for half of the torus domains(for half space)
by the given values on the torus, then no any solvability conditions could appear. Now it is
clear that if we want to get an analytic function for a very tiny part of the space defined by the
torus(for one torus domain) by the given values on the torus, the other non relevant part of
the given values has to vanish and so we have solvability conditions. If we consider more torus
domains we would have less solvability conditions. If we consider the half or more of the torus
domains then we have no any solvability conditions. Thus we can have a well-posed analog of
the Schwarz problem for the torus which is originally well defined for the circle in the plane.

Before we give the well-posed or modified definition of the Schwarz problem, applying some
notation in the third section of this chapter we define some sets.

Let I* = {x* | x* = (x}, -+, x5) be the set of vertices of the [—1, +1]" cube}. For every
element xj € I* there is exactly one and only one element x5 € I* so that x] = —x5. Denote
It ={x" | x* = (+1,x5,---,x;;) € I"}. Clearly I’ contains exactly half of the elements of I*
and has no any reflected element.

Respectively we denote I = {x | x = (x1, -+, Xn) sign of the vertices x* € I*} and I, =
{x | x=(+ X2 xn) €I}

Now we give our modified well-posed definition of the Schwarz problem for the torus.

The Modified Problem Let v be real-valued and belong to W(0D™ €) . Find a
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holomorphic function @Xe1ov®)(¢) in DXer-ov®) for y, .., € I, so that

[5]
Y Regvr (=90, Ceab”, (3.22)

2<01<- <o <n
1<op41<<on<n

On the basis of the previous Theorem one can easily obtain the following conclusion.

3.6 The Schwarz problem without solvability conditions

Theorem 12 Let ~ be real-valued and belong to W(OD™; ') . Then

PO (2) = 1./ 7(0{2 ! —1]%“'01, cen”,
OgID™

(2mi)™ 1—2/¢ ¢
X)) — 1 LY K S o
) = s [ om0 =z 1] S e, (3.29

)y L & (21, )X ) 4¢
por ) = s [ O (g + ) T

z€ DXer-v® 0 <y <o, (3.24)

are analytic functions in respective domains with arbitrary real Cy and satisfying

(2]
> Y Regr () =4(0), ¢eab", (3.25)

2<01< <o <n
1<oy41<<on<n

Re grrvoe () = prevee)(Q)  ¥ovsion Q) (3.20)

where

Y = > yere gy

1<o1<<ov<n
1<o,41<<on<n

n +0oo
e @0) = TT (2@ + 0% Jashs sz 0S v <m, (€D,
t=1 k=1
n +oo
P () = Z a_(TF = [H (Z G 1) - 1] Qo e — o
|k|>0, kEZT t=1 k=1

1 ¢
_ —r(x(v)) 45 _ _
) = /8 - 7(¢)¢ )

Evidently the condition (3.25) is not a solvability condition and it is always satisfied.
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3.7 A necessary and sufficient condition for the
boundary values of holomorphic functions
of the torus domains

In the previous chapters for holomorphic functions in polydiscs we have shown some equivalent
methods to check the boundary values and the real part of the boundary values. After having
fixed the structures of holomorphic functions in arbitrary torus domain, we may be interested
to solve problems in this domain. Then surely we are confronted with the boundary values
of the holomorphic functions in these torus domains. That is why we want to give a simple
checking method.

So we take a closer look at the boundary values of holomorphic functions of the unit circle
in the plane.

Let o e W(OD;T) , i.e

+00 1090
=Y alt, (€aD, ) || < +oo. (3.27)
We denote ] dC
o) =5 | w02, cgom (3.28)

It is well known that the function ¢ is holomorphic in a \OD - where @ is the Riemann sphere
@' U {oo} - vanishing at oo, see [5] .

Applying (3.27) to (3.28) for z € D we have

1 1 d¢ 1 A <=
¢(z) = 2_7rz w(C)l—zZC 27m/ [Z%Ck] [Z h}? :;O"fzkv ze D,
and for z€ D~

b(z) = 1 /wso@) L2 e0f- 1__;f1<]dC

2me C—2z 21 Jap ¢

o [ZakCHZ C)h}%:—kzoja_kz_k,zeﬂ)_.

Due to p € W(0D ;€') it is clear that for n € 0D the series

“+o0o “+oo
E an®  and E a_gn "
k=0 k=1

are absolutely and uniformly convergent. Therefore

+oo
¢*(n) = lim ¢(z Zakn and ¢~ ()= lim ¢(z) = =Y a ™"
z—n z—n k=1

zeDT z€D~
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and of course ¢*(n), ¢~ (n) € W(OD ;') . Further
R +Oo
() == a* €OH(D), C€aD ,
k=1

ie., ¢=(¢) is the boundary values of a function, which is holomorphic in ) . This means
that in order to know whether ¢~ (¢) € OH(ID ™) it is enough to know if ¢=(¢) € OH(D) .
This idea can be applied to check boundary values of holomorphic functions in arbitrary torus
domains. However we need to introduce a slightly modified version of complex conjugate.

Let ¢ € W(0,D™; @) and ¢X*) be a holomorphic function in ID X*) which has the boundary
values defined as in (3.3) for the given function ¢ .

We define boundary partial conjugate of ¢X*) as following.

Ce[ Q)] = [ (0)] = ML+ ), — o]
t=1 k=1
= [f[ (1 + S Cft)a,kl,...,fkn — ao,...,o] , €Dy (3.29)

t=1 k=1

Cory o, [20)] =2 [0(0)]

Cop Cou
v +o00 3 k +o00 .
SR IO | ORI D L
=1 kioy =1 t=v+1 ko, =1
“+o00
_ [H (@Xt +y Cft>axfk1,--~,x;kn}v O<v<n, (€D (3.30)
t=1 ki=1

We call  Ce, ..¢, [cﬁX(”)(()] boundary partial conjugate of ¢X*).  Obviously X (¢) €
OH(DX®)) | 0 < v < n is equivalent to Copy o Con [(bX(”)(C)} € OH(D™) , 0 < v <n
and Ce, .. ¢,, [Cgal... Con [gzﬁX(”)(C)H = ¢X() | Thus we have

Theorem 13 Let ¢X) be an arbitrary function which is continuous in DX¥) and ) €
W(oD"™,C) . Then C, ., [qbX(”)(C)} € OH(D™) is the necessary and sufficient condition
Jor ¢X)(() € OH(D X)) .

In Section 2.3.3 a simple checking method for boundary values of holomorphic functions in
polydisc is given. So by Theorem 13 we can check boundary values of holomorphic functions
in any torus domains.
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3.8 Appendix

In the three dimensional case from (3.4) it is easy to see that

L1 216 w0 4G d
v (Z>‘<2m>3/aom¢(o{1—zlcf“L—zx;ll—z;lcg?

1 n . . d
w () = —— 3/ W(C){ G n 1} %G Gt dg
(27)* Jayms 1—2'¢ 1—2G1- G ¢
and the others can be written in the same way. From them one can have
w__+<z)|z1:oo # O Y w__+(z>|22:oo = 0 ) w+__(z>|22:oo 7é 0 )

W (D) O T (2) e A0, W (2)],m0 =0

In the case of four dimension the most interesting ones are

—HH () = 1 / o(C 7 G 20 23 G on g
(2mi)* Joyme 1= 27Ol =G 1= 236G — (!t ¢

by 1 aG! %G mGt oz dC
Wt (2) [

w

(2mi)* 1= 1= 20l — 253G 1 — 27" ¢
__ 1 S 20 [ ¢ 1 G dC
w ++(z):(2 ‘4/ SO(C)[ 1; +1} 2271 37? 1 4471_
mi)* Jo,ma l—27G T—2C —25G  11—2( ¢
_ 1 e 20! [ 23'C 1 2 G d¢
wtt (z):W/ w(C)[ = 1+1] 22 |88 g Tt
)% Joyma 1—2(7 1—29¢ L1 — 257G 11— 27 C
1 _ ~1 _ -1 - -
w—+++(z) _ : 4/ 0(0) 21 2 [ 22Cy _ 1} 233 11 24(y 71%
(2mi)* Joypa L=z G Ll — 20 L1 — 23C3 11— 24¢ ¢
1 -1 -1 | - -1 d
W) = [ 02 [ ] [B ] A
(2mi)* Joypa L—21( =2 G 1—257¢G  d1—2z7G(C
and the others can be similarly described. They have following property.
_+ +(Z)|z1 oo ) w_+_+<z)|23:oo = 0 ) w++_—(z)’z3:oo 7é 0
w+ A (Z)|z2 oo w+_+_<z)|z4:oo = 0 ) w++_—(Z)’z4:oo = 0
w (), L = W ()] A0, wTTTT(2)] g #O
w__++(z)|zl =00 ;é O w__++(z)|22:oo = 0 Y w+___(z>|z4:oo = 0
( But w1 (2)

Only w=+=+ z) wr~T7(2) satisfies the condition (3.5) totally.
w7 (2), w77 (2), w Tt (z) fulfill only half of the condition (3.5

\_/l<



