
Chapter 3

Visualization Methods for Scalar Data

The aim of data visualization is to support cognition of and enable insight into given in-
put data by means of visual representations [83, 88]. Historically two major areas are
distinguished in this context, namely scientific visualization and information visualiza-
tion, depending on the type of data that is processed. Though not strictly defined, the
term scientific visualization usually refers to the visualization of data that has a more or
less inherent representation in space and time, like for example discrete data defined on
spatial, possibly time-dependent, computational grids. In contrast to this, information vi-
sualization addresses data that does not possess a natural spatial representation. However,
there are numerous examples that show that this strict distinction is not always the best
choice and there is still research on defining better taxonomies for this field [20, 30]. One
alternative approach is to base the classification on the employed visualization algorithms,
rather than on the data itself, compare [87].

Nowadays mainly computers are employed for generating and displaying the result-
ing output representations, which tightly connects the field of data visualization to com-
puter science, in particular to computer graphics. In the next section we will briefly dis-
cuss some technical issues of the visualization process and graphics hardware in general,
whereas Section 3.2 will address the most popular visualization methods for volumetric
scalar data.

3.1 The Visualization Pipeline
The visualization process can be formally characterized by the so-called visualization
pipeline, which is subdivided into three main stages, namely filtering, mapping and ren-
dering, compare Figure 3.1.

• During the filtering stage the raw input data is converted into a format which is
better suited for the later stages. This might involve tasks like interpolation in or-
der to generate missing data samples, data reduction, for example by subset and
component selection and/or dimensionality reduction as well as the extraction of
topological features of the data.
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Figure 3.1: The main stages of the visualization pipeline.

• In the mapping stage the filtered data is mapped onto graphical primitives, which
nowadays usually are directly supported by graphics hardware. Examples are the
approximation of surface data by triangular meshes or volumetric data represented
as dense ensembles of points. The primitives may be equipped with additional
attributes like color and transparency information.

• In the last stage, the rendering stage, the two dimensional image is generated from
the graphical primitives. This involves tasks like the rasterization of the primitives
into a pixel representation, the culling of occluded subregions as well as shading
and blending operations.

Nowadays the rendering stage is often accelerated utilizing dedicated graphics hard-
ware, which allows to perform sophisticated visualization tasks at interactive frame rates
even for a large number of geometric primitives.

In particular for these hardware-accelerated graphics architectures the rendering stage
itself is usually subdivided into three stages, namely vertex operations, rasterization and
fragment operations, see Figure 3.2.

In the first stage the illumination computations are performed and linear transforma-
tions like rotations, translations and scaling are applied to the vertices of the graphics
primitives in order to place the geometry according to the actual viewpoint settings. Fur-
ther parts of the geometry that are outside the actual viewing volume are removed and the
projection into screen space is carried out in this stage.

In the rasterization stage the primitives are converted into so-called fragments, which
correspond to pixels in the output images (scan conversion). Visual attributes like color
and texture coordinates are determined for each fragment. Before this information is
actually written into the frame buffer, each fragment has to pass several tests performed
in the last stage of the rendering pipeline. In particular z-buffer-based depth sorting is
carried out at this point and fragments may be combined with the pixel data in the frame
buffer, for example to realize blending effects for semi-transparent objects. Further the
so-called stencil buffer can be used to mask out portions of the frame buffer, in order to
prevent that these pixels are being replaced by other fragments.
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Figure 3.2: The main stages of the rendering pipeline.

In order to abstract and facilitate the access to different graphics hardware architec-
tures, the hardware is usually not programmed directly but rather via an API (applica-
tion programming interface), which acts as a layer between the application software and
graphics hardware. Nowadays two main graphics APIs are supported by hardware man-
ufacturers, namely OPENGL [76], introduced in 1992 by SILICON GRAPHICS, which is
available on almost every platform and supported by many programming languages and
DIRECTX [8], developed by MICROSOFT and available only for WINDOWS platforms.

The implementation of the algorithms presented in this thesis was done within the
framework of AMIRA [82, 1], which is based upon OPENGL.

3.2 Visualization Methods for 3D Scalar Data

In the following we will review the most important rendering methods for volumetric
scalar data, i. e. functions f : Ω ⊂ R3 → R. These are usually categorized as indirect
or direct volume rendering. Indirect methods convert the data into some auxiliary, usu-
ally polygonal representation in the mapping stage of the rendering pipeline. This often
involves some form of dimensionality reduction. A standard example is the ’marching
cubes’ algorithm [53] for isosurface extraction, which will be discussed in more detail in
Section 3.3. A drawback of indirect methods is that they usually allow to visualize only a
small subset of the data at once.

In contrast to this, for direct volume rendering approaches, which are discussed in
Section 3.4, in principle every data sample may contribute to the final image. This is
achieved by assigning physical quantities like absorption and emission coefficients to
each data sample and by modeling the transport of light traveling through the resulting
participating medium. In particular the intensity distribution of the light in the image
plane is computed and displayed. An example are raycasting methods, as discussed in
Subsection 3.4.3.
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3.3 Indirect Volume Rendering

3.3.1 Slice-Based Techniques

Slicing is a simple, but nevertheless popular indirect technique, which displays the data
values f(x(λ, µ)) within the intersection of the data volume Ω and an arbitrarily oriented
plane

P = { x(λ, µ) | x(λ, µ) = a + λv1 + µv2 }.

Often a colormap C is employed to assign color and possibly transparency informa-
tion to each scalar value. In computer graphics it is usually represented by a quadruple of
three color scalars Ci ∈ [0, 1], i = r, g, b for the red, green and blue color components, as
well as opacity value Cα ∈ [0, 1]

C : Im(f) 7→ R4, with f(x) 7→ (Cr, Cg, Cb, Cα).

Figure 3.3: Scalar field visualization using combined height field and slicing techniques.
(dataset courtesy of M. Norman, National University of California)

Nowadays implementations often utilize 2D texture capabilities, supported on almost
every modern graphics hardware, for rendering the resulting slices, which allows real-time
interaction even if a large number of highly resolved slices has to be displayed simultane-
ously, compare Section 3.5.
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In order to further enhance the perception of small differences of data samples, so-
called height fields or carpet plots, are well suited. The data within the slice is rendered
as a curved surface, which is computed as follows

s(λ, µ) = x(λ, µ) + k f(x (λ, µ))
v1 × v2

|v1||v2|
,

where k is a scaling constant. In addition the surface points might be color-coded to allow
a better comparison of the height of distant locations on the surface, compare Figure 3.3.

3.3.2 Isosurface Extraction
Another very popular visualization method for scalar data is the rendering of the func-
tion’s level sets for a certain level viso

1

L(viso, f) := f−1(viso) = { x ∈ Ω | f(x) = viso }.
It is important to distinguish between the isosurface Sorig of the original, sampled function
f , the isosurface Sint of the interpolant that is employed for the reconstruction and the
approximation Sapp of the latter by graphical primitives.

There exist a number of natural requirements for this approximation Sapp. It should at
least be C0-continuous for continuous interpolants and topologically consistent with Sint,
i. e. the same discrete grid points are separated by both surfaces. Further the approximat-
ing surface should be invariant under the sign inversion operation

fijk → (−fijk), viso → (−viso).

In addition the surface should yield a ’good’ approximation, in the sense that the differ-
ence between Sint and Sapp is small, it should allow for efficient computation and require
as few polygons as possible.

The standard algorithm for extracting isosurfaces of grid functions defined on hexahe-
dral (quadrilateral) cells is the so-called Marching Cubes (Marching Squares) algorithm,
first proposed in 1987 by Lorensen et al. [53]. In this approach the isosurface of the piece-
wise trilinear interpolant is approximated by a triangular mesh, compare the Figure 3.4.
An advantage of the marching cubes method is that it requires only local information
about the grid function for the surface construction. Each grid cell is inspected for in-
tersection with the surface, based on a classification of the cells vertices. Vertices are
classified as inner and outer ones, depending on their scalar value being below or above
the isovalue. Since trilinear interpolation is employed, a cell is intersected by the isosur-
face Sint if and only if the cell contains inner and outer vertices.

Identifying configurations that can be mapped onto each other by rotation and mir-
roring operations, the 256 possible cases for hexahedral cells can be grouped into 15
equivalence classes. For each of these classes the topology of the isosurface is approx-
imated by up to four triangles, with nodes located at the edges of the cell, as shown in
Figure 3.5.

1We will use the term isosurfaces for the two-dimensional case, respectively isolines or isocontours for
the one-dimensional case as a synonym for the level sets in the following.
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Figure 3.4: Example of an isosurface approximation by a triangular mesh that was gener-
ated by the Marching Cubes algorithm. (dataset courtesy of T. Abel, Stanford University)

In order to accelerate the surface extraction process, the triangulation for each case
is precomputed and stored in a lookup table. Once the topological configuration of the
triangle patch is determined, the positions of the triangle vertices are computed by linear
interpolation between the values at the vertices on the intersected cell edges.

The local triangulations sketched in Figure 3.5 can violate the requirement of global
continuity listed above, since they might yield inconsistent surface patches for adjacent
cells. These become visible as artificial holes that are not present in the exact isosurface
Sint of the piecewise trilinear interpolant. This problem arises for faces that have the same
classification for opposite vertices but different classifications at edge ends, namely the
cases 3, 6, 7, 10, 12 and 13 of Figure 3.5. For these cases all four edges of the face are
intersected and the correct connection of these intersection points can not be determined
solely based on by the four node values, compare Figure 3.6.

A simple method to generate a continuous triangulation is to modify the lookup table
in order to ensure that the same edges are connected on both sides of adjacent cells. Notice
that this operation does not guarantee a triangulation that is topologically consistent with
the surface Sint and that it is not invariant under the sign inversion operation.

Nielson et al. [59] presented a more sophisticated solution to this problem. It is based
on an inspection of the bilinear interpolant in the face domain. For the problematic cases
mentioned above, the intersection between the isosurface Sint and the face domain is
given by two hyperbolas. The face edges are connected differently, depending on whether
the interpolated value at the intersection between the both asymptotics of the hyperbola is
below or above the given isovalue. Hence an evaluation of the interpolant at this additional
location can be used to determine the correct connection of the intersected edges and
guarantee continuity across cell faces.

Another approach is to decompose cells with problematic configurations into sets of
tetrahedra with consistent edges on both sides of the face. The variant of the marching
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Figure 3.5: Using symmetry operations the 256 triangle patch configurations for hexahe-
dral cells can be reduced to 15 topologically different ones.

cubes algorithm for this cell type, which is also called marching tetrahedra [14], generates
triangulations with coinciding isocontours on common interfaces between adjacent tetra-
hedra. However, there still remains some freedom in how the decompositions is carried
out, resulting in slightly different surface approximations and the number of generated tri-
angles in increased. A comprehensive overview about these and other methods to obtain
consistent triangulation for the marching cubes approach is given in [33].

A lot of work has been carried out in the field of isosurface visualization in the last
decades and it is still an active area of research. An important problem that was addressed
is the optimization of the surface extraction phase. Livnat et al. presented the ”Near Opti-
mal Isosurface Extraction” (NOISE) algorithm for optimized isosurface generation from
structured and unstructured grids [51]. They use a span space representation of the data
domain to obtain a worst case complexity of O(

√
n + k), where n is the number of cells

of the dataset and k is the number of cells that are intersected by the considered isosur-
face. Livnat et al. further proposed an algorithm for view-dependent isosurface extraction
in [50], where only the visible portion of the isosurface is extracted, accelerating both,
the extraction as well as the rendering phase. Chiang et al. [21, 22] presented out-of-core
isosurface generation approaches for datasets that are too huge to be held in main mem-
ory. They generate search data structures in a preprocessing step in order to minimize
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Figure 3.6: Example of two adjacent cells of class 6 and 12 with inconsistent local trian-
gulations that lead to artifacts in the resulting triangular mesh. These become visible as
cracks (area with red pattern) at the common interface.

I/O operations during surface extraction by restricting disc access to data of cells that are
intersected by the considered isosurface.

In the recent years point-based techniques have been employed for accelerating the
rendering phase of the isosurface visualization. Ji et al. presented a pure point-based
approach for efficient isosurface rendering for remote data in [35]. Livnat et al. [52]
present a hybrid approach, in which sub-pixel triangles are replaced by point primitives.

Kobbelt et al. [42] proposed an extension of the marching cubes approach that avoids
aliasing artifacts at sharp features on the extracted surfaces.

While the work reviewed so far is based on isosurface representations by triangle or
point primitives, Westermann et al. [93] proposed a fundamentally different approach for
real-time extraction and rendering of lighted and shaded isosurfaces using texture map-
ping hardware. This approach does not require a polygonal representation of the surface.
Further a lot of work has been carried out in the field of multi-resolution isosurface ex-
traction. We will give an overview about this in Section 5.1.

32



3.4 Direct Volume Rendering
As mentioned above, direct volume rendering approaches assign radiometric quantities,
that depend of the considered grid function f , to each point x ∈ Ω and compute the
resulting intensity distribution in the image plane. The governing equations of this process
can be derived within the framework of linear transport theory [19]. In this section we
will closely follow the discussion presented in [32]. Another good presentation of the
underlying physical models can be found in [56].

Let us first introduce some radiometric definitions needed in the following. The basic
quantity in radiometry is the specific intensity I , which is also called radiance. It com-
pletely describes the angle and frequency dependence of the radiation field at each point,
such that

dE = I(x,n, ν) cosϑ da dΩ dν dt

gives the amount of radiant energy per time unit dt and frequency interval dν that emerges
at the location x and is radiated into the solid angle dΩ in the direction n through the
surface element da. Here ϑ defines the angle between n and da, compare Figure 3.7.

Figure 3.7: Illustration adopted from [32].

Another important quantity which de-
scribes the decrease of radiation traveling
through material is the absorption or extinc-
tion coefficient χ. It is defined such, that

dE(ab) = χ(x,n, ν)I(x,n, ν) ds da dΩ dν dt

yields the amount of energy removed from
a beam with radiance I(x,n, ν) passing
through a cylindric volume element of length
ds with a cross section da. Is is convenient
to split the absorption coefficient into the so-
called true absorption coefficient κ and the scattering coefficient σ

χ(x,n, ν) = κ(x,n, ν) + σ(x,n, ν). (3.1)

This reflects the fact that there are two main sources for absorption, namely true or thermal
absorption, a process that converts radiation energy into thermal energy of the material,
and scattering, whereby incoming light is redirected after interaction with the atoms of
the material. The latter process usually also includes a change of the light frequency.

Analogously the emission coefficient η is defined such, that

dE(em) = η(x,n, ν) ds da dΩ dν dt

is the amount of radiation energy emitted per time unit and frequency interval dν by a
cylindrical volume element with length ds and cross section da at x into the solid angle
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dΩ in direction n. Like the absorption coefficient, the emission can be split up into two
parts, the thermal emission coefficient q and the scattering part j

η(x,n, ν) = q(x,n, ν) + j(x,n, ν). (3.2)

The phase function p(x,n,n′, ν, ν ′) relates the amount of incoming radiant energy from
direction n and with the frequency ν to the amount of energy with frequency ν ′ that is
scattered into the direction n′

dE(scatt) =
(
σ I ds da dΩ dν dt

)
×

(
p(x,n,n′, ν, ν ′) dΩ′ dν ′

)
.

So the part of the emission which is due to scattering is given by

j(x,n′, ν ′) =

∫ ∫
p(x,n,n′, ν, ν ′) σ(x,n, ν) I(x,n, ν) dν dΩ. (3.3)

The equation of transfer can be derived from the assumption that the change of radia-
tion energy at each location within the radiation field is equal to the the amount of emitted
energy at that location, reduced by the amount of absorbed and scattered energy:

{I(x,n, ν)−I(x + dx,n, ν)} da dΩ dν dt =

{−χ(x,n, ν)I(x,n, ν) + η(x,n, ν)} ds da dΩ dν dt.

With x(s) := p+sn, where p is some reference point at the boundary of the radiation
field, see Figure 3.8, we immediately obtain the differential formulation of the equation
of transfer by ds→ 0

∂

∂s
I(x,n, ν) = −χ(x,n, ν)I(x,n, ν) + η(x,n, ν). (3.4)

Figure 3.8: adopted from [32].

The following (formal) solution to Equation 3.4 is called the integral formulation of
the equation of transfer

I(x(s),n, ν) = I(x(s0),n, ν)e−τν(x(s0),x(s)) +

∫ s

s0

η(x(s′),n, ν)e−τν(s′,s)ds′, (3.5)
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where the optical depth τν(s1, s2), between the two points x(s1) = p + s1n and x(s2) =
p + s2n is defined as

τν(s1, s2) =

∫ s2

s1

χ
(
x(s′)

)
ds′. (3.6)

The formulation (3.5) allows the following intuitive interpretation: The total specific in-
tensity at the location x emitted into the direction n consists of two parts: the sum of all
specific intensity emitted along the ray segment p + s ||x−p||

||n|| n for s ∈ [0, 1], which is
attenuated due to absorption along the ray and the attenuated background intensity that is
emitted at the boundary location x0 into direction n.

3.4.1 Transfer Functions
As discussed in the last section the underlying physical model for direct volume rendering
requires the specification of absorption and emission coefficients χ(x)2, respectively η(x)
at each location within the data volume. These mappings are also called transfer functions
in this context, whereas the process of mapping data values to radiometric coefficients is
called classification.

In general the transfer functions are not given as analytical expression, but are rather
specified via four user-defined lookup tables; three for the emission coefficients for red,
green and blue frequency interval components and one for the absorption coefficients.
Intermediate values are obtained from the these entries by interpolation.

Let the transfer function be denoted by T : Im(f)→ R4 with

f 7→ T (f) := (ηr(f), ηg(f), ηb(f), χ(f)).

There are two ways of performing the classification, which correspond to the order in
which interpolation and the mapping to the radiometric coefficients are carried out: For
so-called pre-classification the discrete data samples are first mapped to radiometric quan-
tities, followed by an interpolation of the resulting emission and absorption coefficients
(Icolor)

Cpre(x) = Icolor(T ◦ f | p0, ...pn)(x).

Here pi denote the sample locations of f that contribute to the interpolated function value
at the considered location x. In contrast to this, the term post-classification is used if the
transfer function is applied after interpolation of the data samples (Idata)

Cpost(x) = T ◦ Idata(f | p0, ...pn)(x).

Since in general Cpre(x) 6= Cpost(x) holds, the question which order is preferable arises.
The answer is provided by sampling theory, see also Section 2.3.

2In order to ease the discussion we will neglect the direction and frequency dependency of the coeffi-
cients in this section.
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Figure 3.9: Comparison of pre-, and post-classification for volume rendering using a
transfer function that contains high frequencies. The image on the left, rendered using pre-
classification, shows severe aliasing artifacts, whereas on the right side post-classification
was employed. (data courtesy of P. Diener, Louisiana State University)

Let us assume that the original signal f(x) was sampled with a frequency ν >
νmax(f). In this case in principle an ideal reconstruction of f according to Theorem 1
is possible. However, this is in general not the case for the composed function T ◦ f ,
since its Fourier spectrum may contain frequency components larger than νmax, which
prohibits a faithful reconstruction of T ◦ f .

In contrast to this, post-classification allows an ideal reconstruction. In this case the
original signal f(x) is reconstructed first and next the composed signal T ◦ I(f) has to
be interpolated using a sample distance that corresponds to the highest frequency compo-
nents in the spectrum of the composed function. A direct comparison of volume rendering
via pre- and post-classification is shown in Figure 3.9.

3.4.2 Emission-Absorption Models

Due to the emission term η(x,n, ν), that at each location x takes into account the amount
of incident, scattered light from all possible directions, solving Equation 3.5 is a compu-
tationally intensive task, that does not allow for interactive image generation rates even
for moderately sized datasets.

The simplified emission-absorption model, introduced by Sabella in 1988 [72], is an
attempt to reduce this complexity. In this approach the scattering of light is completely
ignored and it is assumed that the emission and absorption coefficients are isotropic.
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Hence Equation 3.2 and 3.1 reduce to η(x,n) = q(x), respectively χ(x,n) = κ(x).
Notice that this includes that any frequency dependency can be omitted, since according
to Equation 3.3 the absence of scattering prohibits the mixing of frequencies. Hereby
Equation 3.5 simplifies to

I(s) = I(s0)e
−τν(s0,s) +

∫ s

s0

q(s′)e−τ(s′,s)ds′. (3.7)

According to τ(s1, s2) :=
∫ s2

s1
κ(s) ds, the optical depth between x(s1) and x(s2) depends

solely on the true absorption coefficient κ(s).
There exist various approaches for solving this equation numerically, which may be

classified as image-order or object-order methods. In image-order approaches, also called
raycasting, the resulting intensity for each image pixel is computed by integrating the sim-
plified equation of transfer 3.7 along a ray through the viewpoint and the pixel location.
Raycasting will be discussed in more detail in Subsection 3.4.3.

In contrast to this, object-order approaches traverse the cells of the data in a specific
order and composite the contributions of each cell to the final image. Splatting [95] is
an example for this. In this approach for each voxel a semi-transparent polygonal surface
primitive called footprint is composited onto the image plane, usually in a back-to-front
order. Also texture-based approaches, which leverage the texture units of modern graphics
hardware, fall into this category. We will discuss them in more detail in Section 3.5.
Another example is cell-projection [96], which can be viewed as object-order raycasting.
In contrast to the latter one the ray-integration is carried out on a per-cell bases, followed
by a step in which the separate ray-segments are merged, in order to obtain the final pixel
intensities.

The shear-warp-algorithm [43] incorporates aspects of both, image and object order
approaches. The basic idea is to shear the axes-aligned slices of the data volume, such that
the rows of voxels are aligned with rows of pixels of an intermediate image. The sheared
slices are composited along one of the major axes, replacing trilinear by bilinear interpo-
lation within each slice. In a last step the intermediate image is transformed (“warped”)
in image space to generate the final image. The shear-warp approach is considered as the
fastest software-based volume rendering algorithm. A drawback is that three copies of the
dataset have to be kept in main memory during rendering, one set of slices perpendicular
to the three major axes. Further the shear-warp approach tends to suffer from artifacts due
to the simplified interpolation scheme.
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3.4.3 Raycasting

Figure 3.10: Figure adopted from [32].

Since in general Equation 3.7 has no an-
alytical solution, in most cases the in-
tegration has to be carried out numer-
ically. Therefore the whole ray inter-
val is divided into a set of subintervals
[si, si+1], i = 0, ...n− 1. Here sn corre-
sponds to the camera position , as indi-
cated in Figure 3.10, and s0 is the pa-
rameter where the ray enters the data
volume.

Notice that subintervals do not nec-
essarily have to be of equal lengths. In
Section 4.3 we will present a raycasting
approach where the intervals are chosen
adaptively using local error criteria. According to Equation 3.7 the specific intensity at
sk is associated to the one at sk−1 as follows:

I(sk) = I(sk−1)e
−τ(sk−1,sk) +

∫ sk

sk−1

q(s)e−τ(s,sk)ds. (3.8)

We define the transparency of the ray-segment [sk−1, sk] by

Tk := e−τ(sk−1,sk) (3.9)

and its emission by

bk :=

∫ sk

sk−1

q(s)e−τ(s,sk) ds. (3.10)

Setting b0 := I(s0) (background intensity), Equation 3.8 can be rewritten as

I(sn) = I(sn−1)Tn + bn (3.11)
= (I(ss−2)Tn−1 + bn−1) Tn + bn

= ...

= ((((...(b0)T1 + b1)T2...)Tn−1 + bn−1) Tn + bn

=
n∑

k=0

( bk

n∏
j=k+1

Tj ) =
0∑

k=n

( bk

k+1∏
j=n

Tj ) (3.12)

This gives rise to two kinds of recursive evaluation schemes for the ray integration. Equa-
tion 3.11 motivates a summation starting at the rays entry point to the camera position
(back-to-front), as indicated by the following piece of pseudo code:
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I ← b0 ;
f o r (k = 1 ; k < n ; k = k + 1 ) {

I ← Tk I + bk ;
}

According to (3.12) the summation may alternatively be performed in the opposite front-
to-back order

I ← bn ;
T ← Tn ;
f o r (k = n− 1 ; k > 0 ; k = k − 1 ) {

I ← I + bk T ;
T ← Tk T ;

}
I ← I + b0 T ;

Though for the front-to-back traversal besides the accumulated intensity also the accu-
mulated transparency has to be computed, it has the advantage that the summation can
be stopped once the accumulated transparency is small enough, so that the contribution
of the remaining segments does not change the resulting intensity significantly (early ray
termination).

3.5 Texture-Based Volume Rendering
Another simplification of Equation 3.8 is possible for absorption and emission coefficients
κ(s), respectively q(s), that are piecewise constant within each ray-segment [sk−1, sk]. In
this case Equations 3.9 and 3.10 reduce to

Tk = e
−

R sk
sk−1

κ(s)ds
= e−κk∆s,

where ∆s := sk − sk−1, and

bk =

∫ sk

sk−1

qk e−
R sk

s κ(s)ds

= qk

∫ sk

sk−1

e−κk(sk−s)ds

=
qk

κk

(1− Tk).

Combining this with Equation 3.11 yields

I(sn) = I(sn−1) Tn +
qn

κn

(1− Tn). (3.13)

Although the underlying emission-absorption model removes much of the original com-
plexity of Equation 3.5, the performance of raycasting is still limited by the large number
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of interpolation and compositing operations that have to be performed during the integra-
tion.

The formulation 3.13 allows the utilization of texturing capabilities offered by modern
graphics hardware in order to accelerate the interpolation and accumulation step. Since
standard graphics hardware supports only polygonal rendering primitives 3, the data vol-
ume has be mapped onto a set of polygons, called proxy geometries in this context. Usu-
ally planar slices, aligned with the data volume (2D texture-based volume rendering)
or perpendicular to the viewing direction (3D texture-based volume rendering), are em-
ployed as discussed in Subsections 3.5.1 and 3.5.2. Texture hardware interpolates the
color and transparency values for the polygon fragments within the rasterization stage.
The slices are blended in a back-to-front order in the frame buffer, according to the blend-
ing equation

Ccomp = (1− α) Cold + α Cnew, (3.14)

which is usually also supported by the graphics hardware. Here Cold is the color triple
of the previous fragment stored in the frame buffer, and α and Cnew are the opacity,
respectively the colors of the incoming fragment.

The basic principle of texture-based volume rendering is that Equation 3.14 is equiv-
alent to 3.13 if one identifies

Cnew =
qn

κn

, (3.15)

Cold = I(sn−1), (3.16)
Ccomp = In, (3.17)

α = 1− Tn = (1− e−κk∆s). (3.18)

So storing ( qred

κ
, qgreen

κ
, qblue

κ
, (1 − e−κk∆s)) as the texture’s RGBA-components, blending

according to (3.14) approximates the solution of the Equation 3.7 via Riemann summa-
tion.

Notice that the last component depends on the sample distance ∆s, which requires
the adaption of these components, respectively the associated colormap, if the sample
distance is altered.

3.5.1 2D Texture-Based Volume Rendering
In the 2D texture approach three stacks of planes parallel to the three coordinate planes
are generated in a preprocessing step (object-aligned slices), as indicated in Figure 3.11.
Within these proxy geometries bilinear interpolation is employed. During rendering the
stack with the smallest angle between the actual viewing direction and the slice normals
is blended back-to-front, according to Equation 3.14.

3There exist also specialized hardware solutions dedicated to volume rendering, like the VOLUMEPRO
graphics board [67], that provide direct hardware implementations for raycasting.
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Figure 3.11: For volume rendering via 2D textures, three stacks of planar slices are em-
ployed. For each viewpoint, the set that is most perpendicular to the viewing direction is
rendered.

The advantage of this approach is that hardware support for 2D textures is available on
almost all consumer graphics cards. Since bilinear interpolation is applied, the graphics
performance is high, provided that enough texture memory is available to hold all three
stacks of slices simultaneously in graphics memory.

Drawbacks are artifacts that may arise due to the restriction to bilinear interpolation
and at viewing angles at which the set of texture stack has to be changed. Further the
assumption of a constant slice distance is only fulfilled for parallel projection and a view-
ing direction which is (anti-) parallel to one of the coordinate planes, though this effect
is usually less apparent than the artifacts due to changing the stack of textures. Another
drawback of this approach is the high (texture-)memory consumption, since three stacks
of slices have to be generated.

3.5.2 3D Texture-Based Volume Rendering
Some of the drawbacks of 2D texture-based volume rendering can be eliminated or at
least reduced, if 3D textures are supported by the graphics hardware. In the 3D texture
approach for volume rendering [18, 97] the set of proxy geometries is not precomputed,
but is rather generated on-the-fly. According to the actual viewpoint, the data is sampled
on slices perpendicular to the actual viewing direction (view-aligned slices), see Fig-
ure 3.12. Due to this smooth adaption of the sampling positions, artifacts caused by the
abrupt change of the texture stacks as for 2D textures are avoided.

The 3D texture hardware supports fast trilinear interpolation of texture samples and
further allows to vary the slice distance interactively. For parallel projection correct sam-
pling distances are obtained for all rays and all viewing directions. Though for perspec-
tive projection the distance is correct only for the rays parallel to the viewing direction,
the small errors are hardly visible for normal viewing angles. An computationally more
expensive approach that utilizes tessellated spherical shells centered at the viewpoint as
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Figure 3.12: For volume rendering via 3D textures, a set of slices that are perpendicular
to the actual viewing direction is extracted on-the-fly and blended in the frame buffer.

proxy geometries is described in [44]. It is intended for immersive environments that
usually involve large viewing angles.

Texture-based approaches may suffer from the limited precision of the frame buffer
and the color lookup-table, which may cause round-off errors for intermediate results
in the blending step. This can result in visible artifacts especially if a large number of
highly transparent slices is blended in the frame buffer. Figure 3.13 shows a comparison
between two hardware-supported renderings performed with 8-, and 12-bit precision per
color-channel and a pure software-based renderer that carries out all computations using
floating point precision. At the time this thesis was written, graphics hardware with full
hardware-supported floating-point precision frame-buffer blending was announced by the
leading hardware manufactures.

Further problems arise if the 3D texture is too large to fit into memory. In this case it
is subdivided into smaller sub-textures, usually called texture bricks, which are rendered
separately in a view-consistent order. To avoid artifacts at the boundaries, adjacent tex-
ture bricks have to share a layer of texels, to allow for consistent trilinear interpolation.
Bricking usually results in a large performance decrease, since for each frame multiple
bricks have to be transferred between main and graphics memory.

Pre-classification as discussed in Subsection 3.4.1 is realized if 4-channel textures are
used, storing three color and one transparency value per texel. In this case the interpola-
tion is carried out on the colors. In addition to the general drawbacks of pre-classification,
the high memory requirements of at least four bytes per texel are disadvantageous, in par-
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(a) (b) (c)

Figure 3.13: Comparison of the rendering quality of texture-based approaches using
8-Bit (a) and 12-Bit (b) blending precision and a pure software-based raycasting ap-
proach (c) for a SAMR dataset. In (a) a discontinuous change of the overall transparency
for the different levels is clearly visible, caused by round-off errors due to small opacity
values for the higher resolved levels according to Equation 5.2. This effect is less appar-
ent in Figure 3.13 (b) and not noticeable for the floating point precision rendering in (c).
(dataset courtesy of G. Bryan, Princeton University)

ticular since one of the limiting factors of texture-based approaches is the available texture
memory. Further a change of the transfer function requires a complete redefinition of the
textures, which decreases the performance due to the limited memory bandwidth between
main- and graphics-memory.

However, recent graphics hardware architectures allow post-classification also for
texture-based approaches. On SILICON GRAPHICS workstations, it is supported di-
rectly via the so-called SGI TEXTURE COLOR TABLE extension. Instead of four-channel
(RGBA)-textures, one-channel 3D textures are employed, which store indices into a color
lookup table. The color lookup for each fragment is performed after trilinear interpolation
within the one-channel 3D texture. On consumer graphics hardware this mechanism can
be realized by means of dependent textures, as described in detail in [70].

Texture-based volume rendering has been greatly improved in the last years. Engel
et al. [27] utilize multi-textures and pixel-shader capabilities of recent graphics boards
for efficient texture-based volume rendering for high-frequency transfer functions, an ap-
proach known as pre-integration. Kniss et al. [40] presented interactive volume rendering
for multi-dimensional transfer functions, based on data value, gradient magnitude and
the second directional derivative. Kniss further presented a hardware-accelerated shad-
ing model for volumetric light attenuation effects to produce shadows and translucency
effects in [41]. Of course this is only a small fraction of the work that has been car-
ried out in the field of volume rendering in the last years. We will further summarize
research on hardware-accelerated multi-resolution volume rendering approaches in Sec-
tion 4.1 and 4.2.

Nowadays texture-based approaches can be considered as the state-of-the-art approach
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for volume rendering, since they allow interactive frame rates even for larger datasets.
In contrast to indirect rendering methods, where the achievable rendering performance
is usually limited by the number of polygonal primitives that can be rendered per time
unit (polygon-rate limitation), the performance of direct volume rendering approaches
is mainly limited by the rate of fragment operations (fill-rate limitation), as well as the
amount of available texture memory. In the next chapter we will propose an algorithm
that addresses both of these drawbacks for large, sparse datasets.
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