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Preface

All of the work presented in this thesis grew out of collaborations with other researchers.

For each chapter, I briefly summarize my contribution and acknowledge the contributions

of others.

Chapter 2 represents a conceptual framework for modeling read counts using various

distributions. These ideas grew out of conversations with Ho-Ryun Chung at the Max

Planck Institute for Molecular Genetics (MPIMG) in Berlin and Simon Anders at the

European Molecular Biology Laboratories (EMBL) in Heidelberg.

Chapter 3 was published in Statistical Applications in Genetics and Molecular Biology

[1]. The idea for detecting copy number variants in exome-enriched sequencing data was

proposed by Stefan Haas and with Alena van Bömmel various methods were tested and

evaluated. My contribution was developing the hidden Markov model, implementing the

software and testing the performance. I wish to acknowledge the X-linked intellectual

disabilities project team at MPIMG including H.-Hilger Ropers, Vera Kalscheuer, Ruping

Sun, Anne-Katrin Emde, Wei Chen, Hao Hu and Tomasz Zemojtel, who provided helpful

discussions.

Chapter 4 resulted from a 5 month visit to the group of Wolfgang Huber at EMBL in

Heidelberg. Simon Anders proposed the idea of incorporating priors for dispersion and

log fold change into the DESeq framework. My contribution was to implement these new

statistical methods as a new package DESeq2, with closer integration with core Biocon-

ductor packages. I would like to acknowledge all the members of the Huber group for

helpful discussions.

Chapter 5 resulted from a collaboration with the Transcriptional Regulation Group of

Sebastiaan Meijsing at the MPIMG. I would like to thank Stephan Starick who initially

proposed to investigate the interaction between glucocorticoid receptor and the chromatin

landscape. My contribution was the statistical analysis presented in the chapter. Sebas-

tiaan Meijsing provided valuable feedback during the evolution of the project. I wish to

acknowledge the contributions of Morgane Thomas-Chollier, Katja Borzym, Sam Cooper

and Ho-Ryun Chung.
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Chapter 1

Introduction

1.1 Biological introduction

1.1.1 DNA

DNA is referred to as “the blueprint for life”, as it is the one molecule one could extract

from an organism and possibly produce a nearly identical copy of that organism. For

example, in 1958, when the idea that DNA was the molecular basis of heredity was still

quite new, Gurdon et al. [2] successfully cloned a frog using only the nucleus (and therefore

the nucleic acids) of an adult cell. DNA can be roughly divided into two functional

groups: genes and regulatory elements. Genes are regions of DNA which are “transcribed”

by an enzyme, RNA polymerase, into RNA molecules, some of which will be used to

make proteins (messenger RNA, or “mRNA”) and others which serve enzymatic roles

as RNAs alone (such as those involved in the ribosome, the cell’s protein synthesizing

machinery). Regulatory elements, such as “promoters” and “enhancers” are stretches of

DNA where regulatory proteins called “transcription factors” can bind and then influence

the transcription of nearby genes. Promoters are regions near the transcription start sites

(TSS) of genes and enhancers are typically further away from the TSS. The probability

of binding is determined by the match of the shape of the protein with the particular

sequence of DNA, as well as the presence of other proteins or molecules bound to DNA

nearby. Recently, large-scale efforts have been made to identify all of the genes and

regulatory elements of the human genome, by assaying transcription and protein binding

across many different cell types [3]. This identification effort is critical for the fields of

molecular biology and medicine, because variation in the DNA sequence of both genes and

regulatory elements contributes to an organism’s phenotype, including the propensity to

suffer from diseases.

1.1.2 RNA

The transcription of DNA into mRNA is the first step in the central dogma of molecular

biology: DNA → mRNA (transcription) and mRNA → protein (translation). When a

gene is transcribed into mRNA, one strand of DNA, the “template” strand is used to

make a complementary copy of RNA (with uracil taking the place of thymine). The other

DNA strand is referred to as the “coding” strand as it contains the same sequence as

the mRNA molecule. Information about the mRNA transcript abundance in the cell, or

mRNA “expression”, is valuable, as it can be used to classify cells and tissues into different

states, such as those coming from healthy or diseased tissue [4–6]. Furthermore, sets of
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genes with similar function can be discovered by comparison of mRNA expression across

various conditions [7, 8]. mRNA is not a direct copy of stretches of DNA, but certain

regions called “introns” (a concatenation of “intragenic regions”) are removed from the

mRNA transcript during a process called “splicing”, leaving the remaining pieces which

are called “exons”. Alternative transcripts can be formed from different combinations of

exons of a single gene. The frequency with which exons of a gene are included in mRNA

transcripts varies between cells of different tissues, as well as between healthy and diseased

tissue [9].

1.1.3 Chromatin

The cell nucleus of multicellular organisms does not contain naked DNA, but instead

DNA is typically wrapped around protein complexes called nucleosomes. The DNA, nu-

cleosomes, and other proteins attached to DNA is collectively referred to as “chromatin”

(where the “chroma-” refers to the ability of chromatin to be colored by dyes). In 1973,

researchers first observed that chromatin consists of a repeating pattern of ∼ 200 base

pairs of DNA wrapped around a nucleosome [10]. Nucleosomes themselves are composed

of 8 proteins called histones. Nucleosomes serve many roles in the cell, with perhaps the

most important role being the packaging of long molecules of DNA into tight coils (called

a “30 nm fiber”), and coils of coils. Only through this packaging is it possible to contain

6 billion base pairs of DNA (which stretched out would be around 2 meters) in the cell

nucleus (with a diameter on the order of micrometers).

Nucleosomes can also help direct regulatory proteins to appropriate regulatory elements,

such as promoters and enhancers, mediated through small molecular signals on the N-

terminal tails of the histone proteins which make up the nucleosome. Modifications such as

the addition or removal of methyl or acetyl groups to the histone tails can be performed by

certain enzymes and recognized by other proteins. The histone-modification-recognizing

proteins can then help attract or stabilize transcription factors to certain regulatory ele-

ments, resulting in increased or decreased transcription rates of nearby genes.

In addition to the modifications mentioned above, the presence or absence of nucleosomes

themselves can influence whether a protein can access the DNA at a regulatory element.

This property is referred to as “chromatin accessibility”. Regulatory elements which are in

use, such as the promoters of actively transcribed genes, are particularly accessible. Due

to their functional relevance, researchers are therefore eager to assay histone modifications

and chromatin accessibility along the genome in various tissues of the body and in different

disease states.
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RNA

DNA

3. enrichment

4. amplification

1. extraction from cell

2. fragmentation

5. sequencing

6. alignment & counting

CGCCAAGTCTT...

ATATCGGTTAC...

Reverse transcription 
to cDNA

Figure 1.1: Diagram of a high-throughput sequencing protocol. In step 1, DNA (or
RNA) is extracted from the nucleus of the cell. In step 2, DNA is fragmented (sheared
or sonicated) into smaller fragments. In step 3, certain DNA fragments might be “en-
riched” over others, meaning that they are selected out of the pool and carried to the
next step. For example, “exome enrichment” selects for fragments covering the exons.
The box for step 3 is dashed as it is optional. In step 4, the fragments are duplicated
at varying effficiency through several cycles of polymerase chain reaction (PCR). This
PCR step may introduce bias in the abundance of fragments, based on the DNA se-
quence composition. In step 5, the fragments are “sequenced”, which refers to the
identification (with some error) of the individual base pairs of the fragments using
a sequencing machine. Information representing the strings of identified base pairs,
referred to as “reads”, is then stored in computer memory, often with accompanying
quality scores, which give some sense of the confidence in the identification of the
correct base pair by the machine. In the final step 6, algorithms are used to align
the reads (thin stacked lines) to unique locations in the reference genome (thick line).
Reads can then be counted in non-overlapping genomic ranges, depicted here below
the reference genome.
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1.2 Descriptions of experiments

1.2.1 High-throughput sequencing

The use of high-throughput sequencing in order to assay properties of the cell has grown

at a remarkable pace in the past decade, as the cost of sequencing has dropped by more

than 4 orders of magnitude.1. This technology, which was primarily developed in order

to sequence and assemble genomes, has since been extended in combination with other

lab protocols to produce a plethora of “*-Seq” protocols, including RNA-Seq, ChIP-Seq,

MeDIP-Seq, BS-Seq, DNase-Seq and FAIRE-Seq (reviewed in [11]). In each case, a prop-

erty of the cell is assayed or quantified using identifiable strings of the reference genome as

an addressing system. The remarkable achievement is that, with one experiment, quanti-

tative measurements are made of all regions of the genome at once (except those regions

which are not identifiable at the length of the DNA sequenced.) For concrete examples,

I introduce the four protocols covered in this thesis, DNA-Seq, RNA-Seq, ChIP-Seq and

DNase-Seq, and describe the kind of information which these protocols can provide about

the cell.

1.2.2 Genotyping: DNA-Seq

DNA-Seq is a protocol which allows for the detection of variations between the genome of

an individual being studied and the reference genome. These variations can include single

nucleotide variants (SNV), insertions, deletions, inversions, or even large regions which are

duplicated or deleted (copy number variants, or CNV). The DNA-Seq protocol was rapidly

developed in order to help complete the assembly of the human genome. While techniques

to sequence DNA, such as Sanger sequencing, have existed for more than 30 years, I refer

in this thesis to high-throughput sequencing, wherein millions of small fragments of DNA

are sequenced simultaneously. Figure 1.1 displays a typical sequencing protocol.

After sequencing, many DNA-Seq reads are aligned to the reference genome, as in step 6 of

Figure 1.1. If the individual being sequenced has, at a certain genomic location, a different

nucleotide than the reference genome on one of their chromosomes, this will appear in a

visualization of the aligned reads as a column with a mix of the reference nucleotide and

the alternative nucleotide. Such SNVs might have relevance for disease, especially if they

occur in coding genes or regulatory elements [12].

In this thesis, I will focus on detecting copy number variation from DNA-Seq reads. Copy

number variants can be detected as regions with higher counts of reads (duplications) or

lower counts of reads (deletions) in genomic ranges, compared to neighboring regions or

to the read counts from a reference sample [13–15]. This is depicted in the first panel in

Figure 1.2. Copy number variants are especially of interest to geneticists if they overlap

coding genes, as this could lead to increased or decreased abundance of the protein pro-

1http://www.genome.gov/sequencingcosts/
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DNA-Seq RNA-Seq

ChIP-Seq DNase-Seq

duplication

RNA polymerase

exon intron exon intron exon

mRNA transcript

antibody

nucleosome

histone modification

DNase I

nucleosome

duplication

Figure 1.2: Various experiments which can be performed using high-throughput se-
quencing technology. Below each schematic of the molecules and enzymes is shown
how the resulting sequencing reads (thin short lines) would align to the reference
genome (thick line). The accumulation of reads represents different kinds of informa-
tion for each experiment.

duced by that gene. If the gene is truncated or otherwise altered by the copy number

variant, this could lead to alterations of the protein.

1.2.3 Gene expression: RNA-Seq

RNA-Seq is used to identify mRNA transcripts, including novel transcripts and transcripts

with alternative exons, and to measure the abundance of transcripts [16–18]. There are

a few critical differences between the DNA-Seq and RNA-Seq protocols, firstly that the

mRNA must be reverse transcribed (using an enzyme called “reverse transcriptase”) into

cDNA (complementary DNA), so that it can be sequenced. RNA-Seq protocols can be

either “unstranded”, in which case reads from both the template strand and coding strand

of the gene are generated, or “strand-specific” in which case reads align either to the

template strand or the coding strand, depending on protocol steps. Secondly, it is common

in RNA-Seq to enrich for RNA molecules which end with a long string of adenosines

(referred to as a “poly(A) tail”) before the reverse transcription. This effectively enriches

the resulting pool for mRNA molecules over the highly abundant rRNA (ribosomal RNA)

and tRNA (transfer RNA).

It should be noted that only a portion of the reads produced by mRNA transcripts will

align easily to the genome; those reads which fall completely within exons (shown in the

second panel of Figure 1.2) can be easily aligned. Reads which include the junctions

between adjacent exons will either need to be aligned to a transcriptome (the gene regions
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with introns removed), or to be aligned using spliced read alignment algorithms [19, 20]

which allow for large deletions in the reference genome (the introns). An example of this

kind of read is diagrammed in Figure 1.2, with a curved dashed line connecting the two

ends which overlap exons.

Once the RNA-Seq reads have been aligned to the genome, potential novel transcripts

can be identified as regions with accumulations of reads. Alternative exon usage can be

detected when a spliced read alignment assigns one read part to one exon, and then skips

over an exon before assigning the other read part to the following exon. Finally, transcript

or gene abundance (summarizing over the different transcripts of a gene) can be measured

as the number of reads aligning to all the exons of a transcript or gene, depicted in the

second panel of Figure 1.2. These read counts can be used to estimate the number of

mRNA transcripts in the original cell after normalizing for gene length [17], to compare

levels of mRNA transcripts across samples [21–23], and to detect alternative exon usage

[23, 24].

1.2.4 Chromatin state: ChIP-Seq and DNase-Seq

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) is a protocol used to

infer the binding affinity of proteins to DNA. ChIP-Seq read counts along the genome can

be used to localize protein binding sites and to infer quantitatively how frequently the

binding is occurring [25]. In the ChIP-Seq protocol, proteins associated with DNA are

crosslinked to the DNA. Antibodies are then used to enrich for DNA fragments associ-

ated with proteins of interest. After the enrichment, the crosslinks are reversed and the

remaining steps are identical to DNA-Seq. The resulting pattern of sequenced reads is

depicted in the third panel of Figure 1.2, where accumulations of reads indicate regions of

the genome which were bound by the protein in some of the cells in the sample.

DNase-seq is a protocol used to determine regions of chromatin accessibility along the

genome. DNA in regions where nucleosomes are not tightly packed is generally more

accessible to proteins, and is therefore preferentially cleaved by endonucleases like DNase

I. The regions are therefore referred to as “DNase hypersensitive sites”, or DHS. In order

to measure chromatin accessibility along the entire genome, chromatin extracted from the

nucleus is treated with the DNase I and the resulting fragments are sequenced [26, 27],

as depicted in the fourth panel of Figure 1.2. As with ChIP-Seq, the resulting pattern of

reads aligned to the reference genome indicates which regions were accessible to proteins

in some of the cells in the sample. DNase hypersensitivity, as measured by DNase-seq, has

been used to characterize human cell lines, revealing cell-type-specific regulatory elements

[28–30].

1.3 Most experiments are ensemble averages

In the high-throughput sequencing assays mentioned above, it is important to keep in mind

that the resulting counts of reads typically do not come from individual cells. It is useful to

6



borrow the concept of the “ensemble average” from statistical mechanics; observations are

an average over a period of time, and over a population of cells, possibly heterogeneous.

For an example of time averaging, consider that mRNA transcripts have a lifespan in

the cell after they are transcribed and processed. The counts of reads from a typical

RNA-Seq experiment therefore provide information about the steady-state population of

mRNA transcripts. Unless a specific protocol is used to enrich for nascent transcripts,

these counts alone cannot be used to estimate the number of transcripts being produced

at a given moment. For an example of population averaging, consider that in a single

cell, a section of DNA on a single chromosome is either accessible or not. The number

of DNase-Seq reads at a given genomic location therefore provide a continuous measure

of the accessibility over a population of cells. It is important to keep in mind that these

counts can be used to infer time- and population-averages.

Remarkably, researchers are now moving toward analysis of single cells [31, 32], as well as

toward protocols which reduce the biases associated with amplification [33]. If the technical

difficulties can be overcome, biologists and bioinformaticians can hope for future datasets

where the resulting sequenced read counts are directly proportional to the number of

molecules in the original cell. However, even in this case, statistical modeling of read counts

will be useful in order to estimate the biological variation across a sample of individual

cells.

1.4 Opportunities and challenges of genomic count data

The adoption of high-throughput sequencing machines to assay various properties of the

cell has radically changed the kind and scale of information which is available to biologists.

The ability to generate genome-wide maps from a single experiment means that experi-

ments need not only be performed to test hypotheses, but can be performed to generate

hypotheses. For a bioinformatician or statistician, genome-wide datasets allow for the

development of new normalization techniques and new estimators, which harness shared

information across many genomic observations and across samples.

A number of challenges also arise in moving to sequencing data as an all-purpose assay.

There are known biases affecting the amount of sequencing reads, many of which arise

from the amplification step. One well-studied bias is the dependence of read counts on the

GC content, the number of G’s and C’s in the DNA fragment [34]. Another problem with

sequence-based assays is the reliance on a reference genome as an addressing system for all

reads. Reads which do not align uniquely to one position in the reference genome, so called

“ambiguously mapped” reads, present a problem for estimation and hypothesis testing.

One solution is to discard these reads, however this comes at the cost of disregarding some

portion of the reference genome, the size of which is inversely related to the length of the

sequenced reads.
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1.5 Thesis objective and structure

1.5.1 Objective

The goal of this thesis is to formulate statistical models for sequence count data, which

help to identify signals of interest while accounting for technical artifacts. Across three

different experimental protocols, DNA-Seq, RNA-Seq and sequencing-based chromatin

assays, discrete distributions are used with a covariate-dependent mean parameter and a

parameter relating to the variance. These models all take advantage of the genome-wide

scale of experiments by sharing information across genomic ranges in order to answer

biologically relevant questions about the cell.

1.5.2 Structure

In Chapter 2, I introduce the statistical framework for the thesis, in particular the discrete

distributions, such as the binomial, the Poisson and the negative binomial distributions.

I list some advantages to modeling with discrete distributions rather than working with

transformed counts or using non-parametric methods.

Chapter 3 describes a hidden Markov model (HMM) for detecting copy number variants in

exome-enriched DNA-Seq data. The HMM has negative binomial emission distributions,

wherein the hidden state is the copy number state of the sample at a particular genomic

range.

Chapter 4 describes a generalized linear model (GLM) for detection of differential gene

expression from RNA-Seq read counts. Novel techniques are introduced for sharing infor-

mation across genes to improve the estimation of dispersion and fold changes.

Chapter 5 describes a hierarchical Bayes model for the associations between transcription

factor binding and chromatin and sequence features. The model is constructed in such

a way to allow for comparison of these associations across experiments and across cell

types.
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Chapter 2

Motivation of discrete

distributions for sequencing counts

2.1 Multinomial, binomial and Poisson distributions

In this chapter, I motivate the use of various discrete distributions for modeling the counts

of reads mapping to a genomic range. In high-throughput sequencing experiments, the raw

data are millions of reads which are typically aligned to locations in the genome. Consider

Ki, the number of sequencing reads which can be assigned to a particular region i. A

sequenced read can be thought of as a draw of a colored ball from an urn, where there are

as many colors as regions i and the urn represents a large pool of DNA fragments. The

probabilities ~p for drawing a ball of each color from the urn are given by the proportions

of DNA fragments arising from each genomic region1. If the total number of sequenced

reads N is much smaller than the number of DNA fragments, then the vector of counts
~K will follow a multinomial distribution. Technical replicates of the experiment, where

one draws repeatedly from the large pool of DNA fragments, should look like independent

and identically distributed draws of the multinomial distribution. This presumes that

the proportions ~p are not changed by each draw, which is a safe assumption when the

number of DNA fragments needed for sequencing is much smaller than the number of

DNA fragments in the large pool.

The random varible Ki, when considered alone, is distributed as a binomial random vari-

able, with number of trials N equal to the total number of sequenced reads and success

probability pi, the proportion of fragments in the large pool arising from region i. As

the number of sequenced reads becomes large and the probability pi shrinks, the binomial

distribution converges to a Poisson distribution with mean equal to Npi. As shown in

Figure 2.1, these two distributions are very similar already with N = 100, and pi = 1/10.

In high-throughput sequencing experiments N is typically greater than one million reads.

In RNA-Seq experiments, with reads counts for each gene, pi will be typically less than

1/1000. This justification for the use of the Poisson distribution is empirically supported

by Marioni et al. [18], who show that for technical replicates of RNA-Seq experiments,

99.5% of genes are well approximated by a Poisson distribution. It is suggested that

multiple technical replicates can be added together as a single sample for the purpose of

RNA-Seq analysis. This recommendation follows from the fact that the sum of indepen-

dent Poisson random variables is also distributed as a Poisson random variable with a new

mean equal to the sum of the individual means.

1To be more specific, the probabilities depend on both the proportions of fragments from each genomic
region and on the efficiency of the fragment to be successfully sequenced.
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Figure 2.1: The binomial distribution with 100 trials and probability of success 1/10
and the Poisson distribution with mean 10. With a large number of trials and small
probabilities, the binomial is well approximated by a Poisson. The discrete probabil-
ities are joined by lines for ease of visualizing multiple distributions.

2.2 Overdispersion and Poisson mixture distributions

2.2.1 Overdispersion

While the idealized experiment described above, with repeated draws from a very large

pool of DNA fragments, may be appropriate for the case of technical replicates, these

assumptions are not appropriate for “biological replicates”. Biological replication of an

experiment implies that a new pool of DNA fragments is generated, which will not have an

identical probability vector ~p of proportions from various regions of the genome. So while

the Poisson approximation of the binomial distribution still holds for an individual sample

– as N is still large and pi small – the expected value for the counts for feature i and sample

j, E(Kij), will vary for each sample j. A distribution where one of the parameters itself

varies according to a distribution is referred to as a compound or mixture distribution2.

When the variance of a Poisson mixture is greater than the mean, the counts are said

to be “overdispersed” with respect to a Poisson distribution. In the following sections I

consider two Poisson mixture distributions.

In order to build a Poisson mixture distribution, the distribution for the mean parameter

should satisfy the following two properties: (1) the distribution should have support on the

non-negative real numbers, as it represents the expected value of a sequence of non-negative

integers; (2) the distribution should have at least two parameters in order to specify both

the mean and the variance. Property (2) allows the Poisson mixture distribution to include

(in the limit) the Poisson distribution, when the variance of the mean parameter goes to

zero. This is useful in the case that the biological replicates are actually more like technical

replicates, i.e. that the proportions ~p between the pools of fragments are near identical.

2In this thesis, I will refer to Poisson mixtures, as the term “compound Poisson” is used to refer to a
sum of N random variables, when N is Poisson distributed.
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2.2.2 Poisson gamma / negative binomial distribution

One distribution which satisfies the two properties above is the gamma distribution. The

Poisson-gamma mixture distribution, a Poisson distribution with a gamma distributed

mean parameter, is most commonly referred to as the negative binomial distribution,

shown in Figure 2.2. The name “negative binomial” refers to the fact that this distribution

arises as well when counting the number of Bernoulli trials which must occur before a

certain number of failures have occurred. However, this interpretation as a sequence of

trials is not relevant for the context of this thesis. The density for a random variable

K ∼ NB(µ, α), with a mean parameter µ > 0 and a dispersion parameter α > 0 is defined

by:

P (K = k) =
Γ(k + 1/α)

k! Γ(1/α)

(
µ

µ+ 1/α

)k
(1 + µα)−1/α (2.1)

In this parametrization, the dispersion parameter α is equal to the inverse of the number

of failures, or “size”, in the formulation as a sequence of Bernoulli trials. The mean and

variance is then given by:

E(K) = µ, Var(K) = µ+ αµ2 (2.2)

The negative binomial was described first in ecological contexts, for calculating the number

of a particular species in various locations or over time; the initial papers on estimators

for the dispersion parameter are set in this ecological context [35–37]. Robinson et al. [21]

and Anders and Huber [22] have suggested the negative binomial for differential analysis

of sequence count data, including RNA-Seq. As α → 0, the negative binomial converges

to a Poisson distribution, so satisfying property (2).
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Figure 2.2: Poisson and negative binomial distributions, all with a mean value of
10. As the dispersion parameter, α goes to zero, the negative binomial distribution
converges to a Poisson.
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2.2.3 Poisson log normal distribution

Another possible distribution for the mean parameter of the Poisson distribution is the log

normal distribution, resulting in a Poisson log normal distribution [38]. While the Poisson

log normal does not have a closed-form distribution as the negative binomial, a random

sample can be easily constructed by generating a normal random variable, Z ∼ N (m,σ2),

and then generating counts K ∼ Pois(eZ). Note that E(eZ) = em+σ2/2, i.e. the mean of

eZ is not simply the exponentiated mean of the normal random variable Z. While the

negative binomial and Poisson log normal look very similar for low values of α and σ2, as

in Figure 2.3, they diverge for higher values of these two parameters. As the dispersion

increases, the negative binomial puts increasing weight on the probability, P (k = 0),

however the Poisson log normal puts more weight on the right tail, seen in Figure 2.3. In

this thesis, I will use for some applications the negative binomial and for other applications

the Poisson log normal, with mathematical and computational convenience being the

deciding factor3.

2.2.4 Additional approaches involving discrete distributions

Two other approaches to count data, not used in this thesis but worth noting, are the zero-

inflated negative binomial and the quasi-Poisson. The zero-inflated negative binomial is

a negative binomial distribution with an additional peak of variable height at P (k = 0).

This distribution has been successfully applied to ChIP-Seq data by Rashid et al. [39], and

is useful for count data which contain many zeros and many large values as well, which can

be incompatible with the negative binomial or Poisson log normal distributions. The quasi-

Poisson approach has been successfully used for RNA-Seq data by Lund et al. [40]. In this

case the parameters are fit as if the counts were generated from a Poisson distribution,

however all inference is performed on a log likelihood which is scaled by the estimated

overdispersion [41]. Because the scaled log likelihood does not correspond to a proper

likelihood, it is referred to as a “quasi-likelihood”.

2.3 Comparison of discrete distributional modeling with al-

ternatives

2.3.1 Why use discrete distributions?

At this point, one could ask what is gained by using discrete distributions for modeling

sequence count data. One could alternatively use non-parametric methods such as permu-

tation tests, or transform the data and use familiar statistical tests for normally distributed

data, such as t-tests. In this section, I describe the differences and advantages from using

3The negative binomial has a closed-form distribution and so derivatives can be taken in order to
optimize parameters. The Poisson log normal, however, is easy to implement in a hierarchical Bayes
setting.
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Figure 2.3: On the left, the negative binomial (µ = 10 and α = 0.1) and Poisson log
normal distribution (m = log(10) and σ2 = 0.3). On the right, the negative binomial
(µ = 10 and α = 2) and Poisson log normal distribution (m = log(6) and σ2 = 1.05),
which have approximately equal mean and variance.

discrete distributional models over non-parametric approaches or transformations followed

by tests based on normal assumptions.

2.3.2 Non-parametric modeling

If a model is “parametric” it means that the data is assumed to follow a certain distri-

bution, which has one or more parameters which must be estimated. Non-parametric

models attempt to make inferences about the data without making assumptions about

the underlying distributions. Non-parametric approaches are therefore desirable, as new

datasets will surely arise which do not exactly fit the parametric assumptions of even

well-tested methodologies. A number of interesting non-parametric approaches have been

proposed for analyzing high-throughput experiments, which include comparing the ranks

of raw data between experiments [42, 43] and using resampling strategies [44]. I offer two

reasons why one might chose a parametric model, despite the expected robust performance

of non-parametric alternatives.

One advantage for parametric models is that they offer easily interpretable estimates of

relationships between variables. For example, parametric models for analyzing differences

in the means of counts between groups offer fold change estimates (or “effect size” esti-

mates) with estimates of standard error or posterior distributions for model parameters.

While rank-based methods or resampling strategies also offer statistical inference on the

null hypothesis of no difference between groups, the calculation of effect size is not built

into the method.

Another advantage of parametric models is the ability to handle small sample size and

complex experimental design. Rank-based methods or resampling strategies generally

rely on asymptotic behavior of a certain test statistic, which can break down due to the
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granularity of datasets with small sample size. In the case of small sample size, rank-based

methods cannot take into account the size of differences between groups when performing

statistical inference. For example, the Mann-Whitney-Wilcoxon test (a rank-based test)

assigns the same test statistic and p-value to a comparison of counts {1, 2} vs {3, 4} and

{1, 2} vs {100, 101}, because the ranks are identical in either case. Permutation tests are

limited by the size of the set of all permutations in order to generate p-values. With small

sample size and thousands of genomic ranges to test across, significant differences might be

lost due to multiple test correction [45]. While it might be difficult to estimate parameters

from datasets with small sample size, I will describe in later chapters how information

can be pooled across genomic ranges in order to generate robust estimates of parameters.

Finally, parametric models such as linear models and generalized linear models allow for

the analysis of experiments with complex designs, such as paired tumor/normal samples,

where confounding variables are controlled for in order to estimate the effect of a variable

of interest. Non-parametric models cannot always be extended easily to accomodate these

more complex designs.

2.3.3 Parametric modeling on transformed counts

Another approach instead of using discrete distributions would be to apply a transforma-

tion on counts and then use parametric models which are appropriate for real-valued data.

For example, in order to compare counts between groups, one could take the log of the raw

counts – adding a pseudocount in order to produce finite output even with counts of zero

– and then use t-tests or F-tests which are appropriate for normally distributed data. In

this section, I will briefly present some troubles which might arise from transformed data,

and demonstrate differences in statistical power of different approaches using simulation.

Central to the question of how and whether to transform, is the issue of how the variance

of the counts changes for subgroups with low or high mean count. Raw counts and

transformed counts are often “heteroskedastic”, meaning that the variance is different for

different subgroups of the data. Heteroskedasticity is a problem for linear regression for

example, which assumes that the dependent variable y is a linear combinations of columns

of X plus independent error terms ε. The linear regression model is misspecified if the

distribution of ε has a dependence on columns of X or on y.

For Poisson distributed data, the variance is equal to the mean, and for negative binomial

the dependence is given by Eq. 2.2, so in both cases the counts are heteroskedastic. For

Poisson distributed data, it is recommended to take the square root of the counts in order

to stabilize the variance for different mean values. If the counts are overdispersed, the

square root will no longer stabilize the variance. This is shown in Figure 2.4, where the

variance for random samples of Poisson and negative binomial distributed counts is plotted

against the mean parameter µ. More sophisticated approaches should be used instead,

which estimate the dependence of the variance on the mean over many genomic ranges.

“Variance stabilizing transformations” are one method, which model the variance-mean

dependence and use this to derive a transformation [46, 47]. Another approach is to address
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the variance-mean dependence further downstream, during the statistical inference steps

[48].
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Figure 2.4: The empirical variance of transformed count data. On the left, the vari-
ance of log transformed counts plus a pseudocount of 1, and on the right, the variance
of square-root-transformed counts. For each transformation, three different count dis-
tributions are plotted: a Poisson and a negative binomial with dispersion parameter
α = .01, and with α = .5. The variance of the log transformed data generally de-
creases with increasing mean, while the variance of the square root transformed data
generally increases with the mean. The square root transform apparently stabilizes
the variance for Poisson distributed counts.

Even if a transformation is applied which effectively stabilizes the variance, the perfor-

mance of the standard tests on transformed counts can fall behind those based on discrete

distributions. For a demonstration of this, suppose Poisson distributed counts K for two

groups {0, 1}, which have expected values µ0 and µ1, respectively. The log2 fold change

between the two groups is then log2(µ1) − log2(µ0). I compare two approaches: the like-

lihood ratio test for a negative binomial generalized linear model (abbreviated NB GLM)

and a standard t-test on transformed data. The negative binomial generalized model is

formally introduced in the next section, however for this demonstration it is only necessary

to know that it models both the mean and the dispersion of count data. Alternatively, a

t-test with equal variances is applied to counts which have been log transformed adding a

pseudocount of 1, or counts which have been transformed by taking the square root. Both

the NB GLM and the t-test attempt to estimate the group means and a parameter for the

variance.

The results of this comparison demonstrate that for small counts or large counts with

small fold changes, the discrete distribution approach is more sensitive to detect true

differences than the t-test on transformed counts. Figure 2.5 shows the relative gain in

statistical power of the NB GLM over the t-test on transformed counts. All cells in the

figure represent data where a true difference in mean exists between the two groups. The

negative binomial model outperforms the t-test for almost all cells, though the advantage

disappears as the counts grow large and the fold change becomes small. Note that the NB

GLM outperforms the t-test and square root on Poisson distributed data, even though
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the square root was shown to effectively stabilize variances of Poisson distributed data in

Figure 2.4. Supplementary Table B.1 shows that under simulated data with no difference

between groups (a “null dataset”), all methods control Type I error, the probability to

reject the null hypothesis when there is no true difference between groups.
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Figure 2.5: The relative power of testing with discrete distributions over testing with
transformed counts, for difference in mean between two groups with three samples
each. Plotted in each cell is the number of negative-binomial-based tests which re-
jected the null hypothesis divided by the same number for t-tests on log (left) or
square root (right) transformed counts, over 1000 replications. The x-axis shows the
true mean for one group, and the y-axis shows the log2 fold change for the other
group. As the mean increases and the fold change decreases, there is decreasing gain
in power from modeling with a discrete distribution.

2.4 Introduction to the generalized linear model

Models using discrete distributions benefit from interpretable coefficients, a unified ap-

proach regardless of sample size or experimental design, and increased power compared

to a standard test of differences between two groups. I now introduce the “generalized

linear model” (GLM) for count data, a form of which will be used in the following three

chapters. They are “linear models” in that a column vector ~β of real numbers is used to

create a linear combination of the columns of a data matrix X, written as a matrix multi-

plication X~β, which minimizes the error in approximating a target vector. “Generalized”

refers to the fact that the target vector is constructed using a “link function” which can

be applied to many different kinds of data, including continuous data on the real numbers,

continuous non-negative data, non-negative integers (as with count data), and binomial

or multinomial outcomes [49]. In the GLMs used in this thesis, a log link function is used,

meaning that the variables in X have multiplicative effects on the counts, with the size of

the effect specified by ~β. Multiplicative effects are more appropriate than additive effects,

as additive effects could lead to negative expected values which are impossible for counts.
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The form of the GLM used in this thesis depends on the biological question and the type

of data used for modeling. In Chapter 3 and Chapter 5, counts of reads in genomic ranges

are modeled using a data matrix X, which contains covariates which also run along the

length of the genome. The counts Ki of reads falling in genomic range i are given as:

Ki ∼ NB(µi, αi) (2.3)

log(µi) = xi∗~β (2.4)

where µi is the expected mean, αi is a dispersion parameter, and xi∗ is the i-th row of

a matrix X containing the covariates. The coefficient vector ~β contains estimates of the

expected log fold change in counts for each column in X, and is estimated once over all

genomic ranges i of the genome.

In Chapter 4, an different model is used to account for multiple samples and to test for

differences between these samples for every genomic range. The matrix X is called a

“design matrix”, and it has as many rows as the number of samples. The columns of X

are variables containing information about the samples, e.g. control or treatment group,

age, sex, etc. A separate coefficient vector ~βi is fit for each genomic range i. The counts

Kij of reads falling in genomic range i and for sample j, are given by:

Kij ∼ NB(µij , αi) (2.5)

log(µij) = xj∗~βi (2.6)

where xj∗ is the j-th row of the design matrix X. The vector ~βi again contains estimates

of expected log fold changes in counts for each column of X.

Each chapter has some variation on the basic GLM presented above: in Chapter 3, the

mean parameter is a composite of a copy number ratio and a GLM-like term; in Chapter 4,

an additional factor is incorporated in Eq. 2.6 to control for sequencing depth, and priors

are used to estimate αi and ~βi; in Chapter 5, the model is expanded to a hierarchical

Bayes Poisson log normal model, though the form is similar and the interpretation of the

parameter ~β as log fold changes remains the same.

2.5 Parametric model fit

For parametric models, the question remains how badly things can go wrong if the data

does not conform to the specified distribution. This can occur for the negative binomial

if there are mostly small non-zero counts with a small percentage of very high counts. As

can be seen in Figure 2.3, the negative binomial distribution with high dispersion shifts
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more of the probability density towards zero, so such counts will not fit well to a negative

binomial.

In Chapter 3 (estimating copy number state from DNA-Seq read counts), a small per-

centage of high counts will not break the model, as the copy number state of neighboring

genomic ranges will reduce the likelihood of calling a single range as copy number variant,

despite an abnormally high count. In Chapter 4 (differential expression analysis of RNA-

Seq data), outliers pose more of a problem, because a coefficient vector ~βi is fit for each

genomic range i. Here, Cook’s distance is used to detect genomic ranges with individual

counts which overly influence model parameters [50]. In Chapter 5 (hierarchical modeling

of ChIP-Seq data), the parameters are estimated over hundreds of thousands of features

and control experiments are used to accounts for technical artifacts on read counts.
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Chapter 3

Modeling read counts for CNV

detection in exome sequencing

data

3.1 Introduction

Copy number variants (CNVs) are regions of a genome present in varying number in

reference to another genome or population. CNVs are increasingly recognized as important

components of genetic variation in the human genome and effective predictors of disease

states. CNVs have been associated with a number of human diseases including cancer [13],

autism [51, 52], schizophrenia [53], HIV (susceptibility) [54], and intellectual disability [55].

These variants produce phenotypic changes through gene dosage effects, when the number

of copies of a gene leads to more or less of a gene product, through gene disruption, when

a CNV breakpoint falls within a gene, or through regulatory effects, when a CNV affects

regulatory sequences such as enhancers and insulators [56]. Recent studies report that

20 − 40 megabases, around 1% of the genome, are copy number variant in individual

human genomes, making CNVs a larger source of basepair variation than single nucleotide

polymorphisms [57, 58].

Two primary technologies for genome-wide detection of CNVs are array comparative

genomic hybridization (arrayCGH) and high-throughput sequencing (HTS). ArrayCGH

measures the fluorescence of two labeled DNA samples, which competitively bind to many

probe sequences printed on an array. When the values from the probes are lined up ac-

cording to genomic location, regions with variant copy number ratio can be observed as

consecutive probes with higher or lower fluorescence ratio. CNVs exhibit a number of dif-

ferent signatures in resequencing data, where HTS reads from a sample are mapped to a

reference genome, as reviewed by Medvedev et al. [59]. One kind of HTS signature is given

by aberrant distances between the mapped positions of a paired end fragment overlapping

a CNV, or between the ends of an unmappable read overlapping a CNV breakpoint. An-

other HTS signature, which this paper will focus on, is the amount of HTS reads mapping

to regions along the chromosome, or “read depth”. The signature in this case is a region

with higher or lower read depth compared to a control sequencing experiment, or com-

pared to other regions within an experiment, assuming that HTS reads are distributed

uniformly along the sample genome.

The read depth CNV signature is similar to the pattern seen in arrayCGH, so it is helpful

to review the algorithms devised for this task. Popular algorithms for analyzing array-

CGH data include circular binary segmentation [60] and hidden Markov models [61, 62].
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Hidden Markov models are useful for segmentation of many kinds of genomic data, as they

represent linear sequences of observed data made up of homogeneous stretches associated

with a hidden state. There are efficient algorithms for assessing the likelihood of an HMM

with certain parameters given observed data and for estimating the most likely sequence

of underlying states for a set of parameters [63]. The HMMs designed for arrayCGH data

take as input log ratios of measured fluorescence, a continuous variable, while read depth

data consists of discrete counts of reads. We will therefore consider how to adjust the

HMM framework to model read counts.

The main obstacle for CNV detection from read depth is the variance due to technical

factors rather than copy number changes. HTS reads are subject to differential rates

of amplification before sequencing and differential levels of errors during sequencing and

mapping. For any HTS experiment, read depth in a genomic region can be related to local

GC-content, as well as sequence complexity and sequence repetitiveness in the genome

[64]. In whole genome sequencing, it has been shown that normalizing read depth against

GC-content can be sufficient to predict CNVs accurately [13–15, 65, 66]. In paired se-

quencing experiments, such as in tumor/normal samples, position-specific effects can be

eliminated through direct comparison, similarly to the elimination of probe-specific effects

in arrayCGH [67–71]. However, HTS experiments do not always cover the whole genome

and do not always include a reference sample sequenced using the same experimental

protocol.

In targeted sequencing, such as exome sequencing, DNA fragments from regions of interest

are enriched over other fragments and sequenced. Ideally, the sequenced reads map only to

the targeted regions. Targeted sequencing therefore results in fewer positions at which to

observe a change in read depth attributable to a CNV. Most target enrichment platforms

use the following steps:

1. DNA from a sample is fragmented and prepared for later sequencing.

2. Prepared DNA fragments are hybridized to biotinylated RNA oligonucleotides and

captured with magnetic beads or hybridized to probes on an array.

3. The beads are washed, eluted and the RNA is digested or the array is washed and

eluted.

4. The remaining DNA sequences are amplified and sequenced.

Within the targeted regions, the enrichment steps lead to less uniform read depth than

in whole genome sequencing, but the read depth pattern is consistent among samples

using the same sequencing technology and enrichment platform. Sequencing with three

different technologies using the same enrichment platform, Harismendy et al. [72] find “a

unique reproducible pattern of non-uniform sequence coverage” within each group and

low correlation of read depth across different technologies. Testing three different target

enrichment platforms with the same sequencing technology, Hedges et al. [73] report high

correlation within samples from the same platform and low correlation across different

platforms. Taking advantage of the reproducibility of read depth, Herman et al. [74] and
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Nord et al. [75] are able to identify CNVs in targeted sequencing by normalizing read depth

in individual samples against average depth over control samples, though thresholds must

be set for calling a position as CNV.

We sought to extend the HMM framework for CNV detection in targeted sequencing

data, modeling read counts in non-overlapping genomic ranges as the observed variable

generated from a distribution depending on the hidden copy number state. Similar to the

usage of covariates by Marioni et al. [62] in modulating transition probabilities, we outline

a model which fits non-uniform read counts to positional covariates such as background

read depth, GC-content and genomic range width. Background read depth is generated

similarly to the methods of Herman et al. [74] and Nord et al. [75] by taking the median

of normalized read depth per genomic range over a control set. By using a number of

explanatory covariates, one can analyze samples which have positive but low correlation

with background read depth and residual dependence on GC-content. Another benefit of

the HMM framework is the forward algorithm, which allows for fitting the distributional

parameters without knowing the underlying copy number state. The model formulation

replaces preprocessing, thresholding, and genomic-range-merging steps with the optimiza-

tion of a statistical likelihood over a parameter space.

We will present an HMM for predicting copy number state in exome and other targeted

sequencing data using observed read counts and positional covariates. We show that

this model can successfully detect private CNVs in an exome sequencing project using

all samples to generate background read depth. We then evaluate the robustness of our

method using a control set from publicly available exome sequencing data from an alternate

enrichment platform. We simulate CNVs of various sizes and copy number in exome

sequencing data and find that our model outperforms normalization and segmentation

methods in recovering the simulated CNVs. Finally, we summarize the results and discuss

possible extensions of the method.

3.2 Methods

3.2.1 Modeling resequencing read counts

As a measure of read depth, we count the number of start positions of reads with high

mapping quality in non-overlapping genomic ranges along a chromosome. To examine the

characteristics of targeted sequencing read depth, we will count reads from a whole exome

sequencing project (Li et al. [76], discussed later) in genomic ranges covering only the

consensus coding sequence (CCDS) [77]. CCDS regions larger than 200 base pairs (bp)

are subdivided evenly into genomic ranges of around 100 bp. The distributions of counts

per genomic range for one sample often have positive skewness (Figure 3.1). The maximal

count in a genomic range can be up to 20 times the mean count.

Another method of setting genomic range locations, by covering the targeted regions with

fixed-size genomic ranges, is comparable in terms of the qualitative signature of CNVs
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Figure 3.1: Distribution of read counts in genomic ranges covering the CCDS regions
of chromosome 1 for one exome sequencing sample, cropped at 100 reads per genomic
range.

in read depth and the resulting predicted CNV breakpoints. Setting genomic ranges

within the CCDS regions has two advantages though. First, the CCDS regions are more

likely to be covered equally across different enrichment platforms, enabling cross-platform

comparison or control sets. Second, we find that the extremes of the targeted regions have

more variability than the centers. By starting with the CCDS regions we can avoid these

variable flanking regions. Genomic range width in the range of 1-200 bp was chosen based

on the size distribution of annotated coding regions.

A suitable distribution for modeling the observed read counts in genomic ranges should

have support on the non-negative integers. We could consider the Poisson distribution

with a position-dependent mean parameter, representing the underlying rate of technical

inflation of read counts. If the counts are distributed as a Poisson, then replicates should

have equal mean and variance. We can check this assumption with read counts from

a set of samples with similar amount of total sequencing. While these samples are not

replicates, we expect that the private CNVs and SNPs which would alter read counts per

sample should be rare in the coding regions. Plotting the variance over the mean for the

read counts shows that most genomic ranges fall above the line y = x, and are therefore

overdispersed for Poisson distributed data (Figure 3.2).

We use a negative binomial distribution to model the counts, and we use positional co-

variates to account for as much variance in read counts over genomic ranges as possible,

allowing for the situation that unknown factors lead to overdispersed counts. We will

first attempt to fit a single dispersion value α over all genomic ranges, then add model

parameters to allow for α to vary over genomic ranges.

To obtain a measure of the positional non-uniformity in read depth, we calculate the

median of sample-normalized read counts over a control set. Because samples vary in the

total number of reads which map to the reference genome, we first need to normalize read

counts per sample. Boxplots of read counts per genomic range for 5 samples are shown in
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Figure 3.2: Mean and variance of read count for 23,619 genomic ranges over 40 samples
with similar amount of total mapped reads.

Figure 3.3. The distributions all exhibit positive skewness but the median and quartiles

are shifted. Given a matrix K of counts of reads in T genomic ranges on a chromosome

(rows) across N samples (columns), Knorm is formed by dividing each column by its mean.

Distributions of sample-normalized read counts per genomic range (rows ofKnorm) indicate

high variance in medians across consecutive genomic ranges (Figure 3.4). Some but not

all of this variance of median read depth can be explained by GC-content (Figure 3.5).

We calculate the background read depth by taking the median of the sample-normalized

read count per genomic range (median of rows of Knorm), and the background standard

deviation similarly.

Figure 3.3: Boxplots of read counts for 5 samples over genomic ranges covering exons
of chromosome 1.

23



Figure 3.4: Sample-normalized read counts for 15 consecutive genomic ranges over
200 samples.

Figure 3.5: Smooth scatterplot of median read depth over GC-content. Median read
depth is the median of sample-normalized read counts from 200 samples.

3.2.2 Hidden Markov model to predict sample CNVs

HMMs are a natural framework to segment genomic data with a discrete number of states,

and we can take advantage of the algorithms that have been developed to evaluate these

models. We observe K∗j , the j-th column of K, which represents the counts of HTS reads

for sample j in T non-overlapping genomic ranges positioned linearly along a chromosome.

These counts are the observed variables of our HMM, written as ~O = {O1, . . . , OT }, based

on the notation of Rabiner [63] and Fridlyand [61]. We define a homogeneous discrete-time

HMM, exomeCopy, to generate ~O by the following:
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1. The number of states L. The set of states {S1, . . . , SL} represents the possible copy

number states of the sample. ~Q = {q1, . . . , qT } represents the vector of underlying

copy number states over T genomic ranges. qt = Si indicates that at genomic range

t, the sample has copy number Si.

2. The initial state distribution ~π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ L (3.1)

3. The state transition probability distribution A = {aij} where

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ L, 1 ≤ t ≤ T − 1 (3.2)

4. The emission distribution B = {bi( ~O)} where

bi( ~O) = {f(Ot|qt = Si)}, 1 ≤ i ≤ L, 1 ≤ t ≤ T (3.3)

f ∼ NB(Ot;µti, α), 1 ≤ i ≤ L, 1 ≤ t ≤ T (3.4)

NB is the negative binomial distribution with mean and dispersion parameters µ, α >

0. Note that the mean of the emission distribution changes for different genomic

ranges and states.

The choice of the number of underlying copy number states L must be fixed before fitting

parameters, as well as the possible copy number values {Si} and expected copy number

d. We tested the model for {Si} = {0, 1, 2, 3, 4} for the diploid genome (d = 2), and

{Si} = {0, 1, 2} for the non-pseudoautosomal portion of the X chromosome in males

(d = 1). Copy number ratios of sample to background higher than 2 can be modeled

as well, but we expect reduced accuracy in differentiating between higher ratios, such as

between 5/2 and 6/2.

Two transition probabilities are fit in the model: the probabilities of transitioning to a

normal state and to a CNV state. These are depicted for a chromosome with expected

copy count of 2 in Figure 3.6, with transitions going to the normal state as black lines

and transitions going to a CNV state as gray dotted lines. The probability of staying in

a state (grey solid lines) is set such that all transition probabilities from a state (rows of

A) sum to 1. The initial distribution ~π is set equal to the transition probabilities from the

normal state.

Consecutive genomic ranges in targeted sequencing can be adjacent on the chromosome

if they subdivide a target region or very distant if they belong to different target regions.

Therefore we might consider modifying the transition probabilities per genomic range,

because two positions that are close together on the chromosome should have a higher

chance of being in the same copy number state than those which are distant. This is

reflected in the heterogeneous HMM of Marioni et al. [62] with transition probabilities

that exponentially decay or grow to the stationary distributions as the distance grows. In
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0 1 2 3 4

Figure 3.6: Transition probabilities for copy number states of the HMM with {Si} =
{0, 1, 2, 3, 4} and expected copy number d = 2.

testing exomeCopy, we observed that a simple transition matrix results in similar CNV

calls as the heterogeneous model without having to fit extra parameters.

While the HMMs of Fridlyand [61] and Marioni et al. [62] fit an unknown mean for the

emission distribution of each hidden state, the emission distributions of exomeCopy for

different states differ only by the discrete values {Si} associated with the hidden copy

number state. Similar to the usage of positional covariates by Marioni et al. [62] to

modulate the transition probabilities, we use positional covariates to adjust the means of

the emission distribution, µti. We introduce the following variables: X, a matrix with

leftmost column a vector of 1’s and remaining columns made up of positional covariates

such as the log of the median background read depth, the genomic range width, and

quadratic terms for GC-content; and ~β a vector of coefficients with length equal to the

number of columns of X. The mean parameter µti of the t-th genomic range and the i-th

state is calculated by the product of the sample to background copy number ratio and

an exponentiated linear combination of positional covariates xt∗, the t-th row of X. The

mean parameter must be positive, hence the exponentiation of the term xt∗~β.

µti =
Si
d
e(xt∗~β) (3.5)

The parameters of the HMM can be written compactly as ~λ = (~π,A,B). The underlying

parameters to fit in exomeCopy are the transition probability to normal state, the tran-

sition probability to CNV state, ~β and α. Parameters which are fixed are L, {Si} and

d. The input data is ~O and X. The forward algorithm allows for efficient calculation

of the likelihood of the parameters given the observed sequence of read counts, L(~λ| ~O)

[63]. We use a slightly modified version of the likelihood function to deal with outlier

positions. Some samples will occasionally have a very large count in genomic range t such

that bi(Ot) < ε for all states i and ε equal to the smallest positive number representable

on the computer. In this case, the model likelihood is penalized and the previous column

of normalized probabilities for the forward algorithm is duplicated.

To find an optimal ~λ, we use Nelder-Mead optimization on the negative log likelihood

function, with the optim function for the stats R package [78]. The optimization converges

on a value of ~λ when changes to the negative log likelihood are less than a specified relative
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tolerance. For this value of ~λ, the Viterbi algorithm is used to evaluate the most likely

sequence of copy number states at each genomic range,

Viterbi path = argmax
~Q

(P ( ~Q | ~O, ~λ))

This most likely path is then reported as ranges of predicted constant copy number. The

ranges extend from the starting position of genomic range s with q̂s 6= q̂s−1 to the ending

position of genomic range e, such that q̂e = q̂t for all t : s ≤ t < e. For targeted sequencing,

the nearest genomic ranges are not necessarily adjacent, so the breakpoints could occur

anywhere in between the end of genomic range s− 1 and the start of genomic range s, for

example. Ranges which correspond to CNVs can be intersected with gene annotations to

build candidate lists of potentially pathogenic CNVs.

The optimization procedure requires that we set initial values for the various parameters

to be fit. Initializing the probability to transition to a CNV state very low and the

probability to transition to normal state high ensures that the Markov chain stays most

often in the normal state. Initial probabilities for the first genomic range are set to the

transition probabilities for the normal state. X is scaled to have non-intercept columns

with zero mean and unit variance, as this was found to improve the results from numerical

optimization. ~β is initialized to β̂ using linear regression of the raw counts ~O on the scaled

matrix of covariates X. α is initialized using the moment estimate for the dispersion

parameter of a negative binomial random variable [37]. Although each genomic range is

modeled with a different negative binomial distribution, we found a good initial estimate

for α uses the sample mean x̄ of ~O and the sample variance s2 of ( ~O −Xβ̂):

α̂ = max

(
(s2 − x̄)

x̄2
, ε

)
, ε > 0 (3.6)

We extend exomeCopy to an alternate model, exomeCopyVar, where α is replaced by ~α

which can vary across genomic ranges. The input data for modeling ~α is the variance at

each genomic range of sample-normalized read depth, which can be seen in Figure 3.4. This

modification could potentially improve CNV detection by accounting for highly variable

genomic ranges separately. We introduce Y , a matrix with leftmost column a vector of

1’s and other columns of background standard deviation and background variance. The

emission distributions are then defined by

f ∼ NB(Ot;µti, αt), 1 ≤ i ≤ L, 1 ≤ t ≤ T (3.7)

αt = e(yt∗~γ) (3.8)

~γ is a vector of coefficients fit similarly to ~β using numerical optimization of the likelihood.

~γ is initialized to [log(α̂), 0, 0, . . .] with α̂ defined in Eq. 3.6.
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3.3 Results

3.3.1 XLID project: chromosome X exome resequencing

The accuracy with which a model can predict CNVs from read depth depends on many ex-

perimental factors, so we try to recover both experimentally validated and simulated CNVs

using backgrounds from different enrichment platforms. We use exomeCopy version 1.0.0,

which enforces a positive mean parameter using max(xt∗~β, 0) rather the exponentiated

term e(xt∗~β) of Eq. 3.5 which is used in exomeCopy version 1.6.0 and higher. Both meth-

ods for enforcing a positive mean parameter produce nearly identical segmentations. First

we run exomeCopy on data from a chromosome X exome sequencing project to find the

potential genetic causes of disease in 248 male patients with X-linked Intellectual Disabil-

ities (XLID) (manuscript submitted). As males are haploid for the non-pseudoautosomal

portion of chromosome X, detection of CNVs is easier than in the case of heterozygous

CNVs, where read depth drops or increases by approximately one half. The high coverage

of the targeted region in this experiment also facilitates discovery of CNVs from changes

in read depth. Each patient’s chromosome X exons are targeted using a custom Agilent

SureSelect platform and 76 bp single-end reads are generated using Illumina sequencing

machines. Reads are mapped using RazerS software [79]. Total sequencing varies from 1

to 20 million reads per patient over 3.8 Mb of targeted region. Reads are counted in 100

bp genomic ranges covering the targeted region, and only genomic ranges with positive

median read depth across all samples are retained. The positional covariates used are

background read depth from all patients and quadratic terms for GC-content.

exomeCopy predicts on average 0.3% of genomic ranges per patient to be CNV. This rep-

resents 11,581 CNV segments from all patients combined, with 60% being single genomic

ranges with outlying read counts. For candidate CNV validation we retain 640 predicted

CNVs covering 5 or more genomic ranges. The larger segments are stronger causal candi-

dates and we suspect are less enriched with artifacts. The majority of the 640 predicted

CNVs are common across many patients. There are 66 predicted CNVs present in 1-2

patients, 14 in 3-10 patients, 8 in 11-20 patients, and 7 in 21-75 patients, described further

in Table 3.1. We retain 16 predicted novel CNVs, which are present in 1-2 patients, not

in the Database of Genomic Variants [80] and not already known to be associated with

XLID.

As of writing, 10 predicted novel CNVs, 6 duplications and 4 deletions, have been tested

and all were confirmed by arrayCGH or PCR. These CNVs are strong causal candidates

based on segregation in the patients’ families and the genes which are contained in the

CNVs. This estimated lower bound of patients with causal candidate CNVs, about 4%, is

in agreement with results from a previous study suggesting that 5-10% of cases of XLID

can be attributed to CNVs [55]. Plots of experimentally validated CNVs found by our

method are shown in Figure 3.7, with each point corresponding to the raw read count

from a genomic range covering the targeted region.
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Genomic size

[600bp-10kb] (10-20kb] (20-100kb] (100kb-4Mb]

Type Freq. DGV+ DGV- DGV+ DGV- DGV+ DGV- DGV+ DGV-

Dup. 1-2 10 10 2 3 2 3 2 16
3-10 9 2 0 0 0 1 1 0
11-20 2 1 1 0 2 0 0 0
21-75 2 3 2 0 0 0 0 0

Del. 1-2 6 6 0 1 1 2 0 2
3-10 1 0 0 0 0 0 0 0
11-20 2 0 0 0 0 0 0 0
21-75 0 0 0 0 0 0 0 0

Table 3.1: Predicted XLID CNVs by type, frequency, genomic size and inclusion in
the Database of Genomic Variants (DGV)

Figure 3.7: Experimentally validated CNVs identified in the XLID read depth data.
The y-axis corresponds to the raw read counts for genomic ranges along the tar-
geted region. The x-axis corresponds to the index of the genomic ranges. The color
is the predicted copy number from exomeCopy, with blue indicating a hemizygous
duplication and red indicating a hemizygous deletion.

3.3.2 Recovering XLID CNVs with a cross-platform control set

To investigate the effect of background read depth on CNV detection, we attempt to

recover the experimentally validated CNVs in the XLID patients, substituting the XLID

read depth background used in the previous section with a read depth background from

a whole exome sequencing project of 200 Danish male and female individuals published

by Li et al. [76] (referred to afterward as “Danish” or “Danish exomes”). We also run

exomeCopy on nine XLID patients using no background read depth, but only GC-content

and genomic range width information. In contrast to the custom Agilent platform used in

the XLID project, the Danish samples were enriched for exons using a NimbleGen array

and the coverage is substantially lower, with a median of 15 reads per genomic range

compared to 326 per genomic range in the XLID project. For comparison of background

read depth between the XLID samples and the Danish samples, we restrict the analysis

to 9,710 CCDS-based genomic ranges on chromosome X, excluding the pseudoautosomal

regions and regions not covered by both enrichment platforms. The CCDS regions are

split evenly into genomic ranges no larger than 200 bp.

29



Comparing median read depth for XLID samples with median read depth for Danish sam-

ples shows positive but not strong correlation across the different platforms (Figure 3.8).

Comparing within groups shows that two randomly selected subsets of a group are highly

correlated in both datasets. This is in agreement with the observations of Hedges et al.

[73] that read depth is highly correlated within enrichment platforms but only partially

correlated across platforms.

Figure 3.8: XLID median read depth and Danish exome median read depth. Between
groups there is positive but not strong Pearson correlation, while randomly dividing
groups and comparing median read depth within groups gives very high correlation.

As a robust measure of signal to noise, we calculate the median read depth divided by the

median absolute deviation of read depth across genomic ranges on chromosome X covered

by both the custom Agilent and NimbleGen enrichment platforms. For comparison of

targeted sequencing with whole genome sequencing, we also provide read depth statistics

from one sample of the 1000 Genomes project1. The decreased signal to noise ratio dis-

played in Table 3.2 for the targeted sequencing projects supports our assumption that

target enrichment leads to non-uniformity in read depth.

study submitted Li et al. 1000 Genomes 1000 Genomes
population XLID Danish PUR NA12878

sequencing target chrX exons exome exome whole genome
# samples used 248 200 16 1

median read count 326 ± 96 15 ± 6 200 ± 102 105
(mean ± sd)

signal to noise ratio 2.0 ± 0.2 1.3 ± .1 1.1 ± .03 2.7
(mean ± sd)

mean pairwise .87 .77 .97 –
correlation

Table 3.2: Read depth statistics for four experiments in CCDS-based genomic regions
on chr X.

We run exomeCopy on nine of the XLID patients with experimentally validated CNVs,

once while substituting the XLID background with the Danish background, and again

1http://www.1000genomes.org/.
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using no background read depth, only GC-content and genomic range width as covariates.

One experimentally validated duplication is removed from analysis, as it spans genomic

ranges not targeted by the NimbleGen platform. The median read depth from the XLID

dataset and the Danish exome dataset is only partially correlated (r = 0.58), so dividing

one by the other would not necessarily help to recover CNV signal. However, exomeCopy

is able to adapt to less correlated backgrounds by reducing the contribution of the back-

ground term and increasing the contribution of the other covariates, genomic range width

and quadratic terms for GC-content. The results in Table 3.3 demonstrate that with an

independent control set for generating background, exomeCopy is frequently able to re-

cover most of the genomic ranges contained within the experimentally validated CNVs.

The sensitivity is measured as the percent of genomic ranges which are predicted as CNV

out of the total number of genomic ranges contained within the validated CNV region, as

the HMM does not always fit the entire span with the correct copy number state. The

use of Danish exome background is always more sensitive in recovering CNVs than when

exomeCopy is run without any read depth background. The average percent of genomic

ranges predicted to be CNV is 5.4% and 1.9%, using Danish background and without

background respectively. Also noteworthy in Table 3.3 is that CNVs with comparable ge-

nomic size can cover different numbers of genomic ranges, so methods for CNV detection

in exome data should be sensitive to events covering only a few genomic ranges.

CNV type # ranges genomic % CNV ranges recovered
size in kb Danish bg without bg

duplication 488 899 80 31
duplication 218 291 96 94
duplication 90 541 100 34
duplication 90 541 100 1
duplication 74 329 87 83

deletion 51 237 100 100
deletion 21 169 77 77
deletion 17 27 100 100
deletion 4 49 100 100

Table 3.3: Recovery of experimentally validated XLID CNVs

3.3.3 Sensitivity analysis on simulated autosomal CNVs

In order to further evaluate the performance of the model on CNVs in autosomes and in low

coverage samples, we simulate CNVs of various size and copy number on chromosome 1 in

the Danish exome data. Simulated heterozygous deletions and duplications are generated

in the Danish exome data by randomly sampling 50% of reads in a specified region and

either removing or doubling the counts respectively. Simulated homozygous deletions and

duplications are generated by removing 95% of the reads or doubling the reads respectively.

For sensitivity analysis, we simulate CNVs overlapping varying numbers of CCDS-based

genomic ranges on chromosome 1, and report the percent of genomic ranges within the

simulated CNV with accurate predicted copy number, averaging over a number of simu-
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lation runs. We report the sensitivity in terms of genomic ranges rather than base pairs,

as the major factor influencing sensitivity is the amount of exonic (targeted) base pairs

contained within the CNV. The number of genomic ranges is approximately the amount

of targeted base pairs contained within the CNV divided by the average genomic range

size (112 bp for CCDS regions on chromosome 1). For reference, we include Table 3.4

which gives the estimated quartiles of genomic sizes in kilobases for varying number of

CCDS-based genomic ranges on chromosome 1.

# CCDS-based genomic ranges 1Q 2Q 3Q

10 10 23 58
20 35 72 160
50 125 238 460
100 324 566 1043
200 684 1145 2037
400 1640 2656 4400

Table 3.4: Quartiles of genomic size (kb) by number of CCDS-based genomic ranges

We test the recovery of simulated CNVs with or without background variance information

using exomeCopy and exomeCopyVar respectively. The model incorporating background

variance performs nearly the same, although it has increased calling outside of the simu-

lated CNVs and longer running time (Figure 3.9). For both models we can calculate the

fitted ratio of variance to normal state mean, (1 + αµnorm), averaging over all genomic

ranges. exomeCopy fits the dispersion parameter α such that genomic range variance is

on average 1.51 times the normal state mean. This supports the earlier analysis that read

counts are overdispersed for Poisson. exomeCopyVar fits ~α with a linear combination of

Y , (Eq. 3.8) such that genomic range variance is on average 1.32 times the normal state

mean. αt is set to nearly zero for some genomic ranges, reducing the emission distribu-

tions to Poisson, but has higher αt than used by exomeCopy for genomic ranges with high

background variance.

We further compare the sensitivity of exomeCopy against normalization of log ratios fol-

lowed by segmentation. We leave out exomeCopyVar as it uses background variance

information in predicting copy number state which cannot be incorporated into normal-

ization methods. For segmentation we use the circular binary segmentation algorithm of

Venkatraman and Olshen [60] and the hidden Markov model of Marioni et al. [62], imple-

mented in the R packages DNAcopy and BioHMM respectively. For comparing against

normalization methods, we calculate the log ratio of sample counts plus a pseudocount

of 0.1 over the median background. Log ratios are regressed on the remaining covariates

(genomic range width and quadratic terms for GC-content), and the residuals are used as

inputs to the segmentation algorithms.

Segmentation algorithms on the normalized data are preferable to the many false pos-

itives that would result from using thresholds. DNAcopy and BioHMM are run using

default settings, except the epsilon parameter was lowered for BioHMM to 1e-4 to allow

for sufficient number of simulations. Predicted segment means are translated into esti-

mates of discrete copy number by thresholding at intermediate values. For diploid genome
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Comparison of algorithms on simulated CNV
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Figure 3.9: exomeCopy and exomeCopyVar perform similarly in recovering simulated
CNVs of different type and size. Average percent of genomic ranges called CNV
outside of the simulated CNVs is 0.5% and 0.8% and average run time is 7.6 s and
10.3 s for exomeCopy, exomeCopyVar respectively. Each point is the average over
100 simulations. The CNV sizes are described in terms of the genomic ranges, or
“windows”.

sequences, normalized log ratio in (−∞, log(0.25)] is recorded as homozygous deletion,

normalized log ratio in (log(0.25), log(0.75)] is recorded as hemizygous deletion, etc. Re-

laxed evaluation allows any predicted value in (−∞, log(0.75)] to be accepted for deletions

and any predicted value in (log(1.25),∞) to be accepted for duplications.

exomeCopy has equal or superior sensitivity to normalization and both segmentation meth-

ods for almost all types of CNVs (Figure 3.10). exomeCopy is often more sensitive for

CNVs overlapping less than 100 genomic ranges, which is important as many of the ex-

perimentally validated CNVs from the XLID project overlapped 100 or fewer genomic

ranges (Table 3.3). In the case of homozygous deletions, all methods can recover almost

all genomic ranges of the simulated CNVs. In the relaxed evaluation, the results are very

similar, with improved recovery for BioHMM in homozygous duplications and heterozy-

gous deletions.

As our method relies on the sample having increased read depth relative to the background,

it can be expected that the presence of the identical CNV in the control set would reduce

sensitivity. To estimate this effect on sensitivity, we simulate CNVs both in the test sample

and at different minor allele frequencies (MAF) in the control population. 400 simulations

are performed for both homozygous and heterozygous deletions/duplications covering 100

genomic ranges on chromosome 1 in the Danish exome data. We vary the MAF and the

number of control samples used to make the background. The simulated CNV is inserted

into control sample chromosomes with probability equal to the MAF. At MAF levels less

than 10%, we find that exomeCopy has 86% sensitivity or greater, nearly equal to the

sensitivity with an MAF of 0% (Table 3.5). The number of controls used does not seem
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Comparison of algorithms on simulated CNVs
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Figure 3.10: Performance of algorithms in recovering simulated CNVs on chr 1 of the
Danish exome samples. exomeCopy is equally or more sensitive for almost all types
and sizes of CNVs. Average percent of genomic ranges called CNV outside of the
simulated CNVs is 0.4%, 5.2%, 0.2% and average run time is 7.4 s, 111.9 s, 3.7 s for
exomeCopy, BioHMM, and DNAcopy respectively. Each point is the average over 100
simulations.

to have a large effect on the sensitivity, however individual samples in small control sets

might bias results. The average percent of genomic ranges called CNV outside of the

simulated CNVs is less than 0.9% for all combinations.

MAF
CNV type # controls 0% 1% 5% 10% 25% 50%

10 100 100 100 100 98 68
homozygous deletion 20 100 100 100 100 99 62

100 100 100 100 100 100 56

10 97 96 92 88 59 16
homozygous duplication 20 96 95 94 91 55 9

100 95 97 94 90 59 3

10 99 99 98 96 51 0
heterozygous deletion 20 99 99 98 96 48 0

100 99 98 99 97 42 0

10 89 89 87 75 38 0
heterozygous duplication 20 90 90 86 83 35 1

100 91 88 88 82 36 0

Table 3.5: Percent of simulated CNV genomic ranges recovered by minor allele fre-
quency and number of controls

We demonstrate exomeCopy adjusting to less correlated or uncorrelated backgrounds in

Figure 3.11. After adding increasing amounts of noise to the original Danish background,

the absolute value of the coefficients for genomic range width and quadratic terms for GC-

content rise to replace the coefficient for noisy background. In the case that the sample is
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entirely uncorrelated with the background, the model will remove all contribution of the

background in modeling the read counts.

Fitted coefficients over background correlation

correlation to Danish background

ab
so

lu
te

 v
al

ue
 o

f c
oe

ffi
ci

en
t

0

5

10

0.00.20.40.60.81.0

●

●

●

●
●

GC
GC squared
background
window width

●

Figure 3.11: Effect of background correlation on the absolute value of fitted coeffi-
cients. The x-axis shows the correlation of the simulated background with the original
background. Each point is the average over 100 simulations.

Simulations on the Danish exome data demonstrate that exomeCopy can often recover

CNVs in low coverage data if they overlap sufficient amount of targeted sequence. How-

ever, we expect that exomeCopy will have improved performance with higher coverage

autosomal datasets. To assess the influence of total sequencing depth on recovery of

different kinds of CNVs, we performed further simulations on 16 high coverage exome se-

quencing samples from the PUR population of the 1000 Genomes Project. [81] The library

format is paired-end data, and we count both ends in their respective genomic ranges. Al-

though this decision introduces dependency between the counts in nearby genomic ranges,

it avoids the loss of sample coverage information at either or both positions.

To simulate experiments with different amounts of total sequencing, we subsample reads

from the original PUR samples to achieve 10, 20, 50 and 100 average read counts in

genomic ranges subdividing the CCDS regions of chromosome 1. At each level of read

depth, we create a background across all 16 PUR samples, then simulate CNVs of varying

length and type as before. As expected, increasing the read depth increases the sensitivity

of exomeCopy, especially for the detection of the smallest heterozygous duplications, with

78% or more genomic ranges recovered at an average read count of 50. (Figure 3.12). This

simulation suggests that average read counts of at least 50 per genomic range will result

in high sensitivity to detect both heterozygous and homozygous CNVs.

3.4 Discussion

Targeted sequencing is desirable for achieving high read coverage over regions of inter-

est, while keeping costs and the size of generated data to manageable amounts. Exome

sequencing prioritizes the discovery of variants in exons, as we expect these variants are

more likely to be associated with a distinct phenotype than those which do not overlap
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Influence of read depth on simulated CNVs
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Figure 3.12: Performance of exomeCopy in recovering simulated CNVs on chr 1 after
subsampling reads from the high coverage 1000 Genomes exome sequencing data.
exomeCopy is increasingly sensitive with increasing average read counts. Average
percent of genomic ranges called CNV outside of the simulated CNVs is always less
than 0.7%. Each point is the average over 100 simulations.

exons. Nevertheless, methods for finding CNVs in targeted sequencing read depth data

must overcome non-uniform patterns in read depth introduced by enrichment steps and a

reduced number of genomic loci at which to observe changes.

We introduce a statistical model, exomeCopy, for detecting CNVs in targeted sequencing

data which is robust across various enrichment platforms and different types and sizes

of CNVs. In testing on exome sequencing data, our approach is more sensitive than

normalization and state-of-the-art segmentation methods in finding duplications and het-

erozygous deletions which overlap few exons [60, 62]. exomeCopy formulates the CNV

detection problem as the optimization of a likelihood function over few parameters, and

therefore requires no thresholds or preprocessing decisions which might affect downstream

results. In modeling sample read count using a number of covariates in addition to back-

ground read depth, our method can find CNVs in samples which show low correlation

with the background. This allows for targeted sequencing projects with few samples to

use median read depth from another project as background. While intuitively exomeCopy

could also be applied to detect amplifications in cancer sequencing using the healthy tissue

read depth as background, we believe the paired tumor/normal sequencing setup deserves

a different statistical treatment. We therefore recommend the use of methods specifically

designed for segmentation of paired tumor/normal exome sequencing experiments. [71]

Two limitations of CNV detection with targeted sequencing read depth are the effect of

polymorphic CNVs in the control set and the inability to precisely localize CNV break-

points. Although the median read depth method works well for finding CNVs which are

rare in the control set, it might miss CNVs which are polymorphic. We formulate an HMM

where the expected copy number d of the control set is constant over all genomic ranges.
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For genotyping polymorphic CNVs, one could locally cluster samples in the control set

by read depth and attempt to assign absolute copy numbers to the samples in a given

region [15]. Then the read depth for d = 2 could be extrapolated from the clusters using

their assigned copy numbers. Addressing the problem of localization, CNVs predicted

from read depth in genomic ranges will not include exact breakpoints, and in the case of

exome sequencing, the predicted breakpoints could fall anywhere between the outermost

affected exons and the closest unaffected exons. Other sequencing based methods, such as

partial mapping or anchored split mapping can be employed to recover breakpoints which

fall within continuous targeted regions [75, 82].

As sequence read counts are increasingly taken as quantitative measurements, statisticians

and bioinformaticians must adapt methods to separate technical bias from biologically

meaningful signal. From our investigations, we find increased sensitivity to the underlying

CNV signal in statistical modeling of the raw count data compared to converting counts to

normalized log ratios. We expect that similar methods of contrasting individual samples

against a background capturing technical bias will be useful in other sequencing protocols

such as RNA-Seq and ChIP-Seq.
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Chapter 4

Differential expression analysis for

RNA-Seq using empirical Bayes

priors for dispersion and fold

change

4.1 Introduction

4.1.1 Detecting differences between samples over many genes

The widespread adoption of high-throughput sequencing technologies to assay various

biological characteristics of the cell has resulted in a flourishing of statistical methods

for detecting differences between samples. These methods often take advantage of the

parallelized nature of the experiments; by integrating information about the samples over

thousands of genomic ranges, these statistical methods can deliver more robust estimates

and more sensitive tests of differences than methods which consider each genomic range in

isolation. Recent methods for differential expression analysis of RNA-Seq data integrate

information about the dispersion of counts across genes. For example, Robinson and

Smyth [83] balance the estimate of dispersions for each gene with a common estimate

across all genes using a weighted conditional likelihood. Anders and Huber [22] improve

noisy dispersion estimates through modeling the dependence of the dispersion on the mean

of counts over all samples. Hardcastle and Kelly [84] and Van De Wiel et al. [85] estimate

priors for a Bayesian model over all the genes, and then provide posterior probabilities or

false discovery rates for the case of differential expression. This chapter presents DESeq2,

an update to the DESeq methodology of Anders and Huber [22], which incorporates both

shrinkage of dispersion estimates and log fold changes using global information from all

genes.

It helps to begin with a general mathematical description for the question of differential

expression of count data. This chapter refers to counts of reads in genes for simplicity,

however the methods presented here can also be used to perform differential analysis on

any kind of count data generated from a parallelized experiment, including ChIP-Seq, 4C,

Hi-C and spectral counts from mass spectrometry. Suppose Kij is the count of sequencing

reads aligning to gene i and sample j. For a read to align to a gene, it must overlap one

or more of the exons of the gene, and not overlap any exons of other genes1. Suppose

1This is represented by the “union” mode depicted in the htseq-count documentation:
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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qij stands for an underlying rate which is proportional to the expected concentration of

cDNA fragments for gene i across samples, and a function fij stands for the effect of

technical artifacts on the underlying rate qij . Note that the rates qij are described as

proportional across samples; the rates are not necessarily proportional to concentrations

of cDNA fragments across different genes unless the estimate of fij takes into account

all possible technical factors influencing abundance from cDNA fragments to read counts.

Read counts falling in genes for technical replicates of RNA-Seq have been shown to fit a

Poisson distribution for most genes [18], so then let Kij follow a distribution given by:

Kij ∼ Pois(fij(qij)) (4.1)

In order to test, for a given gene i, whether the qij are different across groups, some

estimate of the function fij must be made. One approach is to assume that the technical

artifacts can be reduced to a single multiplicative factor for each sample: fij(z) = sjz, for

a “size factor”, sj . This controls for differences in read counts across samples due to the

total number of sequenced read per sample, or “sequencing depth”. For example, if sample

A has two times the total sequenced reads of sample B, then one would expect two times

the reads mapping to each genomic range, e.g. sA = 2sB. Another approach is to use

known technical covariates in order to estimate multiplicative size factors for each sample

and each gene: fij(z) = NFijz, for a “normalization factor”, NFij . For samples sequenced

at different times and across different labs, using sample- and gene-specific normalization

factors can eliminate false positive calls which are due only to technical artifacts. Taking

advantage of the parallelized nature of the data, Hansen et al. [86] and Risso et al. [87]

model read counts for each sample on the GC-content of the genes and the gene length,

in order to estimate fij . The methods presented in this chapter can employ either size

factors or a matrix of normalization factors.

4.1.2 Generalized linear model for RNA-Seq

The differences between groups affecting the underlying rates qij can be conveniently

represented using the generalized linear model notation of a design matrix X and a column

vector ~β containing coefficients. For the simple two group model, with two samples per

group, X can be written as:

X =


1 0

1 0

1 1

1 1


As the model of Eq. 4.1 can only be used to model counts across technical replicates,

the model is extended to a negative binomial distribution with gene-specific dispersion

parameter αi:
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Kij ∼ NB(fij(qij), αi) (4.2)

log2(qij) = xj∗~βi (4.3)

where xj∗ is used to denote the j-th row of the design matrix X which is multiplied by a

column vector ~βi. The link function is switched from log to log2, so the coefficients can

be more easily interpreted. The column vector ~βi is indexed by i, as a different ~βi is fit

for each gene i. For the two group design matrix written above, ~βi would be written as:

~βi =

(
βi0
βi1

)

βi0 represents the intercept term, log2 of the mean of normalized counts for gene i for

the first two samples. Normalization refers to the inverse of the function standing for

technical artifacts, f−1
ij , which is simple division in the case of multiplicative size factors.

βi1 represent log2 fold changes between normalized counts of the two groups. For example,

supposing βi0 = 7, βi1 = 1, the underlying proportions qij for samples 1, 2, 3 and 4 are:

qi1 = qi2 = 2βi0 = 27 = 128

qi3 = qi4 = 2βi0+βi1 = 28 = 256

The true log2 fold change between the two groups is then βi1:

log2

(
qi3
qi1

)
= (β0i + β1i)− (β0i) = βi1

4.1.3 Shrunken fold change estimates

One of the improvements offered in DESeq2 over the previous implementation is the

shrinking of highly variable log fold changes for genes with low counts or high dispersion

to 0. As was observed with differential expression analysis using microarrays, genes with

low intensity values might suffer from a decreased signal to noise ratio. Therefore the

standard estimate of log fold change might not be the best estimator of the true log fold

change. Newton et al. [88] propose using a prior distribution for the intensities, R and G,

of two microarrays, and derive a Bayesian posterior estimate of the fold change, using a

parameter ν > 0:

ρ̂B =
R+ ν

G+ ν
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Without delving into the details of the method of Newton et al. [88], the advantage of

such an estimator can be readily seen. For low intensity genes, ν will pull the ratio ρ̂B
toward 1 (and pull the log ratio toward 0), while barely changing the ratio for genes with

R,G � ν. This is desirable if the low intensity values are highly variable, and would

otherwise result in high variance of ρ̂B. Low variance shrunken (or “moderated”) log fold

changes were also developed for microarray data using variance stabilizing normalization

(VSN) [46]. Lowered variance comes at the cost of biasing log fold changes to 0, which is

described in statistical literature as a “bias-variance trade-off” [89, 90].

An advantage of moderated log fold changes is that they can be used in downstream

analysis, as in “continuous gene set enrichment analysis” where gene sets are identified

with unexpectedly high or unexpectedly low log fold changes. Downstream analysis on

unmoderated log fold changes is problematic, as the truly differential genes are mixed

with genes with high variance estimates. Efforts toward moderating log fold changes for

RNA-Seq include fully Bayesian hierarchical models [85] and a “generalized fold change”

using a posterior distribution of log fold changes [91]. DESeq2 assumes a zero-centered

normal prior for log fold changes, using an “empirical Bayes” approach, where the variance

of the prior is estimated using the distribution of maximum likelihood estimates for ~βi.

The maximum a posteriori estimates of ~βi and their standard errors are then used in a

Wald test [92] of the null hypothesis H0 : βij = 0.

4.1.4 Shrinkage estimators for dispersion

The estimation of the dispersion parameter αi is critical for any inference on differential

expression, as the biological replicates are not expected to follow a Poisson distribution.

Figure 4.1 shows simulated negative binomial counts using different dispersion parameters

αi. Typical dispersion estimates for RNA-Seq data can vary from around 0.01 − 0.1

for genetically identical organisms or cell cultures to around 0.5 and higher for genetical

heterogeneous populations. The levels of dispersion for RNA-Seq also typically exhibit a

dependence on the mean counts, which is modeled in DESeq2 using the parametric model

of Anders and Huber [22].

Given the impact of different dispersion values on observed counts shown in Figure 4.1,

an accurate estimate of dispersion is clearly needed for statistical inference. As estimates

of dispersion are functions of the data, the estimates themselves are random variables

which have a variance. Unfortunately typical sample sizes for RNA-Seq result in highly

variable estimates of dispersion. Figure 4.2 shows the distribution of dispersion estimates

for simulated data at various sample sizes. While the mean of the estimates is close to

the true value for five samples and higher, the range between the 1st and 3rd quartiles is

large even up until 20 samples. One sensible solution is to shrink the gene-wise estimates

of dispersion toward a common value of dispersion for all genes [83, 93]. This moderation

greatly reduces the variance of the gene-wise estimators, and therefore reduces many false

positive calls of differential expression. DESeq2 accomplishes moderation of dispersion

estimates by assuming a log normal prior on dispersions. This is similar to the dispersion
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Figure 4.1: Example of simulated negative binomial counts with different dispersion
parameters. For each plot, the true mean for group A is 128, and the true mean for
group B is 256. The dispersion is changed between three values: 0.001, 0.1, 0.5.

estimation method of Wu et al. [93], though in the case of DESeq2, individual gene-wise

estimates are shrunk towards a fitted value depending on the mean of counts for the gene.
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Figure 4.2: “Method of moments” [37] estimates of dispersion from simulated negative
binomial data for different sample sizes. The true mean is 100, the true dispersion
is 0.5 and shown as a red cross, and 1000 replicates are used for each sample size.
The mean value for each sample size is shown as a circle. The Cox-Reid estimates of
dispersion also show similar variance, though reduced bias.

42



4.1.5 Robust estimation and inference with DESeq2

This chapter introduces DESeq2, a statistical method for differential analysis of sequence

count data. DESeq2 extends the model of its predecessor DESeq [22], offering improve-

ments in the estimation of the dispersion and fold changes. These changes result in

increased sensitivity and more robust fold change estimates across experiments. Applica-

tions which are possible within the DESeq2 framework are then discussed: the “regularized

log” transformation, continuous gene set enrichment analysis using log fold changes, and

alternate tests of log fold changes above or below a threshold.

4.2 Methods

4.2.1 GLM definition

Define the following GLM:

Kij ∼ NB(µij , αi) (4.4)

µij = sjqij (4.5)

log2(qij) = xj∗~βi (4.6)

Kij counts of reads for gene i, sample j
µij fitted mean
αi gene-specific dispersion
sj sample-specific size factor
qij parameter proportional to the expected true concentration of fragments
xj∗ the j-th row of the design matrix X
~βi the log2 fold changes for gene i for each column of X
m the number of samples
p the number of coefficients to estimate, i.e. columns of X

The size factors sj are calculated through the median ratio method [22]. Though the

coefficients are defined here on the log2 scale, for simplicity the DESeq2 fitting code and

the following formulas are for a generalized linear model on the log scale. Recall the

variance as a function of the mean for the negative binomial is given by:

V (µ) = µ+ αµ2 (4.7)
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4.2.2 Dispersion estimates and prior

Gene-wise estimates of dispersion α̂gene-est, are calculated by optimizing the dispersion

over the Cox-Reid adjusted log likelihood [94, 95]. The Cox-Reid adjustment corrects

for a negative bias on dispersion estimates from using the maximum likelihood estimates

(MLE) for µ (analogous to the negative bias of the MLE sample variance). A parametric

curve of the form y = a/x + b is fit to the gene-wise dispersion estimates over the mean

of the normalized counts for a gene [22]. The fitted values αfit are used as the mean of a

log-normal prior on dispersions.

In order to calculate the prior variance, first the sample variance of the log dispersion

estimates and the expected variance of log dispersion estimates must be calculated. A

robust estimate of variance of the log gene-wise dispersion estimates s2
rob(log(α̂gene-est))

is calculated using the residuals of the log gene-wise estimates log(α̂gene-est) to the fitted

values log(αfit). The robust sample variance is then the square of the scaled median

absolute deviation of these residuals (using the scaling factor for the normal distribution

provided by the R function mad).

A rough estimate for the expected variance for the log dispersion estimates, Var(log(α̂)),

is calculated as follows. First, the distribution of the dispersion estimate for a single gene

is considered. The expected variance of the method of moments estimator is calculated

instead of the maximum likelihood estimate or Cox-Reid estimate. Furthermore, a sim-

plification is made assuming that µ is large; in this case, the variance of negative binomial

counts is dominated by the αµ2 term:

Var(K) ≈ αµ2

The dispersion α can then be estimated as the sample variance divided by the sample

mean squared:

α̂ =
∑
j

(Kj − µ̂j)2

(m− p)µ̂2
j

(4.8)

where µ̂ is the sample mean, m the number of samples and p the number of coefficients to

estimate. The (m− p) comes from the unbiased pooled sample variance of K.

The sum of squared Pearson residuals, (Kj − µ̂j)2/V (µ̂j), for a generalized linear model

is approximately distributed as a chi-squared random variable with (m − p) degrees of

freedom [96]. This can then be used to obtain a rough estimate of the distribution of the

dispersion estimate:
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∑
j

(Kj − µ̂j)2

αµ̂2
j

∼ χ2
m−p (4.9)

1

α

∑
j

(Kj − µ̂j)2

µ̂2
j

∼ χ2
m−p (4.10)

(m− p)
α

∑
j

(Kj − µ̂j)2

(m− p)µ̂2
j

∼ χ2
m−p (4.11)

(m− p)
α

α̂ ∼ χ2
m−p (4.12)

Fortunately, the true dispersion value α is not needed in order to estimate the sampling

variance of the log dispersion, as the variance of the log of a product of independent

variables can be separated into a sum of the variances of the log of each variable. As α

and (m− p) are constants, they have zero variance.

Var(log(((m− p)/α)α̂)) = Var(log((m− p)/α)) + Var(log(α̂))

= Var(log(α̂))

Abramowitz and Stegun [97] provide a formula for variance of the log of a chi-squared

random variable, using the trigamma function ψ1:

A ∼ χ2
m−p

Var(log(A)) = ψ1((m− p)/2) (4.13)

The expected variance of the log dispersion estimate is then estimated by:

Var(log(α̂)) ≈ ψ1((m− p)/2) (4.14)

Supplementary Table B.2 provides examples of this theoretical estimate for the variance

of log dispersion compared with the sample variance of log dispersion estimates for sim-

ulated data, over a combination of different sample sizes, number of parameters and true

dispersions.

The variance of the prior of the log dispersion is then calculated by subtracting the ex-

pected variance from the sample variance:

σ2
α-prior = max(s2

rob(log(α̂gene-est))−Var(log(α̂)), ε) (4.15)
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ε = 0.25 is used so that the dispersion estimates are not shrunk entirely to the fitted values

in the case that the sample variance is smaller than the expected variance.

4.2.3 Dispersion outliers

The counts for some genes might not fit the negative binomial model or the dispersions

estimates might not seem to belong to the common distribution of dispersion estimates.

If these gene-wise estimates were moderated to the fitted line, this could produce spu-

rious results: low p-values for genes with high variance of counts. A good heuristic for

identifying dispersion outliers is those genes where log(α̂gene-est) is more than 2 times

srob(log(α̂gene-est)) from log(αfit). In this case, the genes are flagged and the gene-wise

estimates are not shrunk towards the common value.

4.2.4 Final dispersion estimates

The final, maximum a posteriori (MAP) dispersion estimate is given by:

CR(α) = −1

2
log(det(XtWX)) (4.16)

prior(α) = fN (log(α); log(αfit), σ
2
α-prior) (4.17)

α̂ = argmax
α

(`(α|k, µ̂) + CR(α) + log(prior(α))) (4.18)

Where CR(α) is the Cox-Reid adjustment to the log likelihood [95], and W is the diagonal

weight matrix from the standard iteratively re-weighted least squares (IRLS) algorithm.

The link function is g(µ) = log(µ), so the elements of W are given by:

wjj = 1/(g′(µj)
2V (µj)) (4.19)

wjj = 1/(µ−2
j (µj + αµ2

j )) (4.20)

wjj = 1/(µ−1
j + α) (4.21)

Optimization of the log dispersion, log(α̂), is performed using a backtracking line search

with proposals accepted which satisfy Armijo conditions [98].

4.2.5 Beta prior

A zero-centered normal prior is introduced for the non-intercept betas. First, maximum

likelihood estimates must be calculated for ~βi using the standard IRLS algorithm [96].

The prior variance for the coefficient corresponding to the k-th column of X, σ2
βk-prior is
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then calculated as the mean of the squared values of the MLE βk over all genes, excluding

those genes where the MLE is undefined (e.g. zero counts for all samples of one condition).

4.2.6 Final beta estimates

The final, MAP beta estimate is given by:

prior(~β) = fN (~β; 0, σ2
~β-prior

) (4.22)

β̂ = argmax
~β

(
`(~β| ~K,X, α̂) + log(prior(~β))

)
(4.23)

where ~K represents the counts for a single gene over the samples. This is optimized using

the IRLS algorithm with a ridge penalty. Updates are of the form:

β̂ ← (XtWX + ~λI)−1XtW~z (4.24)

λk = 1/σ2
βk-prior (4.25)

~z = log(~µ/~s) + ( ~K − ~µ)/~µ (4.26)

for size factors ~s. This algorithm for regularized generalized linear models is described

as the “iteratively reweighted ridge regressions algorithm” by Park [99] and as “weighted

updates” by Friedman et al. [100].

4.2.7 Wald test

The Wald test compares the beta estimate β̂ divided by its estimated standard error

SE(β̂) to a standard normal distribution or t-distribution. The estimated standard error

is calculated from the following formula for a generalized linear model with normal prior

on betas [99, 101].

Var(~β) = (XtWX + ~λI)−1(XtWX)(XtWX + ~λI)−1 (4.27)

DESeq2 uses a normal distribution for Wald test p-values, as tests performed on simulated

data suggest that the dispersion shrinkage results in a large gain of degrees of freedom

(Supplementary Figure A.1). The tail integrals are then multiplied by 2 in order to achieve

a “two-tailed” test.
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4.2.8 Cook’s distance for outlier detection

Cook’s distance [50] is used to identify genes with counts which might not fit to the specified

model. Cook’s distance for a sample is defined as the distance that the coefficients of a

model would move if the sample were removed and the model refit. If this distance is

large, it might indicate that a single sample is overly influencing the coefficients, and so

the gene should be flagged for further inspection. Considering a single gene and sample j,

Cook’s distance for generalized linear models [102] is given by:

Dj =
Pearson-res2

j

τp

hjj
(1− hjj)2

(4.28)

for the generalized linear model dispersion parameter τ (in the case of negative binomial

GLM τ = 1, and dispersion is modeled instead using α), p the number of parameters

including the intercept, elements hjj of the hat matrix H:

H = W 1/2X(XtWX)−1XtW 1/2 (4.29)

Pearson residuals are calculated as:

Pearson-resj =
(Kj − µ̂j)√

V (µ̂j)
(4.30)

using αfit in the variance function V (µ) = µ+αµ2. DESeq2 flags genes which have a sample

with Cook’s distance greater than the 0.75 quantile of the F (p,m− p) distribution, where

p is the number of model parameters including the intercept, and m is the number of

samples. The use of the F distribution is motivated by Cook [50] as such: removing a

single sample should not move the vector ~β outside of a 75% confidence region around ~β

fit using all the samples.

4.2.9 Regularized log transformation

Similar to the MAP estimates given by Eq. 4.23, the following “regularized log” transfor-

mation (rlog) involves the shrinkage of fold changes between samples, where more shrinkage

occurs for genes with higher estimates of dispersion. In practice, this transformation helps

to stabilize the variance of counts across samples (which would otherwise depend on the

mean counts), allowing for improved visualization and clustering of samples or genes.

The rlog transformation is calculated as follows: the normal design matrix is substituted

by one in which an indicator variable is included for every sample, in addition to a column

specifying an intercept term. While this design matrix is of less than full rank and would

lead to an indeterminate solution for maximum likelihood estimation, the maximum a

posteriori coefficient vector is still determinable using a prior on the non-intercept terms.
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The variance of the prior is taken from the variance of all non-intercept MAP coefficients

using a very wide prior (variance of log2 fold changes of 104).

The rlog transformed values are then given by log2(qij):

log2(qij) = xj∗~βi (4.31)

The transformation accounts for variation in sequencing depth across samples by dividing

out the size factors sj or normalization factors NFij . The rlog transformation is offered

in DESeq2 alongside the variance stabilizing transformation (VST) [22] derived from the

methods of Huber et al. [46]. Large variation in sequencing depth across samples was

observed to have a detrimental effect on the variance stabilizing transformation (VST),

while this does not adversely affect the rlog transformation.

4.3 Results

4.3.1 Accuracy of MAP dispersions for simulated data

The accuracy of DESeq2 ’s maximum a posteriori (MAP) estimates of dispersion are as-

sessed through simulation where the true value of the dispersion is known. As noted in

Figure 4.2, gene-wise estimates of dispersion have high sampling variance up to medium

sample sizes for RNA-Seq experiments (m ∼ 20). However, the variable gene-wise esti-

mates can be improved if the population dispersions are similarly distributed for genes

with similar mean counts. Simulated negative binomial counts are generated for many

genes using the same mean µ and random log-normal-distributed dispersions αi. The DE-

Seq2 methods are performed resulting in gene-wise dispersion estimates, a fitted value (in

this case just the mean of the gene-wise estimates), and the MAP dispersion estimates.

While the gene-wise estimates are unbiased for an individual gene, assuming the dis-

persions share a common distribution, an estimate which incorporates knowledge of the

common distribution can be more accurate than the gene-wise estimate. This phenomenon

is demonstrated in the boxplots of Figure 4.3. The simulated genes are broken into two

groups: those whose gene-wise dispersion estimates are below the fitted value and those

whose gene-wise estimates are above the fitted value. As would be expected, the gene-wise

estimates below the fitted line are more likely to be underestimates of their true value,

while the gene-wise dispersion estimates above the fitted line are more likely to be over-

estimates. Taking the fitted value reverses this problem: the true value αi is passed over

in moving from the gene-wise estimate to the fitted value. The MAP estimates find a

balance such that the distribution of α̂i/αi is centered on 1.

The previous version DESeq adjusted gene-wise dispersion estimates by applying a “max-

imum rule”: the final estimate of dispersion was taken as the maximum of the gene-wise

estimate and the fitted value. This is a conservative rule, helping to control the number

of false positives by raising the estimates below the fitted line (likely underestimates) up
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to the fitted line. However, the control of false positives comes at the cost of sensitivity

in two ways: the initially underestimated dispersions might be brought up past their true

value, and the likely overestimates are kept at their original value. DESeq2 increases

sensitivity while holding specificity, by raising the underestimates and lowering the over-

estimates. This is accomplished through multiplying the gene-wise likelihood with a prior

which incorporates global properties of the dataset.
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Figure 4.3: The ratio of various dispersion estimates over the true dispersion for 1000
genes with simulated negative binomial counts of 20 samples. The ratios are grouped
by whether the gene-wise estimate is below or above the fitted value. The gene-wise
estimates tend to be either below or above the true value depending on whether they
are below or above the fitted trend line. The fitted line tends to be above the true
value if the gene-wise estimate is below the fitted line, and below the true value if
the gene-wise estimate is above the fitted line. The distribution of ratios for MAP
estimates over the true value is centered on 1.

4.3.2 Effect of prior on log fold changes

The effect of using a zero-mean normal prior on log fold changes for real data is demon-

strated in the following section, but first it is informative to consider how the prior affects

the log fold changes for a toy example. Suppose two genes with counts split between two

groups, of five samples each. The two genes have the same mean count and the same

MLE log2 fold change – which is simply the difference between the log2 of mean counts

for each group. However, one gene has a low dispersion and the other gene has a high

dispersion. Though the genes have the same MLE log2 fold change, the likelihood will

be more peaked for the gene with the low dispersion. This can be seen in Figure 4.4,

where the low dispersion gene is in black and the high dispersion gene is in blue. A prior

distribution on log2 fold change of N (0, 1) is applied to both genes. The posterior (dotted

line) is very similar to the likelihood for the low dispersion gene, so the MAP estimate

is close to the MLE. However, for the high dispersion gene, the posterior and MAP are

pulled closer toward 0.
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This provides some intuition as to how the MAP estimates can be more robust across

experiments than the MLE. It is convenient to describe this effect in terms of the “observed

Fisher information”, which is the negative second derivative of the log likelihood at the

MLE. If the likelihood is very peaked, as in the case of the low dispersion gene, then the

log likelihood will also have a very negative second derivative, resulting in high Fisher

information. The prior has less of an effect on the posterior if the Fisher information is

high. If the likelihood surface is very flat at the MLE, then the Fisher information is low;

estimates to the left or right are almost as likely as the MLE. The prior then provides a

statistically principalled approach for moderating low information estimates while barely

affecting the high information estimates.
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Figure 4.4: Effect of a prior on log2 fold changes for two toy genes. Counts are con-
structed for two groups of five samples each, such that both genes have the same
mean count (192) and both have an MLE log2 fold change of 1. One gene has disper-
sion of 0.13 (black line, low dispersion), and the other gene has 5.55 (blue line, high
dispersion). The solid lines indicate the likelihood (normalized to integrate to 1), the
dotted lines indicate the posterior, and the points indicate the maximum values. A
prior of N (0, 1) is shown as a solid red line. The MAP log2 fold change is barely
changed for the low dispersion gene because the likelihood is more peaked; for the
high dispersion gene, the prior pulls the MAP estimate closer to 0.

4.3.3 Differential expression analysis on RNA-Seq data

In order to demonstrate the effects of dispersion and fold change priors on real data, DE-

Seq2 was used to analyze RNA-Seq samples of primary cultures extracted from parathyroid

tumors of 4 patients, each with control samples and samples treated with diarylpropioni-

trile (DPN), a selective estrogen β1 agonist [103]. Differential expression analysis was

performed on the samples cultured at 48 hours. The variation in the data due to the pa-
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tient type contributes more than the variation due to the treatment type, as can be seen in

a principal component plot of the samples (Supplementary Figure A.2). For this reason,

it is necessary to employ a design matrix X which accounts for the patient variable and

the treatment variable. The ability to control for covariates in estimation of fold changes

and statistical inference is possible using generalized linear models.

The shrinkage of MAP dispersion estimates toward the fitted values is shown in Figure 4.5.

This shrinkage includes the raising of dispersion estimates for many genes which could

otherwise tend to 0 (these gene-wise estimates are given a minimal value of 10−8), which

would otherwise produce many false positive calls for genes with very low mean count.

The shrinkage of MAP log2 fold changes towards zero is shown in Figure 4.6, compared to

a similar plot of the MLE log2 fold changes. Again, the genes with very low mean counts

would otherwise pose a problem, leading to large, highly variable estimates of log2 fold

change. With the introduction of a zero-centered prior, these log2 fold change estimates

are moderated to zero. Figure 4.7 also demonstrates the effect of shrinkage on fold changes,

by plotting the MAP directly over the MLE, coloring genes by the mean normalized read

count. For genes with mean count above 20, the prior does not have a large effect on the

MAP log2 fold change.

Figure 4.5: Dispersion estimates for the dataset of Haglund et al. [103]. The gene-wise
estimates (black points) are shrunk towards the fitted value (red points), resulting
in the final MAP estimates (blue points). The larger blue circles indicate dispersion
outliers which are not shrunken towards the fitted values. The dispersion estimates
for very high counts are moderated less toward the fitted line than those for the very
low counts.

4.3.4 Regularized log transformation

The effect of the regularized log transformation is to shrink the log2 counts across samples

towards a common mean, with higher shrinkage for those genes with high dispersion. The
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Figure 4.6: Plot of the maximum likelihood estimate (MLE) and maximum a poste-
riori (MAP) log2 fold changes, both over the mean of normalized counts. While the
genes with mean normalized count less than 10 are shrunk towards zero, the estimates
for genes with greater mean normalized count are nearly unchanged. The red points
are those genes with Benjamini-Hochberg adjusted p-values less than 0.1. The points
in the left plot at -4 and 4 are those genes with undefined beta estimates due to zeros
in one condition. These are moderated toward zero through the use of a prior.

Figure 4.7: MAP log2 fold changes for each gene plotted over MLE log2 fold changes,
colored by the mean normalized read count. For genes with mean normalized read
count over 20 (the black points), the estimates are nearly equal, falling on the line
y = x. Some MAP log2 fold changes for low count genes cross the horizontal axis,
which is possible because shrinkage is also occurring on each of the patient coefficients
simultaneously.
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effect of the rlog transformation in comparison to a simple log2 transform for two genes

is shown in Figure 4.8. One gene has high counts with a low dispersion estimate, and the

other gene has low counts with a high dispersion estimate. The rlog transformed data for

the high count, low dispersion gene is almost equal to the log2 of the counts, while the rlog

transformation moderates the spread of values for the low count, high dispersion gene. For

the Haglund et al. [103] dataset, the rlog transformation helps to stabilize the variance

across the range of mean counts, though not as well as the VST discussed in Anders and

Huber [22]. This can be seen by plotting the standard deviation over the rank of the mean

for all genes, as shown in Supplementary Figure A.3. Using the rlog transformation allows

for a cleaner picture of the sample-to-sample relationships, as seen in the PCA plot of

Supplementary Figure A.2.
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Figure 4.8: Example of two genes with log2 and rlog transformation applied to the
counts. The lines connect samples from the same patient, which are either control cell
lines or DPN treated. The rlog transformation for the gene with high counts (gene
A) is almost equal to the log2 value, while the rlog transformed values for the gene
with low counts (gene B) are shrunk towards each other. In order to take the log2,
a pseudocount of 0.5 is added to the normalized counts, showing that the log counts
can become negative if a pseudocount below 1 is chosen.

4.3.5 Cook’s distance for detection of outliers

Cook’s distance is used to detect genes which contain a sample which has large influence

on the coefficient vector ~β. The gene with the highest Cook’s distance for the Haglund

et al. [103] dataset has counts of zero for all samples except one treatment sample, which

has a count of 66. The Cook’s distance is therefore very high, because without this single

sample, the coefficient vector would tend to negative infinity for the intercept (algorithm

convergence at a very low value) and 0 for the patient and treatment effects. The gene-
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wise dispersion estimate is relatively high (0.63), but the final MAP dispersion estimate is

moderated close to the fitted value (0.30). The Wald statistic for the treatment variable is

still large enough (3.25), such that an uncorrected p-value for this gene would be ∼ 10−3.

While it could be that this gene is truly differentially expressed due to treatment and the

other samples would show a fold change if the sequencing depth was higher, it is preferable

to flag this gene as containing a sample with an outlier count.

4.3.6 Comparison of DESeq2 against other methods

The performance of DESeq2 was benchmarked against other packages: DESeq [22], edgeR

[21], DSS [93] and baySeq [84] 2. All packages make use of the negative binomial distri-

bution for modeling read counts, though the implementation details differ. Comparisons

are made across five real datasets3 and two simulated datasets. Short descriptions of the

datasets follow:

1. Bottomly et al. [105]: two inbred strains of mice

2. Hammer et al. [106]: rats with spinal nerve ligation or control

3. ModENCODE fly [107]: developmental time course of drosophila

4. Pasilla [108]: drosophila with knock-down of the pasilla gene

5. Wang et al. [109]: human tissue comparison

6. s0: simulated null dataset

7. s1: simulated dataset with true log2 fold changes ∼ N (0, 1)

The main condition for each experiment is given in Supplementary Table B.3. The num-

ber of genes and samples for each dataset is given in Supplementary Table B.4. Three

of the experiments have a grouping factor, which was used for balancing when construct-

ing subsets of the samples and provided to the packages which can accomodate complex

designs4.

All of the packages were run across all of the datasets using all the samples in order

to get a sense of the total amount of calling. Table 4.1 provides the number of genes

with Benjamini-Hochberg adjusted p-value [110], referred to here as FDR, less than 0.1.

Table 4.2 provides the number of unique calls: genes which were called in only one package.

Generally, DESeq2 and edgeR call more genes differentially expressed compared to the

other two packages. None of the packages call any of the genes differentially expressed in

2All packages were downloaded from the Bioconductor release branch 2.12. Version numbers: DESeq
1.12.0, DESeq2 1.0.17, edgeR 3.2.3, DSS 1.4.0 and baySeq 1.14.1. The GLM test of DESeq was used for
easier comparison with DESeq2. The trended dispersion estimation of edgeR was used. baySeq was run
with getPriors.NB() samplesize argument set to 104 for speed concerns.

3Four RNA-Seq datasets processed by Frazee et al. [104] and available at http://bowtie-bio.sourceforge.
net/recount/ and one available in the Bioconductor package pasilla.

4Grouping factors which were supplied to DESeq, DESeq2 and edgeR: Bottomly: three batches of
samples; Hammer: two time points; pasilla: single-end and paired-end batches.
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the simulated null dataset s0. DESeq2 and edgeR have about equal sensitivity uncovering

the truly differentially expressed genes in the simulated dataset s1. baySeq has much longer

running times than the other four packages, despite using one tenth of the recommend

sample size for estimating the priors (timing for each dataset provided in Supplementary

Table B.5). baySeq was excluded from further analyses as it does not offer estimates of

fold change which were used later for comparisons.

DESeq DESeq2 edgeR DSS baySeq

bottomly 1815 2420 2557 180 574
hammer 8363 8870 9870 1829 5473

modencodefly 2449 4794 2963 155 3462
pasilla 723 1241 1217 216 252
wang 2685 5255 5959 11 7779

s0 0 0 0 0 0
s1 914 1175 1241 0 748

Table 4.1: Number of total differential expression calls, FDR < 0.1.

DESeq DESeq2 edgeR DSS baySeq

bottomly 12 155 233 0 1
hammer 12 223 808 0 0

modencodefly 386 1330 18 0 434
pasilla 0 212 97 0 0
wang 0 321 28 0 1175

s0 0 0 0 0 0
s1 2 4 52 0 4

Table 4.2: Number of unique differential expression calls (only called by one package),
FDR < 0.1.

As the ground truth of which genes are differentially expressed in these datasets is not

known, the datasets were randomly split into two subsets, one small and one large, to

determine how reproducible is the set of genes below an FDR cutoff. All the packages

were run on both subsets, and the datasets were randomly split 10 times in total. The

smaller subset was of size three (or less if there are insufficient samples to split), and the

larger subset contained the remaining samples. The sets were balanced with respect to

the condition of interest and any potential grouping factors. Figure 4.9 shows the number

of true positive (TP) and false positive (FP) calls, where a false positive is defined as

a gene with FDR < 0.1 in the small subset with an estimated log fold change of the

opposite sign in the larger subset, and a true positive is defined as a gene with FDR < 0.1

in the small subset with the same sign log fold change in the large subset. The trend

across experiments is consistent, with the packages typically ordered from least to most

true positives: DSS, DESeq, DESeq2, edgeR. Figure 4.10 shows the ratio of false positive

calls divided by all positive calls, which should be comparable to the false discovery rate.

Almost all repetitions for the packages result in less than 10% false discoveries in terms

of wrong sign of log fold change in the held-out set. Figure 4.11 displays the percent of

false positives for the top n genes with lowest FDR in the small subset, and displays the

reported FDR for the n-th gene. The four packages all provide a similar false discovery
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rate when ranking genes by the reported FDR, though the reported FDR varies across

packages.
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Figure 4.9: The true positive and false positive calls for various packages. False
positive is defined as a gene with reported FDR < 0.1 in a small subset which has an
estimated log fold change of opposite sign in the large subset. As was the case with
calling on the full datasets, the DESeq2 and edgeR packages have the highest number
of calls, which are often true positives according to the sign of the log fold change in
the held-out set.

DESeq2 provides more reproducible rankings by log fold change in five of the six non-null

datasets. Figure 4.12 provides the ratio of top-ranked genes which are shared across the

subsets, ranking genes by the estimated log fold change. Only in the ModENCODE fly

dataset do the DESeq2 fold changes have slightly reduced reproducibility compared to the

other datasets, in which case the bias of the shrunken log fold changes towards 0 might

be masking some low count genes with reproducible differential expression. Note that

the ratio of shared top-ranked genes by log fold change is elevated for the other software

packages for the null dataset, in which all log fold changes are equal to 0. This is most

likely due to genes with low count, which are likely to have highly variable fold changes;

by chance, half of the time these signs will be concordant across the subsets.

In summary, DESeq2 incorporates moderation of dispersion estimates, increasing sensi-

tivity while controlling the false discovery rate. The use of a prior on dispersion esti-

mates is shown to produce more accurate estimates in simulation, when compared to the

maximum-rule of the previous implementation, DESeq. The use of a prior on log fold

changes moderates the spread of highly variable estimates for low count genes typical in
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Figure 4.10: False discovery rate at reported FDR < 0.1. Shown is the ratio of false
positive calls divided by the total number of positive calls plus 1. The packages almost
always control for a 10% false discovery rate. The range of 0-50% FDR for DESeq2
for the simulated null dataset s0 comes from 1-2 genes called, as shown in Figure 4.9.

RNA-Seq data. The log fold change prior can be justified by the observation that any

controlled experiment or comparison of groups will likely uncover many very small changes

and a few large changes. The practical consequence of the log fold change prior is that

genes can then be reliably ranked by fold change, arguably as meaningful as ranking genes

by p-value.

4.4 Discussion

DESeq2 is based on the generalized linear model, and therefore can be applied easily to

small and large datasets, and to datasets with paired design (e.g. tumor/normal com-

parisons across patients). Global patterns in the distribution of dispersion estimates are

used to improve the gene-wise estimates, while genes which do not appropriately fit this

common distribution are flagged as dispersion outliers. Genes with low mean counts and

high dispersion have log fold changes shrunk toward zero, while genes with high mean

counts and low dispersion have nearly the same log fold changes as those calculated from

group averages of normalized counts. Genes with individual samples which have a large

influence on the log fold change estimates are flagged using Cook’s distance, a standard

diagnostic for measuring influence in linear and generalized linear models.
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Figure 4.11: Percent of false positives (“wrong sign”) and reported FDR for n genes
with lowest FDR. For a given number n of genes with the lowest reported FDR in
the small subset (x-axis), the percent of genes with the opposite log fold change in
the larger subset is plotted (y-axis). Also plotted is the reported FDR for the n-th
gene. The four packages have very similar ranking of genes by FDR, so the “wrong
sign” curves are nearly identical.

Future improvements of the DESeq2 methodology include the adjustment of the Wald

statistic null distribution, using a t-distribution to replace the normal distribution. The

variance of the dispersion prior can be used to inform the degrees of freedom of the t-

distribution for the Wald statistics. This can be most easily explained by considering

the extremes: as the dispersion prior variance goes to zero, then the MAP dispersions

shrink to the fitted line. In this case, the Wald statistics should be normally distributed,

assuming the fitted line accurately describes the true dispersion-mean relationship. As the

dispersion prior variance grows to infinity, the MAP estimates are equal to the gene-wise

estimates, and in this case the Wald statistics should follow a t-distribution with (m− p)
degrees of freedom (Supplementary Figure A.1).

The robust log fold change estimates allow for a number of new possibilities for downstream

analysis. One such possibility is the use of fold changes for gene set enrichment analysis

(GSEA). Gene sets, such as those provided by the Gene Ontology [111], KEGG [112], or

Reactome [113] projects, can offer biological interpretations to the results at the end of a

differential expression analysis pipeline. It is often of interest to the investigator to know

that certain gene sets are overrepresented in the list of top up- or down-regulated genes.

One method to determine these overrepresented sets is to perform hypergeometric tests
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Figure 4.12: Percent of shared genes top-ranked by log fold change in the small and
large subsets of data. For a given number n of genes with highest absolute log fold
change in the small subset (x-axis), the percent of genes which are shared in the top-
ranked genes from the large subset is plotted (y-axis). The DESeq2 package has the
most concordant rankings in five out of the six non-null datasets.

on the intersection of each gene set and a set of significant genes created by thresholding

on significance level. The gene sets can then be ranked by the hypergeometric test p-

value. One problem with this approach is that the threshold on significance might lead

to a situation where small changes to the model or adding a new sample might result in

drastic changes to the GSEA results. This is considered by Jaffe et al. [114], who propose

bootstrap resampling of the samples in order to derive more stable GSEA results.

An alternative approach possible using the DESeq2 framework is to define interesting gene

sets as those with many genes with high or low MAP log fold changes, so called “continuous

GSEA”. The MAP log fold changes are less likely than the p-values to change drastically

with small changes to the model or the set of samples; this is because p-values involve

integration of the tail of distributions which are highly influenced by small changes in

sample size and dispersion estimates. Two approaches to continuous GSEA are as follows:

(1) for each gene set, perform a t-test of the log fold changes for the genes in the set

against the genes out of the set; (2) add the log fold changes for the genes in the set and

divide by the square root of the size of the set5. In the case of (1), the gene sets can be

ranked by the t-statistic, and in the case of (2), the gene sets can be ranked by the absolute

value of the scaled sums, which should be approximately normally distributed. The MAP

5This approach is demonstrated in the Bioconductor package Category.

60



log fold changes available with DESeq2 allow for such an analysis, whereas top-ranked

unmoderated log fold changes are a mix of “true” large log fold changes and large log fold

changes which arise from highly variable, low count genes.

Another novel analysis for RNA-Seq data possible with DESeq2 is to use the estimates of

standard error of log fold changes in order to extract those genes whose log fold change is

greater than a specified level, i.e. βij > θ. This might be useful if an investigator is only

interested in statistically significant and large log fold changes, rather than all non-zero

log fold changes. Such a method has already been proposed for microarray data [115].

Using DESeq2, p-values for such a test can be generated in a manner very similar to the

Wald test p-values. As with the Wald test, a distribution is centered on the log fold change

estimate with variance equal to the squared standard error, though now integration of the

tail begins at θ rather than at 0. One can also combine two one-sided tests in order to

test for those genes whose log fold changes are less than θ and greater than −θ, i.e. those

genes which do not change much across conditions.
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Chapter 5

Hierarchical Bayes modeling of

cell-type-specific glucocorticoid

receptor binding patterns

5.1 Introduction

The glucocorticoid hormone triggers a variety of responses across different cell types,

including gluconeogenesis (hence the prefix “gluco-”) and suppression of inflammation.

Glucocorticoids are commonly used to treat the symptoms of overactive immune systems,

as in asthma and autoimmune disorders. The glucocorticoid response is mediated through

the glucocorticoid receptor (GR), a transcription factor which binds glucocorticoid (or

similar synthetic molecules like dexamethasone). Upon activation by the hormone, GR is

able to translocate to the nucleus and bind to a 15 base pair DNA recognition sequence,

or “motif”. A canonical motif is listed in transcription factor motif databases, though

variations of the particular sequence have been shown to have functional consequences on

the regulatory activity of GR [116]. GR is also able to bind to DNA indirectly, in binding

to a protein which is itself bound to DNA.

If DNA sequence alone determined GR binding patterns, one would expect to find GR

bound to millions of sites along the mammalian genome after treating cells with hor-

mone. However, one typically finds tens of thousands of GR binding sites after hormone

treatment. One factor which limits the possible universe of sites where GR can bind is

chromatin accessibility. A recent study estimates that up to 80-90% of GR binding sites

are “predetermined” by pre-hormone-treatment chromatin accessibility [117]. This was

demonstrated through GR ChIP-Seq and DNase-Seq of mouse cells before and after hor-

mone stimulation. The post-hormone GR ChIP-Seq peaks can be shown to line up directly

with the pre-hormone-treatment DNase hypersensitive sites (DHS). This can also be seen

for human cells, as shown in Figure 5.1. Furthermore, Pique-Regi et al. [118] show that,

for many transcription factors, the combination of DNase hypersensitivity and a suitable

recognition sequence is often enough to predict binding events. Other informative factors

influencing binding include histone modifications on nucleosomes near the binding sites

[118].

Many bioinformatic analyses in recent years have attempted to determine those chromatin

and sequence features which can be used to predict the genome-wide binding patterns of

transcription factors. An alternative question, perhaps more relevant to biologists studying

cell-type-specific regulatory response, is how the relationship of various chromatin and

sequence features to transcription factor binding might change across experiments or across
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different cell types. In this chapter, I try to answer the latter question using a statistical

framework known as hierarchical models. As reviewed by Ji and Liu [119], hierarchical

models are useful for borrowing information across many genomics ranges to estimate

model parameters. I will show that these models can also be used to borrow information

across experiments.

In this chapter, a hierarchical Bayes model is used to correlate GR binding activity in

DHS with a combination of pre-hormone-treatment chromatin features, including chro-

matin accessibility, histone modifications and histone variants, and sequence features

including predicted binding affinity from DNA sequence. The analysis focuses on pre-

hormone-treatment DHS, as these constitute the majority of GR binding sites and the

DHS provide a convenient, limited set of genomic ranges at which to quantify the various

chromatin features. Pre-hormone-treatment chromatin state is measured using publicly

available DNase-Seq and histone modification ChIP-Seq experiments for the same cell

type as the GR ChIP experiment. The model is interpreted as an exploratory, hypothesis-

generating step towards further investigation of how genomic sequence combines with

cell-type-specific chromatin state to produce a diversity of cellular responses to hormone.

Figure 5.1: GR binds to pre-hormone-treatment DHS. A screenshot from the
Roadmap Epigenomics Genome Browser, http://www.epigenomebrowser.org/, show-
ing experimental tracks for the IMR90 cell type. The top track with dark red peaks
shows the read density from a GR ChIP-Seq performed in the IMR90 cell type by the
Transcriptional Regulation Group (TRG) in Berlin. The next track with blue peaks
shows the read density from a DNase-Seq experiment in pre-hormone IMR90 cells per-
formed at the University of Washington. The following three tracks show ChIP-Seq
read densities for various histone modifications in pre-hormone IMR90 cells performed
at the University of California in San Diego.

5.2 Methods

5.2.1 Sequencing data preparation

Three human cell lines were used for comparison of GR binding patterns and chromatin

state:
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• A549: adenocarcinomic lung epithelial cell

• IMR90: fetal lung fibroblast

• K562: myelogenous leukemia cell

The DHS as annotated by the ENCODE project [3] for the three cell types were used

to compare binding patterns and quantify chromatin state. These DHS are available

from the UCSC Genome Browser as “narrowPeak” files1. The DHS annotation files were

subsequently filtered by excluding regions which had any intersection with regions of the

RepeatMasker2 track with score greater than 1000. The number of remaining DHS for

each cell is: 105,121 for A549, 127,803 for IMR90 and 97,304 for K562.

GR ChIP-Seq and control (referred to as “Input”) experiments were performed in the three

cell types by the Transcriptional Regulation Group (TRG) of the Max Planck Institute

for Molecular Genetics in Berlin. The sequenced reads were mapped to the hg19 genome

using Bowtie version 1.0.0 [120] with default parameter settings. The count of reads falling

in equal sized genomic ranges was taken as a quantitative measure of transcription factor

binding, DNase hypersensitivity or histone modification levels. Read counts from a control

experiment were also used in modeling. For determining overlap with annotated genomic

ranges (promoters, exons, introns), peak calling was performed on the TRG ChIP-Seq data

using the MACS software [121] version 1.4.1 with default settings, matching the annotated

peaks available from the ENCODE project.

DNase-Seq mapped sequence data (BAM files) from the ENCODE project [3] were down-

loaded for all cells from the UCSC Genome Browser website. The ChIP-Seq experi-

ment data targeting the following histone variants and histone modifications were also

downloaded: H2A.Z, H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3,

H3K79me2, H3K9ac, H3K9me3, H4K20me1. For A549 and K562 cells, these data were

generated by the ENCODE project [3]. For IMR90 histone variant and histone modi-

fication data was generated by the Roadmap Epigenomics Mapping project [122], and

downloaded from the NCBI GEO website under the series number GSE16256. For A549

cell, two replicates of GR ChIP (stimulated with 100nm dexamethasone) and one replicate

of Input (labelled Rxlch for reverse crosslinked chromatin) were also downloaded.

GR ChIP, Input, and DNase-Seq reads were counted in 200 base pair genomic ranges cen-

tered on the annotated DHS peak from the narrowPeak files. As the histone modifications

occur on nucleosomes typically adjacent to the peak of DNase-Seq read density, genomic

ranges of 1600 base pair were used for read counting. The countBamInGRanges function

was used for read counting, from the exomeCopy Bioconductor package.

1The DHS files of the form wgEncodeOpenChromDnaseA549Pk.narrowPeak are available at http://
genome.ucsc.edu/

2A.F.A. Smit, R. Hubley and P. Green, RepeatMasker at http://repeatmasker.org, downloaded Feb.
2012.
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5.2.2 Motif score calculation

Motif scores were calculated using the GR motif MA0113.1 from the JASPAR database

[123] and scanning both strands in a 180 base pair range centered on the DHS peak. The

maximum log odds score was assigned to each DHS location. Scanning was performed

using the PWMscoreStartingAt function of the Biostrings Bioconductor package, with a

0-order background model for DNA with 42% GC content.

5.2.3 Hierarchical Bayes modeling

A hierarchical Bayes model [124] was constructed to correlate binding of GR (as measured

by ChIP-Seq read counts) with chromatin features and motif score in DHS across experi-

ments and across cell types. The log of read counts for various chromatin features (plus a

pseudocount of 1) and the motif score over the annotated DHS of a cell type are arranged

as columns of a matrix X, depicted on the right side of Figure 5.2. The chromatin feature

matrix X is identical for experiments of the same cell type, except the Input feature, which

is paired with the GR ChIP experiment: each of the TRG IMR90 ChIP-Seq experiments is

paired with its own Input experiment, and the A549 ENCODE GR ChIP experiments are

paired with the A549 ENCODE Input experiment. This matrix X is then centered and

scaled to have columns with zero mean and unit standard deviation. For an experiment k

and a genomic range i centered on a DHS, the count of GR ChIP-Seq reads is written as

Kik, following a Poisson distribution:

Kik ∼ Poisson(µik) (5.1)

log(µik) = β0k +Xi∗k~β∗k

The β0k coefficient is the intercept, which controls for sequencing depth. Xi∗k is the i-th

row of the matrix X for the cell type of sample k. The βjk coefficient is the multiplicative

effect of chromatin feature j on the GR ChIP-Seq read counts for experiment k. The

β coefficients are given normal prior distributions. The distribution of Kij can then

be described as Poisson log normal, because the log of the mean parameter is a linear

combination of normal random variables (each multiplied by a constant value in Xi∗k).

To specify that βjk for experiments k of the same cell type (ct(k)) are related, they are

given a shared prior mean νj,ct(k):

β0k ∼ N (0, σ2
0) (5.2)

βjk ∼ N (νj,ct(k), σ
2
β)

where νj,ct(k) is a variable summarizing the effect of chromatin feature j across all exper-

iments k which share the same cell type, ct(k). νj,ct(k) has a prior distribution centered
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Figure 5.2: The hierarchical model for a single cell type, used to compare the cor-
relation of chromatin features on transcription factor binding. In this diagram, the
transcription factor binding strength as measured by ChIP-Seq reads (columns on
left) is modeled based on various chromatin features (matrices on the right). The
colors represent multiple experiments for a given cell type, though only a single ma-
trix of chromatin features is currently available for each cell type. The height of the
matrices represents the number of DHS. The coefficients βj for the j-th chromatin
feature share a common prior distributed with mean νj .

on a variable λj , which summarizes the effect of chromatin feature j across all cell types.

Each cell type has its own variance term σ2
νct(k)

:

νj,ct(k) ∼ N (λj , σ
2
νct(k)

) (5.3)

λj has a prior centered on zero:

λj ∼ N (0, σ2
λ) (5.4)

The practical consequence of a zero-mean prior is to prefer a small value, unless the

likelihood function is strongly peaked at a non-zero value. The square root of the variances

σ2 used in the above equations are all given a gamma prior with mean 1:

σ0, σβ, σνct(k) , σλ ∼ Γ(α = 10, β = 10) (5.5)

A diagram of the levels of the hierarchical model is presented in Figure 5.3. The poste-

rior of the model parameters conditioning on the observed data was sampled using the

Stan C++ MCMC package and rstan R package3 [125]. The model was run for 4 chains

for 4000 iterations (the first 2000 iterations discarded as burn-in) using the “no U-turn”

3Stan project description at http://mc-stan.org/.

66

http://mc-stan.org/


β0k βjk

σ0

Kik

νj,ct(k)

λj

σβ

σνct(k)

σλ

all

cell type level

experiment level 

data

Figure 5.3: The full hierarchical model provided in Eqs. 5.1-5.5. The grey node at
the bottom indicates the data: the read counts at genomic range i for experiment k,
with a distribution depending on its parent nodes. The nodes β0k and βjk are the
intercept and multiplicative effects of chromatin feature j in experiment k. The node
νj,ct(k) is the effect of chromatin feature j in the cell type of experiment k. The node
λj is the effect of chromatin feature j across all cell types. The νj,ct(k) are particularly
of interest, as these variables summarize the cell-type-specific chromatin effect across
multiple experiments.

setting. R-hat values near 1 were used as a convergence diagnostic, provided in Supple-

mentary Table B.6 [126]. Example code for the stan model specification is provided in

the Appendix C.

5.3 Results

5.3.1 Genomic location of GR binding

Before interpreting the results of the hierarchical model, a comparison is made of the

genomic locations of DHS and those DHS which are bound by GR. This comparison shows

that GR binding in open chromatin is depleted of open promoters (Figure 5.4). Across all

cell types examined by the TRG, the amount of promoter-proximal DHS which are bound

by GR is about half of the total promoter-proximal DHS. This finding matches that of

John et al. [117] and Grontved et al. [127] found in mouse cells, with a similar amount

of depletion of promoter-proximal GR binding sites when comparing the proportion of

pre-hormome-treated promoter-proximal DHS.
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Genomic location analysis was also performed on the annotated binding peaks of various

proteins in A549 cells from the ENCODE project using the annotated DHS for A549

cells. The corresponding plots in Figure 5.5 show that certain proteins associated with

transcription, such as Pol2, TAF1, PBX3, and ETS1, when bound to DHS are enriched

near promoters. Other proteins show moderate promoter-proximal depletion, including

FOSL2, a component of the AP-1 complex, a known cofactor of GR [128]. However, the

depletion observed by John et al. [117], Grontved et al. [127] and in the data of the TRG

is not consistently reproduced in the ENCODE A549 GR ChIP-Seq experiments, with one

replicate showing a slight increase of promoter-proximal binding and one showing a slight

decrease.

A549 IMR90 K562

0
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promoter exons introns distal promoter exons introns distal promoter exons introns distal
feature

pe
rc
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t type

DHS

GR−bound DHS

Figure 5.4: Genomic location of DHS and GR-bound DHS, using ChIP-Seq data
performed by the TRG. The number of promoter-proximal (±2.5 kb from TSS) DHS
which are bound by GR upon hormone treatment ranges from around 50-75% of the
number of promoter-proximal DHS. GR tends to bind instead to intronic and distal
DHS.

5.3.2 Interpretation of hierarchical model parameters

The hierarchical model allows comparisons to be made across experiments and across cell

types. The posterior distributions for parameters at all levels of the model are plotted

for each chromatin feature and motif score in Figure 5.6. The experiment-level parame-

ters, β, have very narrow posterior distributions. The cell-type-level and across-cell-type

parameters ν and λ have wider posteriors which sometimes overlap zero, indicating the

uncertainty of these effects when experiments or cell types have parameters with different

sign. The cell type parameter ν has different variance for each cell type, with large sam-

ple size (A549 has three experiments, IMR90 has two and K562 has only one) providing

smaller variance estimates.

The small intervals for the β posterior distributions can be explained by the very large

number of genomic ranges represented in the data. For a simple Bayes calculation, as the

sample size increases, the mean of the posterior distribution converges to the MLE and

the standard deviation of the posterior converges to the standard error of the MLE [129].

This can be restated, that the likelihood becomes increasingly peaked at the MLE, and

therefore the prior has negligible effect on the posterior. The posterior distributions for
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Figure 5.5: Genomic location of DHS and protein-bound DHS in A549 cells (Pr =
promoters, Ex = exons, In = introns, Di = distal). All plots show annotated ChIP-
Seq peaks from the ENCODE project except the last, which is the A549 ChIP-Seq
peaks from the TRG also shown in Figure 5.4. “GR E1” and “GR E2” represent two
replicates of a GR ChIP-Seq experiment in hormone-treated cells.

experiment level parameters β are very similar to the maximum likelihood estimates using

a Poisson generalized linear model, as is shown in Supplemental Table B.7.

The parameters are mostly consistent across cell types and in general reflect known prop-

erties of distal regulatory elements and enhancers. For example, two consistently positive

parameters are for H3K4me1, typically used to identify enhancers, and for H3K27ac, which

is used to identify active enhancers [130]. Other consistently positive parameters are found

for DNase-Seq and Input (the control experiment). Though the genomic ranges used for

modeling are all DHS, increased DNase hypersensitivity as measured by the number of

DNase-Seq reads correlates with higher GR binding, which accords with the literature

regarding GR [117] and transcription factors in general [118].
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DHS with high scoring GR motif also correlate with higher levels of GR binding, as would

be expected. As the chromatin features and sequence features are all scaled to have unit

variance, the size of the coefficients can be used to compare overall association of features

with GR binding. In this respect, one standard deviation of the motif score has comparable

positive effect on binding as one standard deviation of DNase, although H3K27ac appears

even more associated with GR binding than motif score.

Three consistently negatively associated chromatin features are H3K36me3, H3K79me2

and H2A.Z. H3K36me3, typically found along the gene body, is associated with transcrip-

tion elongation [131]. H3K36me3 has been linked to histone deacetylation (removal of

acetyl groups from histone tails) to suppress cryptic transcription [132]. Cryptic tran-

scription occurs when an RNA polymerase starts transcribing from an intragenic region

rather than binding to the promoter. Therefore the negative association with H3K36me3

might reflect an underlying mechanism by which GR is directed to more distal regulatory

elements. An explanation for the consistent negative coefficient for H3K79me2, a histone

modification linked to cell cycle, is not obvious. The consistent negative association of

H2A.Z with GR binding might at first appear incompatible with the findings reported by

John et al. [133], that H2A.Z in highly enriched at GR binding sites. However, this study

compared H2A.Z levels at GR binding sites with two nearby regions which were not DHS,

while the model presented here focuses only on the universe of DHS. H2A.Z might there-

fore be correlated with GR binding patterns genome-wide, though negatively correlated

when limiting the comparison to only DHS. As the large majority of GR binding sites are

in DHS, the latter might be a more meaningful comparison.

5.3.3 Cell-type-specific parameters are typical promoters marks

A number of chromatin features have parameters with different sign across cell types,

including H3K27me3 and H3K4me3. H3K4me3 is a histone modification typically found at

high-CpG promoters (HCP) [134], and among low-CpG promoters (LCP) has been shown

to have high predictive power for active transcription [135]. The negative correlation of

H3K4me3 with GR binding in A549 and IMR90 cells might therefore be related to the

depletion of promoters in the set of DHS bound by GR. In addition, some chromatin

features have parameters with a different sign within a cell type, notable the H3K9ac

parameter for A549 cells. This modification has a strong negative parameter for the ChIP-

Seq experiment performed by the TRG, but a positive parameter for both replicates from

the ENCODE project. H3K9ac is a histone modification typical for promoters of actively

transcribed genes and is present, at “bivalent promoters” marked with both H3K4me3

and H3K27me3 [136]. These cell-type- and experiment-specific associations are being

investigated further by the TRG.

5.3.4 Explanatory power of the model

The percent of variance of log-scale GR binding explained by the hierarchical model across

the different experiments ranges from 31% to 59%. The percent variance for each exper-
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Figure 5.6: Posterior mean and 95% quantile-based interval for parameters of the
model. The individual experiment parameters, β, are labeled with the cell type, lab
and replicate number, e.g. “A549 E1” for A549 cell type, ENCODE project, replicate
1. The cell type parameters, ν, are labelled only with the cell names, e.g. “A549”.
The parameter across all cell types, λ, is labelled “all”. The parameters are mostly
consistent in terms of sign across experiments and cell types, with exceptions including
H3K27me3, H3K4me2, H3K4me3 and H3K9ac. The individual experiment param-
eters have comparatively small 95% intervals due to the large number of genomic
ranges used for modeling.
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iment is provided in Table 5.1. These are the squared Pearson correlations between log

GR ChIP-Seq read counts and the log of the fitted means, log(µik). The fitted means are

obtained from the posterior means of the β coefficients of the hierarchical model. As the

model is built on a quantitative measure of binding, the results are not directly comparable

with other methods which mainly focus on prediction of a binary variable indicating the

binding of a protein [118]. As the number of locations (on the order of 105) is much larger

than the number of features (14), the explanatory power of the model can be described

by comparing the training data Kik with the fitted values. If the number of features were

close to the number of locations, then using the training data for comparison would be

problematic due to overfitting of model parameters.

cell type lab % variance

A549 TRG 31
A549 ENCODE 35
A549 ENCODE 35
IMR90 TRG 57
IMR90 TRG 50
K562 TRG 59

Table 5.1: Percent variance of log GR ChIP-Seq read counts explained by the hierar-
chical model.

5.3.5 GR motif score distribution at DHS and promoters

A simple explanation for the depletion of promoter-proximal GR binding is that the pro-

moters lack the proper motif to support GR binding. To investigate the hypothesis that

promoter-proximal depletion is driven by motif score, the distribution of motif scores were

calculated for DHS grouped by GR peak presence and promoter proximity. The score dis-

tributions are shown in Figure 5.7. Average motif scores for GR-bound DHS are slightly

elevated above the non-bound DHS and scores for distal DHS are slightly elevated over

proximal. Overall, the groups have largely overlapping motif score distributions, so a more

formal approach is needed to test the hypothesis.

The contribution of motif score and promoter proximity to GR binding was quantified and

statistically tested using an analysis of deviance. The effect of promoter proximity on GR

binding can be tested, while controlling for a lack of sequence motif which might also ex-

plain the observed depletion of promoter-proximal binding. A binary variable was defined

for each DHS, indicating if the DHS overlapped a GR peak. The GR peak variable was

modeled using a logistic regression, with independent variables including motif score vs a

model with motif score and an indicator of promoter proximity. Table 5.2 shows a com-

parison of deviance of the GR peak variable explained by promoter proximity, controlling

for motif score, as a percent of the deviance explained by motif score alone. The deviance

explainable by a parameter is defined as the reduction in residual deviance from adding

that term to the model. The p-values for the analysis of residual deviance explained by

promoter proximity were less than 2× 10−16, indicating that promoter proximity explains

a significant portion of the presence of GR peaks, while controlling for GR motif score.
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Figure 5.7: Distribution of motif scores for various groups: DHS sites which are
proximal or distal to promoters, and DHS sites which are bound by GR and proximal
or distal to promoters. Bound DHS have slightly higher score distributions compared
to the universe of all DHS, and distal DHS have slightly higher score distributions than
promoter-proximal DHS. Distributions of closed and open binding sites are compared
in Supplementary Figure A.4

Therefore, the depletion of GR binding at promoter-proximal DHS cannot be explained

entirely by the lack of high scoring sequences for the GR motif.

cell type % deviance

A549 45
IMR90 52
K562 36

Table 5.2: Percent deviance of GR peak presence at DHS explained by promoter
proximity while controlling for motif score, as a percent the deviance explained by
motif score alone.

5.4 Discussion

In this chapter, I present a hierarchical model used to correlate the binding patterns of

the glucocorticoid receptor to chromatin and sequence features in sites of chromatin ac-

cessibility. This Bayesian model allows for the posterior distributions of parameters to be

compared across experiments and cell types. The results of the model are useful for hy-

pothesis generation, leading to experiments which can test the causality of any interesting

relationships which arise from the model. This follow-up experimentation is critical to

determine whether histone modifications or other proteins associated with histone mod-

ifications might somehow exert an influence on transcription factor binding, or whether

they are merely correlative.

As the modeling was performed in collaboration with the TRG, a number of hypotheses

from this project are now being tested using GAL4 fusion proteins. In these experiments,

a binding site for the protein GAL4 is positioned upstream from a GR binding site which

is itself upstream from a minimal promoter and a luciferase reporter gene. The luciferase

reporter allows for quantitive measurement of the regulatory activity of the GR. A protein

is then added which consists of the GAL4 DNA-binding domain fused to an enzyme which
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can deposite the modification of interest, ideally with some specificity for the residue of

the histone tail (e.g. deposit trimethylation on the H3K4 residue). This experiment tests

whether a perturbation of the system – e.g. adding H3K4me3 – can reduce GR regulatory

activity as measured through the transcription of the reporter gene. Preliminary results

with GAL4 fusion proteins in U2OS cells (a human osteosarcoma cell line) suggest that

trimethylation of H3K4 mediated by the WDR5 enzyme, acetylation of H3K9 mediated

by the GCN5 enzyme, and recruitment of H2A.Z all result in reduced GR-dependent

transcription at the reporter, arguing for a causative connection between these histone

modifications to GR binding and regulatory activity.

The hierarchical model described in this chapter, while providing a framework for picking

apart experimental effects, does have room for improvement. Sampling the posterior is

slow when using all DHS (∼ 105 per cell type) and all of the chromatin features assayed

by the ENCODE project across cell types (4,000 MCMC iterations last around 4 hours

for 20,000 locations). One solution would be to reduce the number of chromatin features

through principal component analysis, as the chromatin features are highly correlated and

might lead to many rejected proposals in the parameter space and extended running time.

However, linear combinations of features are not as meaningful to biological collaborators

as the chromatin features themselves. Another limitation of the current model is that

it only includes a single sequence feature, representing the best match in the DHS to

the canonical GR motif; an expanded model which allows for alternative motifs might

be better at explaining the variance seen in GR binding. The model would also benefit

from other datasets for the transcription factor ChIP-Seq, which might help resolve the

inconsistent parameters for some chromatin features seen across labs. An extension which

offers a layer for multiple replicates of the chromatin feature matrix X is also theoretically

possible, although this would lead to increased difficulty in sampling due to the increased

size of the parameter space.
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Figure A.1: Quantile-quantile plot for Wald statistics from simulated null data com-
pared toN (0, 1) theoretical quantiles. Wald statistics are shown which use various dis-
persion estimates. Using the gene-wise dispersion estimates results in Wald-statistics
which closely follow a t-distribution with (m−p) degrees of freedom (blue curve). Us-
ing either the fitted or MAP dispersion estimates results in Wald statistics which more
closely follow the expected quantiles of the normal distribution (red line). However,
when the dispersion prior variance is large, the distribution of Wald statistics using
MAP dispersion estimates for null data has wider tails than the normal distribution.
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Figure A.2: Principal component plot of 8 samples from the experiment of Haglund
et al. [103], at 48 hours from control and DPN treatment. The raw counts are first rlog
transformed using a dispersion estimate blind to the information about the patient
or treatment type. The patient type, denoted by color, explains a larger part of the
total variance than the treatment type.

Figure A.3: Standard deviation dependence on the mean using the log transforma-
tion, the rlog transformation and using a variance stabilizing transformation (VST)
as described in Anders and Huber [22]. For each gene, the standard deviation across
samples is plotted against the gene rank by normalized mean count. The rlog trans-
formation helps to stabilize the variance, though in this case the VST appears to
stabilize the variance better, with the mean standard deviation (red points) mostly
flat across the rank of mean count.
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Figure A.4: Distribution of top scoring motifs for various regions: GR peaks not
overlapping any DHS (closed peaks), GR peaks overlapping DHS, (open peaks), and
regions which are 2 kb randomly upstream or downstream from a peak (background).
For all cell types, the motif scores are elevated for the closed peaks over background.
For A549 and IMR90 cells, the open peaks also have elevated score distributions over
background.
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Appendix B

Supplementary Tables

µ0 NB GLM log t-test sqrt t-test

16 0.09 0.09 0.09
64 0.11 0.11 0.11

256 0.09 0.11 0.11
1024 0.10 0.12 0.12

Table B.1: Type I error control for discrete distributions and t-tests on transformed
counts. Shown is the proportion of tests with p-value < 0.1, for Poisson data in two
groups with three samples each, with no true difference, over 1000 replications.

m p α theor. var. sample var.

4 2 0.05 1.645 1.909
4 2 0.20 1.645 1.781
8 2 0.05 0.395 0.402
8 2 0.20 0.395 0.394
8 3 0.05 0.490 0.550
8 3 0.20 0.490 0.466

16 2 0.05 0.154 0.159
16 2 0.20 0.154 0.143
16 3 0.05 0.166 0.168
16 3 0.20 0.166 0.161

Table B.2: Theoretical and sample variance of log dispersion estimates for various
combinations of sample size m, number of parameters p and true dispersion α. The
estimates are the DESeq2 gene-wise estimates from 4000 simulated genes with nega-
tive binomial counts with a mean of 1024. The sample variance of the log dispersion
estimates is generally close to the approximate theoretical variance derived in Chap-
ter 4.

condition 1 condition 2

bottomly C57BL/6J DBA/2J
hammer control L5 SNL
modencodefly larvae adult
pasilla untreated treated
wang not cerebellum cerebellum

Table B.3: Condition of interest used for testing DESeq2 against other software pack-
ages.
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genes samples

bottomly 13932 21
hammer 18635 8
modencodefly 13224 12
pasilla 11836 7
wang 12596 14
simulated 4000 12

Table B.4: Dimensions of RNA-Seq datasets used for testing DESeq2 against other
software packages. The number of genes counts only those genes with non-zero sum
of counts across all samples.

DESeq DESeq2 edgeR DSS baySeq

bottomly 67 35 31 12 5794
hammer 68 21 19 13 4464

modencodefly 55 14 12 8 6947
pasilla 47 13 12 9 3383
wang 63 17 13 8 4735

s0 13 4 4 3 740
s1 13 4 4 3 739

Table B.5: Timing of differential expression packages on full datasets in seconds.

Min 1st Q Median Mean 3rd Q Max

0.9996 0.9998 1.0000 1.0000 1.0000 1.0040

Table B.6: Convergence diagnostic: R-hat values for all parameters of the hierarchical
model [126]. R-hat is defined as the square root of the variance of the mixture of
chains divided by the average within-chain variance. When the MCMC samples of
the model parameters have converged on the posterior distribution, then the variance
of the mixture of the chains should be equal to the variance of the individual chains,
so R-hat should be equal to 1. Values greater than 1 indicate that the sampler might
not have yet converged on the posterior distribution.
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model: Hier. Bayes GLM Hier. Bayes GLM
statistic: posterior mean MLE posterior SD MLE SE

Intercept -0.836 -0.838 0.012 0.012
DNase 0.212 0.212 0.008 0.009
Input 0.093 0.092 0.006 0.007
H2AZ -0.457 -0.455 0.015 0.015
H3K27ac 1.253 1.261 0.026 0.026
H3K27me3 0.123 0.124 0.013 0.013
H3K36me3 -0.169 -0.168 0.015 0.015
H3K4me1 0.359 0.352 0.018 0.018
H3K4me2 1.213 1.234 0.044 0.044
H3K4me3 -0.367 -0.382 0.044 0.044
H3K79me2 -0.233 -0.231 0.015 0.015
H3K9ac -1.078 -1.092 0.033 0.033
H3K9me3 0.132 0.132 0.011 0.011
H4K20me1 -0.272 -0.273 0.010 0.010
motif 0.372 0.372 0.006 0.007

Table B.7: Hierarchical model posterior mean and standard deviation (SD) compared
to the maximum likelihood estimate (MLE) and its standard error (MLE SE). The
experiment level coefficients β from the hierarchical model for the A549 cell, TRG
are compared to maximum likelihood estimates and their standard error using a
Poisson generalized linear model. Due to the large sample size, the coefficients and
standard deviations / standard errors are very similar for the Bayesian analysis and
the “frequentist” analysis (i.e. the MLE estimates and standard errors).
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Appendix C

Software

Bioconductor packages

I have implemented two of the methods described in this thesis as R/Bioconductor pack-

ages [78, 137]. Both packages include documentation of every function, as well as “Sweave

vignettes”, detailed workflows with sample code which is tested daily on actual datasets.

• The method described in Chapter 3 for exome-enriched DNA-Seq and copy number

variants is implemented in the R/Bioconductor package exomeCopy, available since

October 2011 at:

http://www.bioconductor.org/packages/release/bioc/html/exomeCopy.html.

• The method described in Chapter 4 for RNA-Seq and differential gene expression

is implemented in the R/Bioconductor package DESeq2, available since March 2013

at:

http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.

Hierarchical model code

Example stan code for the hierarchical model presented in Chapter 5 follows, for only a

single experiment and a single cell type.

data {

int N1;

int M;

int K;

int y11[N1];

matrix[N1,M] x11;

}

parameters {

vector[M] beta11;

vector[M] nu1;

vector[M] lambda;

real beta011;

real<lower=0> sigma0;

real<lower=0> sigma_beta;

real<lower=0> sigma_nu1;

real<lower=0> sigma_lambda;
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}

model {

y11 ~ poisson_log(beta011 + x11 * beta11);

beta011 ~ normal(0, sigma0);

beta11 ~ normal(nu1, sigma_beta);

nu1 ~ normal(lambda, sigma_nu1);

lambda ~ normal(0, sigma_lambda);

sigma0 ~ gamma(10,10);

sigma_beta ~ gamma(10,10);

sigma_nu1 ~ gamma(10,10);

sigma_lambda ~ gamma(10,10);

}
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Appendix D

Notation

D.1 Acronyms

arrayCGH array-based comparative genomic hybridization
bp base pair
cDNA complementary DNA
ChIP chromatin immunoprecipitation
CNV copy number variant
mRNA messenger RNA
DESeq differential expression for sequence counts
DHS DNase hypersensitive site
FDR false discovery rate
GLM generalized linear model
GR glucocorticoid receptor
HMM hidden Markov model
kb kilobase (103 base pairs)
LFC log fold change
MAP maximum a posteriori
Mb megabase (106 base pairs)
MLE maximum likelihood estimate
PCA principal component analysis
PCR polymerase chain reaction
rlog regularized log transformation
SD standard deviation
SE standard error
TSS transcription start site
VSN variance stabilizing normalization
VST variance stabilizing transformation
XLID X-linked intellectual disability
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D.2 Symbols

K read counts
X design matrix
xi∗ the i-th row of X
~β column vector of coefficients
µ mean parameter
α dispersion parameter
σ2 variance parameter
N normal distribution
NB negative binomial distribution
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Appendix E

Curriculum Vitae

For reasons of data protection, the Curriculum Vitae is not published in the online version.
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For reasons of data protection, the Curriculum Vitae is not published in the online version.
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For reasons of data protection, the Curriculum Vitae is not published in the online version.
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Appendix F

Zusammenfassung

Mit Hochdurchsatz-Sequenzierverfahren (HTS) bezeichnet man das gleichzeitige Sequen-
zieren von Millionen von DNA-Fragmenten, welche entweder zur Genomrekonstrution
genutzt oder auf ein bestehendes Referenzgenom aligniert werden können. Das Protokoll
kann erweitert werden, um verschiedene biologische Zustände der Zelle, wie z.B. die An-
zahl an DNA-Kopien, mRNA-Abundanzen oder verschiedene Chromatin-Eigenschaften,
zu messen. Diese Hochdurchsatzverfahren ermöglichen biologische Zustände genomweit
mit einem einzigen Experiment zu quantifizieren. Obwohl diese Experimente oft nur
eine begrenzte Stichprobengrösse haben, liefern sie dennoch Informationen zu tausenden
Genomregionen und ermöglichen das Erstellen robuster statistische Modelle, um technis-
che Fehler zu reduzieren.

In dieser Arbeit entwickle ich drei statistische Modelle basierend auf HTS-Daten um
konkrete biologische Fragen zu beantworten.

Im ersten Teil wird ein hidden Markov-Modell entworfen, um Kopienzahlvariationen (CNVs)
in einzelnen Patienten zu detektieren. Das Modell berücksichtigt hierbei technische Arte-
fakte wie z.B. die variable HTS-Effizienz abhängig vom lokalen GC-Gehalt. Angewen-
det auf eine Studie mit 248 männlichen Patienten, sagt das Modell 16 grosse CNVs vo-
raus, wovon 10 CNVs getestet und experimentell validiert wurden. Im Vergleich mit
anderen Segmentierungsalgorithmen zeigt die vorgestellte Software auf simulierten CNVs
eine höhere Sensitivität bei gleicher Anzahl prognostizierter CNVs.

Im zweiten Teil wird die Parameterabschätzung in einem statistisches Modell zur Identi-
fizierung von differentieller Genexpression in RNA-Seq-Daten verbessert. Dies umfasst die
Benutzung von empirischen Bayes’schen a-priori -Wahrscheinlichkeiten, welche über alle
Gene geschätzt werden. Hierdurch werden unsichere Schätzungen der Varianz-Parameter
und der Expressionsänderung einzelner Gene korrigiert. Das verbesserte Modell ist sensi-
tiver und zusätzlich robuster in der Schätzung der Expressionsänderung im Vergleich zu
alternativen Softwarepaketen.

Im letzten Teil wird ein hierarchisches Bayes’sches Modell verwendet um in zugänglichen
Chromatinregionen den Zusammenhang zwischen der Bindung eines Transkriptionsfaktors
und Chromatin- und Sequenz-Eigenschaften zu beschreiben. Dieses Modell umfasst drei
Ebenen: den Vergleich einzelner Experimente, Experimente des gleichen Zelltyps oder
Experimente über alle Zelltypen. Das Modell dient der Hypothesengenerierung für das
DNA-Bindungsverhalten eines Transkriptionskriptionsfaktors. Dies wird am Beispiel des
Glucocorticoid-Rezeptors veranschaulicht.

Zusammenfassend beschreibt diese Arbeit eine Sammlung statistischer Methoden für die
Modellierung von HTS-Daten, die in verschiedenen biologischen Bereichen verwendet wer-
den kann. Diese Methoden bilden einen allgemeinen Rahmen zur robusten Schätzungen
von Variablen und zum Testen von Hypothesen.
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Appendix G

Summary

High-throughput sequencing (HTS) refers to the simultaneous sequencing of millions of
fragments of DNA, which can be either assembled to reconstitute a genome, or aligned
to an existing reference genome. The protocol can be extended to assay a wide variety of
biological states of the cell, including DNA copy number, mRNA abundance and various
properties of chromatin. HTS experiments allow for these biological states to be quantified
as read counts at genome-wide scale with a single experiment. Though the experiments
are expensive and often datasets are produced with limited sample size, information can
be shared across thousands of genomic ranges in order to obtain robust models which
control for technical biases.

In this thesis, I present three statistical models for analyzing HTS read count data, aimed
at answering concise biological questions.

First, a hidden Markov model is developed for detecting copy number variants (CNVs) in
individual samples while controlling for technical artifacts, such as variation in read counts
due to local GC-content. Applied to a study of 248 male patients with X-linked intellectual
disability, the model predicts 16 large CNVs, of which 10 candidate disease-causing CNVs
were tested and all experimentally validated. The proposed software is then compared with
state-of-the-art segmentation algorithms on normalized data, showing higher sensitivity
while controlling the total rate of predicted CNVs.

Second, improvements for parameter estimation are made for a statistical model of differ-
ential gene expression from RNA-Seq data. The improvements involve the use of empirical
Bayes priors – priors estimated using the observations from all genes – in order to mod-
erate otherwise noisy estimates of dispersion and fold changes for individual genes. The
improved model shows increased sensitivity and more robust estimation of fold change in
comparison with other differential expression software packages for RNA-Seq.

Finally, a hierarchical Bayes model is used to associate transcription factor binding with
chromatin and sequence features in regions of accessible chromatin. The hierarchical
model incorporates three levels of parameters: one for individual experiments, one for
experiments of the same cell type and one across all cell types. The model parameters
are used to generate hypotheses regarding the DNA-binding behavior of a transcription
factor, the glucocorticoid receptor.

In summary, this thesis describes a set of statistical methods for HTS read count data
which can be used across various biological domains. The methods form a framework for
robust estimation of variables and hypothesis testing.
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