
Exotic Components of the

Toric Hilbert Scheme

René Birkner

b

b

b

b

b

b

M1

M5

M3

M4

M

M2

Dissertation, April 2010
Freie Universität Berlin
Fachbereich Mathematik und Informatik

Betreut von:
Prof. Dr. Klaus Altmann



Eidesstattliche Erklärung

Gemäÿ �7 (4) der Promotionsordnung versichere ich hiermit, diese Arbeit selbst-
ständig verfasst zu haben. Ich habe alle bei der Erstellung dieser Arbeit benutzten
Hilfsmittel und Hilfen angegeben.

Berlin, den 13. April 2010

René Birkner

Erstgutachter

Prof. Dr. Klaus Altmann
Freie Universität Berlin
Fachbereich Mathematik und Informatik

Zweitgutachterin

Prof. Dr. Diane Maclagan
University of Warwick
Mathematics Institute

Datum der Disputation: 14.07.2010



Abstract

We introduce an explicit construction of the non-coherent components of toric
Hilbert schemes. In particular, we show that the polytope describing the nor-
malisation of such a non-coherent component is in fact a state polytope of some
homogeneous ideal. We give an explicit construction of this ideal, the so-called
generalised universal family. We use this construction to compute examples with
interesting characteristics, such as an embedded component in the coherent com-
ponent. Furthermore, we construct a strati�cation of the toric Hilbert scheme
by the maximal subtorus action that leaves the corresponding A-graded ideals
invariant. Finally, we present a correspondence between the toric Hilbert scheme
and the moduli space of stable toric pairs constructed by Alexeev.
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Chapter I

Introduction

In [Gro95] Grothendieck introduced the classical Hilbert scheme which param-
etrises all subschemes of Pn−1

k with the same �xed Hilbert polynomial. Hereby,
the total coordinate ring S = k[x1, ..., xn] is endowed with the classical Z-grading.
In toric geometry one works with multigraded rings, i.e. the degree of each xi
is an element in an abelian group A, for example Zd. In an analog of the clas-
sical case one can de�ne the multigraded Hilbert function for some ideal I in
the multigraded ring S, that counts the dimension over k of (S/I)a for each
multidegree a ∈ A. Haiman and Sturmfels [HS04] showed that there is a multi-
graded Hilbert scheme, which parametrises all homogeneous ideals with a �xed
multigraded Hilbert function in S.

Before that, a special case of multigraded Hilbert schemes, the toric Hilbert
schemes, had already been studied by Arnol′d [Arn89], Korkina, Post and Roelofs
[Kor92, KPR95], Sturmfels [Stu94], Peeva and Stillman [PS02, PS00], Maclagan
and Thomas [MT03, MT02], and others. This toric Hilbert scheme is given by
the multigraded Hilbert function of the toric ideal IA in S. If the set of degrees
is A = {ai := deg(xi)} ⊂ Zd then the multigraded Hilbert function is 1 for a in
the semigroup generated by A and 0 otherwise. At �rst all ideals with the same
multigraded Hilbert function as the toric ideal IA were called A-graded ideals.

The toric Hilbert schemes are on the one hand more structured than the
classical Hilbert schemes, but also more constricted than general multigraded
Hilbert schemes, so that they can be studied more intensely. On the other hand,
they still have many interesting characteristics one might not expect, for example
the intersection behaviour of their components. Thus, they provide a very good
class of examples to understand multigraded Hilbert schemes.

This thesis is structured into �ve chapters. We start in Chapters II and III
by citing most of the facts about A-graded ideals and the toric Hilbert scheme
given mainly in [Stu94], [PS02, PS00] and [MT03, MT02]. By this we also have
a consistent nomenclature to work with in the following chapters. Chapters IV
and V present the new results of the current author. The last chapter depicts the
moduli space of stable toric pairs by Alexeev and shows the correspondence to
the toric Hilbert scheme established by the present author. Although this thesis
is written to be self-explanatory and complete, we assume that the reader has
basic knowledge of algebraic geometry and toric varieties as for example in the
�rst chapters of [Har77] or [Ful93], respectively.

In Chapter II of this work we collect most of the facts known so far about A-
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graded ideals. In general, an initial ideal of some ideal I has the same multigraded
Hilbert function as I (Lemma II.2.7), so that we get a set of A-graded ideals by
taking all initial ideals of IA for all di�erent weight vectors. An ideal isomorphic
to such an initial ideal of the toric ideal is called coherent, where isomorphic
means that the corresponding algebras are isomorphic as multigraded k-algebras.
Hence, the isomorphism classes of coherent A-graded ideals are in bijection with
the cones of the Gröbner fan of IA.

In Chapter III we give the two equivalent de�nitions of the toric Hilbert
scheme by Maclagan and Thomas, and by Peeva and Stillman. They construct
a projective scheme that parametrises all A-graded ideals. The global equations
of this scheme are in general very extensive, but Peeva and Stillman show that
there is a cover of a�ne open charts around the monomial A-graded ideals and
that the calculations of the local equations for these a�ne charts are much more
feasible (Section III.3). They show that the toric Hilbert scheme can have several
irreducible components. However, there is a unique component containing the
toric ideal (Theorem III.2.4), which in fact contains exactly all coherent A-graded
ideals. Therefore, this component is called the coherent component of the toric
Hilbert scheme. Moreover, the normalisation of the coherent component is the
toric variety associated to the Gröbner fan of the toric ideal (Theorem III.2.5).
A third construction by Sturmfels [Stu94] shows that the underlying reduced
structure of each irreducible component of the toric Hilbert scheme is given by
binomial equations so that all these reduced components are projective toric
varieties and therefore each of them contains a dense torus, the so-called ambient
torus of that component. Thus, this implies the existence of a polytope PV for
each component V of the toric Hilbert scheme such that the normalisation of
this component is the toric variety associated to the normal fan of PV (Corollary
III.2.3).

The main part of this work is Chapter IV where we give an explicit construc-
tion of the polytope PV for an arbitrary non-coherent reduced component V of a
toric Hilbert scheme. For this we use the local equations around a monomial A-
graded idealM in new variables y to construct a universal family JM(p) for each
non-coherent irreducible component containingM (De�nition IV.1.21), where p
denotes an associated prime of the local equations de�ning the underlying reduced
structure Vp of such a non-coherent irreducible component.

Main Theorem 1 (Theorem IV.1.22). The universal family JM(p) parametrises
the ambient torus of the reduced irreducible non-coherent component Vp in the

toric Hilbert scheme over the points in (k∗)dim(Vp). To be precise, the closed points
of this irreducible component of the toric Hilbert scheme intersected with its am-
bient torus are exactly those A-graded ideals that are given by substituting a point
(λi)i=1,...,dim(Vp) ∈ (k∗)dim(Vp) into JM(p).

Thus, the ambient torus (k∗)dim(Vp) of a non-coherent component is di�er-
ent from the torus Spec(k[x±1]) of the coherent component. Then we construct
a homogenised version J̃M(p) of JM(p) by introducing a new set of variables
z1, ..., zdim(Vp) with the same degrees as the y variables (De�nition IV.3.1). This
homogeneous family J̃M(p) is called the generalised universal family and also gives
the ambient torus of the non-coherent component. But more importantly, it gives
the main result of that chapter:
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Main Theorem 2 (Theorem IV.3.4). LetM be a monomial A-graded ideal and

J̃M(p)⊆ k[x, yi, zi | i = 1, ..., dim(Vp)] a generalised universal family of a reduced

component Vp containingM. Then J̃M(p) is homogeneous with respect to a strictly
positive grading and the normalisation of the component Vp is the toric variety

de�ned by the normal fan of the state polytope state(J̃M(p)), i.e. the Gröbner fan

of J̃M(p).

Furthermore, for each A-graded ideal I contained in some non-coherent com-
ponent Vp the ambient torus orbit of I in this component corresponds to a face
FI of the state polytope of J̃M(p) giving Vp. In particular, vertices correspond
to monomial A-graded ideals and edges correspond to one-dimensional orbits
of A-graded ideals which are generated by one binomial xm − λxn for λ ∈ k∗
and further monomials. The theorem allows one to construct all non-coherent
components explicitly and study their properties.

Using our explicit construction we give various examples especially in Chap-
ter V that demonstrate di�erent very interesting intersection behaviours of the
components of a toric Hilbert scheme which have not been found so far. Thus, we
show that there can be a non-coherent component intersecting the coherent com-
ponent, but the intersection is not a face of each of the corresponding polytopes
(Example IV.1.4). On the other hand, there are also pairs of components whose
intersection is given by a facet of each of the corresponding polytopes (Example
V.2.1). Then again, embedded components do appear in toric Hilbert schemes
(Example V.2.2). Moreover, there are even embedded components in the coher-
ent component that can be given by facets of the state polytope of the toric ideal
(Example V.2.3).

In toric geometry it is often of interest to form a quotient by a subtorus action
on some variety. The torus (k∗)n acts diagonally on S = k[x1, ..., xn] and if the
variety is given by some ideal I ⊂ S then a k-dimensional subtorus action on
S/I is given by a k-dimensional grading D on S such that I is homogeneous with
respect to D. This is equivalent to I being invariant under the subtorus action.
Thus, in Section V.1 we study for each A-graded ideal I the maximal rank of a
subtorus of (k∗)n under whose action I is invariant. It turns out that for every
reduced irreducible component Vp containing I all A-graded ideals corresponding
to the (k∗)dim(Vp)-orbit of I have the same space of possible subtorus actions.
Moreover, we prove a correspondence between the restriction space VI of the
grading D inducing an invariant action, and the edges of the face FI , where the
restriction means that Ker(D) must contain VI :

Main Theorem 3 (Theorem V.1.18). Let I be an A-graded ideal, FI the corre-
sponding face of the polytope of some component containing I, and denote by GFI
the set of binomials corresponding to the edges of FI . Then the restriction space
is given by

VI = span {m− n |xm − xn ∈ GFI} .

This means the maximal possible rank of a subtorus action induces a strati�-
cation on the toric Hilbert scheme. In this strati�cation each face of the polytopes
PV corresponds to a subset of a stratum and each stratum is then given by the
collection of all faces with the same span of their edges (Remark V.1.20).
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Finally, in the last chapter we establish a connection between the toric Hilbert
scheme and the moduli space of stable toric pairs introduced by Alexeev in [Ale02].
For this, we �rst follow Alexeev's construction of stable toric pairs and their
moduli space. A stable toric pair (P,Θ) is a polarized stable toric variety (P, L)
with a Cartier divisor Θ, that does not contain any torus orbits, and such that
L = OP(Θ). He shows that every polarized stable toric variety is isomorphic to a
projective variety P[∆, t] over a complex of lattice polytopes ∆ which is embedded
on height 1 in a vector space of one dimension higher (Theorem VI.2.8). The
variety P[∆, t] is obtained by gluing the irreducible projective varieties P(δ) for
all δ ∈ ∆ along the intersections of the polytopes, where P(δ) is the projective
spectrum of the semigroup algebra given by the lattice points of the cone over δ
(De�nitions VI.2.2 and VI.2.4).

If for one �ber P[∆, t] in a �at family of stable toric pairs the complex ∆ is a
cell decomposition of a polytope Q then for every �ber in that family the complex
is some cell decomposition of Q (Lemma VI.3.6). Using this, Alexeev constructs
a coarse moduli space TP fr[Q] of stable toric pairs given by cell decompositions of
the same polytope Q. Then he shows that there is a component in TP fr[Q] that
corresponds to all coherent subdivisions of Q. Note that the coherent subdivisions
of a polytope Q are in bijection with the faces of the secondary polytope of Q
(see [GKZ08]).

Assume that Q is a normal lattice polytope embedded at height 1, where
normal means that the semigroup of lattice points of the cone over Q is generated
by the lattice points of Q. We denote the lattice points of the embedded Q
by A = {a1, ..., an}. Then we show that for each decomposition ∆ of Q into
normal polytopes we have P[∆, 1] = k[x1, ..., xn]/I for a reduced A-graded ideal
I. Moreover, the main result of the last chapter establishes a correspondence
between a subset of the moduli space of stable toric pairs TP fr[Q] and a subset
of the toric Hilbert scheme HA.

Main Theorem 4 (Theorem VI.6.4). There is a one-to-one correspondence be-
tween general points of orbits of reduced A-graded ideals and unions of all strata
of stable toric pairs with the same normal cell decomposition of Q.

Furthermore, we show that both notions of coherence correspond to each
other.

Main Theorem 5 (Theorem VI.6.6). In the correspondence of Theorem VI.6.4
orbits of coherent A-graded ideals correspond to subsets with coherent cell decom-
positions.

This means that each face of the state polytope of the toric ideal of A giving a
reduced initial ideal corresponds to a face of the secondary polytope of the convex
hull of A giving a decomposition into normal polytopes.
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Chapter II

A-Graded Ideals

In this �rst chapter we mainly cite proofs as we are collecting already known
facts about A-graded ideals from [Stu94], [PS02], and [MT02]. We begin with
the de�nition of A-graded ideals and state some �rst properties.

II.1 De�nitions and Properties

We will be using the lattice M := Zd with its associated vector space over Q
MQ := M ⊗Z Q and dual lattice N := HomZ(M,Z) ∼= Zd with corresponding
Q-vector-space NQ := N ⊗Z Q. We will work over an algebraically closed �eld k.

Let A be a collection of n vectors a1, ..., an in M such that 0 ∈ M is not
contained in their positive hull. One can also de�ne A as a linear map of lattices
A : Zn →M by ei 7→ ai such that

Ker(A) ∩ Nn = 0. (II.1)

We will often make use of both notations. We denote by NA the semigroup
generated by a1, ..., an in M . This is the image of Nn under A. Suppose that
A has rank d. Otherwise we can restrict M to the sublattice M ∩ A(Qn) in
which A has full rank. De�ne a polynomial ring S := k[x1, ..., xn] over k with
an M -grading given by A. This just means that xi has degree ai. Furthermore,
an element r ∈ S is M -homogeneous if every term of r has the same degree in
the M -grading induced by A, and an ideal I ⊆ S is M -homogeneous if for every
r ∈ I and its decomposition r =

∑
ra into M -degree parts ra ∈ I holds for each

a, where ra is the sum over all terms in r with degree a ∈M .

De�nition II.1.1. An ideal I ⊆ S is called A-graded if it is M -homogeneous
and

dimk (S/I)a =

{
1 if a ∈ NA
0 otherwise (II.2)

holds for its multigraded Hilbert function. It is called weakly A-graded if the
left-hand side is less than or equal to the right-hand side. We call a k-algebra
A-graded if it is of the form S/I for some A-graded ideal I.

A special A-graded ideal is the toric ideal IA, which is the kernel of the
homomorphism S → k[t±1

1 , ..., t±1
d ] that maps xi to tai = t

a1i
1 · . . . ·t

adi
d for 1 ≤ i ≤ n.

Therefore, IA =
〈
xa − xb |a, b ∈ Nn,a− b ∈ Ker(A)

〉
is generated by binomials
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and is by de�nition A-graded, because it identi�es all monomials of the same
degree.

Remark II.1.2. Since IA is A-graded, we can also say that an M -homogeneous
ideal I ⊂ S is A-graded if it has the same multigraded Hilbert function as IA.

Example II.1.3. Let A = {( 1
2 ) , ( 1

1 ) , ( 2
1 )} ⊂ Z2 induce a multigrading on the

ring S = k[x1, x2, x3]. Then the toric ideal for thisA is IA = 〈x1x3 − x3
2〉. Another

A-graded ideal for this A is for example the monomial ideal 〈x1x3〉.
♦

Being a binomial ideal also holds for every other (weakly) A-graded ideal. To
see this, let xa and xb be of the same degree, say c. Since dim(S/I)c ≤ 1 there
exist α, β ∈ k which are not both zero such that αxa − βxb ∈ I. Hence every
polynomial in I can be reduced to binomials. If one of them, for example xb, is
not in I then α 6= 0 so that we can set α = 1 and get the following:

Lemma II.1.4. Let I be an A-graded ideal in S and xu,xv two monomials of
the same degree a ∈ NA with xv /∈ I. Then there is a unique αuv ∈ k such that
xu − αuv · xv ∈ I.

De�nition II.1.5. A binomial xu − xv ∈ IA is called primitive (or Graver) if
there are no proper monomial factors xu

′
of xu and xv

′
of xv with xu

′−xv′ ∈ IA.
A degree a ∈ NA is called a primitive (or Graver) degree if there exists some
primitive binomial xu − xv with degree Au = Av = a and we denote the set of
all primitive degrees by Pd(A). The set of all primitive binomials is called the
Graver basis and we denote it by G(A).

By [Stu96, Theorem 4.7] there are only �nitely many primitive binomials and
hence Pd(A) and G(A) are �nite.

Remark. From now on we will use alphabetical variables a, b, c, ... instead of
x1, x2, x3, ... in almost all examples to improve lucidity.

Example II.1.6. Let A = {1, 2, 3} ⊂ Z1 de�ne a grading on S = k[a, b, c]. Then
the toric ideal is

IA =
〈
a2 − b, ab− c

〉
.

The Graver basis in this case is

G(A) =
{
a2 − b, ab− c, a3 − c, ac− b2, b3 − c2

}

with primitive degrees Pd(A) = {2, 3, 4, 6} and the monomials of which the
Graver basis elements consist are

mon(G(A)) =
{
a2, a3, b, b2, b3, c, c2, ab, ac

}
.

♦

These primitive binomials are useful to construct weakly A-graded ideals.

Proposition II.1.7. Let I be an ideal in S. Then I is weakly A-graded if and
only if for every primitive binomial xu − xv there exists (α : β) ∈ P1 such that
αxu − βxv ∈ I.

Proof. See [PS02, Proposition 2.1].
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A re�nement of this proposition gives a useful property of A-graded ideals.

Lemma II.1.8. Let I be an A-graded ideal in S. Then there exist unique αuv ∈ k
such that

I = 〈xu − αuvxv |xu − xv ∈ G(A) and xv /∈ I〉 .
In particular, there is a minimal set of generators of I consisting of primitive
binomials with coe�cients.

Proof. See [PS02, Corollary 2.3] or [Stu94, Lemma 2.2].

Proposition II.1.7 enables us to construct weakly A-graded ideals: For every
xu − xv ∈ G(A) pick some (αuv : βuv) ∈ P1 and then set

I = 〈αuvxu − βuvxv |xu − xv ∈ G(A)〉. (II.3)

These ideals are all weakly A-graded. However, since we are actually interested
in A-graded ideals, Lemma II.1.8 ensures that we also get all A-graded ideals by
this method. We only need a criterion to distinguish the A-graded ones from the
weakly A-graded ones.

Obviously, we cannot check dimk (S/I)a = 1 for all a ∈ NA, so we are looking
for smaller �nite parts of NA on which it is su�cient to check the condition. Let
R ⊂ M . We say that I is A-graded on R if it has the same Hilbert function on
R as the toric ideal, that is

dimk (S/I)a = dimk (S/IA)a

for all a ∈ R. Now we need to �nd someR such that beingA-graded onR implies
being A-graded. A �rst approach was done by Sturmfels in [Stu94, Section 5].
He de�ned the zonotope

Zr(A) :=

{
n∑

i=1

λi · ai | 0 ≤ λi ≤ r for i = 1, ..., n

}
⊂MQ

for r > 0. Then he showed the following:

Proposition II.1.9. Let a = max{||ai||2 | i = 1, ..., n}, r = (n − d)2n · ad2n, and
let I be generated as in (II.3). Then I is A-graded if it is A-graded on Zr(A)∩M .

Proof. See [Stu94, Proposition 5.1].

Since the r in Proposition II.1.9 grows double-exponentially it gives a rather
high bound for the zonotope on which one has to check for A-gradedness. Already
in this paper Sturmfels mentioned that this bound seems too big and conjectured
that r = (n− d) · ad is large enough. This was then proven in [PS00]. Set

mon(G(A)) := {xu | ∃xv : xu − xv ∈ G(A)} ,
T := {lcm(m1, ...,mn) |mi ∈ mon(G(A)), 1 ≤ i ≤ n} , and

V :=

{
deg(m)−

∑

j∈J
aj |m ∈ T, J ⊆ [n]

}
⊂M.

Then V is a smaller bounding region as the next theorem shows.
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Theorem II.1.10. If a weakly A-graded ideal I generated as in equation (II.3)
is A-graded on V then it is A-graded.

Proof. See [PS00, Theorem 5.2].

Hence, the zonotope Zr(A) with r = (n − d) · ad su�ces since it contains
V ∩ NA.

Example II.1.11 (continuing II.1.3). For A = {( 1
2 ) , ( 1

1 ) , ( 2
1 )} ⊂ Z2 we have

n = 3, d = 2, and
a = max

{√
5,
√

2,
√

5
}

=
√

5.

Thus, for the bound in Proposition II.1.9 we get

r = 1 · 58 = 390,625

so that the zonotope Zr(A) has 762,940,625,001 lattice points. On the other
hand, the bound resulting from Theorem II.1.10 amounts to

r = (3− 2) ·
√

5
2

= 5

so that for this r the zonotope Zr(A) has only 141 lattice points. Finally, there
is only one Graver degree which has just the two monomials b3 and ac so that we
get

T =
{
b3, ac, ab3c

}
.

Computing V results in the smallest region, i.e.

V ∩ NA = {( 0
0 ) , ( 1

1 ) , ( 2
1 ) , ( 1

2 ) , ( 2
2 ) , ( 3

3 ) , ( 4
3 ) , ( 3

4 ) , ( 5
4 ) , ( 4

5 ) , ( 5
5 ) , ( 6

6 )} ,

which consists of only 12 lattice points (See Figure II.1).
♦

II.2 Gröbner Degenerations and the State Poly-

tope

Monomial A-graded ideals play a central role in studying A-graded ideals. Initial
ideals with respect to a term order are monomial ideals. Therefore, we recall
some basic facts about term orders and Gröbner bases. For more information on
Gröbner bases we refer to [CLO07, Chapter 2] or [Stu96, Chapter I]. First of all
we start with term orders.

A term order ≺ on a polynomial ring S = k[x1, ..., xn] is a total order on the
monomials of S such that 1 is the unique minimal element and m1 ≺ m2 implies
m1 ·n ≺ m2 ·n for all monomials m1,m2, n ∈ S. For example, on k[x, y, z] we can
de�ne the so-called lexicographic term order ≺lex by z ≺lex y ≺lex x which means
a monomial is of higher order than another if the x exponent is greater. If they
have the same x exponent, then the y exponents are compared and so on, e.g.

x2y4z6 ≺lex x
3yz and x3y2z3 ≺lex x

3y2z5.
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Figure II.1: The two zonotopes and V ∩ NA

Such a term order gives a unique initial term in≺(f) for every f ∈ S, which is
the monomial with the highest order in f with respect to ≺. Let I ⊂ S be some
ideal. Then the initial ideal of I is de�ned as in≺(I) := 〈in≺(f) | f ∈ I〉. Note
that if {f1, ..., fr} is a set of generators for I, the set {in≺(f1), ..., in≺(fr)} need
not be a generating set for in≺(I). For example, if I = 〈x− y, x− z〉 ⊂ k[x, y, z]
with z ≺ y ≺ x, then in≺(I) = 〈x, y〉.
De�nition II.2.1. A �nite set {f1, ..., fr} ⊂ I is a Gröbner basis of I with respect
to ≺ if in≺(I) = 〈in≺(f1), ..., in≺(fr)〉. It is called reduced, if for every two distinct
fi, fj no term of fi is divisible by in≺(fj).

Note that every Gröbner basis is also a generating set of the ideal and the
reduced Gröbner basis is unique for a given term order and an ideal. However,
two term orders with di�erent initial ideals might give the same reduced Gröbner
basis but with di�erent initial terms. Thus, if we also mark the initial terms in
a reduced Gröbner basis we call it a marked reduced Gröbner basis. Then initial
ideals of an ideal I are in one-to-one correspondence to marked reduced Gröbner
bases of I. Gröbner bases can be computed with the Buchberger Algorithm (See
[CLO07, Chapter 5]). In this computation new polynomials are generated, that
might have initial terms not given so far, by using the following.

De�nition II.2.2. Let f, g ∈ S be two polynomials and ≺ a term order. Denote
by h the least common multiple of the initial monomials of f and g, i.e. the
initial terms without coe�cients. Then the S-polynomial of f and g is de�ned as

S (f, g) :=
h

in≺(f)
f − h

in≺(g)
g.

Basically, the Buchberger algorithm takes a generating set of the ideal, com-
putes the S-polynomial for a pair of polynomials in the generating set, and reduces
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this S-polynomial by the generating set. If the reduction is not zero it is added to
the generating set. This is repeated until no new polynomials are added. Then
this set will be reduced by itself, i.e. if any term is divisible be the initial term
of another polynomial, then the appropriate multiple of that other polynomial is
subtracted from the �rst. If our ideal is a binomial ideal and we start with a set
of binomial generators then only binomials occur in the computation, so that we
get:

Remark II.2.3. Every reduced Gröbner basis of a binomial ideal consists only of
binomials.

Example II.2.4 (continuing II.1.6). Let S = k[a, b, c] with A = {1, 2, 3} as
before, and the toric ideal IA = 〈a2 − b, ab− c〉. If we take the lexicographic
term order ≺1 on S with the order c ≺1 b ≺1 a then

in≺1(IA) =
〈
a2, ab, ac, b3

〉

is the initial ideal with respect to this term order and

G1 =
{
a2 − b, ab− c, ac− b2, b3 − c2

}

is the reduced Gröbner basis to this term order. If we take on the other hand the
lexicographic order ≺2 with a ≺2 b ≺2 c then

in≺2(IA) = 〈b, c〉

is the initial ideal with respect to this term order and

G2 =
{
b− a2, c− ab

}

is a Gröbner basis. If we replace c− ab by c− a3 it is the reduced Gröbner basis.
♦

A slightly di�erent approach on constructing initial ideals is by weight vectors.
Let ω ∈ Qn be a weight vector, that means a monomial xd = xd11 · ... · xdnn has
weight ω ·d ∈ Q. Then for f =

∑
fix

di the initial term with respect to ω, inω(f),
is de�ned as the sum of all fixdi where ω ·di is maximal for all terms in f and for
an ideal I the initial ideal with respect to ω is de�ned as inω(I) = 〈inω(f) | f ∈ I〉.
This need not be a monomial ideal, but for generic ω it is.

Proposition II.2.5. For any ideal I ⊂ S and any term order ≺ on S there exists
a weight vector ω ∈ Nn such that inω(I) = in≺(I).

Proof. See [Stu96, Proposition 1.11].

We say that ω ∈ Qn is generic for I if inω(I) = in≺(I) for some term order ≺.

De�nition II.2.6. For each positive weight vector ω ∈ Qn
≥0 the ideal inω(I) is

called a Gröbner degeneration of I.

Note that for generic weight vectors the Gröbner degenerations are the initial
ideals of I. They are useful, because passing from an ideal to one of its initial
ideals preserves the Hilbert function.
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Lemma II.2.7. Let I ⊂ S be a homogeneous ideal and ≺ a term order. Then I
and in≺(I) have the same multigraded Hilbert function.

Proof. See [CLO07, 9.�3 Proposition 9].

Thus, take a Gröbner degeneration inω(I) and any term order ≺. Then
in≺(inω(I)) is an initial ideal of inω(I) and I (see [Stu96, Proposition 1.8]), and
hence every Gröbner degeneration of I has the same multigraded Hilbert function
as I.

A �nite set is called a universal Gröbner basis of I if it is a Gröbner basis for
every term order ≺. For the existence of a universal Gröbner basis we consider
the following theorem:

Theorem II.2.8. Let I ⊂ S be an ideal. There are only �nitely many distinct
marked reduced Gröbner bases of I or equivalently there are only �nitely many
distinct initial ideals of I.

Proof. See [Stu96, Theorem 1.2].

Hence, the union of all reduced Gröbner bases of I is �nite and thus a universal
Gröbner basis for I. We will refer to the union of all reduced Gröbner basis of an
ideal I as the universal Gröbner basis UGB(I).

Example II.2.9 (continuing II.1.6). For A = {1, 2, 3} we already had two initial
ideals of IA :

M1 = in≺1 (IA) = 〈a2, ab, ac, b3〉 for c ≺1 b ≺1 a

M2 = in≺2 (IA) = 〈b, c〉 for a ≺2 b ≺2 c

There are four more di�erent initial monomial ideals:

M3 = in≺3 (IA) = 〈a2, c〉 for b ≺3 a ≺3 c

M4 = in≺4 (IA) = 〈a2, ab, ac, c2〉 for b ≺4 c ≺4 a

M5 = in≺5 (IA) = 〈a2, ab, b2〉
M6 = in≺6 (IA) = 〈b, a3〉 for c ≺6 a ≺6 b,

where ≺5 �rst compares the total degree and if they are equal uses c ≺ a ≺ b.
The six marked reduced Gröbner bases are

G1 =
{
a2 − b, ab− c, ac− b2, b3 − c2

}
,

G2 =
{
b− a2, c− a3

}
,

G3 =
{
a2 − b, c− ab

}
,

G4 =
{
a2 − b, ab− c, ac− b2, c2 − b3

}
,

G5 =
{
a2 − b, ab− c, b2 − ac

}
, and

G6 =
{
b− a2, a3 − c

}
,

respectively.
♦
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For a toric ideal IA the universal Gröbner basis UGB(IA) is contained in
the Graver basis G(A), since by [Stu96, Lemma 4.6] every element of a reduced
Gröbner basis is primitive. If we consider two di�erent weight vectors ω1, ω2 ∈ Qn,
then it can happen that inω1(I) = inω2(I). This thus de�nes an equivalence
relation on the weight vectors. For a positive ω ∈ Qn

≥0 the Gröbner cone Kω(I) is
the set of all ω′ ∈ Qn such that inω′(I) = inω(I). This means each Gröbner cone
is the set of all weight vectors that give the same Gröbner degeneration. Since
every positive weight vector gives a Gröbner degeneration the set of all Gröbner
cones covers the positive orthant in Qn.

Lemma II.2.10. Let I ⊂ S be an ideal and ω ∈ Qn
≥0 be a positive weight vector.

Then Kω(I) ⊆ Qn is a convex polyhedral cone. In particular, if ω is generic for
I with Gröbner basis G then we have

Kω(I) = {ω′ ∈ Qn | inω′(g) = inω(g) for all g ∈ G} .

Proof. See [Stu96, Proposition 2.3].

Note that these cones do not necessarily cover Qn since for ω′ /∈ Qn
≥0 arbitrary

there need not exist an ω ∈ Qn
≥0 such that inω′(I) = inω(I).

In the toric case the lemma gives the following description: Let ω be generic
for IA and denote by G = {gi = xmi − xni | i = 1, ..., k} the corresponding marked
reduced Gröbner basis where inω(gi) = xmi . Thus, for every ω′ ∈ Qn we have
inω′(gi) = inω(gi) if and only if ω′ ·mi > ω′ · ni. Hence, we get the following
corollary:

Corollary II.2.11. Let ω be generic for a toric ideal IA with corresponding
marked reduced Gröbner basis G = {gi = xmi − xni | i = 1, ..., k}. Then the Gröb-
ner cone is given by

Kω(IA) = {ω′ ∈ Qn |ω′ · (mi − ni) > 0 for i = 1, ..., k} .

Hence, if we let ω vary over all weight vectors we get a collection of convex
polyhedral cones.

De�nition II.2.12. The collection GF(I) of the convex polyhedral cones
{
Kω(I) |ω ∈ Nn

}

and all their faces is called the Gröbner fan of I and its support the Gröbner
region GR(I).

In the Gröbner fan the cones of maximal dimension are the cones Kω(I) of
weight vectors ω which are generic for I, because the restriction for inω(I) to be
a monomial ideal is that ω is greater on the leading term than on every other
term for every element of the corresponding Gröbner basis of I. This means that
Kω(I) is the intersection of open half-spaces in Qn which is n-dimensional if it is
non-empty. On the other hand, if ω is not generic then there is a g ∈ UGB(I)
with two terms of the same order, so Kω(I) is contained in some hyperplane and
hence has dimension lower than n. By the next proposition it is a face of one of
the n-dimensional cones.
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Proposition II.2.13. The Gröbner fan GF(I) is a fan. The n-dimensional cones
are in one-to-one correspondence to the initial monomial ideals of I.

Proof. See [Stu96, Proposition 2.4].

Example II.2.14 (continuing II.1.6). The toric ideal IA = 〈a2 − b, ab− c〉 has
six initial monomial ideals and n = 3. Hence, the Gröbner fan has six three-
dimensional cones which by Corollary II.2.11 are given by the closures of

K1 (IA) =

{
ω ∈ Q3

∣∣∣∣
(

2 −1 0
1 1 −1
1 −2 1
0 3 −2

)
· ω > 0

}
,

K2 (IA) =
{
ω ∈ Q3

∣∣ ( −2 1 0
−3 0 1

)
· ω > 0

}
,

K3 (IA) =
{
ω ∈ Q3

∣∣ ( 2 −1 0
−1 −1 1

)
· ω > 0

}
,

K4 (IA) =

{
ω ∈ Q3

∣∣∣∣
(

2 −1 0
1 1 −1
1 −2 1
0 −3 2

)
· ω > 0

}
,

K5 (IA) =
{
ω ∈ Q3

∣∣∣
(

2 −1 0
1 1 −1
−1 2 −1

)
· ω > 0

}
, and

K6 (IA) =
{
ω ∈ Q3

∣∣ ( −2 1 0
3 0 −1

)
· ω > 0

}
,

where the condition > 0 for a matrix means that each entry is strictly positive.

♦

Note that for a toric ideal IA the lineality space of every cone in GF(IA) is
given by the row space of A. In fact, ω and −ω are in a Gröbner cone if and
only if inω(g) = g for all g ∈ G(A), because IA does not contain any monomials,
so that there is no g ∈ G(A) with inω(g) 6= g. The span of the m − n for all
xm − xn ∈ G(A) is exactly Ker(A), so that this is equivalent to ω ∈ (Ker(A))⊥.

Consider two generic, i.e. full dimensional, cones Kω1(IA),Kω2(IA) in the
Gröbner fan GF(IA) of a toric ideal IA, which intersect in a common face F of
codimension-one. Let G1 and G2 be the corresponding marked reduced Gröbner
bases of IA. Then ω ∈ Qn is in Kω1(IA) if the marked Gröbner basis with respect
to the term order ω is G1. This is the case if and only if inω(g) = inω1(g) for all
g ∈ G1. Since all g ∈ G1 are binomials, we have g = xmg −xng with leading term
xmg with respect to ω1. Thus, inω(g) = inω1(g) is equivalent to ω1 ·mg > ω1 ·ng.
Since G1 6= G2, there exists some g0 = xm0 −xn0 ∈ G1 such that ω1 ·m0 > ω1 ·n0

and ω2 ·m0 ≤ ω2 · n0. But if we take a weight ω in the interior of F then
ω ·m0 = ω · n0, because ω lies in the closure of Kω1(IA), and we therefore have
ω ∈ (m0 − n0)⊥. This leads to:

Lemma II.2.15. Let Kω1(IA),Kω2(IA) be two generic cones in GF(IA) with com-
mon face F of codimension-one. Then there exists a unique g = xm − xn in
UGB(IA) such that

Kω1(IA) ∩ (m− n)⊥ = F = Kω2(IA) ∩ (m− n)⊥ .

Proof. Let ω0 be in the relative interior of F . By the above, there exists some
g = xm − xn ∈ UGB(IA) such that ω0 ∈ Kωi(IA) ∩ (m− n)⊥ for i = 1, 2, and
in addition we have ω · (m − n) ≥ 0 for all ω ∈ Kω1(IA) and ω · (n −m) ≥ 0
for all ω ∈ Kω2(IA). But this means Kωi(IA) ∩ (m− n)⊥ is a face of Kωi(IA) for
i = 1, 2 and since F is a facet of both cones and a point in its relative interior
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is contained in Kωi(IA)∩ (m− n)⊥, the desired equality holds. Thus, it remains
to prove the uniqueness. Let g′ = xm

′ − xn′ be a di�erent element of UGB(IA)
such that F = (m′ − n′)⊥ ∩ Kωi(IA) for i = 1, 2. Then (m′ − n′) = λ(m − n)
for some λ 6= 0 ∈ Q. But g and g′ are primitive and hence λ = 1.

The Gröbner fan GF(I) need not be complete for arbitrary I, but there is a
nice condition that ensures completeness. Moreover, it implies that GF(I) is the
normal fan of some polytope, which is an even more special property.

De�nition II.2.16. Let I ⊆ S = k[x1, ..., xn] be a homogeneous ideal with
Gröbner fan GF(I) in Qn. A polytope in Qn, that has the Gröbner fan GF(I) as
its normal fan, is called a state polytope for I.

In the toric case, because the lineality space of GF(IA) is the row space of A,
a state polytope for IA has to be (n− d)-dimensional and its a�ne hull has to be
a translation of Ker(A).

Theorem II.2.17. Let I ⊂ S be a homogeneous ideal with respect to a strictly
positive Z-grading. Then there exists a state polytope state(I).

Proof. See [Stu96, Theorem 2.5].

Sturmfels' proof is by construction of a state polytope state(I). We will call
this polytope the state polytope. However, for a toric ideal IA we can see the
completeness directly. Since we assumed Ker(A) ∩ Nn = 0 (see (II.1)), there
exists a strictly positive weight vector ω0 in the row span of A. This means that
inω0(g) = g for all g ∈ G(A). Thus, inλω0+ω(IA) = inω(IA) for all ω ∈ Qn and
therefore every weight vector is equivalent to some strictly positive weight vector,
which means that the Gröbner fan covers Qn.

Corollary II.2.18. For every collection A of lattice points whose matrix satis�es
Ker (A) ∩ Nn = 0 there exists a state polytope for the toric ideal IA.

Proof. Just note that the strictly positive weight vector ω0 in the row span of A
induces a strictly positive Z-grading on IA.

Example II.2.19 (continuing II.1.6). A state polytope for IA is a hexagon
since it must be two-dimensional with six vertices. We use [Stu96, Theorem 2.5]
to compute the state polytope. Then the vertices of state(IA) correspond to the
initial monomial ideals in the following way:

M1 ↔




1
4
4


 M2 ↔




21
0
0


 M3 ↔




3
9
0




M4 ↔




1
7
2


 M5 ↔




2
2
5


 M6 ↔




6
0
5




See Figure II.2.
♦
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M2

M3

M4

M1

M5

M6

e1

e2

Figure II.2: A state polytope for IA

Remark. All computations with convex polyhedral objects have been done with
Polyhedra [Bir09], a package for the computer algebra software Macaulay2 [GS]
written by Grayson and Stillman.

By de�nition, the faces of the state polytope are in one-to-one correspondence
with the cones in the Gröbner fan. As the latter classify all Gröbner degenera-
tions, we have the same correspondence between the Gröbner degenerations of I
and the faces of state(I). Furthermore, the edges of the state polytope state(IA)
of a toric ideal correspond to the codimension-one faces of the Gröbner cones of
highest dimension. Thus, in combination with Lemma II.2.15 we get the following
corollary.

Corollary II.2.20. Every edge of the state polytope of a toric ideal IA can be
labeled by an element g = xm−xn of the universal Gröbner basis UGB(IA) such
that the edge is parallel to (m− n).

Example II.2.21 (continuing II.1.6). The edge directions in state(IA) are:



1
−2
1


↔ ac− b2 (M1 toM5)




2
−1
0


↔ a2 − b (M5 toM6)




3
0
−1


↔ a3 − c (M6 toM2)



−2
1
0


↔ b− a2 (M2 toM3)



−1
−1
1


↔ c− ab (M3 toM4)




0
−3
2


↔ c2 − b3 (M4 toM1)

Hence, we can label the edges as in Figure II.3.
♦

For a toric ideal IA there is a construction of a state polytope that simpli�es
the one in [Stu96, Theorem 2.5]. This construction uses certain degrees and
monomials similar to those in De�nition II.1.5, but this time for Gröbner bases
instead of Graver bases.
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M2

M3

M4

M1

M5

M6

c2 − b3

ac− b2

a2 − b

a3 − c

b− a2

c− ab

Figure II.3: The edges of state(IA) labeled by the elements of UGB(IA)

De�nition II.2.22. We say an integral vector a ∈ NA is a Gröbner degree if
there exists an element g of the universal Gröbner basis UGB(IA) of degree a.
For such a Gröbner degree a the convex hull of A−1(a)∩Nn is called the Gröbner
�ber of a and in general for an arbitrary degree b ∈ NA we call the convex hull
of A−1(b) ∩ Nn the �ber of b.

Note that equivalently the Gröbner �ber is the convex hull of the exponent
vectors of all monomials in S of degree a. These polytopes are used for the
following construction.

Theorem II.2.23. The Minkowski sum of all Gröbner �bers is a state polytope
for IA.

Proof. See [Stu96, Theorem 7.15].

Obviously, for g = xm−xn ∈ UGB(IA) of Gröbner degree a the pointsm and
n are lattice points in the same Gröbner �ber. On the other hand, if we take two
arbitrary lattice pointsm,n in a Gröbner �ber, we want to know when xm−xn
is in the universal Gröbner basis. We have already seen that every element of a
reduced Gröbner basis is primitive so that xm − xn has to be primitive. This
means we have reduced to the case where m and n are lattice points in a �ber
of a Graver degree and xm − xn is a Graver binomial.

Theorem II.2.24. Let g = xm − xn ∈ G(A) be a Graver binomial. Then g is
in the universal Gröbner basis of IA if and only if the line segment [m,n] is an
edge of the �ber of A ·m.

Proof. This is basically [Stu96, Theorem 7.8]. We only have to note that the
exponent vectors of the Graver binomials are the primitive vectorsl.

As a consequence we get an improvement to Corollary II.2.20. The edge
directions of a Minkowski sum of polytopes are the edge directions of the sum-
mands, hence the edge directions of the state polytope are all the edge direc-
tions of the Gröbner �bers (Theorem II.2.23). Thus, since for every element
g = xm−xn ∈ UGB(IA) the line segment [m,n] is an edge of the corresponding
Gröbner �ber (Theorem II.2.24), we have the following:
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Corollary II.2.25. The edges of the state polytope of IA are each labeled by a
unique element g = xm − xn of the universal Gröbner basis of IA such that
(m − n) is parallel to the edge and for every g ∈ UGB(IA) there is at least one
edge labeled by g.

Note that this is a slight re�nement of Corollary 7.9 in [Stu96].

II.3 Varying A-Graded Ideals

Now we have collected the tools to identify A-graded ideals and recalled some
facts about Gröbner degenerations, so we can focus on how to get new A-graded
ideals out of given ones.

If we �x some A-graded ideal I and choose some weight vector ω ∈ Nn we
have the initial ideal inω(I) = 〈inω(f) | f ∈ I〉. Then by Lemma II.2.7 inω(I) has
the same Hilbert function as I and is therefore also A-graded.

On the other hand, we have assumed Ker(A) ∩ Nn = 0. This implies that
there is a vector ω′ in the row span of A which is strictly positive. Since IA is
homogeneous with respect to A it is homogeneous with respect to every vector in
the row span of A so if we take the grading deg(xi) = ω′i, then IA is homogeneous
with respect to some strictly positive grading and by Theorem II.2.17 there is the
state polytope state(IA). Hence, the Gröbner fan of IA covers all of Qn and there
is a strictly positive integer vector in the interior of each cone of the fan, in fact
even in the common lineality space of all cones.

We denote the natural action of the torus (k∗)n on S by λ.xi = λi · xi for
λ ∈ (k∗)n. In other words the action corresponds to the grading given by the
identity In on S. Then twoA-graded ideals I, I ′ are called isomorphic as A-graded
ideals if there exists a λ ∈ (k∗)n such that λ.I = I ′. This means the algebras S/I
and S/I ′ are isomorphic as M -graded k-algebras. Such isomorphisms lead to the
notion of coherence:

De�nition II.3.1. An A-graded ideal is called coherent if it is isomorphic as an
A-graded ideal to some initial ideal inω(IA) of the toric ideal.

Lemma II.3.2. Two di�erent initial ideals of IA are not isomorphic as A-graded
ideals.

Proof. Denote the Graver basis by G(A) = {xm1 − xn1 , ...,xml − xnl} and the
two di�erent initial ideals of the toric ideal IA by I1 and I2. Since I1 is A-graded
it is generated in the Graver degrees so that without loss of generality we have

I1 = 〈xm1 − xn1 , ...,xmj − xnj ,xmj+1 , ...,xml〉 .

Assume that I1 and I2 are isomorphic. Then there exists some λ ∈ (k∗)n such
that I2 = λ.I1. But I2 is also an initial ideal of the toric ideal so that it is
generated by some of the xmi − xni and some of the monomials, too. Thus, I2

contains only binomials with +1 and −1 as coe�cients. Thus, we get

λmi−ni = 1 for i = 1, ..., l

and hence that I2 = λ.I1 = I1 which is a contradiction.
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If we pick a coherent A-graded ideal I then there is some ω ∈ Nn such that
I ∼= inω(IA). This weight vector ω is in the relative interior of a cone σ of the
Gröbner fan and hence by de�nition I ∼= inω′(IA) if and only if ω′ is in the relative
interior of σ. This means:

Lemma II.3.3. The isomorphism classes as A-graded ideals of coherent A-graded
ideals are in one-to-one correspondence with the cones of the Gröbner fan of
IA.

Recall that if the weight vector ω is in the relative interior of an n-dimensional
cone in the Gröbner fan, then inω(I) is a monomial ideal. These n-dimensional
cones correspond to the vertices of state(I) and thus we get the following equiv-
alent correspondence:

Corollary II.3.4. The isomorphism classes of coherent A-graded ideals are in
one-to-one correspondence with the faces of the state polytope of IA. In particular,
monomial coherent A-graded ideals correspond to vertices.

This leads to the notion of adjacent initial ideals of IA. LetM1 andM2 be
two initial monomial ideals of IA (or coherent monomial A-graded ideals). Let
v1 and v2 be the corresponding vertices of state(IA). Assume that v1 and v2 are
connected by an edge e of the state polytope. ThenM1 andM2 are said to be
adjacent and there is some A-graded ideal IM1,M2 such thatM1 andM2 are the
only initial ideals of I. This ideal is inω(IA) for some ω in the interior of the cone
in GF(IA) that corresponds to the edge e. Let g0 = xm − xn be the element of
UGB(IA) which labels e as in Corollary II.2.20 with xm ∈ M1,x

m /∈ M2 and
xn /∈M1,x

n ∈M2.

Lemma II.3.5. The ideal connectingM1 andM2 is given by

IM1,M2 = inω(IA)
= 〈xa |xa is a minimal generator ofM,a 6= m〉+ 〈xm − xn〉 .

Proof. See [HT00, Theorem 3.6].

This means passing from one coherent monomial A-graded ideal to another
adjacent one involves ��ipping� the term order on some g0 = xm − xn in the
corresponding two marked Gröbner bases of IA, whereas all other g in the two
respective marked Gröbner bases keep their orientation. Note that the orientation
of a g ∈ G(A) with both terms in the ideals might �ip. The ideal I = inω(IA) is
called the wall ideal for the �ipping from M1 to M2 because it is the Gröbner
degeneration of IA by a weight vector ω in the interior of the common face of the
cones in GF(IA) corresponding toM1 andM2.

Example II.3.6 (continuing II.1.6). For A = {1, 2, 3} we had the two A-graded
idealsM1 = 〈a2, ab, ac, b3〉 andM5 = 〈a2, ab, b2〉. They are adjacent since they
are connected by an edge of the state polytope (see Figure II.3). The ideal
connectingM1 andM5 is

IM1,M5 =
〈
ac− b2, a2, ab, b3

〉
.

♦
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This ��ipping� and adjacency have been extended to all monomial A-graded
ideals by Maclagan and Thomas ([MT02, Section 2]).

De�nition II.3.7. LetM be a monomial A-graded ideal and g = xm − xn in
G(A) with xm a minimal generator ofM and xn /∈M. We de�ne the wall ideal
of g to be

Wm−n := 〈xa |a 6= m,xa is a minimal generator ofM〉+ 〈xn − xm〉
=
〈
xa |xa − xb ∈ G(A),xa ∈M,xb /∈M,a 6= m

〉
+ 〈xn − xm〉

and the �ipping ofM along g to be

Mflip :=
〈
xa |xa − xb ∈ G(A),xa ∈M,xb /∈M,a 6= m

〉
+ 〈xn〉 .

Note that both, the wall ideal and the �ipping ideal, are M -homogeneous but
not necessarily A-graded.

One can construct the initial ideal ofWm−n with respect to xm ≺ xn, because
only S-polynomials of xn − xm with monomials have to be computed for the
Gröbner basis. But these are multiples of xm and so the only binomial is xn−xm.
Thus, for every element of Wm−n there is a unique initial term and a Gröbner
basis can be computed. Hence, the initial ideal ofWm−n with respect to xm ≺ xn
is well de�ned.

Lemma II.3.8. The ideal Mflip is weakly A-graded and is the initial ideal of
Wm−n with respect to xm ≺ xn.

Proof. See [MT02, Lemma 2.8 + 2.9].

IfM is coherent and g ∈ UGB(IA) corresponds to one of the codimension-one
faces of the Gröbner cone given byM as in Lemma II.2.15, thenMflip andWm−n
coincide with the ideals we had constructed before and are both again A-graded.
Since this is not the case for general monomial A-graded ideals or for a g not
corresponding to a codimension-one face, the notion of a �ippable element of the
Graver basis for a monomial ideal is de�ned due to [MT02] and we give their
characterization of when this is the case:

De�nition II.3.9. Let M ⊂ S be a monomial A-graded ideal. A binomial
g = xm − xn ∈ G(A) is called �ippable if xm is a minimal generator of M,
xn /∈M andMflip is again an A-graded ideal.

Theorem II.3.10. LetM be a monomial A-graded ideal and g = xm−xn be a
Graver binomial. Then g is �ippable for M if and only if M is the initial ideal
of Wm−n with respect to xn ≺ xm.

Proof. See [MT02, Theorem 2.11].

Example II.3.11 (continuing II.1.6). For each of the six monomial A-graded
ideals there are precisely two elements in the Graver basis that are �ippable.
These two correspond to the binomials labeling the two edges emerging from
the vertex of the state polytope corresponding to this monomial ideal (see again
Figure II.3).

♦
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De�nition II.3.12. The �ip graph of A has all monomial A-graded ideals as
vertices. There is an edge labeled by the Graver binomial g between two monomial
A-graded idealsM andM′ ifM′ can be obtained fromM by �ipping along g.
The set of all Graver binomials that appear as an edge in the �ip graph is called
FlipsA.

Because all coherent monomial A-graded ideals are the vertices of the state
polytope and we have seen that the edges of the state polytope correspond to �ips
along elements of UGB(IA), the edge graph of the state polytope is a subgraph
of the �ip graph. Because of Corollary II.2.25 every element of the universal
Gröbner basis of IA appears at least on one edge of the state polytope and hence
is �ippable. Therefore, the universal Gröbner basis is contained in FlipsA.

Remark II.3.13. In general the universal Gröbner basis, the �ips, and the Graver
basis may be distinct sets, i.e. there exists an A such that

UGB(IA)  FlipsA  G(A).

Maclagan and Thomas give various examples for combinations of proper subsets
and equal sets in [MT02, Remark 2.14].

Example II.3.14 (continuing II.1.6). For A = {1, 2, 3} the �ip graph coincides
with the edge graph of the state polytope of IA and thus we have in fact

UGB(IA) = FlipsA = G(A),

see Figure II.3. ♦

This allows one to investigate the combinatorics of A-graded ideals by looking
at a monomial A-graded ideal and �nd the �neighbours� by determining the �ips
of that monomial ideal. The computer software TiGERS [HT00] written by
Huber and Thomas enables one to start from a monomial A-graded ideal and
by computing all the �ips to �walk� to all adjacent monomial A-graded ideals.
Hence, one can investigate the complete �ip graph of the A-graded ideals.

This walk along the �ip graph enumerates all monomial A-graded ideals if
the �ip graph is connected. Then one takes an initial monomial ideal M of IA
and can get from there to every monomial A-graded ideal along FlipsA. But if
the �ip graph is not connected this is simply not possible. Thus, one needs to
compute the set of all monomial A-graded ideals �rst. This can for example be
done with the following construction:

Construction II.3.15. Let A satisfy Ker(A) ∩ Nn = 0. We compute the toric
ideal IA and the Graver basis G(A). For each Graver degree a we select a standard
monomial sa and denote byMa the set of all other monomials of degree a. Note
that we do this degree by degree and thus do not choose an sa, that is already
in the ideal generated by all the previousMa′ , because then the resulting ideal
could not be A-graded anyway. Then letM be the ideal generated by theMa

for all Graver degrees. By Lemma II.1.8 with αuv = 0, we get all monomial
A-graded ideals and some monomial weakly A-graded ideals asM, if we do this
for all combinations of standard monomials. Thus �nally, we collect all M's,
that have the same multigraded Hilbert function as IA. This can for example be
checked with the computer algebra software Macaulay2 [GS].
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Remark II.3.16. In [SST02, Section 1] the authors state the implementation of
the above algorithm in Macaulay2 [GS]. This implementation is included in
the package ToricHilbertSchemes [Bir10].

Furthermore, Santos has given an example in [San05] where the �ip graph of
A is disconnected. What this means for the A-graded ideals will be shown in
III.2.
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Chapter III

Toric Hilbert Schemes

So far we have constructed or changed A-graded ideals �by hand�. But like the
classical Hilbert scheme for the Z-grading, which parametrises all subschemes of
Pn with the same Hilbert polynomial, there is a scheme that parametrises all A-
graded ideals. This toric Hilbert scheme parametrises all subschemes of Spec(S)
with the same multigraded Hilbert function as S/IA.

A parameter space for A-graded ideals was �rst constructed by Sturmfels in
[Stu94, Chapter 5]. This construction was then improved by Peeva and Stillman
[PS02] who de�ned the toric Hilbert scheme. We will give the construction of the
toric Hilbert scheme in a version of Maclagan and Thomas [MT02] and add some
details of how this is the same as in [PS02].

III.1 Construction and De�nition

Let a ∈ Pd(A) ⊂ NA be a primitive degree. We denote the number of elements
in the �ber of a under the map A by |a| + 1 and the set of all such monomials
by Gm(A)a, and assume that we have ordered them. Note that Gm(A)a are
exactly the monomials in the Graver �ber. The Graver basis of A is �nite, so
that we have Pd(A) = {a1, ...,al}. From this we de�ne the following product of
projective spaces over k

P := P|a1|
k × ...× P|al|k .

The toric Hilbert scheme will be a closed subscheme of P and the construction is
motivated by Lemma II.1.8. For this we denote a homogeneous point in P|ai|k by

ξai =
(
ξai0 : ... : ξai|ai|

)
where ξaij corresponds to the j-th element xmj in Gm(A)a.

Equivalently, for some m ∈ Gm(A)a we also use the notation ξam for the corre-
sponding coordinate of ξa. Hence, to every given point ξ = (ξa1 , ..., ξal) ∈ P we
can associate an ideal Iξ ⊂ S by

Iξ :=
l∑

i=1

〈ξain · xm − ξaim · xn |xm,xn ∈ Gm(A)ai 〉 . (III.1)

Let xm − xn be a Graver binomial of degree a. Then there exists some point
(α : β) ∈ P1

k such that αxm − βxn ∈ Iξ, except for the case when ξam = ξan = 0.
But there has to be an xm0 in the Graver �ber of a such that ξam0

6= 0, which
implies in this case

ξam0
· xm = ξam0

· xm − ξam · xm0 ∈ Iξ.
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Thus, we have 1 · xm − 0 · xn ∈ Iξ and because of Proposition II.1.7 Iξ is weakly
A-graded. Note that xm ∈ Iξ with deg(xm) = a if ξam = 0.

On the other hand, consider an A-graded ideal I and �x a Graver degree a.
Since dimk (S/I)a = 1, there is a monomial in Gm(A)a that is not contained in
I. Without loss of generality we may assume that it is xm0 . It also follows from
the one-dimensionality of every degree a part of S/I that for i = 1, ..., |a| there
exist unique αi ∈ k such that αi · xm0 − xmi ∈ I. Set

ξa :=
(
1 : α1 : ... : α|a|

)
.

If we do this for all a ∈ Pd(A) we get a point ξ(I) = (ξa1 , ..., ξal) ∈ P .
These two maps induce a bijection between the A-graded ideals and a subset

of P . Indeed, let Iξ be A-graded. Then for every a ∈ Pd(A) there is some i0
with ξai0 6= 0 and we can write

ξa =
(
ξa0 /ξ

a
i0

: ... : 1 : ... : ξa|a|/ξ
a
i0

)
.

This implies directly that each αi in the construction above is exactly ξai /ξ
a
i0

which means ξ(Iξ) = ξ. On the other hand, take an A-graded ideal I and �x
some a ∈ Pd(A). Then again we may assume that ξ(I)a =

(
1 : α1 : ... : α|a|

)
.

Therefore, we get ξa0 · xmi − ξai · xm0 = −(αi · xm0 − xmi). Since

ξaj · xmi − ξai · xmj = ξaj (ξai · xm0 − xmi)− ξai (ξaj · xm0 − xmj)

= αj(αi · xm0 − xmi)− αi(αj · xm0 − xmj) ∈ I

we have Iξ(I) ⊂ I, but because Iξ(I) contains all generators of I we get Iξ(I) = I
because of Lemma II.1.8. Note that the toric ideal IA corresponds to the point
in P with ξa = (1 : ... : 1) for all a ∈ Pd(A).

To get the bijection between A-graded ideals and a subset of P we have to give
equations on P such that for exactly those points ξ ful�lling these equations Iξ is
an A-graded ideal. The ideal Iξ is weakly A-graded so we �x a subset R ⊂ NA
such that being A-graded on R implies that the ideal is A-graded. A good choice,
for example, would be V from Theorem II.1.10. With this �xed R it follows that
Iξ is not A-graded exactly if there exists some degree a ∈ R such that Iξ contains
every monomial of degree a. The homogeneous polynomials of degree a in Iξ are
linear combinations of binomials

ξbj · xmi · xγ − ξbi · xmj · xγ

where xmi −xmj is a Graver binomial of degree b and the total degree of such a
binomial isA(mi+γ) = A(mj+γ) = a. This is equivalent to linear combinations
of binomials

ξbj · xm − ξbi · xn

where xm and xn have degree a and m = n −mj +mi for a Graver binomial
xmi−xmj . Let Ma be a matrix whose |a|+ 1 rows are labeled by the monomials
of degree a and whose na columns are labeled by pairs of monomials xm,xn of
degree a such that there exists a Graver binomial xmj − xmi of degree b with
m = n −mj + mi, which is unique since it is primitive. The column of Ma

corresponding to the pair xm,xn consists of ξbj in the xm row, −ξbi in the xn

row, and zero elsewhere.
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Since homogeneous polynomials of degree a in S are in one-to-one corre-
spondence with vectors in k|a|+1, the homogeneous polynomials of degree a in
Iξ correspond to the image of the map σa : kna → k|a|+1, x 7→ Max. Thus, Iξ
is not A-graded exactly if there is an a ∈ R such that σa is surjective, which
means there is a maximal minor of Ma that is not vanishing. Therefore, we get
the following description due to Maclagan and Thomas [MT02].

De�nition III.1.1. Choose an R as before and let P and Ma, for all a ∈ R,
be as before. Then we de�ne the toric Hilbert scheme HA ⊂ P to be the scheme
given by the ideal generated by the maximal minors of Ma for all a ∈ R. By
using (III.1) the closed points in HA parametrise all A-graded ideals.

Example III.1.2. Let again A = {1, 2, 3}. Then we had the Graver basis

G(A) =
{
a2 − b, ab− c, a3 − c, ac− b2, b3 − c2

}

and the primitive degrees Pd(A) = {2, 3, 4, 6}. Thus, we can divide the Graver
monomials into

Gm(A)2 =
{
a2, b

}
Gm(A)3 =

{
a3, ab, c

}

Gm(A)4 =
{
a4, a2b, ac, b2

}
Gm(A)6 =

{
a6, a4b, a3c, a2b2, abc, b3, c2

}

Hence, in this example we get

P := P1
k × P2

k × P3
k × P6

k.

Exemplarily, we will compute the matrices Ma for the degrees 2 and 3, and give
their maximal minors. So let the degree be 2. There are 2 monomials of degree 2
so that M2 has two rows, the �rst labelled by a2 and the second by b. Then there
are two (ordered) pairs of monomials (a2, b) and (b, a2) such that there exists a
Graver binomial which in this case are a2−b and b−a2 respectively satisfying the
exponent condition because for example for the �rst pair

(
2
0
0

)
=
(

0
1
0

)
−
(

0
1
0

)
+
(

2
0
0

)
.

Thus, in the �rst column we get ξ2
b in the a2 row and −ξ2

a2 in the b row. The
second column equals the �rst with permuted signs so that we get

(a2, b) (b, a2)

M2 =

(
ξ2
b −ξ2

b

−ξ2
a2 ξ2

a2

)
a2

b ,

where we have noted down the labels of the rows and columns.
For degree 3 we have the three monomials a3, ab, and c labelling the rows and

there are six pairs of monomials (a3, c), (c, a3), (ab, c), (c, ab), (a3, ab), (ab, a3) with
the same exponent di�erence as the Graver basis element a3− c for the �rst two,
ab− c for the second two, and a2 − b for the last two. Therefore, the matrix for
degree 3 is

(a3,c) (c,a3) (ab,c) (c,ab) (a3,ab) (ab,a3)

M3 =




ξ3
c −ξ3

c 0 0 ξ2
b −ξ2

b

0 0 ξ3
c −ξ3

c −ξ2
a2 ξ2

a2

−ξ3
a3 ξ3

a3 −ξ3
ab ξ3

ab 0 0




a3

ab
c ,

where we again labelled the rows and columns. Then there is just one maximal
minor of M2 which is 0 and the ideal generated by the maximal minors of M3 is

〈
ξ2
b ξ

3
a3ξ

3
c − ξ2

a2ξ
2
abξ

3
c

〉
. ♦
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Remark. From now on we will use ξ and Iξ or I and I(ξ) interchangeably for
ξ ∈ HA and A-graded ideals I. So for example we write IA for the toric ideal as
well as for the point in HA that corresponds to IA.

This construction was evolved from the de�nition of Peeva and Stillman [PS02]
in which they use the Fitting ideals (see [Eis95, Section 20.2]). Let P be as above
and consider the subset Y ⊂ P × Ank given by

I(Y) = 〈ξan · xm − ξam · xn | ∀a ∈ Pd(A) and xm,xn ∈ Gm(A)a〉
with projection φ : Y → P and the grading on OY induced by the grading of A
on S. Hence, φ# is M -homogeneous and therefore we can write

Y = SpecP

(⊕

a∈NA
La

)

where La are coherent OP-modules and L0 = OP (see [PS02, De�nition 3.1]).
We de�ne an ideal of OP

dets(φ) =
∑

a∈NA
Fitt0(La),

where Fitt0(La) is the 0-th Fitting ideal of La.
Before we explain what the 0-th Fitting ideal is in this case, we state the

de�nition of the toric Hilbert scheme by Peeva and Stillman:

De�nition III.1.3. The toric Hilbert scheme is de�ned as

HA = V (dets(φ)) ⊂ P .
For further details see [PS02, Section 3+4]. To see that both de�nitions are

the same we have to examine the Fitting ideal for a �xed degree a. For this we
have to construct a free resolution of OP-modules

F
fa→ G→ La → 0

and choose bases for F and G. Then Fitt0(La) is the ideal generated by the maxi-
mal minors of the matrix representation of fa (see [Eis95, Corollary-De�nition
20.4]). This can be done by taking G := k|a|+1 with ei 7→ xmi , the i-th element
of the �ber of a. Then the kernel of this map is given by the generators of I(Y)
and thus Ma is a matrix representation of fa. It is left to the reader to verify by
set theoretic arguments that it su�ces to take R instead of NA as the index set
for dets(φ), which implies that the de�nitions are the same.

In Sturmfels' construction [Stu94, Chapter 5] the parameter space ofA-graded
ideals is not given by determinantal equations. He considers the product space
P ′ := ∏P|a| for all a ∈ Zr(A)∩NA where Zr(A) is the zonotope with edge length
r = (n− d)2n · ad2n . With the same notation for ξ ∈ P ′ as before he de�ned the
closed subscheme PA ⊂ P ′ by the equations

ξam1
· ξa+b
m2+n = ξam2

· ξa+b
m1+n,

whenever deg(m1) = deg(m2) = a and deg(n) = b. This is also a description of
all A-graded ideals.

Theorem III.1.4. There exists a natural bijection between the set of A-graded
ideals in S and the set of closed points of PA.
Proof. See [Stu94, Theorem 5.3].
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III.2 Components

In [HS04] Haiman and Sturmfels give general constructions of di�erent multi-
graded Hilbert schemes. In particular, their work shows that the toric Hilbert
scheme HA by Peeva and Stillman and the parameter space PA by Sturmfels are
in fact the same, i.e. HA ∼= PA. For this use [HS04, Propositions 5.2 + 5.3] in
combination with [HS04, Theorem 3.16]. Thus, we get the following:

Lemma III.2.1. The toric Hilbert scheme HA is given by binomial equations.

If we use the primary decomposition theorem from the work of Eisenbud and
Sturmfels on binomial ideals [ES96, Theorem 7.1] it follows that every irreducible
component of HA is generated by binomial ideals. Since the radical of a binomial
ideal is again a binomial ideal (see [ES96, Theorem 3.1]) the reduced structure of
each irreducible component, i.e. the variety given by the radicals of a covering of
local rings, is given by binomial equations. This argument proves the following
lemma:

Lemma III.2.2. The underlying reduced structure of each component of the toric
Hilbert scheme is a (not necessarily normal) projective toric variety.

Corollary III.2.3. For each irreducible component V of the toric Hilbert scheme
there is a polytope PV such that the projective variety of the normal fan of PV is
the normalisation of V .

Note that we do not mean a distinguished polytope as we are not interested
in the polarisation, just in the scheme structure.

We have seen in Chapter II that the faces of the state polytope are in bijection
with the isomorphism classes of coherent A-graded ideals. On the other hand,
the closure of the orbit of IA under the action of the n-torus T = (k∗)n in HA is
the set of coherent A-graded ideals.

Theorem III.2.4. There exists exactly one irreducible component containing IA.
If char(k) = 0, then this component is reduced and the point IA on HA is smooth.

Proof. See [PS02, Theorem 5.3].

This means that all coherent A-graded ideals are contained in this compo-
nent. Therefore, we call the irreducible component containing IA the coherent
component. There is a re�nement of the above and the theorem, which takes
the correspondence between coherent A-graded ideals and the Gröbner fan into
account.

Theorem III.2.5. The toric ideal IA lies on a unique irreducible component of
the toric Hilbert scheme HA, the coherent component. The normalisation of the
coherent component is the projective toric variety de�ned by the Gröbner fan of
IA.

Proof. See [SST02, Theorem 4.1].

Thus, the coherent component of the toric Hilbert scheme is already well
described.
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Example III.2.6. We continue Example II.1.6 from Chapter II, so that we have
A = {1, 2, 3} ⊂ Z1. We already computed that state(IA) is a hexagon (see
Figure II.2). Thus, the normalisation of the coherent component of the toric
Hilbert scheme HA is the toric variety associated to the normal fan of a hexagon.

♦

Lemma III.2.7. Let I ⊂ S be an A-graded ideal which contains no monomials.
Then I is torus isomorphic to the toric ideal IA.

Proof. See [Stu94, Lemma 4.3].

Hence, for an A-graded ideal which does not lie on the coherent component
it follows that it contains monomials.

Now we will extend characteristics of the coherent component and the state
polytope to non-coherent components and their polytopes. For this, let (HA)red
be the underlying reduced scheme of HA. By Lemma III.2.2 and Corollary III.2.3
each component of (HA)red is a projective toric variety and there is a polytope
PV for every component V of (HA)red such that the toric variety of PV is the
normalisation of V . Note that every component of (HA)red is the underlying
reduced scheme of an irreducible component ofHA. The polytope for the coherent
component is the state polytope of IA.

De�nition III.2.8. We call the dense torus of an irreducible component V of
(HA)red the ambient torus of V .

Note that the ambient torus of a non-coherent component is in general di�er-
ent from the n-torus T = Spec(k[x±1]) which is the ambient torus of the coherent
component.

Now �x some component V of (HA)red with corresponding polytope PV . Then
there are similar results as for the state polytope of IA in Chapter II.

Lemma III.2.9. Vertices of PV correspond exactly to the monomial A-graded
ideals in V .

Proof. See [MT02, Lemma 3.4].

The edges of the state polytope correspond to �ips of coherent monomial A-
graded ideals along elements of the universal Gröbner basis of A. Almost the
same holds also for non-coherent components.

Theorem III.2.10. LetM1 andM2 be monomial A-graded ideals corresponding
to vertices p1 and p2 of PV . M1 and M2 are connected by a single �ip if and
only if there is an edge e of PV connecting p1 and p2.

Proof. See [MT02, Theorem 3.6].

We have seen that �ips are done along elements of the Graver basis of IA, so
we can label each edge of PV by the Graver basis element of the corresponding
wall ideal. The only di�erence now in the general case is that the edges of PV are
labeled by elements of G(A) but not necessarily of UGB(A). This description of
the toric Hilbert scheme in terms of polytopes and �ips leads to the following:

Theorem III.2.11. The toric Hilbert scheme HA is connected if and only if the
�ip graph of A is connected.
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Proof. See [MT02, Theorem 3.1].

Lemma III.2.12. Any torus acting on the underlying reduced structure of an
irreducible component of a Toric Hilbert Scheme HA acts diagonally by scaling
each coordinate.

Proof. The global equations of HA are a binomial ideal by Lemma III.2.1. From
[ES96, Theorem 7.1] it follows that the associated primary ideals are also binomial
ideals. Thus, the irreducile components are given by binomial equations. Using
[ES96, Theorem 3.1] we get that also their radicals are binomials ideals. Hence,
the underlying reduced irreducible structure of an irreducible component is given
by binomial equations. Therefore, any torus must act diagonally.

III.3 Local Equations

There are explicit global equations given in the construction of the toric Hilbert
scheme by Peeva and Stillman. Unfortunately, R ⊆ NA may have to be chosen
very large and the matrices Ma may get even larger, so we get a huge amount of
maximal minors. Thus, these global equations are rather hard to compute. But
Peeva and Stillman showed that the local equations of the toric Hilbert scheme
around a monomial A-graded ideal can be calculated e�ciently.

Fix some monomial A-graded idealM. Then for every degree a ∈ NA there
is a unique monomial sa which is not in M. This is called the M-standard
monomial of degree a.

De�nition III.3.1. Let UM ⊂ HA be the a�ne open subscheme

UM := HA ∩
{
ξasa 6= 0

∣∣ a ∈ Pd(A)
}
.

This means we have chosen an a�ne chart for every P|a| in P and intersected
these with the toric Hilbert scheme. Since we have seen in the construction that
xm ∈M if ξam = 0, it follows thatM is contained in UM.

Remark III.3.2. The a�ne open subscheme UM corresponds exactly to those A-
graded ideals with the same standard monomials as S/M.

Now consider an arbitrary A-graded ideal I. Take any initial monomial ideal
M of I. Then the M-standard monomial sa of degree a of M forms a vector
space basis of (S/I)a for every a ∈ NA. Since therefore sa is not contained in
I, which means ξasa 6= 0 for all a ∈ Pd(A), we have I ∈ UM. Thus, we get the
following:

Lemma III.3.3. The set {UM} is an a�ne open cover for HA, where M runs
over all monomial A-graded ideals.

For a �xedM withM-standard monomials sa we set

Z := {ξam | a ∈ Pd(A), deg(xm) = a,xm 6= sa} .

Now, in the original coordinates of P , the a�ne chart UM is obtained by setting
ξasa = 1, since they are all not equal to 0. This means UM is given by an ideal in
k[Z]. This ideal is the restriction of dets(φ) to k[Z]. Alternatively, this ideal can

28



be obtained by describing the points (i.e. A-graded ideals) in UM in the following
way: Because of Lemma II.1.4 and Lemma II.1.8 these are all generated by

〈xm − αam · sa | a ∈ Pd(A), deg(xm) = a,xm 6= sa〉
for some αam ∈ k. Thus, as in the construction of HA we get the following:

Lemma III.3.4. Let M be a monomial A-graded ideal. For the a�ne open
chart UM = HA ∩

{
ξasa 6= 0

∣∣ a ∈ Pd(A)
}
and the corresponding set of variables

Z = {ξam | a ∈ Pd(A), deg(xm) = a,xm 6= sa} set

G := 〈xm − ξam · sa | a ∈ Pd(A), deg(xm) = a,xm 6= sa〉 ⊆ k[Z]⊗k S and

F :=
∑
a∈NA Fitt0 ((k[Z][x1, ..., xn]/G)a) ⊆ k[Z].

Then
UM = Spec (k[Z]/F ) .

In particular, the ideal F is generated by the maximal minors of matrices of the
form 



1
1

0

0
. . .

1

0

ra0 ra1 · · · ra|a|−1 ra|a| · · · rat



,

(where we assume that sa = xm|a|). Therefore, we have

F =
∑

a∈NA
(G : sa)

and thus F is a binomial ideal.

Proof. See [PS02, Corollary 4.5].

Note that the matrix in Lemma III.3.4 comes from the construction of Macla-
gan and Thomas. In this case there exist only pairs (1,−ξam) with xm 6= sa which
have to be written into Ma. If we convert this matrix into its reduced column
echelon form we get on the one hand the desired form above and on the other
hand that ra|a|, ..., r

a
t are the generators of (G : sa).

Lemma III.3.5. Let V ⊆ HA be an irreducible component containingM. Then
(UM ∩ V )red contains the ambient torus of Vred.

Proof. We may assume that V is already reduced. Let ξ be a point on the ambient
torus of V . Then the corresponding A-graded ideal is

Iξ = 〈ξanxm − ξamxn |xm,xn ∈ Gm(A)a,a ∈ Pd(A)〉 .
By Lemma III.2.12 the ambient torus acts diagonally on the coe�cients ξan, ξ

a
m

by the construction of the toric Hilbert scheme. Hence, if xm0 ∈ Iξ then xm0 ∈ I
holds for every I in the ambient torus orbit of Iξ. Moreover, xm0 ∈ Iξ implies
xm0 ∈ I ′ for every I ′ in the closure of the ambient torus orbit.

On the other hand, sinceM lies on V , i.e. the closure of the ambient torus,
xm0 /∈M implies xm0 /∈ I for every I in the ambient torus. Thus, the monomials
of S/M are standard monomials for all ideals in the ambient torus of V . Hence
by Remark III.3.2 the ambient torus lies in UM.
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Now suppose that M is a coherent monomial A-graded ideal. We will give
an e�cient description of k[Z]/F constructed by Peeva and Stillman.

Construction III.3.6 (Local coherent equations). The idealM has a unique
minimal set of monomial generators. We call this set GM = {fi | 1 ≤ i ≤ pM}
where pM is the number of generators of M. Then for every fi there is an M-
standard monomial of degree deg(fi) which we call si. Note that fi−si is primitive
because if it were not, fi would not be a minimal generator ofM. Consider the
ring k[x1, ..., xn, y1, ..., ypM ] and the ideal JM generated by the set

GM = {fi − yi · si | 1 ≤ i ≤ pM} .

We �x a term order ≺x on S such that M = in≺x(IA) and an arbitrary term
order ≺y on k[y1, ..., ypM ]. Denote by ≺ the product term order of ≺x and of ≺y
on k[x1, ..., xn, y1, ..., ypM ], which means

xa · yb � xa′ · yb′ ⇔ xa �x xa
′
or xa = xa

′
,yb �y yb

′
.

For each pair of binomials u and v in GM we form their S-polynomial s(u, v)
which is a homogeneous binomial with respect to theM -grading induced by A on
k[x1, ..., xn]. Then we choose a reduction of s(u, v) by GM to (e(y)− h(y)) · su,v,
where e and h are monomials in k[y1, ..., ypM ]. Since ≺x is a term order with
M = in≺x(IA), su,v is the M-standard monomial in the degree of s(u, v). Set
r(u, v) := e(y)− h(y) ∈ k[y1, ..., ypM ] and de�ne

IM :=
〈
r(u, v)

∣∣u, v ∈ GM
〉
⊂ k[y1, ..., ypM ].

Note that the construction of IM does not use the Graver basis, but needs the
term order ≺x for the reduction.

Theorem III.3.7. LetM be a coherent monomial A-graded ideal. Then

UM = Spec (k[Z]/F ) ∼= Spec (k[y1, ..., ypM ]/IM) .

Proof. See [PS00, Theorem 3.2].

Remark III.3.8. From now on most of the computations in the examples have
been carried out by using Macaulay2, a computer algebra software by Grayson
and Stillman [GS], and the package ToricHilbertSchemes [Bir10] containing
algorithms from [SST02] and self-written code.

Example III.3.9. Let A = {1, 3, 4, 7} ⊂ Z1 and S = k[a, b, c, d]. Then the toric
ideal is IA = 〈a3 − b, ab− c, bc− d〉 and the Graver basis has 27 elements. There
are 53 monomial A-graded ideals of which 2 are non-coherent. We pick one of
the coherent ones and apply Construction III.3.6 to it:

M =
〈
a3, ab, b2, bc, ad, a2c2, bd2, ac5, d4

〉

This is the initial monomial ideal of the toric ideal IA with respect to the weight
vector ω = (265, 342, 1, 40). The standard monomials in the degrees of the gen-
erators are

{s1, ..., s9} =
{
b, c, a2c, d, c2, bd, ac4, d3, c7

}
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respectively. Hence, the ideal JM is generated by

GM =
{
a3 − y1b, ab− y2c, b

2 − y3a
2c, bc− y4d, ad− y5c

2,

a2c2 − y6bd, bd
2 − y7ac

4, ac5 − y8d
3, d4 − y9c

7
}
.

Our term order ≺ is given by ≺ω on k[a, b, c, d] and arbitrary on k[y1, ..., y9]. If
we form S-polynomials and reduce them using this term order we get

s(a3 − y1b, ab− y2c) = y2a
2c− y1b

2.

Here y1b
2 is the leading term and thus b2 − y3a

2c reduces the S-polynomial to
y2a

2c− y1y3a
2c = (y2 − y1y3)a2c, so that we get

r(a3 − y1b, ab− y2c) = (y2 − y1y3).

We continue with the remaining pairs but omit pairs where the leading terms are
coprime since they give no equations. The leading terms are underlined:

s(a3 − y1b, ad− y5c
2) = y5a

2c2 − y1bd y5y6bd− y1bd= (y5y6 − y1)bd,

s(a3 − y1b, ac
5 − y8d

3) = y8a
2d3 − y1bc

5  y5y8ac
2d2 − y1bc

5

 y2
5y8c

4d− y1bc
5

 y2
5y8c

4d− y1y4c
4d = (y2

5y8 − y1y4)c4d,

s(ab− y2c, bc− y4d) = y4ad− y2c
2  y4y5c

2 − y2c
2 = (y4y5 − y2)c2

... .

Continuing with the remaining pairs in the same way gives the local equations of
the toric Hilbert scheme aroundM as

IM = 〈y2 − y1y3, y1 − y5y6, y1y4 − y2
5y8, y2 − y4y5, y5 − y8y9, y4 − y7y8,

y5 − y6y7, y4y9 − y5y7, y4y6 − y5y8, y3y6 − y4, y3y
2
5 − y2y7} . ♦

We state one of the lemmata used by Peeva and Stillman for the proof since
it shows how this construction and that of Lemma III.3.4 are connected.

Lemma III.3.10. In k[y1, ..., ypM ] we have

IM =
∑

a∈NA
((JM)a : sa)

=
∑

a∈NA
Fitt0

(
(k[y1, ..., ypM ][x1, ..., xn]/JM)a

)
.

Proof. See [PS00, Lemma 3.5].

The binomials fi − yi · si in GM can also be written as xm − ξam · sa for
some a ∈ Pd(A) and some monomial xm of degree a. Thus, the variables
y1, ..., ypM correspond to certain variables ξaj ∈ Z. We denote this set of variables
by Zsmall ⊂ Z. Hence, we can interpret IM also as an ideal in k[Zsmall].

In the non-coherent case the description of UM is not so easy because we
do not have a term order for which M is the initial ideal of IA. We can still
compute k[Z]/F using Lemma III.3.4, but Construction III.3.6, which would be
much more e�cient cannot be used, since the proof uses the term order ≺x and
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the reduction with respect to it. Note that, although we do not have a term order
≺x, we can still construct IM as de�ned in Lemma III.3.10. However, Theorem
III.3.7 does not hold in the non-coherent case. But Peeva and Stillman enhanced
this construction to the non-coherent case. They calculated the local ring of HA
in the pointM.

Theorem III.3.11. The local ring of HA atM is

OHA,[M]
∼= k[Z]〈Z〉/F ∼= k[Zsmall]〈Zsmall〉/IM = k[y1, ..., ypM ]〈y1,...,ypM〉/IM.

Proof. See [PS00, Theorem 4.4].

There is even a similar construction to Construction III.3.6 that uses F. Mora's
tangent cone algorithm (see [Mor82]) in a simpli�ed way instead of the Gröbner
reduction by GM. We end this chapter by giving the construction of IM for a
non-coherent monomial A-graded idealM.

Construction III.3.12 (Local non-coherent equations). The �rst steps are
exactly as in Construction III.3.6. There is again a minimal set of monomials
GM := {fi | 1 ≤ i ≤ pM} generatingM, where pM is the number of generators of
M. Let si be theM-standard monomial of degree deg(fi). Still fi−si is primitive
by the same argument as before. Consider the ring k[x1, ..., xn, y1, ..., ypM ] and
the ideal JM generated by the set

GM = {fi − yi · si | 1 ≤ i ≤ pM} .

Now we can not �x a term order as before. We have to use the second reduction
process from Peeva and Stillman in [PS00].

Fix an order ≺ on the monomials of k[x1, ..., xn, y1, ..., ypM ] with yi ≺ 1 ≺ xj
for all i, j. Note that this is not a term order since 1 is not the minimal element.
Then fi is the initial term of each element in GM. Let m be a monomial in
k[x1, ..., xn, yi, ..., ypM ]. Then the remainder R(m,GM) is constructed as follows.
If m is not divisible by any of the monomials fi then R(m,GM) = m. Otherwise,
m = fi · u for some i and monomial u. Then we reduce m to m1 := u · yi · si. We
repeat this reduction until either we get at some point an mp that is not further
reducible by that method, in which case we set R(m,GM) = mp, or we obtain a
loop

m→ m1 → m2 → ...→ mi → ...→ mj → ...

where mi divides mj. Then we set R(m,GM) = 0. This reduction is extended to
polynomials by linearity. Note that the remainder of any monomial is either 0 or
ye · sa for some standard monomial sa and e ∈ NpM .

For each pair of binomials u and v in GM form their S-polynomial s(u, v) and
set

r(u, v) := R(s(u, v), GM)/su,v,

where su,v is the standard monomial in the degree of s(u, v). Then

IM :=
〈
r(u, v)

∣∣u, v ∈ GM
〉
⊂ k[y1, ..., ypM ].
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Example III.3.13 (continuing III.3.9). Now we consider a non-coherent mono-
mial A-graded ideal for A = {1, 3, 4, 7}:

M =
〈
a3, ab, b2, bc, ad, a2c2, ac4, bd3, d4

〉

The standard monomials in the degrees of the generators are

{s1, ..., s9} =
{
b, c, a2c, d, c2, bd, bd2, c6, c7

}
,

respectively. Hence, the ideal JM is generated by

GM =
{
a3 − y1b, ab− y2c, b

2 − y3a
2c, bc− y4d, ad− y5c

2,

a2c2 − y6bd, ac
4 − y7bd

2, bd3 − y8c
6, d4 − y9c

7
}
.

For ab− y2c and b2 − y3a
2c the S-polynomial is

s(ab− y2c, b
2 − y3a

2c) = y2bc− y3a
3c.

Then we get
R(y2bc,GM) = y2y4d

by using bc− y4d, and
R(y3a

3c,GM) = y1y3y4d

by using a3 − y1b and then bc− y4d. Thus, we get the remainder

R(s(ab− y2c, b
2 − y3a

2c), GM) = y2y4d− y1y3y4d

and hence
r(ab− y2c, b

2 − y3a
2c) = y2y4 − y1y3y4.

The next pairs result in:

s(bc− y4d, a
2c2 − y6bd) = y4a

2cd− y6b
2d

 y4y5ac
3 − y3y5y6ac

3 = (y4y5 − y3y5y6)ac3

s(ad− y5c
2, bd3 − y8c

6) = y8ac
6 − y5bc

2d2

 y4y7y8cd
3 − y4y5cd

3 = (y4y7y8 − y4y5)cd3

...

If we continue this for the remaining pairs we get the equations of the local ring
inM of the toric Hilbert scheme as

IM = 〈y2y4 − y1y3y4, y4y5 − y3y5y6, y4y9 − y8, y5 − y7y8, y5y7 − y6,

y1 − y5y6, y4y6 − y2y7, y3y6 − y4, y2 − y4y5, y1y4 − y2y6,

y1y3 − y2, y3y
2
5 − y4y8

〉
.

♦
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Chapter IV

A Polytope of a Non-Coherent

Component

We want to understand the geometry of all components. Until now we have seen
that the coherent component is (up to normalisation) the toric variety associated
to the state polytope of the toric ideal IA. For the non-coherent components
it was only known until now that there exists such a polytope describing the
normalisation. Using the local equations and various facts given so far, we will
derive an explicit construction of the polytope corresponding to the normalisation
of the underlying reduced structure of a given non-coherent component of the toric
Hilbert scheme.

IV.1 Universal Families

As before, we have our set of points A ∈ Zd with toric ideal IA. Let M be a
monomialA-graded ideal. At �rst, assume thatM is coherent. Then by Theorem
III.3.7 we can compute the local equations IM ⊆ k[y1, ..., yl] of HA around M
where l is the number of generators ofM = 〈xm1 , ...,xml〉.

De�nition IV.1.1. We call the ideal

JM = 〈xm1 − y1 · s1, ...,x
ml − yl · sl〉

from Construction III.3.6 the universal family of UM with de�ning ideal IM.

Note that by Lemma III.3.4 the A-graded ideals that correspond to the points
in UM ⊆ HA are precisely given by JM for all (y1, ..., yl) in the variety of IM.

We now give a construction of a new universal family that describes the am-
bient torus of the underlying reduced structure of an non-coherent component
containingM. This is done in several steps. Firstly, we remove redundant vari-
ables from IM and JM (Construction IV.1.2). Then we construct the primary
decomposition of the resulting de�ning ideal I ′M to get the primary ideals q de�n-
ing the irreducible components containingM (Propositions IV.1.6 and IV.1.11).
Because the underlying reduced structure of each component is a projective toric
variety we take the radical p =

√
q for each of these primary ideals (De�nition

IV.1.13). Then we set the variables that are generators of p to zero in the uni-
versal family J ′M (Construction IV.1.15). Now the prime ideal p has become a
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pure binomial ideal, i.e. containing no monomials, and we perform a change of
the y coordinates in J ′M so that p becomes trivial and we get a universal family
that describes the ambient torus of the reduced structure of that non-coherent
component without any de�ning ideal (Construction IV.1.17). We will now go
through this construction step by step.

As seen in Construction III.3.6, the ideal IM is a binomial ideal, which also
follows from Lemma III.2.1. Hence, the generators of IM may contain binomials
of the form

yi −
∏

j 6=i
y
bj
j

for some exponents bj. Then we call the single variable yi a redundant vari-
able, since we can remove yi from IM and JM by substituting yi by the product∏

j 6=i y
bj
j .

Construction IV.1.2 (Removing redundant variables). Let JM be the uni-
versal family of a neighbourhood UM with de�ning ideal IM. Let yi be a redun-
dant variable given by

yi −
∏

j 6=i
y
bj
j ∈ IM.

Then we remove the redundant variable from IM and JM with the maps

Φi : k[y]→ k[yj | j 6= i], yj 7→
{

yj if j 6= i∏
j 6=i y

bj
j if j = i

and Ψi = Idk[x]⊗Φi : k[x,y]→ k[x, yj | j 6= i], respectively.
We repeat this until there are no more redundant variables. Then we denote

by r ⊆ {1, ..., l} the indices of the remaining variables in IM and JM and write
I ′M and J ′M for the ideals obtained by removing the redundant variables in IM
and JM respectively. This means we have

I ′M ⊆ k[yi | i ∈ r] and
J ′M = 〈xmj − pj(y) · sj | j = 1, ..., l〉 ,

where pj(y) is the monomial into which yj has been converted by removing all
redundant variables.

Remark IV.1.3. The points in UM are still completely described by substituting
a solution of I ′M into J ′M.

Example IV.1.4. This continues Example III.3.9 from Chapter III. Let the
grading be A = {1, 3, 4, 7} ⊂ Z1 and consider the monomial A-graded ideal

M =
〈
a3, ab, b2, bc, ad, a2c2, bd2, ac5, d4

〉
.

This ideal is coherent with weight vector ω = (265, 342, 1, 40) and by using Con-
struction III.3.6 we get the universal family

JM = 〈a3 − y1b, ab− y2c, b
2 − y3a

2c, bc− y4d, ad− y5c
2, a2c2 − y6bd,

bd2 − y7ac
4, ac5 − y8d

3, d4 − y9c
7〉
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with the de�ning ideal

IM = 〈y5 − y8y9, y4 − y7y8, y5 − y6y7, y4y9 − y5y7, y1 − y5y6, y4y6 − y5y8,
y3y6 − y4, y2 − y4y5, y1y3 − y2, y2y7 − y3y

2
5〉 .

There are four redundant variables, y1, y2, y4, and y5, given by

y4 − y7y8, y5 − y8y9, y1 − y5y6, y2 − y4y5.

If we remove the redundant variables from IM we get

I ′M =
〈
0, 0, y8y9 − y6y7, y7y8y9 − y7y8y9, y6y8y9 − y6y8y9, y6y7y8 − y2

8y9,

y3y6 − y7y8, 0, y3y
2
8y

2
9 − y2

7y
2
8y9

〉

= 〈y6y7 − y8y9, y3y6 − y7y8〉 ,
and the universal family becomes

J ′M =
〈
a3 − y6y8y9b, ab− y7y

2
8y9c, b

2 − y3a
2c, bc− y7y8d, ad− y8y9c

2,

a2c2 − y6bd, bd
2 − y7ac

4, ac5 − y8d
3, d4 − y9c

7
〉
. ♦

Still I ′M gives only a parametrisation of the neighbourhood UM ofM and not
of the di�erent components that containM. However, if we decompose I ′M into
its primary ideals, then each of these primary ideals determines exactly one of
the possibly embedded components of HA intersecting UM.

Lemma IV.1.5. Let M be coherent and I ′M =
⋂

qi be a minimal primary de-
composition, then every component V (qi) ⊂ UM containsM.

Proof. Fix a primary ideal qi and take a point µ ∈ V (qi). This gives an A-graded
ideal

I = (JM)(y)=µ = 〈xmj − pj(µ)sj | j = 1, ..., l〉
on the component V given by qi. Recall the action of the n-torus T = (k∗)n on
S = k[x1, ..., xn] by

λ.xi = λixi

for λ ∈ T which maps A-graded ideals to A-graded ideals. Hence, T acts on HA
and the orbit of a point under the T -action lies in the same irreducible component
as the point. Thus, the T -orbit of I lies in V . Furthermore, M was coherent
so that there exists some ω ∈ Nn such that M = inω (IA). Finally, because
{xmj − sj | j = 1, ..., l} is the reduced Gröbner basis with respect to ω we get
that

M = 〈xmj | j = 1, ..., l〉 ⊆ inω (I)

which is in fact an equality because both ideals are A-graded. This implies that
M lies in the closure of the T -orbit of I by [Eis95, Theorem 15.17] and thus it
lies on V .

So let the primary decomposition be

I ′M = q1 ∩ ... ∩ qk.

Then V (qi) is isomorphic to an irreducible, a�ne subset of HA, in fact of UM,
containingM. In particular, the closed points of V (qi) substituted into J ′M give
exactly all A-graded ideals in that component intersected with UM which are the
closed points of that component. This gives us the following proposition:
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Proposition IV.1.6. Let M be a coherent monomial A-graded ideal with local
equations I ′M and universal family J ′M, both after removing redundant variables.
Let I ′M = q1 ∩ ... ∩ qk be a primary decomposition. Then V (qi) ⊆ HA is an
irreducible component containing M for i = 1, ..., k and one of them is the co-
herent component. Furthermore, V (qi) is the coherent component if and only if
qi contains no monomials.

Proof. The �rst statement follows from Remark IV.1.3 and that V (qi) is an a�ne
open subset of an irreducible component containingM, which by Lemma III.3.5
is dense, so that V (qi) is in fact the component. Furthermore,M is coherent so
one component must be the coherent one. For the last part, since qi is generated
by binomial di�erences, it contains no monomials exactly if (1, ..., 1) is in V (qi).
But this point corresponds to the A-graded ideal

〈xm1 − s1, ...,x
ml − sl〉 ,

which is the toric ideal IA, because {xm1 − s1, ...,x
ml − sl} is a Gröbner basis of

IA with respect to a term order giving M as initial ideal. Thus V (qi) contains
the orbit of IA under the action of the torus T = (k∗)n which is the torus of the
coherent component. Since IA only lies on the coherent component, the closure
of V (qi) closure is the coherent component.

Since the coherent component is already completely described by the state
polytope of the toric ideal, we can ignore the primary ideal that corresponds to
the coherent component and just consider the remaining qj's containing at least
one monomial generator.

Example IV.1.7 (continuing IV.1.4). A primary decomposition of the de�ning
ideal after removing the redundant variables is

I ′M = 〈y6, y8〉 ∩
〈
y2

7 − y3y9, y6y7 − y8y9, y3y6 − y7y8

〉
. (IV.1)

Therefore, M lies on two components, which are both reduced. Since M is
coherent one of the components is the coherent component which must be given
by the latter primary ideal, because it contains no monomials.

♦

Now assume thatM is a non-coherent A-graded ideal and we have computed
JM and the local equations IM using Construction III.3.12.

De�nition IV.1.8. LetM be a non-coherent monomial A-graded ideal. Then
we call the ideal

JM = 〈xm1 − y1 · s1, ...,x
ml − yl · sl〉

from Construction III.3.12 the universal family of UM with de�ning ideal IM.

Remember that this time IM only describes the local ring of the toric Hilbert
scheme atM, i.e.

OHA,[M]
∼= k[Z]〈Z〉/F ∼= k[y1, ..., ypM ]〈y1,...,ypM〉/IM.

Now we are interested in the components of UM that contain M. To get a
description of these components we will use two facts from commutative algebra.
The �rst one describes localisation of primary ideals.
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Lemma IV.1.9. Let S ⊂ R = k[y] be multiplicatively closed and q ⊂ R be
p-primary. Then

• S ∩ p 6= ∅ ⇒ S−1q = S−1R

• S ∩ p = ∅ ⇒ S−1q is S−1p primary and
(
S−1q

)
∩R = q

Proof. See [AM69, Proposition 4.8].

The second one is about primary decomposition in localisations.

Lemma IV.1.10. Let I =
⋂n
i=1 qi ⊂ R be a minimal primary decomposition,

S ⊂ R multiplicatively closed, and pi =
√

qi, and pm+1, ..., pn the associated primes
with pj ∩ S 6= ∅. Then

S−1I =
m⋂

i=1

S−1qi and
(
S−1I

)
∩R =

⋃

s∈S
(I : s) =

m⋂

i=1

qi

are minimal primary decompositions.

Proof. See [AM69, Proposition 4.9].

So in our case we have UM = Spec (k[Z]/F ), but we do not know F . Instead
we have k[Z]〈Z〉/F ∼= k[y]〈y〉. Recall

G := 〈xm − ξam · sa | a ∈ Pd(A), deg(xm) = a,xm 6= sa〉 ⊆ k[Z]⊗k S and

F :=
∑
a∈NA Fitt0 ((k[Z][x1, ..., xn]/G)a) ⊆ k[Z].

from Lemma III.3.4, and that by Zsmall we denoted those variables of Z that
correspond to y1, ..., ypM as in Theorem III.3.11. If we take some xm−ξam ·sa ∈ G
with ξam /∈ Zsmall, then there is a reduction of xm − ξam · sa by GM to

(
R
(
xm, GM

)
− ξam

)
· sa

as in Construction III.3.12, where R
(
xm, GM

)
is a monomial in Zsmall which

might be zero. Set

Zred :=
{
ξam −R

(
xm, GM

)∣∣ ξam /∈ Zsmall
}
.

Note that Zred ⊆ F and k[Z]/Zred ∼= k[Zsmall] ∼= k[y1, ..., ypM ]. Hence, there is an
ideal F ′ ⊆ k[y] such that

k[Z]/F ∼= k[y]/F ′.

But this means we get on the one hand

UM = Spec (k[y]/F ′)

and on the other hand

k[y]〈y〉/F
′ ∼= k[Z]〈Z〉/F
∼= k[y]〈y〉/IM,
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where the isomorphism between k[y]〈y〉/F ′ and k[y]〈y〉/IM is the identity. How-
ever, recall that

IM =
〈
r(u, v)

∣∣u, v ∈ GM
〉
⊆ k[y]〈y〉

and that in fact r(u, v) ∈ k[y] by construction. Thus, set the ideal

ĨM :=
〈
r(u, v)

∣∣u, v ∈ GM
〉
⊆ k[y]

and the multiplicatively closed set S = k[y] \ 〈y〉. Then we have

S−1ĨM = IM = S−1F ′.

Now let

ĨM =
k⋂

i=1

qi

be a minimal primary decomposition in k[y] with prime ideals pi =
√

qi. Note
that, although ĨM is similar to IM in the coherent case before, the primary
decomposition of it does not only give the components containingM. Therefore,
we have to distinguish them further.

Assume that qi ∩ S = ∅ for i = 1, ...,m and qi ∩ S 6= ∅ for i = m+ 1, ..., k for
some m. Then by using Lemmas IV.1.9 and IV.1.10 we have that

IM =
m⋂

i=1

S−1qi and IM ∩ k[y] =
m⋂

i=1

qi

are minimal primary decompositions. On the other hand,

IM ∩ k[y] =
⋃

s∈S

(
ĨM : s

)
=
⋃

s∈S
(F ′ : s)

is the saturation of IM considered as an ideal in k[y] with respect to k[y]\〈y〉 and
moreover the saturation of F ′. But the latter are the functions that do not vanish
on the point (0), the point that corresponds toM. Hence, V (IM ∩ k[y]) ⊆ UM
is the intersection of UM with all components of HA, that contain M . Thus,
V
(

qi ∩ k[y]
)
⊆ UM is isomorphic to an irreducible subset of UM containing M

and all qi ∩ k[y] give exactly the reduced components of HA, that contain M,
intersected with UM. Note that again there might be embedded components.

These primary ideals give the following description of UM.

Proposition IV.1.11. LetM be a non-coherent monomial A-graded ideal with
universal family J ′M and de�ning ideal I ′M, both after removing redundant vari-
ables. Let I ′M = q1 ∩ ... ∩ qk be the primary decomposition in k[yi | i ∈ r]. Then

V (qj) ⊆ HA is an irreducible component containingM if and only if none of the
generators of qj is a unit in k[yi | i ∈ r]〈yi|i∈r〉.

Proof. First of all note that removing redundant variables still maps IM to an
isomorphic description in the local ring since

yi −
∏

j 6=i
y
bj
j
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is not a unit in k[y]〈y〉. Let qi be one of the primary ideals in a minimal primary
decomposition of IM in k[y] with prime ideal pj =

√
qj and denote the multi-

plicatively closed set S := k[yi | i ∈ r] \ 〈yi|i ∈ r〉. Then V (qj) is the intersection
of a reduced irreducible component containing M with UM if and only if pj is
an associated prime of

⋃
s∈S (IM : s). But by using the above, pj is an associated

prime of
⋃
s∈S (IM : s) exactly if none of the generators of qj is a unit in S. Again,

by Lemma III.3.5 the closure V (qj) is an irreducible component of HA.

Remark. Note that all components of UM containingM are in fact non-coherent
and therefore all primary ideals contain a monomial generator.

Example IV.1.12 (continuing IV.1.4). Now we consider the non-coherent A-
graded ideal

M0 =
〈
a3, ab, b2, bc, ad, a2c2, ac4, bd3, d4

〉
.

Using Construction III.3.12 we get the universal family

JM0 =
〈
a3 − y1b, ab− y2c, b

2 − y3a
2c, bc− y4d, ad− y5c

2,

a2c2 − y6bd, ac
4 − y7bd

2, bd3 − y8c
6, d4 − y9c

7
〉

with the de�ning ideal

IM0 = 〈y4y9 − y8, y5 − y7y8, y5y7 − y6, y5y6 − y1, y4y6 − y2y7,
y3y6 − y4, y2 − y4y5, y1y4 − y2y6, y1y3 − y2, y3y

2
5 − y4y8〉 .

There are �ve redundant variables, y1, y2, y5, y6, and y8, given by

y8 − y4y9, y5 − y7y8, y6 − y5y7, y1 − y5y6, y2 − y4y5.

If we remove the redundant variables from IM0 we get

I ′M0
=

〈
0, 0, 0, 0, y2

4y
2
7y9 − y2

4y
2
7y9, y3y4y

2
7y9 − y4, 0,

y3
4y

3
7y

2
9 − y3

4y
3
7y

2
9, y3y

2
4y

3
7y

2
9 − y2

4y7y9, y3y
2
4y

2
7y

2
9 − y2

4y9

〉

=
〈
y3y4y

2
7y9 − y4

〉
,

and the universal family becomes

J ′M0
= 〈a3 − y2

4y
3
7y

2
9b, ab− y2

4y7y9c, b
2 − y3a

2c, bc− y4d, ad− y4y7y9c
2,

a2c2 − y4y
2
7y9bd, ac

4 − y7bd
2, bd3 − y4y9c

6, d4 − y9c
7〉 .

For the de�ning ideal
I ′M0

=
〈
y3y

2
7y9 − 1

〉
∩ 〈y4〉

is a minimal primary decomposition. The �rst primary ideal contains an element
of k[y3, y4, y7, y9]\〈y3, y4, y7, y9〉, so only 〈y4〉 determines an irreducible component
containingM0.

♦

From now on the construction is the same for coherent and non-coherent
monomial ideals, since the primary ideals in Propositions IV.1.6 and IV.1.11
giving non-coherent components have exactly the same properties. We want to
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construct the polytope that de�nes the reduced underlying structure of a non-
coherent component, so we �x one of these primary ideals qi and take the radical
pi :=

√
qi. Then V (pi) is an a�ne open chart of the underlying reduced scheme

of the non-coherent component given by qi. To be more precise, it is isomorphic
to an a�ne open chart, where the isomorphism is given by the universal family
J ′M. In other words, if the y's in J ′M are considered as coe�cients, then those
coe�cients satisfying pi give exactly the A-graded ideals that correspond to the
points of that component.

De�nition IV.1.13. Let p be an associated prime of I ′M with corresponding
primary ideal q and irreducible component V (q) ⊆ HA as in Proposition IV.1.6
or IV.1.11. Then we denote the reduced scheme of the corresponding component
by

Vp :=
(
V (q)

)
red
⊂ (HA)red .

Remark IV.1.14. Since p =
√

q we have

Vp = V (p) ⊂ (HA)red .

We now give a construction via torus invariant isomorphisms to get a universal
family JM(p) that gives an open a�ne chart of the component for all values of
the remaining y-variables. This means we will perform a change of coordinates
on the y's in J ′M and p, that makes p trivial. Since the solutions of p give all
A-graded ideals in the torus of that component we will get a new universal family
where every set of values for y gives a point on that component.

Since p is a binomial prime ideal, a minimal generating set is of the form

p =
〈
yi,y

b+ − yb−
〉

for some i ∈ r and some b+, b− ∈ Nr. Then the �rst step is to remove the yi's in
p and J ′M by just setting them to zero.

Construction IV.1.15 (Removing single variables). LetM be a monomial
A-graded ideal and p an associated prime of I ′M. Denote by r′ the indices of the
variables, that are not contained in p, and by Jp the set of all j ∈ {1, ..., pM} such
that yi 6 | pj(y) for all yi ∈ p, i.e. all indices where pj(y) remains unchanged and
is not set to zero. Then we remove the single variables by applying the map

Ψ : k[yi | i ∈ r]→ k[yi | i ∈ r′], yj 7→
{
yj if j ∈ r′

0 if j /∈ r′

to p, where we get

p′ := Ψ(p) =
〈
yb

+ − yb−
〉
,

and by applying Idk[x]⊗Ψ to J ′M, where we get

J ′′M := Idk[x]⊗Ψ(J ′M) =
〈
xmj − ybj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j ∈ Jp

〉

in k[x, yi | i ∈ r′], for some bj ∈ Nr′ , j /∈ Jp.
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Remark IV.1.16. For the a�ne chart of Vp containingM we get the isomorphism
Vp ∩ (UM)red ∼= Spec

(
k[yi | i ∈ r′]/p′

)
, where (UM)red is the underlying reduced

scheme of UM.

Because p′ is prime, if we take a generator yb
+ − yb− , the di�erence of the

exponent vectors b := b+ − b− is coprime. Hence, there is an isomorphism
A ∈ GL(r′,Z) such that A · b = e1, the �rst vector of the canonical basis. This is
equivalent to a torus invariant isomorphism

ΦA : k
[
y±1
i

∣∣ i ∈ r′
]
→ k

[
y′±1
i

∣∣ i ∈ r′
]
, yi 7→ y′Ai ,

where Ai denotes the i-th column of A. This means that on the spectrum of
these rings ΦA gives an isomorphism on their tori. Using ΦA, we can map p′ to
some prime ideal ΦA(p′) in k[y′i | i ∈ r′] by sending the binomial yb

+ − yb− with
b = b+ − b− to the binomial

y′A(b)+ − y′A(b)− ,

which di�ers only by a unit from

y′(Ab)
+ − y′(Ab)− ,

where Ab = (Ab)+−(Ab)− is the unique decomposition into two positive vectors.
If we extend ΦA by the identity on the xi, we can apply it to the universal family
J ′′M =

〈
xmj − ybj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉
to get

ΦA(J ′′M) :=
〈
xmj − y′Abj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉

in k[x,y′±1]. Here the y′ terms have become Laurent monomials, as they might
have negative exponents.

Construction IV.1.17 (Change of coordinates). Let yb
+ − yb− ∈ p′ be an

element of a minimal generating set. Fix a matrix A ∈ GL(r′,Z) with torus
invariant morphism

ΦA : k
[
y±1
i

∣∣ i ∈ r′
]
→ k

[
y′±1
i

∣∣ i ∈ r′
]
, yi 7→ y′Ai ,

such that ΦA(yb
+ − yb−) = y′1 − 1. Then compute the new universal family

ΦA(J ′′M) :=
〈
xmj − y′Abj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉

where we set y′1 to be 1 and the new prime ideal

ΦA(p′) =
〈
y′(Ab)

+ − y′(Ab)−
∣∣∣ yb+ − yb− ∈ p′

〉

from which we also remove y′1 − 1 since it has become zero.

Lemma IV.1.18. Let JM =
〈
xmj − ybj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉
be a uni-

versal family of a local chart of HA and p ⊆ k[yi | i ∈ r] be a binomial prime ideal
with no monomial generators that gives a reduced irreducible component on this
chart. For a generator yb

+−yb− of p choose an isomorphism ΦA as above and set
the universal family ΦA(JM) ⊆ k[x,y′±1] and the prime ideal ΦA(p) ∈ k[y′i | i ∈ r]
as before. Then the prime ideal ΦA(p) gives the intersection of the same irre-
ducible component with its ambient torus.
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Proof. Consider ΦA on the Laurent polynomials of both rings:

ΦA : k
[
y±1
i

∣∣ i ∈ r
]
→ k

[
y′±1
i

∣∣ i ∈ r
]
, yi 7→ y′Ai

This induces the second isomorphism of

V (p) ∼= k
[
y±1
i

∣∣ i ∈ r
]
/p ∼= k

[
y′±1
i

∣∣ i ∈ r
]
/ΦA(p).

This means that the points (λi)i∈r in V
(
ΦA(p)

)
substituted into ΦA (JM) param-

etrise V (p) ∩ Tp. Hence, also V
(
ΦA(p)

)
gives the ambient torus of Vp.

The advantage of Lemma IV.1.18 is that the binomial yb
+−yb− , that we have

used to get A, is sent to y′1 − 1 under ΦA. Hence, we can substitute 1 for y′1 in
ΦA(p) and ΦA(JM) and by this remove one more variable and one generator of
ΦA(p). The resulting prime ideal and universal family again satisfy the conditions
for Lemma IV.1.18 and thus we can repeat this reduction until p has become the
zero ideal. Thus, we can remove p with the following construction.

Construction IV.1.19 (Computing the universal family). Let M be a
monomial A-graded ideal. Compute the universal family JM and the de�ning
ideal IM as in Proposition III.3.6 or III.3.12, if M is coherent or non-coherent,
respectively. Then reduce the redundant variables in JM and IM according to
Construction IV.1.2 to J ′M and I ′M. IfM is coherent use Proposition IV.1.6 and
if M is non-coherent use Proposition IV.1.11 to determine the primary ideals
q1, ..., qm that determine the non-coherent components containingM. Let p =

√
qi

be one of the associated primes. Then use Construction IV.1.15 to remove the
single variables in p from J ′M and p to get J ′′M and p′, respectively. Pick a
minimal generator yb

+
1 −yb−1 of p′ and use the corresponding isomorphism ΦA1 as

in Construction IV.1.17 to get ΦA1(p′) and ΦA1(J
′′
M). Repeat this until the image

of the prime ideal under the repeated isomorphisms is ΦAk(...(ΦA1(p′))) = (0).
Denote the ideal resulting from applying ΦAk ◦ ... ◦ ΦA1 to J

′′
M by JM(p).

Remark IV.1.20. The k steps in Construction IV.1.19 can also be done in one
step. For this one uses one isomorphism over Z that maps to the torus. For
lucidity we have shown the removal of p step by step. Although, when imple-
menting this construction one should use the single isomorphism over Z to the
torus. Furthermore, one can combine algorithmically Construction IV.1.15 and
the repeated steps of Construction IV.1.17 into one single morphism to the torus
over Z.

De�nition IV.1.21. Let M be a monomial A-graded ideal, JM the universal
family of UM with de�ning ideal IM, p a prime ideal as in Proposition IV.1.6 or
IV.1.11 de�ning the underlying reduced scheme Vp of a non-coherent irreducible
component containing M. Then we call the ideal resulting from removing the
single variables in p as in Construction IV.1.15 and the reduction of JM by every
generator of p as in Construction IV.1.19

JM(p) =
〈
xmj − ybj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉

in k
[
x, y±1

i

∣∣ i ∈ r(p)
]
the universal family of the component Vp, where r(p) de-

notes the remaining variables and bj ∈ Z#r(p) are the resulting exponents.
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Theorem IV.1.22. Let JM be a universal family with a prime ideal p which
together give an a�ne chart of a reduced irreducible component Vp of the toric
Hilbert scheme. Let JM(p) be the universal family of this component. Then
(k∗)#r(p) = Spec

(
k
[
y±1
i

∣∣ i ∈ r(p)
])

is isomorphic to the reduced irreducible com-
ponent Vp intersected with its ambient torus by substituting these points into
JM(p). To be precise, the closed points of this irreducible component of the toric
Hilbert scheme intersected with its ambient torus are exactly those A-graded ideals
that are given by substituting a point (λi)i∈r(p) ∈ (k∗)#r(p) into JM(p).

Proof. The theorem follows directly from Lemma IV.1.18. Denote by Ai the ma-
trix of the i-th reduction and let V T

p be the intersection of the reduced irreducible
component, given by p, with its torus. Now we use the lemma at every step of the
reduction to get the isomorphism between V T

p and V (ΦAk(...(ΦA1(p)))) ∩ T via
ΦAk(...(ΦA1(JM))). A minimal generating set of p is �nite, so after h reduction
steps we get ΦAh(...(ΦA1(p))) = (0) because we have removed all generators, thus
(k∗)#r(p) = V (0) is isomorphic to V T

p via JM(p) = ΦAh(...(ΦA1(JM))).

Corollary IV.1.23. The ambient torus of a non-coherent irreducible component
of HA is given by one universal family JM(p) in k

[
x, y±i

∣∣ i ∈ r(p)
]
. Hence, the

dimension of this component is #r(p). This means that the dimension of every
non-coherent component is bounded by the number of elements in the Graver basis,
since #r(p) is bounded by the number of generators of JM and all xmj − sj are
Graver.

Furthermore, since JM(p) gives the ambient torus of the irreducible compo-
nent, the closure of the torus is the whole component.

Remark IV.1.24. The ambient torus of a reduced non-coherent component Vp is
given by Tp := Spec

(
k
[
y±1
i

∣∣ i ∈ r(p)
])
, i.e. the points of Tp correspond to the

points in the ambient torus of Vp via J̃M(p). We refer to Tp as the ambient torus
of the non-coherent component Vp. Note that the ambient torus of the coherent
component is the n-torus T = Spec(k[x±1]) to which Tp is the analog for a non-
coherent component.

Example IV.1.25 (continuing IV.1.4). For the coherent ideal

M =
〈
a3, ab, b2, bc, ad, a2c2, bd2, ac5, d4

〉

the primary ideal in the primary decomposition of I ′M, that does not give the
coherent component, is

q = 〈y6, y8〉 .
This is already a prime ideal, so p = q and thus if we apply Construction IV.1.15
to remove the single variables we get p′ = (0) and

JM(p) = J ′′M =
〈
b2 − y3a

2c, bd2 − y7ac
4, d4 − y9c

7, a3, ab, bc, ad, a2c2, ac5
〉
,

since there are no binomials in p. For the non-coherent ideal

M0 =
〈
a3, ab, b2, bc, ad, a2c2, ac4, bd3, d4

〉

the primary ideal of I ′M0
that determines a non-coherent component is

q0 = 〈y4〉 .
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This is also already a prime ideal which contains no binomials, so p0 = q0 and if
we apply Construction IV.1.15 to remove the single variables we get p′0 = (0) and

JM0(p0) = J ′′M0
=
〈
b2 − y3a

2c, ac4 − y7bd
2, d4 − y9c

7, a3, ab, bc, ad, a2c2, bd3
〉
.
♦

We now give a slight variation of Theorem IV.1.22 that avoids Laurent mono-
mials.

Corollary IV.1.26. Let JM(p) =
〈
xmj − ybj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉
in

k
[
x, y±1

i

∣∣ i ∈ r(p)
]
be the universal family of Vp. Then

JM(p)′ =
〈
yb
−
j · xmj − yb+j · sj

∣∣∣ j ∈ Jp

〉
+
〈
xmj | j /∈ Jp

〉

in k
[
x, y±i

∣∣ i ∈ r(p)
]
is also a universal family for Vp giving an isomorphism

between (k∗)#r(p) and Vp intersected with its ambient torus, where bj = b+
j − b−j

is the unique decomposition into two positive vectors.

Proof. Just note that it is an isomorphism of tori. Thus we do not change the
isomorphism by multiplying the j-th generator of JM(p) with yb

−
j , because this

is just multiplication with a unit.

The universal family JM(p) has the advantage that it de�nes the ambient
torus of the non-coherent irreducible component on its own, which means we do
not need any equations on the coe�cients in y anymore.

We now apply Construction IV.1.19 to a monomial A-graded ideal where all
steps of the construction of JM(p) have to be done.

Example IV.1.27. LetA = {( 0
6 ) , ( 2

4 ) , ( 3
0 ) , ( 3

7 ) , ( 4
2 ) , ( 6

1 )} ⊂ Z2. Then the toric
ideal is

IA =
〈
bc2 − e2, ac2 − be, b2 − ae, cd− af, c8e3 − f 6, c3e6 − df 5, be7 − d2f 4,

a2ce6 − d3f 3, a3e6 − d4f 2, a4bce4 − d5f, d6 − a5be4
〉
.

The Graver basis has 381 elements and there are 9588 monomial A-graded ideals,
which were found by using Construction II.3.15. We choose the non-coherent
monomial A-graded ideal

M =
〈
bc2, ae, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2, ab3f 2, c8e3,

b5f 2, df 5, bf 6, d2f 4, af 6, b4ce4, d4f 2, b9c, ad3f 3, ab9, d6e
〉

which has 22 generators. Thus, the universal family JM of this ideal is in
k[a, b, c, d, e, f, y1, ..., y22], and the de�ning ideal IM lies in k[y1, ..., y22] and has
40 generators. The equations give 14 redundant variables (all variables except
y4, y11, y12, y14, y17, y20, y21, and y22), so if we remove them we get

J ′M =
〈
bc2 − y11y14e

2, ae− y21y22b
2, ac2 − y2

4y12y
3
21y

3
22be, cd− y4af,

abcf − y4y12y
2
21y

2
22de

2, a2cf − y4y12y
3
21y

3
22bde, b

3cf − y4y12y21y22de
3,

a2bf 2 − y12y
2
21y

2
22d

2e2, a3f 2 − y12y
3
21y

3
22bd

2e, ab3f 2 − y12y21y22d
2e3,

c8e3 − y11f
6, b5f 2 − y12d

2e4, df 5 − y3
4y12y14y

3
21y

3
22c

3e6, bf 6 − y14c
6e5,

d2f 4 − y2
12y22be

7, af 6 − y2
4y12y14y

3
21y

3
22c

4e6, b4ce4 − y17d
3f 3,

d4f 2 − y12y22b
6e3, b9c− y4y21d

5f, ad3f 3 − y20b
6ce3,

ab9 − y21d
6, d6e− y22b

11
〉

45



and the de�ning ideal

I ′M =
〈
y17y20 − y21y22, y4y20 − y12y22, y12y17 − y4y21, y

2
4y12y

2
21y

2
22 − y11y14,

y4y
2
11y

3
14y17y21y22 − y12, y

3
11y

4
14y21y22 − y3

12y21y
2
12

〉

for which we can construct the primary decomposition

I ′M =
〈
y17y20 − y21y22, y4y20 − y12y22, y12y17 − y4y21, y

2
4y12y

2
21y

2
22 − y11y14,

y2
11y

3
14y

2
17y22 − 1, y3

11y
4
14y21y22 − y3

12y21y
2
22

〉

∩ 〈y4, y11, y12, y17y20 − y21y22〉
∩ 〈y11, y12, y20, y21〉
∩ 〈y4, y12, y14, y17y20 − y21y22〉 .

The �rst primary ideal contains an element of k[y]\〈y〉, so it does not de�ne a non-
coherent component containingM. Hence,M lies on 3 non-coherent components
and all three of them are reduced. Therefore, p = 〈y4, y11, y12, y17y20 − y21y22〉
de�nes an a�ne chart of a reduced irreducible component containing M. Now
we apply Construction IV.1.15 to remove the single variables in p which gives
p′ = 〈y17y20 − y21y22〉 and the new universal family

J ′′M =
〈
ae− y21y22b

2, bf 6 − y14c
6e5, b4ce4 − y17d

3f 3, ad3f 3 − y20b
6ce3,

ab9 − y21d
6, d6e− y22b

11
〉

+
〈
bc2, ac2, cd, abcf, a2cf, b3cf,

a2bf 2, a3f 2, ab3f 2, c8e3, b5f 2, df 5, d2f 4, af 6, d4f 2, b9c
〉
.

There is one more binomial generator y17y20 − y21y22 in p′ left, which has the
exponent vector (0, 1, 1,−1,−1)t in the remaining variables y14, y17, y20, y21, y22.
Hence, we have to apply one isomorphism from Construction IV.1.17 to remove
that binomial. Our choice for this is

A :=




0 1 0 0 0
1 0 0 0 0
0 −1 1 0 0
0 1 0 1 0
0 1 0 0 1



∈ GL(5,Z).

This means we get the isomorphism

ΦA : k[y±1
14 , y

±1
17 , y

±1
20 , y

±1
21 , y

±1
22 ]→ k[y±1

0 , ..., y±1
4 ],

that maps

y14 7→ y1, y17 7→
y0y3y4

y2

, y20 7→ y2, y21 7→ y3, and y22 7→ y4.

Hence, ΦA(p′) = y0 − 1 and the universal family is mapped to

ΦA(J ′′M) =

〈
ae− y3y4b

2, bf 6 − y1c
6e5, b4ce4 − y0y3y4

y2

d3f 3,

ad3f 3 − y2b
6ce3, ab9 − y3d

6, d6e− y4b
11
〉

+〈
bc2, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2,

ab3f 2, c8e3, b5f 2, df 5, d2f 4, af 6, d4f 2, b9c
〉
.
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But now we have to set y0 to 1 so we get that the universal family of the component
Vp is

JM(p) =

〈
ae− y3y4b

2, bf 6 − y1c
6e5, b4ce4 − y3y4

y2

d3f 3,

ad3f 3 − y2b
6ce3, ab9 − y3d

6, d6e− y4b
11
〉

+〈
bc2, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2,

ab3f 2, c8e3, b5f 2, df 5, d2f 4, af 6, d4f 2, b9c
〉

in k[a, b, c, d, e, f, y1, y2, y3, y4].
♦

IV.2 Isomorphic Universal Families

So far, we have constructed universal families JM(p) for every monomialA-graded
idealM which gives the ambient torus of some reduced non-coherent component
Vp containingM. Thus, if we want to describe all non-coherent components, we
have to compute all universal families for each monomial A-graded ideal. But
this means that we would construct for one non-coherent irreducible component
di�erent universal families, one for each monomial A-graded ideal in that com-
ponent. Hence, we have to �nd a method to check for two universal families if
they de�ne the same non-coherent component.

Consider two monomial A-graded idealsM1,M2 with two prime ideals p1, p2

giving reduced irreducible components Vp1 , Vp2 of HA that containM1 andM2,
respectively. Then we have the two universal families

J1 := JM1(p1) =
〈
xmj − ybj · xnj

∣∣ j ∈ Jp1

〉
+
〈
xmj | j /∈ Jp1

〉
and

J2 := JM2(p2) =
〈
xuj − y′cj · xvj | j ∈ Jp2

〉
+
〈
xuj | j /∈ Jp2

〉
,

(IV.2)

where againM1 = 〈xmj | j = 1, ..., pM1〉 andM2 = 〈xuj | j = 1, ..., pM2〉. Recall
that Jpi are all indices in {1, ..., pMi

} whose variables were not set to zero by
the removal of single variables (Construction IV.1.15), and the bj, cj are the
exponents of y and y′, respectively, of the remaining binomials after Construction
IV.1.19. Note that we have already renumbered the coe�cients, such that the
new variables are y = (y1, ..., yr) and y′ = (y′1, ..., y

′
s) with r = r(p1) and s = r(p2).

Lemma IV.2.1. Let J1 and J2 be two universal families as in (IV.2) which
parametrise the ambient torus of the same reduced non-coherent irreducible com-
ponent of HA, then J1 (y=(1)) = J2 (y′=(1)). This means the A-graded ideals given
by the identity in J1 and J2 are the same.

Proof. If J1 and J2 parametrise the same A-graded ideals then there is some
λ = (λ1, ..., λs) such that J1 (y=(1)) = J2 (y′=(λ)). Now let xm − xn be a Graver
binomial in J1 (y=(1)). Because they are equal, xm−xn ∈ J2 (y′=(λ)) holds as well.
But we have xm−λw ·xn ∈ J2 (y′=(λ)) for some w ∈ Zs, so we must have λw = 1
which is satis�ed for λ = (1). Because this holds for every Graver binomial, we
get J1 (y=(1)) = J2 (y′=(λ)) = J2 (y′=(1)), since by Lemma II.1.8 every A-graded
ideal is determined by its coe�cients of the Graver binomials.
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Remark IV.2.2. Note, that in fact λ = (1) since the parametrisation by J2 is
an isomorphism. Furthermore, if the two families J1 and J2 are isomorphic then
r = s since the dimension of the component is the number of remaining variables
in the universal family.

On the other hand, consider two universal families J1 and J2 with equal ideals
for the identity J1 (y=(1)) = J2 (y′=(1)) and let xmj − xnj be in J1 (y=(1)) with
xmj ,xnj /∈ Ji. Since the �bers of the universal families in the point (1) are the
same there is a unique b′j ∈ Zs such that xmj − y′b′j · xnj ∈ J2. In fact, this
existence is not so trivial so that we will construct b′j explicitly. For this we
denote by

xmj − xnj =
∑

i∈Jp2

pi(x) · (xui − xvi)

a decomposition into the generators given by J2 (y′=(1)) where the pi(x) are poly-
nomials in x. Then we split the pi into monomials and rearrange the summands
to get the telescoping series

xmj − xnj =
∑

ik

mik(x) · (xuik − xvik ) ,

i.e. mik(x)xuik −mik−1
(x)xvik−1 = 0. We may assume that all mik are positive,

because otherwise we interchange xuik and xvik . If we insert the appropriate
terms from k[y′±1] on the right hand side we get a telescoping series in k[x,y′±1]

∑

ik

((∏

ν<k

y′ciν

)
mik(x) · (xuik − y′cik · xvik )

)
, (IV.3)

where we take the negative y′ exponent if we interchanged the x terms. But then
this telescoping sum equals xmj − y′b′j · xnj , where

b′j =
∑

ν

ciν .

Hence, the exponent b′j is a linear combination of the ci. Because xmj ,xnj /∈ Ji
we have that b′j is unique. This means when rearranging the generators of J2

to get the same x binomials as in J1 we get the new y′ exponents b′j as linear
combinations of the ci. Thus, we get the following proposition:

Proposition IV.2.3. Let J1 and J2 be two universal families given by equation
(IV.2) with J1 (y=(1)) = J2 (y′=(1)). Set n1 := #(Jp1) and n2 := #(Jp2). Then
there is an n1 × n2 matrix B1,2 and an n2 × n1 matrix B2,1 such that for the

binomials xmj − y′b′j · xnj ∈ J2 and xuj − yc′j · xvj ∈ J1 we have
(
b′j
)
j∈Jp1

= (ci)i∈Jp2
·B2,1

(
c′j
)
j∈Jp2

= (bi)i∈Jp1
·B1,2.

Remark IV.2.4. If, on the other hand, we start with the xmj − y′b′j · xnj ∈ J2,
then by the same argument as before we can reconstruct the xuj − y′cj · xvj , so
that in fact

J2 =
〈
xmj − y′b′j · xnj

∣∣∣ j ∈ Jp1

〉
+
〈
xmj | j /∈ Jp1

〉
.
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Using the above we can give a complete description of when two universal
families give the same non-coherent component of the toric Hilbert scheme.

Theorem IV.2.5. Two universal families J1 and J2 parametrise the ambient
torus of the same non-coherent component of the toric Hilbert scheme if and only
if J1 (y=(1)) = J2 (y′=(1)), r = s for y = (y1, ..., yr) and y′ = (y′1, ..., y

′
s), and there

exists an isomorphism Φ ∈ GL(r,Z) such that Φ(bj) = b′j for j ∈ Jp1 in the
notation of Proposition IV.2.3.

Proof. If J1 and J2 parametrise the ambient torus of the same non-coherent com-
ponent, then by Corollary IV.1.23 their dimensions must be the same which are
r and s, so we have r = s. We also get J1 (y=(1)) = J2 (y′=(1)) by Lemma IV.2.1
so that we can write

J1 =
〈
xmj − ybj · xnj

∣∣ j ∈ Jp1

〉
+
〈
xmj | j /∈ Jp1

〉
and

J2 =
〈
xmj − y′b′j · xnj

∣∣∣ j ∈ Jp1

〉
+
〈
xmj | j /∈ Jp1

〉
.

Since these are all but one condition on the right hand side, it remains to show
the equivalence to the Z-isomorphism Φ. But J1 and J2 parametrise the ambient
torus of the same non-coherent component exactly if there is an isomorphism of
their parametrising tori Spec(k[y±1]) and Spec(k[y′±1]) which gives exactly the
same points on HA by the two universal families J1 and J2. This means, if and
only if there exists some Φ′ : k[y±1]→ k[y′±1] such that

Φ′(J1) =
〈
xmj − Φ′

(
ybj
)
· xnj

∣∣ j ∈ Jp1

〉
+
〈
xmj | j /∈ Jp1

〉
= J2.

This is equivalent to an isomorphism Φ ∈ GL(r,Z) such that Φ(bj) = b′j.

Remark IV.2.6. Construction IV.1.19 and Theorem IV.2.5 allows us to compute
all non-coherent components of a toric Hilbert Scheme for a given A. To do this,
one has to compute for each monomial A-graded idealM the universal families
of all non-coherent components containingM. Then one collects all isomorphic
universal families into one component. By doing this, one has for each component
already the list of all monomial A-graded ideals contained in this component.

Example IV.2.7 (continuing IV.1.4). We have computed the universal family

J1 := JM(p) =
〈
b2 − y3a

2c, bd2 − y7ac
4, d4 − y9c

7, a3, ab, bc, ad, a2c2, ac5
〉

for the coherentM = 〈a3, ab, b2, bc, ad, a2c2, bd2, ac5, d4〉 and the universal family

J2 := JM0(p0) =
〈
b2 − y3a

2c, ac4 − y7bd
2, d4 − y9c

7, a3, ab, bc, ad, a2c2, bd3
〉

for the non-coherentM0 = 〈a3, ab, b2, bc, ad, a2c2, ac4, bd3, d4〉. When substituting
(1) we get

J1 (y=(1)) =
〈
b2 − a2c, bd2 − ac4, d4 − c7, a3, ab, bc, ad, a2c2, ac5

〉

and
J2 (y=(1)) =

〈
b2 − a2c, ac4 − bd2, d4 − c7, a3, ab, bc, ad, a2c2, bd3

〉
.

Furthermore, since we have both, ac5 = c(ac4− bd2) + d · bc ∈ J1 (y=(1)) as well as
bd3 = d(bd2 − ac4) + c4 · ad ∈ J2 (y=(1)), we get J1 (y=(1)) = J2 (y=(1)).
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The number of remaining variables in J1 and in J2 are 3, hence r = s. Finally,
we have

b1 =
( −1

0
0

)
, b2 =

(
0
−1
0

)
, b3 =

(
0
0
−1

)
,

b′1 =
( −1

0
0

)
, b′2 =

(
0
1
0

)
, b′3 =

(
0
0
−1

)
,

so that

Φ =




1 0 0
0 −1 0
0 0 1




is an isomorphism of the two universal families. Hence, J1 and J2 describe the
same non-coherent component and bothM andM0 lie on that component. When
applying Construction IV.1.19 to the remaining 51 A-graded monomial ideals we
get that only six of them are also contained in a non-coherent component, which
is in fact the same component:

M1 =
〈
a3, ab, b2, bc, ad, a2c2, ac4, bd3, c7

〉
,

M2 =
〈
a3, ab, a2c, bc, ad, b3, b2d, bd2, ac5, d4

〉
,

M3 =
〈
a3, ab, b2, bc, ad, a2c2, bd2, ac5, c7

〉
,

M4 =
〈
a3, ab, a2c, bc, ad, b3, b2d, ac4, bd3, d4

〉
,

M5 =
〈
a3, ab, a2c, bc, ad, b3, b2d, ac4, bd3, c7

〉
, and

M6 =
〈
a3, ab, a2c, bc, ad, b3, b2d, bd2, ac5, c7

〉
,

where all of them butM6 are coherent. Thus, the component Vp given by JM(p)
contains 8 monomial A-graded ideals.

♦

In this example it is quite clear that the two universal families de�ne the same
non-coherent component already from the equality of the two ideals when (1) had
been substituted. One could assume now that having the same A-graded ideal
given by the identity may su�ce for two universal families to de�ne the same
component. This would mean that Lemma IV.2.1 would in fact be an if and only
if. The following is a counterexample to this.

Example IV.2.8 (continuing IV.1.27). Consider the A-graded monomial ideal

M =
〈
e2, be, ae, cd, a2c2, b3d, ac12, b3c9, b2c12, ab3c8, d3f 3, ab2c11, d2ef 4, d4f 2,

b6c6, d5f, d6, a3d2f 4, b9c5, b12c3, a8df 5, b15c2, b18
〉

with 23 generators. The de�ning ideal of UM after removing redundant variables
is

I ′M = 〈y15y18 − y20y21, y12y13y15 − y2y12, y11y13y15 − y2y11,

y20y
2
21y23 − y11y15, y18y

2
20y21 − y11y15,

y13y15y20y21 − y2y20y21, y11y15y20y21 − y12y13〉

in k[y1, ..., y23] which has a primary decomposition into 12 primary ideals. Two
of them are

q1 =
〈
y11, y12, y

2
18, y18y21, y

2
21, y15y18 − y20y21, y13y15 − y2

〉
and

q2 = 〈y11, y12, y18, y21〉 ,
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of which the former is not reduced. The radical of the primary ideal q1 is then
p1 = 〈y11, y12, y18, y21, y2 − y13y15〉. The two reduced components corresponding
to these prime ideals are given by the universal families

J1 =
〈
be− y1y3ac

2, d2ef 4 − y1b
5c8, b6c6 − y3ad

2f 4, b12c3 − y4a
6df 5,

b18 − y5a
11f 6

〉
+
〈
e2, ae, cd, a2c2, b3d, ac12, b3c9, b2c12, ab3c8,

d3f 3, ab2c11, d4f 2, d5f, d6, a3d2f 4, b9c5, a8df 5, b15c2
〉

and

J2 =
〈
be− y2ac

2, d2ef 4 − y1b
5c8, b6c6 − y3ad

2f 4, b12c3 − y4a
6df 5,

b18 − y5a
11f 6

〉
+
〈
e2, ae, cd, a2c2, b3d, ac12, b3c9, b2c12, ab3c8,

d3f 3, ab2c11, d4f 2, d5f, d6, a3d2f 4, b9c5, a8df 5, b15c2
〉
,

where we have mapped y13, y15, y20, y23 to y1, y3, y4, y5 and in J1 have replaced y2

by y1y3. Not only are these two not isomorphic by construction, also the �rst one
is four-dimensional and the second �ve-dimensional. But substituting y = (1) in
J1 and J2 gives the same ideal

〈be− ac2, d2ef 4 − b5c8, b6c6 − ad2f 4, b12c3 − a6df 5, b18 − a11f 6〉+
〈e2, ae, cd, a2c2, b3d, ac12, b3c9, b2c12, ab3c8, d3f 3,

ab2c11, d4f 2, d5f, d6, a3d2f 4, b9c5, a8df 5, b15c2〉 .

Furthermore, as can be seen from p1 and p2, the reduced component Vp1 is an
embedded component in Vp2 . ♦

IV.3 The Polytope

This section is about the construction of the polytope of a non-coherent compo-
nent. Recall, that the coherent component is given by the state polytope of the
toric ideal IA. For a non-coherent component we will show that the polytope
is again a state polytope. Unfortunately, JM(p) and JM(p)′ are not necessarily
homogeneous with respect to a strictly positive grading. But the non-coherent
component given by the universal family is the projective closure, so that we want
to homogenise the universal family. Thus, we de�ne a last little modi�cation we
will be using to construct the polytope whose normal fan is the normalisation of
the reduced non-coherent component Vp.

De�nition IV.3.1. LetM be a monomial A-graded ideal, p a prime ideal as in
Proposition IV.1.6 or IV.1.11, and

JM(p) =
〈
xmj − ybj · sj

∣∣ j ∈ Jp
〉

+
〈
xmj | j /∈ Jp

〉

in k
[
x, y±1

i

∣∣ i ∈ r(p)
]
the universal family of the component Vp. Then we consider

an additional set of variables {zi | i ∈ r(p)} and de�ne the generalised universal
family of the component Vp as

J̃M(p) =
〈
zb

+
j yb

−
j · xmj − zb−j yb+j · sj

∣∣∣ j ∈ Jp

〉
+
〈
xmj | j /∈ Jp

〉

in k[x, yi, zi | i ∈ r(p)].
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Remark. Note that J̃M(p) is just a homogenisation of JM(p)′.

Example IV.3.2 (continuing IV.1.4). The generalised universal family for M
and p = 〈y6, y8〉 is

J̃M(p) =
〈
z1b

2 − y1a
2c, z2bd

2 − y2ac
4, z3d

4 − y3c
7, a3, ab, bc, ad, a2c2, ac5

〉

after replacing y3, y7, y9 by y1, y2, y3, respectively.
The generalised universal family forM0 and p0 = 〈y4〉 is

˜JM0(p0) =
〈
z1b

2 − y1a
2c, z2ac

4 − y2bd
2, z3d

4 − y3c
7, a3, ab, bc, ad, a2c2, bd3

〉

after replacing y3, y7, y9 by y1, y2, y3, respectively.
♦

Example IV.3.3 (continuing IV.1.27). The universal family was

JM(p) =

〈
ae− y3y4b

2, bf 6 − y1c
6e5, b4ce4 − y3y4

y2

d3f 3,

ad3f 3 − y2b
6ce3, ab9 − y3d

6, d6e− y4b
11
〉

+〈
bc2, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2,

ab3f 2, c8e3, b5f 2, df 5, d2f 4, af 6, d4f 2, b9c
〉

in k[a, b, c, d, e, f, y1, y2, y3, y4] so that the generalised universal family is

J̃M(p) =
〈
z3z4ae− y3y4b

2, z1bf
6 − y1c

6e5, y2z3z4b
4ce4 − y3y4z2d

3f 3,

z2ad
3f 3 − y2b

6ce3, z3ab
9 − y3d

6, z4d
6e− y4b

11
〉

+〈
bc2, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2,

ab3f 2, c8e3, b5f 2, df 5, d2f 4, af 6, d4f 2, b9c
〉

in k[a, ..., f, y1, ..., y4, z1, ..., z4].

We have done all the preliminary work now, so that we can start directly with
the theorem and the rest of the section will construct the proof of it in four steps.

Theorem IV.3.4. Let M be a monomial A-graded ideal and consider a gener-

alised universal family J̃M(p) ⊆ k[x, yi, zi | i ∈ r(p)] of a reduced component Vp

containing M. Then J̃M(p) is homogeneous with respect to a strictly positive
grading and the normalisation of the component Vp is the toric variety de�ned by

the normal fan of the state polytope state(J̃M(p)), i.e. the Gröbner fan of J̃M(p).

Before we prove the theorem we have to show four steps we will use in the
proof.

Lemma IV.3.5. LetM′ ⊂ k[x,y, z] be an initial monomial ideal of J̃M(p) with
respect to a term order on k[x,y, z]. ThenM1 :=M′

(y)=(z)=1 is a monomial A-
graded ideal in the component Vp. Furthermore,M′ is the only initial monomial

ideal of J̃M(p) withM1 =M′
(y)=(z)=1.
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Proof. Recall that the number of x variables is n. We denote by ny and nz the
number of y and z variables, respectively. Then the torus

T := (k∗)n+ny+nz

acts on k[x,y, z] coordinate-wise. Let λ = (λ1, ..., λn, λy, λz) ∈ T be arbitrary,
where λy and λz denote the coordinates acting respectively on y and z. Note
that (λ1, ..., λn) is in fact an element of the torus T that acts coordinate-wise on
S = k[x1, ..., xn]. By trivial extension to y and z such an element (λ1, ..., λn) also
acts on k[x,y, z]. Then one can easily check that

(
λ.J̃M(p)

)
(y)=(z)=1

=
(

(λ1, ..., λn) .J̃M(p)
)

(y)=λy ,(z)=λz

=

(
(λ1, ..., λn) .

(
J̃M(p)

)
(y)=λy ,(z)=λz

)

holds. Since
(
J̃M(p)

)
(y)=λy ,(z)=λz

is A-graded and in Vp for every λ ∈ T and the

n-torus orbit of an A-graded ideal in Vp is an A-graded ideal in Vp, we also have
that (

λ.J̃M(p)
)

(y)=(z)=1

is an A-graded ideal in Vp for every λ ∈ T . Moreover, the monomial idealM′ is
given as the initial ideal with respect to a weight vector ω ∈ Nn+ny+nz . Hence,
by using [Eis95, Theorem 15.17] we get that

M1 =M′
(y)=(z)=1 =

(
inω

(
J̃M(p)

))
(y)=(z)=1

is an A-graded ideal in Vp and sinceM′ is monomial,M1 is too.
For the second part, we �x the minimal set of generators {f1, ..., fl} ofM1 and

denote by si the standard monomial in the degree of fi. SinceM1 is a monomial
A-graded ideal in Vp, we get another generalised universal family

˜JM1(p1) =
〈
zc

+
i yc

−
i fi − zc

−
i yc

+
i si

∣∣∣ i ∈ Jp1

〉
+
〈
fi | i /∈ Jp1

〉
,

which also gives Vp. Thus ˜JM1(p1) is isomorphic to J̃M(p), so that in fact

J̃M(p) =
〈
zb

+
i yb

−
i fi − zb

−
i yb

+
i si

∣∣∣ i ∈ Jp1

〉
+
〈
fi | i /∈ Jp1

〉

holds after a suitable change of y and z coordinates in ˜JM1(p1) as in Theorem
IV.2.5. Because all si are not inM1 the zb

−
i yb

+
i si are also not inM′, so that we

can choose a term order ≺ on k[x,y, z] such that

zb
−
i yb

+
i si ≺ zb

+
i yb

−
i fi.

Then we claim that

GM1 :=
{
zb

+
i yb

−
i fi − zb

−
i yb

+
i si

∣∣∣ i ∈ Jp1

}
∪
{
fi
∣∣ i /∈ Jp1

}
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together with a possibly empty set of monomials in k[x,y, z] is the reduced

Gröbner basis of J̃M(p) with respect to the term order ≺. To show this, we start
with a pair of binomials

zb
+
i yb

−
i fi − zb

−
i yb

+
i si, z

b+j yb
−
j fj − zb

−
j yb

+
j sj in GM1

and compute their S-polynomial zb
+
yb
−
xm − zb−yb+xn. Then there are two

cases, either we have that zb
+
yb
−
xm and zb

−
yb

+
xn are not in J̃M(p) or they

both are. First assume they are not. Then by using Construction III.3.6 ifM1

is coherent or Construction III.3.12 if M1 is non-coherent, xm − xn reduces to
zero via the binomials fi − si for i ∈ Jp1 because both monomials reduce to the
standard monomial in their common degree. But then we can use the telescoping
sum (IV.3) again to reduce zb

+
yb
−
xm − zb−yb+xn via the zb

+
i yb

−
i fi − zb

−
i yb

+
i si

in GM1 to zero because the exponents bi satisfy the local equations.

On the other hand, if zb
+
yb
−
xm and zb

−
yb

+
xn are both in J̃M(p) then their

di�erence reduces either to a monomial in k[x,y, z] or to zero. Therefore, GM1

together with a possibly empty set of monomials is a Gröbner basis for ≺. Fur-
thermore, the set GM1 itself is reduced, because no fi divides any sj and hence
no zb

+
i yb

−
i fi divides any zb

−
j yb

+
j sj. The additional monomials do also not re-

duce any element of GM1 , because on the one side reducing one of the binomials

would result in zb
−
i yb

+
i si being in J̃M(p) which is a contradiction, and on the

other side the remaining fi are minimal generators of M1 so that there cannot
be any xu ∈ J̃M(p) dividing fi. Thus, GM1 ∪ {monomials in k[x,y, z]} is the
reduced Gröbner basis of J̃M(p) with respect to the term order ≺. Therefore,M′

is the unique initial monomial ideal of J̃M(p) that gives M1 when substituting
1, because the reduced Gröbner basis is given byM1.

Since we know the correspondence between initial monomial ideals of J̃M(p)
and monomial ideals in Vp now, we are interested in the Gröbner cone of these
initial ideals.

Proposition IV.3.6. LetM′ be an initial monomial ideal of J̃M(p) with mono-
mial A-graded idealM1 =M′

(y)=(z)=1 = 〈xm1 , ...,xml〉. Then the cone of maxi-

mal dimension in the Gröbner fan of J̃M(p) corresponding toM′ is

σ =
{
ω
∣∣∣ 〈ω, vi〉 ≥ 0, xmi /∈ J̃M(p)

}
for

vi =
(mi−ni
−bi
bi

)
,

where xni is the standard monomial in the degree of xmi and bi ∈ Z#r(p) unique

such that zb
+
i · yb−i · xmi − zb−i · yb+i · xni ∈ J̃M(p).

Proof. Let ≺ be a term order on k[x,y, z] such thatM′ = in≺
(
J̃M(p)

)
. Then

as shown in the proof of Lemma IV.3.5
{
zb

+
i · yb−i · xmi − zb−i · yb+i · xni

∣∣∣xmi /∈ J̃M(p)
}
∪
{
xmi ∈ J̃M(p)

}
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is a subset of the reduced Gröbner basis of J̃M(p) with respect to ≺ that contains
all binomials of the reduced Gröbner basis. Thus, the relative interior of the
corresponding Gröbner cone σ is given by all ω ∈ Zn+ny+nz such that

inω

(
zb

+
i · yb−i · xmi − zb−i · yb+i · xni

)
= zb

+
i · yb−i · xmi

for all xmi /∈ J̃M(p). But this holds exactly if

σ =
{
ω
∣∣∣ 〈ω, vi〉 ≥ 0, xmi /∈ J̃M(p)

}
for

vi =
(mi−ni
−bi
bi

)
.

Before we give the last lemma needed for the proof of the theorem we state a
short proposition we need for this lemma.

Proposition IV.3.7. Let

J̃M(p) =
〈
zb

+
i yb

−
i · xmi − zb−i yb+i · xni

∣∣∣ i ∈ Jp

〉
+
〈
xmi | i /∈ Jp

〉

be the generalised universal family of an irreducible component Vp containingM.
Then we have

k[ybi | i ∈ Jp,y = (yj)j∈r(p)] ∼= k[zbiy−bixmi−ni | i ∈ Jp,y = (yj)j∈r(p)].

Proof. The �rst step is that for y = (yj)j∈r(p) and z = (zj)j∈r(p)

k[ybi | i ∈ Jp] ∼= k[zbiy−bi | i ∈ Jp]

holds, since this is just the diagonal embedding. Secondly,

k[zbiy−bi | i ∈ Jp] ∼= k[zbiy−bixmi−ni | i ∈ Jp]

holds, because the relations on the xmi−ni are the same as the relations on the
ybi . In fact, any relation between the xmi−ni can be rewritten to taking an S-
polynomial of two of them and reducing this. But this is exactly the construction
of the local equations which have been used for the base change to the ybi , so
that these also satisfy these relation.

Lemma IV.3.8. Let Vp be a reduced irreducible component containing an A-
graded monomial ideal M and let

{
bi | i ∈ Jp

}
be the exponent vectors in the

generalised universal family obtained fromM for this component. Then

(UM)red ∩ Vp = Spec(k[zbiy−bixmi−ni | i ∈ Jp,y = (yj)j∈r(p)])

holds.
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Proof. To prove this we will go through the construction of the bi exponents of y
and z again to illustrate the claim of the lemma. The a�ne chart of the reduced
structure of the irreducible component determined by p that containsM is given
by

(UM)red ∩ Vp
∼= Spec

(
k[yi | i ∈ r′]/p′

)
,

by Remark IV.1.16. Now let A1, ..., Ah be the matrices used for the reduction as
in Construction IV.1.17 to remove the binomials in p′ and let A := Ah · ... · A1

be their product, then we set b̃i to be the i-th column of A. Thus, we get the
surjective morphism

ΦA : k[yi | i ∈ r′] → k[yb̃i | i ∈ r′,y = (yj)j∈r′ ]/〈yk−1〉
yi 7→ yb̃i

for k ∈ r′ \ r(p). By construction of A the kernel of ΦA is exactly p′ so that we
have

k[yi | i ∈ r′]/p′ ∼= k[yb̃i | i ∈ r′,y = (yj)j∈r′ ]/〈yk−1〉.

Now we set yk to 1 for k ∈ r′ \ r(p) by projecting the b̃i to the r(p) variables.
I.e. if π is the projection from the r′ variables to the r(p) variables, then with
bi := π(b̃i) we have

k[yi | i ∈ r′]/p′ ∼= k[ybi | i ∈ r′,y = (yj)j∈r(p)],

where the bi are precisely as de�ned before. Note that the indices of the removed
redundant variables are Jp \ r′. But for i ∈ Jp \ r′ the resulting exponent of JM
is bi =

∑
j∈r′ λjbj for λj ∈ N, because yi was a redundant variable. Thus, adding

ybi for i ∈ Jp \ r′ to the generators of the ring does not change the ring, so that

k[yi | i ∈ r′]/p′ ∼= k[ybi | i ∈ Jp,y = (yj)j∈r(p)].

Finally, by using Proposition IV.3.7 we get

k[yi | i ∈ r′]/p′ ∼= k[zbi · y−bi · xmi−ni | i ∈ Jp,y = (yj)j∈r(p)].

Note that for the coherent component this is similar to the construction in
the proof of [SST02, Theorem 4.1].

Now we have collected all steps and can prove the theorem.

Proof of Theorem IV.3.4. First of all, note that

J̃M(p) =
〈
zb

+
j · yb−j · xmj − zb−j · yb+j · xnj

∣∣∣ j ∈ Jp

〉
+
〈
xmj | j /∈ Jp

〉

is homogeneous with respect to a strictly positive grading for the degree vector
(a,1,1), where a is a strictly positive vector in the row span of A and 1 is the
classical degree vector on y and z. Thus, by Theorem II.2.17 there exists a state
polytope P = state(J̃M(p)). Now let σ be a maximal cone in the normal fan of P ,
i.e. in the Gröbner fan. Then this gives an initial monomial idealM′ ⊆ k[x,y, z]

of J̃M(p), which in turn by Lemma IV.3.5 when substituting (y) = (z) = 1 gives
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a monomial A-graded ideal M1 in Vp. Now there are two cases, either M1 is

the original monomial idealM we used to construct J̃M(p) orM1 is some other
monomial ideal on that component.

For the �rst case, assume this monomial is M. Then by Proposition IV.3.6
the cone σ is given by {ω | 〈ω, vi〉 ≥ 0} for

vi :=
(mi−ni
−bi
bi

)
, i ∈ Jp.

Hence, we have that σ∨ is the positive hull over Q of
{
vi | i ∈ Jp

}
. The a�ne

chart of Vp, that containsM, is given by

(UM)red ∩ Vp
∼= Spec

(
k[yi | i ∈ r′]/p′

)
,

see Remark IV.1.16. But by Lemma IV.3.8 we have

(UM)red ∩ Vp
∼= Spec(k[zbiy−bixmi−ni | i ∈ Jp,y = (yj)j∈r(p)])

and the exponent vectors on the right hand side are the vi, the generators of the
cone σ∨. Thus, if we denote by Mσ := (Q · σ∨) ∩ Zn+ny+nz the lattice of σ∨, we
conclude that

Spec (k[σ∨ ∩Mσ])

is the normalisation of
Spec

(
k[yi | i ∈ r′]/p′

)
,

the a�ne chart of Vp containingM.
Secondly, let M1 6= M. Then for the monomial ideal M1 we get another

universal family

JM1 =
〈
xuj − y′cj · xvj | j ∈ Jp1

〉
+
〈
xuj | j /∈ Jp1

〉

where p1 is the prime ideal that gives Vp forM1. By Theorem IV.2.5 there is an
isomorphism Φ : k[y′±1]→ k[y±1], such that Φ(JM1) = JM. Thus, if we apply Φ
(extended to z′) to the general universal family we get

Φ( ˜JM1(p1)) =
〈
zΦ(cj)

+ · yΦ(cj)
− · xuj − zΦ(cj)

− · yΦ(cj)
+ · xvj

∣∣∣ j ∈ Jp1

〉

+
〈
xuj | j /∈ Jp1

〉

= J̃M(p).

Then Proposition IV.3.6 implies, as it did forM, that σ∨ is generated by

v′i :=

(
ui−vi
−Φ(ci)
Φ(ci)

)
, i ∈ Jp1 .

On the other hand we have (UM1)red ∩ Vp
∼= Spec

(
k[y′]/p′1

)
by Remark IV.1.16

and by the same argumentation as above we get

k[y′]/p′1 ∼= k[z′ci · y′−ci · xui−vi | i ∈ Jp1 ,y = (yj)j∈r(p1)].

But Φ is an isomorphism over Z so if we apply Idk[x]⊗Φ (again extended to z′)
to the right hand side we get

k[z′Φ(ci) · y′−Φ(ci) · xui−vi | i ∈ Jp1 ,y = (yj)j∈r(p1)],
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which implies that Spec (k[σ∨ ∩Mσ]) is the normalisation of the a�ne chart of
Vp containingM1. Note that for every maximal cone σ we get the same lattice
Mσ =: Mp.

The normalisation maps for all maximal cones which we have just constructed
map the identity point to the ideal

JM (y=(1)) =
〈
xmj − xnj | j ∈ Jp

〉
+
〈
xmj | j /∈ Jp

〉
⊂ Vp.

Clearly, all these normalisation maps are equivariant under the action of the torus
Hom(Mp,k∗). Hence, there exists a unique Hom(Mp,k∗)-equivariant morphism

Ψ from the projective toric variety given by the Gröbner fan of J̃M(p) onto the
non-coherent component Vp ⊆ (HA)red, that restricts to the normalisation maps
constructed above on each a�ne open chart. Hence, Ψ is the normalisation mor-
phism from the projective toric variety, given by the normal fan of the polytope
state(J̃M(p)), to Vp.

De�nition IV.3.9. We call a state polytope state
(
J̃M(p)

)
of a generalised uni-

versal family a generalised state polytope of A.

Corollary IV.3.10. Let

J̃M(p) =
〈
zb

+
i yb

−
i xmi − zb−i yb+i xni

〉
+ 〈xuj〉

be a generalised universal family of a non-coherent component V of a toric Hilbert

scheme HA. Furthermore, let F be a face of state
(
J̃M(p)

)
with de�ning normal

vector ω ∈ Zn+2 dim(V ). Then the orbit in V corresponding to F is given by

inω

(
J̃M(p)

)
(y)=λ,(z)=µ

for all λ, µ ∈ (k∗)dim(V ).

Proof. First, note that the edges of state
(
J̃M(p)

)
correspond to wall ideals which

are generated by just one primitive binomial and monomials. Thus, a face F
corresponds to the orbit, that contains those A-graded ideals that contain the
primitive binomials corresponding to its edges with coe�cients and monomials,
and has exactly these wall ideals as one-dimensional orbits in its closure. But
these are precisely the binomials in J̃M(p) with

inω

(
zb

+
i yb

−
i xmi − zb−i yb+i xni

)
= zb

+
i yb

−
i xmi − zb−i yb+i xni .

Thus the claim follows.

De�nition IV.3.11. For a face F with normal vector ω of state
(
J̃M(p)

)
we call

the general point which is given by the identity in the orbit corresponding to F

IF :=
(

inω

(
J̃M(p)

))
(y)=(z)=1

the general ideal of F .

58



Remark IV.3.12. An ideal I in the orbit corresponding to a face F with binomial
generators with trivial coe�cients is the general ideal of F .

Example IV.3.13 (continuing IV.1.4). For A = {1, 3, 4, 7} and the monomial
A-graded ideal M = 〈a3, ab, b2, bc, ad, a2c2, bd2, ac5, d4〉 we have computed the
generalised universal family

J̃M(p) =
〈
z1b

2 − y1a
2c, z2bd

2 − y2ac
4, z3d

4 − y3c
7, a3, ab, bc, ad, a2c2, ac5

〉

of the reduced non-coherent irreducible component V . This component V con-
tains the eight monomial idealsM,M0,M1, ...,M6. A state polytope for J̃M(p)
is a cube in Q10 (there are 10 variables in total) with the vertices corresponding
to the monomial ideals in the following way:

M ↔ (1,−1, 4,−2, 0,−1, 0, 0, 1, 0)t

M0 ↔ (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)t

M1 ↔ (0, 0,−7, 4, 0, 0, 1, 0, 0,−1)t

M2 ↔ (−1, 1, 3,−2,−1,−1, 0, 1, 1, 0)t

M3 ↔ (1,−1,−3, 2, 0,−1, 1, 0, 1,−1)t

M4 ↔ (−2, 2,−1, 0,−1, 0, 0, 1, 0, 0)t

M5 ↔ (−2, 2,−8, 4,−1, 0, 1, 1, 0,−1)t

M6 ↔ (−1, 1,−4, 2,−1,−1, 1, 1, 1,−1)t

A sketch of the polytope in its a�ne hull is given in Figure IV.1. Note that the

M2

M0

M1

M

M3

M4

M5 M6

Figure IV.1: state(J̃M(p))

two non-coherent vertices M0 and M6 are on opposing sides of the polytope,
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thus the intersection with the coherent component is not given by a face of the
this polytope. The polytope of the coherent component is three-dimensional
and has 51 vertices (the coherent monomial ideals). One can compute that the
intersection is not a face of this polytope either. See Figure IV.2 for a sketch of
the two-dimensional faces of the state polytope of IA that contain the coherent
monomial ideals of the non-coherent component.

b

b

b

b

b

b

M1

M5

M3

M4

M

M2

Figure IV.2: The two-dimensional faces of state(IA) that contain the coherent
monomial ideals of the non-coherent component

Furthermore, in [Stu96] Sturmfels has computed a family of A-graded ideals
for this A in the proof of [Stu96, Theorem 10.4]:

〈x2
1x3 − c1x

2
2, x1x

4
3 − c2x2x

2
4, x

7
3 − c3x

4
4,

x3
1, x1x2, x1x4, x

3
2, x

2
2x4, x2x3, x2x

3
4〉

(IV.4)

for c1, c2, c3 ∈ k∗. Moreover, he shows that there is a k∗ parametrisation of this
family identifying all A-graded ideals with c1c3/c

2
2 constant, because these are

isomorphic as A-graded ideals. The family (IV.4) is exactly the ambient torus of
the non-coherent component constructed above if we identify x1, x2, x3, x4 with
a, b, c, d, respectively, and c1, c2, c3 with z1

y1
, z2
y2
, z3
y3
, respectively. Recall that the

primary decomposition (IV.1) of the de�ning ideal ofM was

I ′M = 〈y6, y8〉 ∩
〈
y2

7 − y3y9, y6y7 − y8y9, y3y6 − y7y8

〉
.

The �rst primary ideal yields the non-coherent component V and the second ideal
the coherent component. Hence,

〈
y2

7 − y3y9

〉
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gives the intersection of V with the coherent component. Note, that we have
identi�ed y3 with y1

z1
, y7 with y2

z2
, and y9 with y3

z3
. Thus, the isomorphism class

c1c3/c
2
2 = 1 corresponds exactly to the intersection of V with the coherent com-

ponent.
♦

Remark IV.3.14. This example implies that two A-graded ideals, that correspond
to points in the same orbit in a non-coherent component, need not be isomorphic
as A-graded ideals. This is in contrast to the coherent component, where the
orbits are exactly the isomorphism classes.
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Chapter V

Properties of Toric Hilbert Schemes

In this chapter we will state properties of toric Hilbert schemes which we have
found and they will be shown using the generalised universal families and gener-
alised state polytopes. We start with a strati�cation of the toric Hilbert scheme
by considering actions of subtori. Then we provide some results on the intersec-
tion behaviour of the irreducible components of toric Hilbert schemes.

V.1 Strati�cation by Subtorus Actions

The goal of this section is to give a strati�cation of the toric Hilbert scheme
induced by the maximal dimensional subtorus action that leaves the A-graded
ideals invariant for each stratum.

By construction the torus (k∗)n acts on S by

λ.xi = λi · xi

for λ = (λ1, ..., λn) ∈ (k∗)n.

De�nition V.1.1. A k-dimensional subtorus T ⊆ (k∗)n is a torus (k∗)k ∼= T
with the isomorphism given by n integer vectors {d1, ..., dn} ⊂ Zk such that

(k∗)k → T
α = (α1, ..., αk) 7→

(
αd1 , ...,αdn

)
,

where αdi = α
d1i
1 · ... · α

dki
k .

Remark V.1.2. By this de�nition the action of T on S is given by

α.xi = αdi · xi

for α ∈ (k∗)k. This is equivalent to a Zk-grading on S given by

deg(xi) = di ∈ Zk.

De�nition V.1.3. We say that a subtorus T ⊆ (k∗)n is given by a k times n
matrix D so that the columns Di de�ne the action on S and equivalently the
corresponding Zk-grading.
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Now let I ⊆ S be A-graded and choose a subtorus T given by a matrix D.
Then I is homogeneous with respect to the grading induced by D exactly if for
every binomial αuvxu−βuvxv ∈ I we have Du = Dv, since deg(xu) = Du. But
the binomial αuvxu − βuvxv is invariant under the action of T if and only if xu

and xv have the same degree with respect to the D-grading, i.e. the binomial is
homogeneous. Thus, we get the following proposition:

Proposition V.1.4. An A-graded ideal I ⊆ S is invariant under the subtorus
action induced by D if and only if

Du = Dv for all αuvx
u − βuvxv ∈ I (V.1)

holds.

Condition (V.1) in Proposition V.1.4 only has to be checked for a set of
generators. Hence, we use Lemma II.1.8 to write

I = 〈xu − αuvxv |xu − xv ∈ G(A) and xv /∈ I〉

generated by primitive binomials. Thus, we have to check those primitive bino-
mials where αuv 6= 0.

De�nition V.1.5. Let I ⊆ S be A-graded and αuv ∈ k as in Lemma II.1.8 such
that

I = 〈xu − αuvxv |xu − xv ∈ G(A) and xv /∈ I〉 .
Then we denote the set of Graver binomials for which the coe�cient is not zero
by

GI = 〈xu − xv ∈ G(A) |αuv 6= 0〉 .

This directly implies the following:

Corollary V.1.6. An A-graded ideal I ⊆ S is invariant under the subtorus
action induced by D exactly if

Du = Dv for all xu − xv ∈ GI .

De�nition V.1.7. For a given subset GI of the Graver basis G(A) denote the
submodule generated by the di�erences of the exponent vectors by

VI = span {u− v |xu − xv ∈ GI} .

Proposition V.1.8. An A-graded ideal I ⊆ S is invariant under the subtorus
action induced by D if and only if

VI ⊆ Ker(D).

Proof. I is invariant exactly if

Du = Dv for all xu − xv ∈ GI
⇔ D (u− v) = 0 for all xu − xv ∈ GI
⇔ Ker(D) ⊇ VI .
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This means all possible subtorus actions under which I is invariant are de-
termined by VI . The smallest such subtorus is the trivial one (k∗)0, whereas the
maximal subtorus given by D must satisfy

VI = Ker(D).

Proposition V.1.9. Let I be an A-graded ideal. Then the rank of a maximal
subtorus under whose action I is invariant is

n− rank(VI).

Proof. Let D induce a subtorus action with VI = Ker(D). Then

rank(VI) = rank (Ker(D)) = n− rank(D).

Now we have all that is needed to construct the desired strati�cation on the
toric Hilbert scheme.

De�nition V.1.10. Two A-graded ideals I1, I2 lie in the same subtorus rank
stratum if

rank (VI1) = rank (VI2) .

De�nition V.1.11. Two A-graded ideals I1, I2 lie in the same degree stratum if
they have the same module of maximal possible degrees, i.e.

VI1 = VI2 .

This strati�cation is a re�nement of the coarser subtorus rank strati�cation.
Note that VI becomes of maximal rank if GI = G(A), i.e. all coe�cients are

not zero. This is the case for example for the toric ideal IA. For any A-graded
ideal I we have GI ⊂ G(A) so that VI ⊆ VIA and therefore the rank of VIA is the
upper bound for all VI . But since {u− v |xu − xv ∈ G(A)} spans Ker (A), the
maximal dimension for VI is n − d. Thus, the maximal dimension of a subtorus
is at least d.

Example V.1.12. We continue Example IV.1.4 with A = {1, 3, 4, 7} from Chap-
ter IV. If we take the generalised universal family of the non-coherent component
and substitute (1) then we get the A-graded ideal

I =
〈
b2 − a2c, ac4 − bd2, d4 − c7, a3, ab, bc, ad, a2c2, bd3

〉

in the torus of the non-coherent component. For this ideal we get

GI =
{
b2 − a2c, ac4 − bd2, c7 − d4

}

and

VI = span

{( −2
2
−1
0

)
,

(
1
−1
4
−2

)
,

(
0
0
7
−4

)}
.

But VI has rank 2, thus a maximal subtorus that leaves I invariant has rank 2
and must be given by a matrix D with

Ker(D) = span

{( −2
2
−1
0

)
,

(
1
−1
−3
2

)}
. ♦
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Now we will construct descriptions of the strata that use the polytopes of the
components. Let I be any A-graded ideal. Then I lies on some component V of
the toric Hilbert scheme HA. By Theorem IV.3.4 there is a polytope P giving
the normalisation of this component (if it is the coherent component one uses
Theorem III.2.5).

De�nition V.1.13. Let I be an A-graded ideal and P the polytope correspond-
ing to a component containing I. We denote by FI the face of P that de�nes the
torus orbit containing I, and by F (1)

I the set of primitive binomials that label an
edge of FI .

Note that FI is not unique since I might be contained in several components,
so that it is some face corresponding to I.

Let e be an edge of FI . Then by Theorems II.3.10 and III.2.10 there is a
Graver binomial ge ∈ G(A) and an ideal Wge ∈ HA corresponding to that edge.
Since e is an edge of FI the wall ideal Wge is in the closure of the orbit containing
I. Thus, if ge = xu − xv then without loss of generality we have

xu − αuvxv ∈ I with αuv 6= 0. (V.2)

Proposition V.1.14. Let I be an A-graded ideal with some corresponding face
FI . Then we have

{ge | e is an edge of FI} ⊆ GI .

Proof. For each edge e of FI , the Graver binomial ge = xu − xv satis�es (V.2),
hence the claim holds.

Corollary V.1.15. Let I be an A-graded ideal with some corresponding face FI .
Then the span of {

u− v |xu − xv ∈ F (1)
I

}

is a subspace of VI .

For a coherent ideal I there is a di�erent description of the restriction module.

Lemma V.1.16. Let I be a coherent A-graded ideal and FI the corresponding
face of the state polytope of IA. Then the translation of the a�ne hull of FI , so
that it contains the origin, equals VI .

Proof. First note that if I is torus isomorphic to I ′ then VI = VI′ , since non-zero
αuv stay exactly non-zero under the torus isomorphism. Thus, we may assume
I = inω(IA) for all ω in the relative interior of the normal cone of FI . Now let ω
be in the relative interior of the normal cone of FI . Then since I = inω(IA) we
get for all xu − xv ∈ G(A) that

ω · (u− v) = 0 ⇔ xu − xv ∈ GI

holds. Furthermore, for every ω in the normal cone of FI , i.e. even for the
extremal rays, we have

xu − xv ∈ GI ⇒ ω · (u− v) = 0. (V.3)
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On the other hand, take a generating set of rays ω1, ..., ωl for the normal cone of
FI and write them in a matrix W as rows. Then the kernel of W is exactly the
a�ne hull of FI translated so that it contains the origin. Combining this with
(V.3) we get that VI is contained in the translation of the a�ne hull of FI . But
by Corollary V.1.15 we have

span
{
u− v |xu − xv ∈ F (1)

I

}
⊆ VI ⊆ span

{
u− v |xu − xv ∈ F (1)

I

}

and thus the equality holds.

Now consider a non-coherent A-graded ideal I. Then the edges of the gen-
eralised state polytope are not parallel to the di�erence of the exponent vectors
of the corresponding Graver binomials, because they are embedded into a higher
dimensional space due to the new variables y and z. But still, by Corollary
V.1.15 the span of the exponent vectors is contained in the restriction space.
Furthermore, we even get a similar result as in the coherent case.

Lemma V.1.17. Let I be a non-coherent A-graded ideal and FI the corresponding
face of the polytope of some non-coherent component containing I. Then VI is
generated by the exponents of the Graver binomials corresponding to the edges of
FI .

Proof. Let v be a vertex of FI and M the corresponding monomial A-graded
ideal. We compute the generalised universal family

J̃M(p) =
〈
ze

+
j ye

−
j · xmj − ze−j ye+j · xnj | j ∈ Jp

〉
+
〈
xmj | j /∈ Jp

〉

for the component containing I and choose a weight vector ω in the relative
interior of the normal cone of FI . Then we have I =

(
inω

(
J̃M(p)

))
(y)=λ,(z)=µ

for some λ and µ in the torus by Corollary IV.3.10. Denote by

Gω =
{
xmj − xnj | j ∈ Jp, ω ·

(mj−nj
−ej
ej

)
= 0
}

the subset of binomial generators of J̃M(p), that are homogeneous with respect
to ω. Note that by de�nition of Jp we have for each of the xmj −xnj that neither
xmj ∈ I nor xnj ∈ I. Then I is generated by some monomials and the binomials
in Gω with some non-zero coe�cient, so that

VI = span {mj − nj |xmj − xnj ∈ Gω} .

On the other hand, consider the wall ideals W1, ...,Wl corresponding to the edges
of FI emerging from v. Then again for each wall ideal Wi there is a unique
Graver binomial gi ∈ G(A) that is the binomial generator of Wi. But the wall
ideals are constructed by �ips (see II.3), so that in fact the gi are some of the

xmj −xnj from the generators of J̃M(p). Furthermore, the wall ideals are in the
closure of the orbit of I. Thus, ω is also equal on the two terms of the binomials
ze

+
j ye

−
j · xmj − ze−j ye+j · xnj corresponding to the gi, so that

{g1, ..., gl} ⊆ Gω.
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Now take a binomial g = xm − xn ∈ Gω \ {g1, ..., gl}. Then there is an exponent
e such that

ze
+

ye
− · xm − ze−ye+ · xn ∈ J̃M(p)

and hence
(
m−n
−e
e

)
is in the a�ne hull of FI translated to the origin. But the

exponent vectors {(
m1−n1
−e1
e1

)
, ...,

(
ml−nl
−el
el

)}

of {g1, ..., gl} span the translation of the a�ne hull of FI so thatm−n is a linear
combination of the mi − ni. Therefore, we get that

span {mi − ni | i = 1, ..., l} = VI

already holds for the edges emerging from one vertex and, moreover, holds for
the set of all edges of FI .

Combining the previous two lemmata we get the following description of the
restriction space.

Theorem V.1.18. Let I be an A-graded ideal, FI some corresponding face and
denote by GFI the set of Graver binomials corresponding to the edges of FI . Then
the restriction space is given by

VI = span {m− n |xm − xn ∈ GFI} .

Proof. If I is coherent use Corollary V.1.15 and Lemma V.1.16. If I is non-
coherent use Lemma V.1.17.

Corollary V.1.19. Let I be an A-graded ideal and FI some corresponding face.
Take any vertex of FI . Then the exponent vectors of the Graver binomials of the
edges emerging from that vertex span VI .

Remark V.1.20. Theorem V.1.18 means that the degree strati�cation is given by
the faces of the polytopes of the components. To be precise, each face corresponds
to a subset of a stratum and each stratum is then given by the collection of all
faces with the same span of their edges. Whereas, for the coherent component
span means the a�ne hull of the face, and for the non-coherent components span
means the span of the di�erence of the exponents of the Graver binomials of the
edges.

For the coherent component we get that exactly all parallel faces belong to
the same degree stratum. In a non-coherent component also non-parallel faces
may belong to the same stratum.

Corollary V.1.21. Let I1 and I2 be two A-graded ideals such that FI1 is a face
of FI2. Then VI1 is a subspace of VI2.

Example V.1.22. We continue Example II.1.6 from Chapter II with the grading
induced by A = {1, 2, 3}. For this A there was only one component, the coherent
component given by a hexagon (see Figure V.1). The degree strati�cation has 7
strata. The stratum S1, that contains the monomial A-graded ideals, on which
the complete torus (k∗)4 acts invariantly, i.e.

S1 = {M1,M2,M3,M4,M5,M6} .
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M2

M3

M4

M1

M5

M6

c2 − b3

ac− b2

a2 − b

a3 − c

b− a2

c− ab

Figure V.1: The polytope state(IA) of the coherent component

The second stratum is given by the two parallel edges which are underlined in
Figure V.1 so that

S2 =
{〈
a2 − λb, ab, ac, c2

〉
,
〈
a2 − µb, ab, b2

〉
|λ, µ ∈ k∗

}
,

i.e. it consists of the torus orbits of the two wall ideals. Thus, the restriction on
the torus action to leave them invariant is given by

(
2
−1
0

)
. Then there are the

strata of the remaining four edges

S3 =
{〈
a3 − λc, b

〉
|λ ∈ k∗

}
,

S4 =
{〈
c− λab, a2

〉
|λ ∈ k∗

}
,

S5 =
{〈
c2 − λb3, a2, ab, ac

〉
|λ ∈ k∗

}
, and

S6 =
{〈
ac− λb2, b

〉
|λ ∈ k∗

}
,

where the four restriction spaces are span
(

3
0
−1

)
, span

( −1
−1
1

)
, span

(
0
−3
2

)
, and

span
(

1
−2
1

)
, respectively. And last, the two-dimensional stratum

S7 =
{〈
a2 − λb, ab− µc

〉
|λ, µ ∈ k∗

}

which is the orbit of the toric ideal, where the only non-trivial subtorus actions
are one-dimensional and given by multiples of A.

♦

Now we will transfer the description of the degree strati�cation to the subtorus
rank strati�cation.

Lemma V.1.23. Let I be a coherent A-graded ideal with some corresponding
face FI . Then the rank of a maximal subtorus action is n− dim (FI).

Proof. The maximal rank of a subtorus is n − rank (VI). But by Lemma V.1.16
the latter is dim (FI).

Lemma V.1.24. Let I be a non-coherent A-graded ideal with some corresponding
face FI of a generalised state polytope. Then the rank of a maximal subtorus action
is greater or equal to n− dim (FI).

68



Proof. Denote the edges of FI by
{(

m1−n1
−e1
e1

)
, ...,

(
ml−nl
−el
el

)}
.

Then we have

rank (VI) = rank (span {m1 − n1, ...,ml − nl})
≤ rank

(
span

{(
m1−n1
−e1
e1

)
, ...,

(
ml−nl
−el
el

)})

= dim (FI)

and thus the claim follows.

Remark V.1.25. For the coherent component the part of the subtorus rank stra-
tum of rank k corresponds to the interior of all faces of codimension k. Note
that it is the codimension of the face within the ambient space, not within the
polytope.

For the non-coherent component this does not hold. First of all, the ambient
space does not have dimension n. There the stratum corresponding to an (n −
k)-dimensional face may have maximal subtorus rank greater than k. But the
maximal rank is at least k.

Example V.1.26 (continuing V.1.22). The subtorus rank strati�cation consists
of three strata of maximal ranks 3, 2, and 1, corresponding to the codimension
of the faces of the state polytope state(IA):

Sr3 = S1

Sr2 = S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6

Sr1 = S7

♦

Corollary V.1.27. Let I be a non-coherent A-graded ideal with corresponding
face FI . If the dimension of FI is either 0, 1, or 2, then the rank of a maximal
subtorus action is n− dim (FI).

Proof. Denote by k the maximal rank of a subtorus action on I. We have n ≥ k
and by Lemma V.1.24 k ≥ n − dim (FI). The case dim (FI) = 0 is trivial.
For dim (FI) = 1 there is just one edge and hence exactly one Graver binomial
g, whose exponent vector generates VI . Thus, we have rank (VI) = dim (FI).
Finally, if dim (FI) = 2 then take the edge directions

{(
m1−n1
−e1
e1

)
, ...,

(
ml−nl
−el
el

)}

of FI . Assume dim (span {m1 − n1, ...,ml − nl}) = 1. Then for each pair i 6= j
we get mi − ni = λ(mj − nj) for λ 6= 0. But this is a contradiction since there
are at least two distinct Graver binomials.

Example V.1.28 (continuing V.1.12). The non-coherent component was given
by a three-dimensional cube. Since the opposing facets are in fact parallel one
would assume that it has eight degree strata. One for the vertices, one for each
of the three di�erent edge directions, one for each of the three di�erent pairs of

69



parallel facets and one for the cube itself. But it turns out that it only has �ve
degree strata. One stratum is the collection of monomial ideals

S1 = {M,M0,M1, ...,M6} ,
where the complete torus action of (k∗)4 is invariant. Then there are three strata
S2, S3, and S4, where each stratum contains the orbits of the four wall ideals
containing b2 − a2c, ac4 − bd2, and d4 − c7, respectively. The maximal torus

actions on each stratum have rank 3 and are restricted by
( −2

2
−1
0

)
,
(

1
−1
4
−2

)
and

(
0
0
−7
4

)
, respectively. The �fth stratum S5 is given by the six two-dimensional

faces and the complete cube, because each two-dimensional face and the cube
have the same restriction space

span

{( −2
2
−1
0

)
,

(
1
−1
4
−2

)}
= span

{( −2
2
−1
0

)
,

(
0
0
−7
4

)}
= span

{(
1
−1
4
−2

)
,

(
0
0
−7
4

)}

= span

{( −2
2
−1
0

)
,

(
1
−1
4
−2

)
,

(
0
0
−7
4

)}
.

The subtorus rank strati�cation has only three strata, because S1 and S5 remain
strata of their own and S2, S3, and S4 become a new stratum. ♦

Therefore, we see that the maximal rank subtorus action on the torus of a
non-coherent component might be higher than the maximal rank of a subtorus
action on the toric ideal, i.e. on the torus of the coherent component. But that
the maximal restriction space VIA can also occur on a non-coherent component,
shows the next example.

Example V.1.29. We continue Example IV.1.27 from Chapter IV, where we had
A = {( 0

6 ) , ( 2
4 ) , ( 3

0 ) , ( 3
7 ) , ( 4

2 ) , ( 6
1 )} ⊂ Z2. Consider the non-coherent component

C given by the following universal family of that component

J̃M(p) = 〈b2 − y2
2y

2
3y4ae, cd− y3y4af, df

5 − y1y3y4c
3e6,

a4bce4 − y2y
2
3y4d

5f, a5be4 − y2y3d
6〉+

〈bc2, ac2, c3d, c8e3, d2f 4, c6e5, d3f 3, d4f 2〉 .
Then for the A-graded ideal

I = 〈b2 − ae, cd− af, df 5 − c3e6, a4bce4 − d5f, a5be4 − d6〉+
〈bc2, ac2, c3d, c8e3, d2f 4, c6e5, d3f 3, d4f 2〉 .

in the interior of the component we have

Gω =
{
b2 − ae, cd− af, df 5 − c3e6, a4bce4 − d5f, a5be4 − d6

}

and thus

VI = span







−1
2
0
0
−1
0


 ,



−1
0
1
1
0
−1


 ,




0
0
−3
1
−6
5


 ,




4
1
1
−5
4
−1


 ,




5
1
0
−6
4
0







= span








2
−3
2
0
0
0


 ,



−1
−9
0
6
0
0


 ,




1
−2
0
0
1
0


 ,




3
−3
1
−1
0
1





 .

Hence, rank (VI) = 4 and a maximal subtorus, that has invariant action, has rank
2. But that means VI = VIA . ♦
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V.2 Intersection Behaviour

In this section we will present some cases of intersection behaviour of components
in toric Hilbert schemes. They will all be shown by examples where this behaviour
appears.

Example V.2.1. In this example we will present two non-coherent components
that contain exactly the same coherent monomial A-graded ideals and their in-
tersection is given by a facet of each of the two generalised state polytopes for
the two components. For this we take A = {( 0

6 ) , ( 2
4 ) , ( 3

0 ) , ( 3
7 ) , ( 4

2 ) , ( 6
1 )} in Z2.

We consider the coherent monomial A-graded ideal

M = 〈e2, ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2, b5c8, ad3f 3,
d5f, b7c4e, d6, b9c4, a4d2f 4, b10c3e, b12c3, a7df 5, b13c2e, b15c2, b16e, a11f 6〉 .

The universal family JM has 26 binomial generators and hence we have 26 new
variables y1, .., y26 and the de�ning ideal with removed redundant variables is

I ′M = 〈y18y19 − y21y22, y11y14 − y21y22, y14y18y25y26 − y19y21y25y26,
y1y21y22 − y25y26, y21y

2
22y

2
25y26 − y19y21y25y26,

y19y21y22y
2
25y26 − y14y21y25y26〉

in the ring k[y1, y11, y14, y18, y19, y21, y22, y25, y26] over the remaining nine variables.
Then

I ′M = 〈y2
19 − y14y22, y18y19 − y21y22, y11y19 − y18y22, y

2
18 − y11y21,

y14y18 − y19y21, y11y14 − y21y22, y
2
22y25 − y19, y19y22y25 − y14,

y18y22y25 − y21, y11y22y25 − y18, y1y21y22 − y25y26, y22y
2
25y26 − y1y19y21,

y19y
2
25y26 − y1y14y21, y1y18y

2
22 − y26, y1y18y

2
25y26 − y2

1y
2
21,

y1y11y
2
25y26 − y2

1y18y21, y
3
1y19y

2
21y25 − y1y

4
25y

2
26〉 ∩

〈y11, y19, y22, y26〉 ∩ 〈y11, y18, y22, y26〉 ∩ 〈y14, y18, y22, y26〉 ∩
〈y1, y26, y11y14 − y21y22, y18y19 − y21y22〉 ∩ ...

is a primary decomposition, where we omitted the remaining 12 primary ideals.
The �rst primary ideal gives the coherent component. We take the two primary
ideals q1 = 〈y11, y19, y22, y26〉 and q2 = 〈y11, y18, y22, y26〉. Then we get the two
non-coherent components V1 and V2, respectively, containingM which are already
reduced, since the two ideals are in fact prime. Thus, we get the universal families

J1 =
〈
e2 − y1bc

2, ad3f 3 − y2b
7c3e, b9c4 − y3a

3d2f 4, b12c3 − y5a
6df 5,

b16e− y6a
10f 6

〉
+〈

ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2,

b5c8, d5f, b7c4e, d6, a4d2f 4, b10c3e, a7df 5, b13c2e, b15c2, a11f 6
〉

and
J2 =

〈
e2 − y1bc

2, ad3f 3 − y2b
7c3e, a4d2f 4 − y4b

10c2e, b12c3 − y5a
6df 5,

b16e− y6a
10f 6

〉
+〈

ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2,

b5c8, d5f, b7c4e, d6, d9c4, b10c3e, a7df 5, b13c2e, b15c2, a11f 6
〉
,
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after replacing y1, y14, y18, y19, y21, y25 by y1, y2, y3, y4, y5, y6. Then, on V1 there are
4 coherent monomial ideals: M,

M1 = 〈ae, bc2, ac2, cd, de2, bde, b3d, c8e3, c3e6, be7, c6e5, ce8, b4ce4, d4f 2, e9,

b3e6, ad3f 3, d5f, b5e5, d6, b7e4, a4d2f 4, b9ce3, b11ce2, a7df 5, b12e3,

b14e2, b16e, a11f 6〉 ,
given by y1 →∞, y2 = 0, y3 = 1, y5 = 1, y6 = 0,

M2 = 〈ae, bc2, ac2, cd, de2, bde, b3d, c8e3, c3e6, be7, c6e5, ce8, b4ce4, d4f 2, e9,

b3e6, ad3f 3, d5f, b5e5, d6, b7e4, a4d2f 4, b9ce3, b11ce2, a7df 5, b12e3,

b14e2, a10f 6〉 ,
given by y1 →∞, y2 = 0, y3 = 1, y5 = 1, y6 →∞, and

M3 = 〈e2, ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2, b5c8, ad3f 3,

d5f, b7c4e, d6, b9c4, a4d2f 4, b10c3e, b12c3, a7df 5, b13c2e, b15c2, a10f 6〉 ,
given by y1 = 0, y2 = 0, y3 = 0, y5 = 0, y6 → ∞. Moreover, on V1 there are 28
non-coherent monomial ideals

M′
1, ...,M′

28.

The non-coherent monomial ideals on V2 are also 28,

M′′
1, ...,M′′

28.

The two components have only 16 non-coherent monomial ideals in common, the
other 12 are di�erent on V1 and V2, for example we haveM′

1 /∈ V2 andM′′
1 /∈ V1,

for

M′
1 = 〈e2, ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2, b5c8, d5f,

b7c3e, d6, a2d3f 3, b12c3, a7df 5, b13c2e, b15c2, b16e, a11f 6〉 and
M′′

1 = 〈e2, ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2, b5c8, d5f,

b7c3e, d6, a2d3f 3, b9c4, b10c2e, a5d2f 4, b12c3, a7df 5, b15c2, b16e, a11f 6〉 .
But the coherent monomial ideals on V2 are the same as on V1, i.e

{M,M1,M2,M3} ,

because they are given by the same values for y1, y2, y5, y6 and for y4 = 0.
Moreover, the 20 common monomial ideals are all the monomial ideals in the

closure of the orbit of

I = 〈e2 − bc2, ad3f 3 − b7c3e, b9c4, b12c3 − a6df 5, b16e− a10f 6〉+
〈ae, ac2, cd, bde, b3d, bc10e, b3c9, b4c6e, b2c12, b6c5, d4f 2,

b5c8, d5f, b7c4e, d6, a4d2f 4, b10c3e, a7df 5, b13c2e, b15c2, a11f 6〉 .
Furthermore, the ideal I itself lies on both components, because it is given by
y1 = y2 = y5 = y6 = 1, y3 = y4 = 0. Thus, the intersection of V1 and V2 is the
closure of the orbit of I, which is a codimension-one face of both generalised state
polytope. In fact, one can compute that the two cones in the normal fans of the
state polytopes are one-dimensional up to the respective lineality space of the
two normal fans. ♦
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Example V.2.2. Now we give an example of an embedded component whose
generalised state polytope is a facet of the generalised state polytope of the
component in which it is embedded. For this we take again the grading by
A = {( 0

6 ) , ( 2
4 ) , ( 3

0 ) , ( 3
7 ) , ( 4

2 ) , ( 6
1 )} in Z2. We consider the non-coherent mono-

mial A-graded ideal

M = 〈be, bc2, b2, cd, ac4, abcf, a2c3f, a2bf 2, a3c2f 2, c8e3, c3e6, bf 6, a4cf 3,

ac2e6, bdf 5, a2ce6, bd2f 4, e9, a3e6, a3c3e5, a5c3e3, d4e3, bd4f 2, a6c2e3,

bd5f, bd6, a7ce3f, bd6, a7ce3f, a8e3f 2, d12〉 .

The universal family JM has 29 binomial generators and thus there are 29 new
variables y1, .., y29. After removing the redundant variables, the de�ning ideal

I ′M = 〈y13y28y29 − y20y23, y12y
4
20y

4
23y

2
28y29 − y23y

2
28y29,

y12y13y
5
20y

5
23 − y13y20y

2
23〉

in k[y12, y13, y20, y23, y28, y29] has the following primary decomposition

I ′M = 〈y2
20, y20y28, y

2
28, y13y20, y

2
13, y13y28y29 − y20y23〉 ∩ 〈y20, y28〉 ∩

〈y20, y29〉 ∩ 〈y2
23, y23y28, y

2
28, y13y28y29 − y20y23〉 ∩

〈y13y28y29 − y20y23, y12y
4
20y

3
23 − 1〉 ∩ 〈y13, y23〉 ∩

〈y3
13, y

2
13y23, y13y

2
23, y

3
23y

2
23y28, y23y

2
28, y

3
28, y13y28y29 − y20y23〉 .

Let q1 = 〈y2
20, y20y28, y

2
28, y13y20, y

2
13, y13y28y29 − y20y23〉 and q2 = 〈y20, y28〉 be two

primary ideals of the decomposition. They give two non-coherent components
V1 and V2 containingM and we compute their reduction. Hence, we take their
radicals:

p1 =
√

q1 = 〈y13, y20, y28〉
p2 =

√
q2 = q2 = 〈y20, y28〉

Thus, the two universal families are

J1 =
〈
bf 6 − y1c

6e5, bd4f 2 − y3a
4c2e5, d12 − y4a

13f 6
〉

+〈
be, bc2, b2, cd, ac4, abcf, a2c3f, a2bf 2, a3c2f 2, c8e3, c3e6, a4cf 3, ac2e6,

bdf 5, a2ce6, bd2f 4, e9, a3e6, a3c3e5, a5c3e3, d4e3, a6c2e3, bd5f, bd6,

a7ce3f, bd6, a7ce3f, a8e3f 2
〉

and
J2 =

〈
bf 6 − y1c

6e5, a4cf 3 − y2d
3e3, bd4f 2 − y3a

4c2e5, d12 − y4a
13f 6

〉
+〈

be, bc2, b2, cd, ac4, abcf, a2c3f, a2bf 2, a3c2f 2, c8e3, c3e6, ac2e6,

bdf 5, a2ce6, bd2f 4, e9, a3e6, a3c3e5, a5c3e3, d4e3, a6c2e3, bd5f, bd6,

a7ce3f, bd6, a7ce3f, a8e3f 2
〉
,

respectively, after substituting the remaining four variables y12, y13, y23, y29 by
y1, y2, y3, y4. But this means V1 is an embedded component in V2. Furthermore,
one can compute that the state polytope of J2 is a four-dimensional hypercube
and that the state polytope of J1 is a three-dimensional cube which is a facet of
state(J2).

♦
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Example V.2.3. Here we give an example of an embedded component in the
coherent component. Again, let A = {( 0

6 ) , ( 2
4 ) , ( 3

0 ) , ( 3
7 ) , ( 4

2 ) , ( 6
1 )} in Z2. We

consider the coherent monomial A-graded ideal

M = 〈ae, bc2, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2, ab3f 2, c8e3, b5f 2,

c3e6, d2f 4, c6e5, adf 5, ce8, b4ce4, a2f 6, d4f 2, b6ce3, b9c, ab2f 6,

ab9, b8ce2, b4f 6, d6e〉 .
The universal family JM has 27 binomial generators and hence we have 27 new
variables y1, .., y27. The de�ning ideal with removed redundant variables is

I ′M =
〈
y16y17 − y24y27, y

2
24y25y

2
27 − y12y17, y12y16y24y25y

2
27 − y2

12y27

〉

in the ring k[y12, y16, y17, y24, y25, y27] over the remaining six variables. Then

I ′M = 〈y16y17 − y24y27, y16y24y25y27 − y12〉 ∩ 〈y17, y27〉 ∩
〈
y2

12, y17, y24

〉

is a primary decomposition. Note that the �rst primary ideal gives the coherent
component. We take

q =
〈
y2

12, y17, y24

〉
.

Then we get a non-coherent component V which is not reduced. If we take the
radical p :=

√
q = 〈y12, y17, y24〉 then the reduced structure of V is given by the

universal family

JM(p) = 〈adf 5 − y1bce
7, b8ce2 − y2a

2d3f 3, d6e− y3b
11〉+

〈ae, bc2, ac2, cd, abcf, a2cf, b3cf, a2bf 2, a3f 2, ab3f 2, c8e3, b5f 2,

c3e6, d2f 4, c6e5, ce8, b4ce4, a2f 6, d4f 2, b6ce3, b9c, ab2f 6, ab9, b4f 6〉 ,
after replacing y16, y25, y27 by y1, y2, y3. The closure of the orbit of the general
point

I = JM(p)
(y1=y2=y3=1)

in V contains 8 monomial ideals. These are given by the following limits in the
universal family:

M = JM(p)
(y1=y2=y3=0)

M1 = JM(p)
(y1=y2=0,y3→∞)

,

M2 = JM(p)
(y1=y3=0,y2→∞)

, M3 = JM(p)
(y2=y3=0,y1→∞)

,

M4 = JM(p)
(y1=0,y2,y3→∞)

, M5 = JM(p)
(y2=0,y1,y3→∞)

,

M6 = JM(p)
(y3=0,y1,y2→∞)

, and M7 = JM(p)
(y1,y2,y3→∞)

One can also describe these monomial ideals as initial ideals of the generalised
universal family J̃M(p). Then we get the following correspondence between weight
vectors on k[a, ..., f, y1, y2, y3, z1, z2, z3] and monomial ideals:

M↔ ( 0,0,0,0,1,1,1 ) , M1 ↔ ( 0,0,0,1,1,1,0 ) ,
M2 ↔ ( 0,0,1,0,1,0,1 ) , M3 ↔ ( 0,1,0,0,0,1,1 ) ,
M4 ↔ ( 0,0,1,1,1,0,0 ) , M5 ↔ ( 0,1,0,1,0,1,0 ) ,
M6 ↔ ( 0,1,1,0,0,0,1 ) , and M7 ↔ ( 0,1,1,1,0,0,0 ) ,

where 0 is the zero weight vector on a, ..., f . Note that all of these ideals are
coherent. In fact, even I is coherent, and it corresponds to a three-dimensional
face, i.e. a facet, of the state polytope state(IA). Therefore, the coherent com-
ponent contains an embedded component which is given by a facet of the state
polytope. ♦
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V.3 Outlook

So far, we have computed amongst others the above examples and found the
presented characteristics. While doing this we have also been looking for other
characteristics while going through di�erent A-gradings. For example: Are there
non-coherent components consisting just of one monomial ideal? Are there two
non-coherent components that have exactly the same monomial ideals? This
would in particular mean that a non-coherent component would not be deter-
mined by its monomial A-graded ideals.

We have seen that the coherent component is given by the Gröbner fan, i.e.
a state polytope, of the toric ideal IA, and each non-coherent component Vp

by the Gröbner fan of a generalised universal family J̃M(p). This means the
normalisation of Vp is given by the toric variety associated to a state polytope of

the binomial ideal J̃M(p). Then the question arises whether this component may
also be realised as the coherent component of the toric Hilbert scheme of some
other A′. If this is the case it would be interesting to know if there is a connection
between the non-coherent components of HA′ and the other components of HA
besides Vp. For example, HA′ could be a local chart around Vp.

To investigate on this there are several steps to study. First of all, the natural
candidate for the toric ideal of A′ would be

I :=
〈
ze

+
i ye

−
i xmi − ze−i ye+i xni

〉
⊆ J̃M(p),

where these are the binomial generators of J̃M(p). Then one has to check under
which conditions

state(I) = state(J̃M(p))

holds. Furthermore, I need not be a toric ideal. To check if I is a toric ideal and
�nd the corresponding A′ in this case one can use the criterion in [Alt00].

Conjecture V.3.1. If for a generalised universal family J̃M(p) the ideal genera-
ted by its binomial generators

I :=
〈
ze

+
i ye

−
i xmi − ze−i ye+i xni

〉
,

is a toric ideal for some A′ and state(I) = state(J̃M(p)) then

HA′ ∼= Vp,

i.e. the toric Hilbert scheme of A′ consists only of the coherent component which
is isomorphic to the reduced non-coherent component Vp.
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Chapter VI

Stable Toric Pairs

In his work Complete moduli in the presence of semiabelian group action [Ale02]
Alexeev constructs the so-called stable toric pairs. Such a stable toric pair consists
of a polarised stable toric variety together with a Cartier divisor on it. Polarised
stable toric varieties arise from convex rational polytopes as the projective variety
associated to the cone over the polytope. For a polytope he constructs a proper
Artin stack of stable toric pairs and shows that this stack has a coarse moduli
space. We will show that a subset of the toric Hilbert scheme consists of certain
stable toric pairs. Furthermore, we construct a connection between the toric
Hilbert scheme and a coarse moduli space of stable toric pairs.

For most of the �rst part of this chapter we will cite [Ale02] and follow his
de�nitions and constructions. First of all, we start by introducing a�ne stable
toric varieties as they are the basis for constructing stable toric pairs. Throughout
this chapter we use the following notations:

Let M ′ ∼= Zd−1 be a lattice with associated vector space M ′
Q := M ′⊗ZQ over

Q. This lattice is embedded in the lattice M := M ′⊕Z ∼= Zd with its associated
vector space MQ := M ⊗ZQ over Q. We denote the embedding of M ′ into M on
height 1 by

Φ : M ′ → M
m 7→ (m, 1) .

By abuse of notation we will also write Φ for Φ⊗ZQ : M ′
Q →MQ, the associated

embedding over Q.
Furthermore, we will work with cones and polytopes. A convex rational poly-

hedral cone is the positive hull (denoted by Cone) of a �nite set of points in MQ
and a convex rational polytope is the convex hull (denoted by ConvHull) of a
�nite set of points in M ′

Q. For more details on convex polyhedral objects see
[Zie95].

VI.1 A�ne Stable Toric Varieties

De�nition VI.1.1. A complex ∆ of lattice polytopes in M ′
Q is a �nite collection

∆ = {δi} ⊂M ′
Q of polytopes such that

• all vertices are in M ′,

• for any δ ∈ ∆ all faces of δ are in ∆, and
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• for δ1, δ2 ∈ ∆ we have that δ1 ∩ δ2 is a face of each.

A fan Σ inMQ is a �nite collection Σ = {σi} ⊂MQ of convex rational polyhedral
cones such that

• for any σ ∈ Σ all faces of σ are in Σ, and

• for σ1, σ2 ∈ Σ we have that σ1 ∩ σ2 is a face of each.

Note that every complex of lattice polytopes and every fan is equipped with
a partial order, i.e. for two polytopes δ1, δ2 we say δ1 ≥ δ2 if δ2 is face of δ1. A
fan is equipped with the same partial order. This de�nes a poset structure on
complexes of lattice polytopes and on fans.

De�nition VI.1.2. Let ∆ be a complex of lattice polytopes or a fan. Then we
denote the support of ∆ by

|∆| :=
⋃

δ∈∆

δ.

Note that the support of a complex or a fan need not be convex.

De�nition VI.1.3. A pointed cell complex is a complex of lattice polytopes ∆
together with a set of points P ⊂ M ′ ∩

(⋃
δ∈∆ δ

)
such that for each δ ∈ ∆ the

vertices of δ are contained in P ∩ δ.
A (pointed) cell decomposition of a polytope Q is a (pointed) cell complex ∆

such that the support of ∆ equals Q.

Recall from toric geometry (see [Oda88], [Ful93], or [CLS]), that for a rational
polyhedral cone σ ⊂MQ the intersection of that cone with the lattice M gives a
semigroup with corresponding semigroup algebra:

Sσ := M ∩ σ Rσ := k[Sσ].

De�nition VI.1.4. Let σ ⊂MQ be a cone. Then we denote the associated lattice
by Mσ := M ∩ (Q · σ) and the associated torus by Tσ := Hom (Mσ,k∗). For a
polytope δ ⊂M ′ we de�ne byMδ := M∩(Q · Φ(δ)) the associated sublattice inM
and the associated torus by Tδ := Hom (Mδ,k∗). For a complex of lattice polytope
or a fan we get an associated torus for each polytope or cone and projection maps
φj,i : Tσj → Tσi , whenever σj ≥ σi, induced by Mσi ⊆Mσj .

De�nition VI.1.5. Let Σ = {σi} be a fan inMQ. Then we de�ne the sheaf R[Σ]
on the poset structure of Σ by

R[Σ](σ) = Rσ = k[M ∩ σ] for each σ ∈ Σ

with epimorphisms

pri,j : Rσj → Rσi

xs 7→
{
xs s ∈ Sσi
0 otherwise

for all σj ≥ σi.
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Lemma VI.1.6. The module of global sections H0 (Σ, R[Σ]) is a free module with
basis {

xs, s ∈ lim
→σ

Sσ

}

and multiplication

xs · xt =

{
xs+t s, t ∈ Sσ for some σ ∈ Σ

0 otherwise .

Proof. See [Ale02, Lemma 2.3.2].

Remark VI.1.7. Note that the basis of H0 (Σ, R[Σ]) is exactly {xs, s ∈ |σ|}, since
the direct limit of the Sσ just identi�es lattice points on the intersection of cones.

De�nition VI.1.8. Let Σ be a fan and R[Σ] be the sheaf constructed in Def-
inition VI.1.5. Then we de�ne an algebra R[Σ] := H0 (Σ, R[Σ]) and the a�ne
variety A[Σ] := SpecR[Σ].

Example VI.1.9. Let M = Z2 and consider the fan Σ given by the two cones
σ1 := Cone {( 1

0 ) , ( 1
1 )}, σ2 := Cone {( 1

1 ) , ( 0
1 )}, and all their faces. Denote their

intersection by τ = Cone {( 1
1 )} and the two other faces by τ1 ⊂ σ1 and τ2 ⊂ σ2,

see Figure VI.1. Then we have

τ2

τ1

σ1

σ2 τ

Figure VI.1: The fan Σ

Rσ1 = k[x1, x2], Rσ2 = k[x2, x3],

Rτ1 = k[x1], Rτ = k[x2], and Rτ2 = k[x3].

Thus we get
R[Σ] = k[x1, x2, x3]/ (x1x3)

and hence that A[Σ] is the union of two planes which intersect in a line.
♦

Now we will de�ne a twisted version of R[Σ] by using cocycles in the torus.

De�nition VI.1.10. Let Σ be a fan in MQ or a complex of lattice polytopes
in M ′

Q. Then a collection t :=
{
ti,j ∈ Tσj |σj ≥ σi

}
of torus elements is called a

cocycle for Σ if
tk,i = φj,i(tk,j) · tj,i in Tσi

for all i, j, k with σk ≥ σj ≥ σi.
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De�nition VI.1.11. Let Σ be a fan inMQ and t a cocycle for Σ. Then we de�ne
the twisted sheaf R[Σ, t] with the same sections R[Σ, t](σ) := R[Σ](σ) = Rσ as
before, but with twisted homomorphisms

pj,i := tj,i · prj,i .

Furthermore, we de�ne the global section algebra and corresponding variety

R[Σ, t] = H0 (Σ, R[Σ, t]) , A[Σ, t] = SpecR[Σ, t].

In fact the original algebra and variety from De�nition VI.1.8 are just a special
case of these since R[Σ] = R[Σ, 1].

Remark VI.1.12. Note that by construction we have

dimk (R[Σ, t]a) =

{
1 a ∈ |Σ| ∩M
0 otherwise .

The varieties A[Σ, t] are a certain type of a�ne toric varieties, the so-called
a�ne stable toric varieties. For this, Alexeev denotes the notion of a seminormal
variety in [Ale02, De�nition 1.1.6].

De�nition VI.1.13. A reduced variety X is called seminormal if every �nite
bijective morphism to X is an isomorphism.

Then he uses this notion of seminormality to de�ne stable semiabelic varieties
[Ale02, De�nition 1.1.5], where we state the de�nition in the toric case as we only
need this one.

De�nition VI.1.14. A stable toric variety is a seminormal toric variety X with

• �nitely many orbits and

• the stabiliser of every point is connected.

Theorem VI.1.15. For every fan Σ and a cocycle t on it the variety A[Σ, t] is
an a�ne stable toric variety. Furthermore, every a�ne stable toric variety is
isomorphic to A[Σ, t] for some Σ and t.

Proof. See Lemma 2.3.11 and Theorem 2.3.14 in [Ale02].

VI.2 Projective Stable Toric Varieties

Before we will construct the projective version of the stable toric varieties, recall
the following.

De�nition VI.2.1. A polarised toric variety is a projective toric variety with an
ample invertible sheaf.

To construct the projective version we will recall the correspondence between
polytopes and projective toric varieties. In fact, each lattice polytope δ ⊂ M ′

Q
de�nes a projective toric variety with a line bundle L and an action of the torus
T = Hom (M, k∗) on L. For this, embed δ with Φ into MQ on height 1 and take
the cone over the embedded polytope.
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De�nition VI.2.2. Let δ be a polytope in M ′
Q. Then we denote the cone over

the embedded polytope Φ(δ) in MQ by

Cδ = {λ · (d, 1) | d ∈ δ, λ ∈ Q≥0} ⊂MQ.

For a complex of polytopes we de�ne the associated fan by

C∆ = {Cδ | δ ∈ ∆} .

Using the cone Cδ over the polytope δ we get the semigroup algebra

Sδ := k[Cδ ∩M ]

and the associated projective toric variety

P(δ) := Projk[Sδ]

with the linearised ample invertible sheaf Lδ = O(1).

De�nition VI.2.3. We say that a polytope δ ⊂M ′
Q is normal if the semigroup

Cδ ∩M is generated by
{(p, 1) | p ∈ δ ∩M ′} ,

i.e. by the lattice points at height 1 of Cδ.

Before we extend the construction to complexes of lattice polytopes, note that
a cocycle for ∆ is also a cocyle for C∆.

De�nition VI.2.4. Let ∆ be a complex of lattice polytopes in M ′
Q and t a

cocycle for ∆. Then we de�ne an algebra

R[∆, t] := R[C∆, t]

with associated projective variety

P[∆, t] := ProjR[∆, t]

and an ample sheaf L[∆, t] on it as O(1).

Remark. In [Ale02], Alexeev considers the torus T as a sheaf on the poset ∆ and
he uses cohomology classes [τ ] ∈ H1 (∆, T ) instead of the cocycles t. But for the
algebra he then uses a representative τ which is a cocycle for C∆.

Remark VI.2.5. The polytopes δ ∈ ∆ need not be normal so that the algebras
k[Cδ ∩M ] and R[∆, t] are not necessarily generated in degree 1. But they are
�nite over the elements of degree 1 though and thus O(1) is an invertible sheaf,
i.e. a line bundle.

Example VI.2.6. Let M ′ = Z2 and consider the complex ∆ consisting of the
two polytopes

δ1 := ConvHull {( 1
0 ) , ( 0

1 ) , ( −1
0 )} and

δ2 := ConvHull {( 1
0 ) , ( 0

−1 ) , ( −1
0 )} ,

and all their faces, which is the two-dimensional crosspolytope divided by a diag-
onal (See Figure VI.2). Then C∆ is given by the two cones Cδ1 , Cδ2 and all their
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( 1
0 )

( 0
1 )

( −1
0 )

( 0
−1 )

δ1

δ2

Figure VI.2: The cell complex ∆

faces. The semigroup Cδ1 ∩M is generated by
{(

1
0
1

)
,
(

0
1
1

)
,
( −1

0
1

)
,
(

0
0
1

)}
and the

semigroup Cδ2 ∩M by
{(

1
0
1

)
,
(

0
−1
1

)
,
( −1

0
1

)
,
(

0
0
1

)}
. If we identify x1, ..., x5 with

(
1
0
1

)
,
(

0
1
1

)
,
( −1

0
1

)
,
(

0
−1
1

)
,
(

0
0
1

)
, respectively, we get

Sδ1 = k[x1, x2, x3, x5]/ (x1x3 − x2
5) , Sδ2 = k[x1, x3, x4, x5]/ (x1x3 − x2

5) ,

and Sδ1∩δ2 = k[x1, x3, x5]/ (x1x3 − x2
5) .

Thus, we have

R[∆, 1] = k[x1, x2, x3, x4, x5]/
(
x2x4, x1x3 − x2

5

)
.

♦

The analogon of Theorem VI.1.15 follows now for the projective case.

Theorem VI.2.7. For every complex of lattice polytopes ∆ with cocycle t on it the
projective variety P[∆, t] together with the ample sheaf L[∆, t] is a polarised stable
toric variety with T -linearised action on L[∆, t]. Furthermore, as a topological
space we have

P[∆, t] = lim
→δ∈∆

P(δ).

Proof. See Theorem 2.4.4 and Corollary 2.4.5 in [Ale02].

This means as in the a�ne case the projective variety P[∆, t] is glued from the
irreducible varieties P(δ) along the morphisms arising from the poset structure of
the complex. Moreover, we get the same characterisation of stable toric varieties.

Theorem VI.2.8. Every polarised stable toric variety (P, L) with linearised am-
ple sheaf L is isomorphic to P[∆, t] with L[∆, t] for some complex of lattice poly-
topes ∆ with a cocycle t.

Proof. See [Ale02, Theorem 2.4.7].
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VI.3 Stable Toric Pairs and their Moduli Space

Now the polarised stable toric varieties will be speci�ed further. For this we
consider pairs (P,Θ) of a projective toric variety P and a Cartier divisor Θ on it
which is equivalent to a triple (P, L, θ), where L = O (Θ) and θ 6= 0 in H0 (P, L)
is an equation of Θ. This means we have to add a section θ to a polarised stable
toric variety to get such a pair. However, in order that Θ does not contain any
T -orbits we need to formulate a condition on θ.

We start with an irreducible P. Hence, (P, L) = (P(δ), Lδ) for some lattice
polytope δ. This means we have the canonical decomposition of the module of
global sections

H0 (P(δ), Lδ) =
⊕

m∈M∩δ
k · xm

and thus an equation θ of a Cartier divisor can be written as

θ =
∑

m∈M∩δ
emx

m.

This allows us to formulate the condition on θ.

Lemma VI.3.1. The divisor Θ does not contain any T -orbit if and only if em 6= 0
for all vertices of δ.

Proof. See [Ale02, Lemma 2.6.1].

To have a more geometric version which we will also be using in the general
case we de�ne the following subset of lattice points given by a divisor.

De�nition VI.3.2. Denote the set of non-zero coe�cients of a divisor Θ by
C(Θ) = {m ∈M | em 6= 0}.

With this description Lemma VI.3.1 reformulates to the following:

Corollary VI.3.3. The divisor Θ does not contain any T -orbit entirely if and
only if the vertices of δ are contained in C(Θ) or equivalently δ is the convex hull
of C(Θ).

Now we take a general (P, L), i.e. (P, L)[∆, t]. Then the equation θ of a
divisor can be written as

θ =
∑

m∈M∩∆

emx
m

and thus the de�nition of the set C(Θ) as before is also suitable in the general
case. Then again we get a similar condition for the divisor Θ not to contain any
T -orbits.

Corollary VI.3.4. A divisor Θ on a polarised stable toric variety (P, L)[∆, t] does
not contain any T -orbits exactly if all vertices of the polytopes of the complex ∆
are contained in C(Θ).

This is a geometrically suitable criterion, so that we can de�ne what stable
toric pairs are.
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De�nition VI.3.5. A stable toric pair (P,Θ) is a polarised stable toric variety
(P, L) together with a Cartier divisor Θ, that does not contain any T -orbits, such
that OP(Θ) ∼= L.

For these stable toric pairs Alexeev constructs a moduli space. But �rst of
all he shows a connection between geometric �bers of stable toric pairs and cell
decompositions of a polytope.

Lemma VI.3.6. Let f : (P,Θ) → S be a �at family of stable toric pairs with a
linearised action of a split torus T/S over a connected locally Noetherian base S.
If one geometric �ber (Ps,Θs) corresponds to a cell decomposition of a polytope
Q ⊂ M ′

Q then any other geometric �ber corresponds to a (possibly di�erent) cell
decomposition of the same polytope Q.

Proof. See [Ale02, Lemma 2.10.1].

This basically means that �at families of stable toric pairs consist of vari-
eties arising from cell decompositions of the same polytope. This enables one to
construct moduli stacks with substacks that have a connection to toric Hilbert
schemes, as we will show later. For more details on stacks see [Fan01].

De�nition VI.3.7. Fix a lattice M ′ together with its corresponding split torus
T ′ = SpecZ[M ′]. Denote by T P fr the moduli stack on the category of locally
Noetherian schemes associating to each scheme S the groupoid of �at families of
stable toric pairs (P,Θ)/S together with a linearised action of TS. By the previous
lemma, for a �xed polytope Q ⊂ M ′

Q we have a connected substack T P fr[Q] for
which every geometric �ber in a family corresponds to a cell decomposition of Q.

The substack T P fr[Q] is of interest for this work so we will focus on this one.

Theorem VI.3.8. The substack T P fr[Q] is a proper Artin stack of �nite presen-
tation over Z with �nite stabilisers. It has a coarse moduli space TP fr[Q] which
is a proper scheme over Z.

Proof. See [Ale02, Theorem 2.10.10].

VI.4 Approximation of the Moduli Space

Alexeev has constructed a simpli�cation of the moduli space TP fr[Q], i.e. there
is a �nite morphism from TP fr[Q] to its simpli�cation which is projective over
the base scheme. This simpli�cation is constructed by �rst subdividing Q into
cells and then de�ning a projective normal toric scheme for each cell.

De�nition VI.4.1. Let Pmax := M ′∩Q be the set of lattice points of the polytope
Q, M ′′ := Hom (Pmax,Z) a lattice and de�ne a semigroup homomorphism by

φ : Hom (Pmax,Z≥0) → CQ ∩M
1p 7→ (p, 1)

,

where 1p is 1 on p and 0 elsewhere. For each point q ∈ Φ(Q) take the minimal
natural number N such that Nq is integral and de�ne the semigroup

Hq := φ−1 (Z≥0Nq) .
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Example VI.4.2. Consider the lattice M ′ = Z2 and let Q be the crosspolytope
in M ′

Q. Then the lattice points of Q are

Pmax = {( 1
0 ) , ( 0

1 ) , ( −1
0 ) , ( 0

−1 ) , ( 0
0 )}

which we identify with {p1, ..., p5} in that order. In this example we take the
point q =

(
0

1/2
1

)
∈ Φ(Q). Then N = 2 is the minimal natural number with

Nq integral. The homomorphism φ is given by the matrix
(

1 0 −1 0 0
0 1 0 −1 0
1 1 1 1 1

)
so that

φ−1(Nq) = {1p2 + 1p5} and

φ−1(2 ·Nq) = {2 · 1p2 + 2 · 1p5 , 1p1 + 2 · 1p2 + 1p3 , 3 · 1p2 + 1p4} .

Further computation shows that Hq is generated by

{1p2 + 1p5 , 1p1 + 2 · 1p2 + 1p3 , 3 · 1p2 + 1p4} .
♦

De�nition VI.4.3. Denote by σ the simplex in Hom (Pmax,Q≥0) with vertices
1p for p ∈ Pmax and let ψ be the restriction of φ⊗Z Q to σ, i.e. ψ maps σ to Q.
For every q ∈ Q we denote the �ber of this map by δq := ψ−1(q).

Remark VI.4.4. Since φ is linear over Z and N was chosen minimal, Hq is a
saturated semigroup. By construction of δq it follows that Hq consists of the
lattice points in Cδq , the cone over δq.

Example VI.4.5 (continuing VI.4.2). For the crosspolytope Q the simplex
σ has �ve vertices and by mapping 1pi 7→ ei we identify Hom (Pmax,Z) with

Z5. Then again ψ is given by
(

1 0 −1 0 0
0 1 0 −1 0
1 1 1 1 1

)
. Thus, δq is the intersection of

ConvHull {e1, ..., e5} with ψ−1
Q (q). This is given by

ConvHull

{(
1

4
,
1

2
,
1

4
, 0, 0

)
,

(
0,

3

4
, 0,

1

4
, 0

)
,

(
0,

1

2
, 0, 0,

1

2

)}
,

i.e. it is a triangle. ♦

Fix a face F of δq. By construction, F is given by the intersection of a face Fσ
of σ with (φ⊗Q)−1 (q). Denote the vertices of Fσ by {1p1 , ..., 1pl}. Then every
point of F is a convex linear combination of the points {1p1 , ..., 1pl} so that q lies
in the convex hull of {p1, ..., pl} which is a pointed lattice subpolytope of Q. On
the other hand, each pointed lattice subpolytope of Q determines a set of vertices
of σ and thus a face of δq. Therefore, we get the following lemma:

Lemma VI.4.6. The faces of δq are in one-to-one correspondence with pointed
lattice subpolytopes δ ⊂ Q that contain q in their relative interior. Simplicial
subpolytopes correspond to vertices of δq.

Example VI.4.7 (continuing VI.4.2). The �ber of q =
(

0
1/2
1

)
was a triangle in

Q5 with the vertices

v1 :=

(
0,

1

2
, 0, 0,

1

2

)
, v2 :=

(
0,

3

4
, 0,

1

4
, 0

)
, v3 :=

(
1

4
,
1

2
,
1

4
, 0, 0

)
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Figure VI.3: The point q in Q and its �ber polytope δq

and the facets f1, f2, f3 as pictured in Figure VI.3. Then Lemma VI.4.6 gives
the following correspondence between the faces of δq and sets of lattice points:
The vertices correspond to the sets of lattice points that appear as non zero
coordinates, i.e. v1 ↔ {p2, p5}, v2 ↔ {p2, p4}, and v3 ↔ {p1, p2, p3}. The
edges correspond to the union of the sets from the two vertices in that edge,
i.e. f1 ↔ {p2, p4, p5}, f2 ↔ {p1, p2, p3, p4}, and f3 ↔ {p1, p2, p3, p5}. Finally, the
complete polytope δq corresponds to the set of all points {p1, p2, p3, p4, p5}. The
pointed lattice subpolytopes containing q in their interior are shown in Figure
VI.4 together with the corresponding face.

♦

De�nition VI.4.8. De�ne the projective normal toric scheme associated to a
point q ∈ Q as

Fq := ProjHq.

Remark VI.4.9. As a scheme, Fq is the toric variety de�ned by the normal fan of
δq, because by Remark VI.4.4 Hq was the lattice semigroup of the cone over δq.

If two polytopes δq1 and δq2 are combinatorial equivalent with parallel faces
then their normal fans are equal and thus Fq1 = Fq2 as schemes. On the other
hand, that δq1 and δq2 are combinatorial equivalent and have parallel faces is by
Lemma VI.4.6 equivalent to q1 and q2 lying in the relative interior of exactly
the same lattice subpolytopes of Q. Furthermore, if δq1 is obtained from δq2 by
contracting some faces, i.e. a degeneration, then Fq1 is a re�nement of Fq2 which
gives a natural morphism Fq1 → Fq2 . This map is birational if both polytopes
have the same dimension.

This means Q can be naturally subdivided into locally closed polytopal do-
mainsDα. Each domain consists of all points q with the same Fq. By construction
of δq this means if Dα1 ⊂ Dα2 then for each pair of points q1 ∈ Dα1 , q2 ∈ Dα2 the
�ber δq1 is a degeneration of δq2 . Note that by Lemma VI.4.6 and the above two
points are in the same domain Dα exactly if they are contained in the relative
interiors of the same lattice subpolytopes of Q. Hence, the subdivision can be
obtained by intersecting the images under ψ of all subsets of faces of σ. By this
we get a cell decomposition of Q which does not necessarily consist of lattice
polytopes. The domains Dα are then the relative interiors of the polytopes in
this cell decomposition.
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Figure VI.4: The pointed subpolytopes containing q in their relative interior

Example VI.4.10 (continuing VI.4.2). If we intersect all subpolytopes of Q we
get a decomposition into four two-dimensional polytopes

D1 := ConvHull {( 1
0 ) , ( 0

1 ) , ( 0
0 )} , D2 := ConvHull {( −1

0 ) , ( 0
1 ) , ( 0

0 )} ,
D3 := ConvHull {( −1

0 ) , ( 0
−1 ) , ( 0

0 )} , D4 := ConvHull {( 1
0 ) , ( 0

−1 ) , ( 0
0 )} ,

and all their faces (See Figure VI.5). For each of the four two-dimensional domains
the �ber polytope is a triangle. If we take the centroids as representatives for
each domain, then we get the following �ber polytopes:

(
1/3
1/3

)
↔ δ1 = ConvHull

{(
1
2
, 1

3
, 1

6
, 0, 0

)
,
(

1
3
, 1

2
, 0, 1

6
, 0
)
,
(

1
3
, 1

3
, 0, 0, 1

3

)}
(
−1/3
1/3

)
↔ δ2 = ConvHull

{(
1
6
, 1

3
, 1

2
, 0, 0

)
,
(
0, 1

2
, 1

3
, 1

6
, 0
)
,
(
0, 1

3
, 1

3
, 0, 1

3

)}
(
−1/3
−1/3

)
↔ δ3 = ConvHull

{(
1
6
, 0, 1

2
, 1

3
, 0
)
,
(
0, 1

6
, 1

3
, 1

2
, 0
)
,
(
0, 0, 1

3
, 1

3
, 1

3

)}
(

1/3
−1/3

)
↔ δ4 = ConvHull

{(
1
2
, 0, 1

6
, 1

3
, 0
)
,
(

1
3
, 1

6
, 0, 1

2
, 0
)
,
(

1
3
, 0, 0, 1

3
, 1

3

)}
♦

The result of this partition is that for the subdivision {Dα} we have a pro-
jective normal toric scheme Fα for each domain Dα, and whenever Dα1 ⊂ Dα2
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D1D2

D3 D4

Figure VI.5: The decomposition into domains {Dα}

we have a natural morphism Fα1 → Fα2 . Hence, this de�nes an inverse system of
projective normal toric varieties on the partially ordered set given by {Dα}.

De�nition VI.4.11. De�ne the simpli�cation scheme

Tsimp := lim
←{Dα}

Fα.

Theorem VI.4.12. For each Dα there is a natural morphism TP fr[Q] → Fα
compatible with the morphisms Fα1 → Fα2 from the poset structure of the subdi-
vision and, hence, a morphism f : TP fr[Q]→ Tsimp.

Proof. See [Ale02, Theorem 2.11.8].

Alexeev shows even more properties of TP fr[Q], of the simpli�cation scheme
Tsimp, and of the morphism between them which explain the term simpli�cation.

Corollary VI.4.13. The schemes TP fr[Q] and Tsimp have natural strati�cations
with strata in one-to-one correspondence with cell decompositions ∆ of Q. For
every ∆ these strata are isogeneous. Moreover, the morphism f : TP fr[Q]→ Tsimp

is �nite and TP fr[Q] is projective over the base scheme.

Proof. See corollaries 2.11.10 and 2.11.11 in [Ale02].

VI.5 Secondary Polytopes and their Generalisa-

tion

The polytopes δα of the domains {Dα} are all parallel to the kernel of the mor-
phism Hom (Pmax,Q) → M ′

Q. Denote the Minkowski sum of these polytopes by∑
(Q,Pmax) :=

∑
δα. Then the normal fan of

∑
(Q,Pmax) is a re�nement of each

normal fan of some δα. Hence, the projective toric variety F∑
(Q,Pmax) given by

this fan maps to every Fα. Thus, there is a natural map to Tsimp.

Theorem VI.5.1. The projective toric variety F∑
(Q,Pmax) maps isomorphically

onto an irreducible component of Tsimp. Moreover, it maps isomorphically onto
an irreducible component of TP fr[Q].

Proof. See Theorem 2.12.2 and Corollary 2.12.3 in [Ale02].
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Remark VI.5.2. The Minkowski sum
∑

(Q,Pmax) is exactly the secondary polytope
of Q de�ned in [GKZ08, Chapter 7] by Gelfand, Kapranov, and Zelevinsky which
was later described as a special case of the �ber polytopes de�ned by Billera and
Sturmfels in [BS92, Section 2] when the source polytope is a simplex.

Example VI.5.3 (continuing VI.4.2). The four polytopes δ1, ..., δ4 are all obvi-
ously combinatorial equivalent (they are all triangles) and they also have parallel
faces, i.e. the edge directions are

{(1,−1, 1,−1, 0) , (1, 0, 1, 0,−2) , (0, 1, 0, 1,−2)}

for each polytope δi. Thus, the Minkowski sum
∑

(Q,Pmax) is again a triangle
and it is given by

ConvHull

{(
4

3
,
2

3
,
4

3
,
2

3
, 0

)
,

(
2

3
,
4

3
,
2

3
,
4

3
, 0

)
,

(
2

3
,
2

3
,
2

3
,
2

3
,
4

3

)}
.

♦

As for A-graded ideals there is also a notion of coherency for cell decomposi-
tions of polytopes.

De�nition VI.5.4. A map ψ ∈ Hom (Pmax,Q) is called a height function on Q.

For a height function ψ on Q consider the convex hull Qψ of the rays

{(p, h) | p ∈ Pmax, h ≥ ψ(p)} ⊆MQ.

Then the projections to M ′
Q of the compact faces of this polyhedron form a cell

decomposition ∆ψ of lattice polytopes of Q. Denote by Pψ the subset of lattice
points p ∈ Pmax such that (p, ψ(p)) lies on the boundary of Qψ. Thus, for a height
function ψ the pair (∆ψ, Pψ) is a pointed cell decomposition of Q.

De�nition VI.5.5. A pointed cell decomposition (∆, P ) is called coherent (or
regular by some authors) if (∆, P ) = (∆ψ, Pψ) for a height function ψ on Q (See
[GKZ08, Chapter 7.C]).

Now we describe the correspondence between the secondary polytope of Q and
the coherent pointed cell decompositions in detail as we will use this later. For
this, �x a coherent decomposition (∆ψ, Pψ) with corresponding height function
ψ on Q. Then set ψ := ψ ◦ φ. This function lies in the dual of the vector
space over Q associated to the lattice M ′′ = Hom (Pmax,Z) which contains σ, i.e.
ψ ∈ Hom

(
M ′′
Q,Q

)
. Consider a point q ∈ Q and denote by Fq,ψ the face of δq on

which ψ attains its minimum. Denote this minimum by mψ,q. As before, Fq,ψ is
the intersection of (φ⊗Q)−1 (q) with a face of σ. This face of σ is spanned by a
set of points,

{1p1 , ..., 1pl} .
For each choice of non zero coe�cients λ1, ..., λl ∈ Q such that q =

∑l
i=1 λipi we

have
l∑

i=1

λiψ(pi) = mψ,q

since ψ attains its minimum on this face.
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On the other hand, consider any other set of points
{
p′1, ..., p

′
j

}
, that is not

contained in {1p1 , ..., 1pl}, and a choice of non zero coe�cients µ1, ..., µj ∈ Q such
that q =

∑j
i=1 µip

′
i. Then due to the minimality of ψ it follows that

j∑

i=1

µiψ(p′i) > mψ,q

holds. Thus, the lattice polytope of the pointed cell decomposition (∆ψ, Pψ)
containing q in its interior is exactly the convex hull of {1p1 , ..., 1pl} and the
points in Pψ, that lie in this polytope, are also {1p1 , ..., 1pl}.

Note that this means that the face Fq,ψ of δq does not depend on the choice of
ψ. If we take a di�erent height function ψ′ such that (∆ψ′ , Pψ′) = (∆ψ, Pψ) then
the above shows that the face of δq on which ψ′ attains its minimum must be the
same, since the polytope containing q is identical.

Moreover, if we pick another point q′ in the same domain as q then Fq′,ψ is
the same face up to the combinatorial equivalence of δq and δq′ . Hence, for each
domain Dα the height function ψ de�nes a unique face Fα,ψ of δα.

Lemma VI.5.6. The faces of the secondary polytope
∑

(Q,Pmax) correspond bi-
jectively to the coherent pointed cell decompositions of Q. In particular, the ver-
tices correspond to the coherent triangulations.

Proof. Let (∆ψ, Pψ) be a coherent pointed cell decomposition of Q with height
function ψ ∈ Hom

(
M ′′
Q,Q

)
. Denote by Fψ the face of

∑
(Q,Pmax) on which ψ

attains its minimum. But the face of a Minkowski sum on which ψ attains its
minimum is the Minkowski sum of the faces of the summands on which ψ attains
its minimum, i.e.

Fψ =
∑

{Dα}
Fα,ψ.

On the other hand, every ψ′ ∈ Hom
(
M ′′
Q,Q

)
comes from a height function ψ′

on Q. Therefore, if ψ′ attains its minimum on Fψ then it follows that Fα,ψ = Fα,ψ′
for every domain Dα and thus

(∆ψ, Pψ) = (∆ψ′ , Pψ′) ,

which shows the claimed correspondence.
Finally, Fψ is a vertex of the generalised state polytope if and only if each

Fα,ψ is a vertex of δα and hence exactly if every point in Q lies in a simplex in the
decomposition by Lemma VI.4.6. This is equivalent to ∆ψ being a triangulation.

Example VI.5.7 (continuing VI.4.2). For the two-dimensional crosspolytope
the secondary polytope was

∑
(Q,Pmax) = ConvHull {( 4

3
, 2
3
, 4
3
, 2
3
,0 ) , ( 2

3
, 4
3
, 2
3
, 4
3
,0 ) , ( 2

3
, 2
3
, 2
3
, 2
3
, 4
3 )} .

If we identify the above vertices with v1, v2, v3 in that order we get for each of
these vertices a vector in the interior of the normal cone which we name n1, n2, n3

respectively, i.e.

n1 = (1, 2, 1, 2, 2) , n2 = (2, 1, 2, 1, 1) , and n3 = (2, 2, 2, 2, 1) .
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This means the vertex v1 corresponds to the pointed cell decomposition given by
the height function de�ned by n1. In Figure VI.6 we can see the height function,
the compact faces of Qn1 , and the resulting pointed cell decomposition. Note
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b
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p5 bc
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b

b

b
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p1

p2
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Figure VI.6: The height function, the compact faces of Qn1 , and the resulting
pointed cell decomposition

that this decomposition does not contain p5.
If we do the same for n2 we get the decomposition into two triangles by tak-

ing the other diagonal and this one does also not contain p5. For n3 we get the
pointed cell decomposition into four triangles (See Figure VI.7). Note that this

bc

b

b

b

b

b

p1

p2

p3

p4

p5 bc

b

b

b

b

b

p1

p2

p3

p4

p5

b

b

b

b

b

p1

p2

p3

p4
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Figure VI.7: The height function, the compact faces of Qn3 , and the resulting
pointed cell decomposition

time the pointed cell decomposition contains all �ve points. Recalling that the
height functions for the facets are in the facets of the normal cones of the vertices
we get the pointed cell decompositions for the edges. The decomposition corre-
sponding to

∑
(Q,Pmax) itself is the complete Q with all points, since this can be

decomposed into all the others. Therefore, if we denote the edges of
∑

(Q,Pmax)
by f1 = ConvHull {v1, v3} , f2 = ConvHull {v2, v3}, and f3 = ConvHull {v3, v1}
we get the complete correspondence as shown in Figure VI.8.

♦
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Figure VI.8: The correspondence between pointed cell decompositions of the
crosspolytope Q and the faces of

∑
(Q,Pmax)

Before comparing certain moduli spaces of stable toric pairs with toric Hilbert
schemes, we will give Alexeev's construction of his generalised secondary poly-
topes in [Ale02, Section 2.12].

For this we �x a polytopeQ together with a pointed cell decomposition (∆, P ).

De�nition VI.5.8. De�ne the sheaf of height functions Hom on the poset struc-
ture of (∆, P ) by

Hom (δ) := Hom (Pδ,Z) ,

where Pδ = P ∩ δ. For each δ ∈ ∆ set the map

φδ : Hom (Pδ,Z) → Mδ

(λp) 7→ ∑
p∈Pδ λp (1, p)

and de�ne the kernel sheaf L on the poset structure of (∆, P ) by

L (δ) := Ker (φδ) .

Again, for both we have the associated sheafes HomQ := Hom ⊗Z Q and
LQ := L⊗Q over Q. For the generalised secondary polytopes we need the spaces
C0

(
HomQ

)
and B0 (LQ) so we will �rst recall them. If Q has dimension d then
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the 0-th group in the �ech complex of HomQ is just

C0

(
HomQ

)
=
⊕

δ∈∆(d)

Hom (Pδ,Q) ,

where ∆(d) are the d-dimensional polytopes in the cell decomposition. This means
that for each maximal polytope we have the space of height functions. Further-
more, the �rst group in the �ech complex of LQ is

C1 (LQ) =
⊕

δ∈∆(d−1)

LQ (δ)

=
⊕

δ∈∆(d−1)

Ker
(
Hom (Pδ,Q)→ (Mδ)Q

)
.

In other words, for each codimension-one polytope we get the space of relations
among the points of the pointed cell decomposition contained in this polytope.
Finally, B0 (LQ) is the image of C1 (LQ) in C0

(
HomQ

)
. This means every relation

is mapped into the two d-dimensional polytopes that contain the corresponding
codimension-one polytope with positive sign and negative sign, respectively.

De�nition VI.5.9. Let (∆, P ) be a pointed cell decomposition of Q. Then
we de�ne the generalised secondary polytope Σ (∆, P ) to be the projection in
C0

(
HomQ

)
/B0 (LQ) of the direct product of the secondary polytopes Σ (δ, Pδ) in

C0

(
HomQ

)
.

Example VI.5.10 (continuing VI.4.2). Take the pointed cell decomposition

(∆, P ) = ({δ1, δ2} , {p1, p2, p3, p4, p5}) ,
with δ1 = ConvHull {p1, p2, p3, p5} and δ2 = ConvHull {p1, p3, p4, p5}. Then we
have C0

(
HomQ

)
= HomQ(δ1) ⊕ HomQ(δ2) and if we identify 1p1 , 1p2 , 1p3 , 1p5 in

that order with the canonical basis in Q4 = HomQ(δ1) and 1p1 , 1p4 , 1p3 , 1p5 with
the one in Q4 = HomQ(δ2) we get C0

(
HomQ

)
= Q8.

A triangle with an additional point on one of the edges has three pointed
cell decompositions: The whole triangle with the point, the triangle without the
point and the subdivision into two triangles. Thus, the secondary polytope of δ1

and that of δ2 are both just a line segment, where the interior corresponds to the
�rst decomposition and the vertices to the other two. The secondary polytopes
can be computed as

Σ (δ1,M
′ ∩ δ1) = ConvHull

{(
2
3
, 2

3
, 2

3
, 0, 0, 0, 0, 0

)
,
(

1
3
, 2

3
, 1

3
, 2

3
, 0, 0, 0, 0

)}

and
Σ (δ2,M

′ ∩ δ2) = ConvHull
{(

0, 0, 0, 0, 2
3
, 2

3
, 2

3
, 0
)
,
(
0, 0, 0, 0, 1

3
, 2

3
, 1

3
, 2

3

)}
,

so that direct sum of the two is the tetragon

ConvHull
{(

2
3
, 2

3
, 2

3
, 0, 2

3
, 2

3
, 2

3
, 0
)
,
(

2
3
, 2

3
, 2

3
, 0, 1

3
, 2

3
, 1

3
, 2

3

)
,

(
1
3
, 2

3
, 1

3
, 2

3
, 2

3
, 2

3
, 2

3
, 0
)
,
(

1
3
, 2

3
, 1

3
, 2

3
, 1

3
, 2

3
, 1

3
, 2

3

)}
.

(VI.1)

There is just one pointed face of dimension one in the complex ∆, that has non
trivial relations, δ0 := ConvHull {p1, p3, p5}, so that the �rst group in the �ech
complex of LQ is just

C1 (LQ) = LQ (δ0) = Q1,
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because there is just the relation 1p1 + 1p3 − 2 · 1p5 . Thus, the image of this group
in C0

(
HomQ

)
is the one-dimensional subgroup

B0 (LQ) = span {(1, 0, 1,−2,−1, 0,−1, 2)} .
The a�ne hull of (VI.1) contains B0 (LQ) so that the generalised secondary poly-
tope is a line segment. ♦

Remark VI.5.11. If a polytope δ ∈ ∆(d−1) is a simplex and Pδ are only the vertices
then LQ (Q) = 0. Thus, if every codimension-one polytope of the pointed cell
decomposition is such a simplex we get C1 (LQ) = 0 and hence B0 (LQ) = 0.

As in De�nition VI.5.4 we can de�ne an analogon to a height function on Q
on a pointed cell decomposition.

De�nition VI.5.12. A system of height functions ψ on (∆, P ) is a collection of
height functions ψi ∈ Hom (Pδi ,Q) for each δi ∈ ∆ such that ψi − ψj is linear on
δi ∩ δj, i.e. an element

ψ ∈ Hom
(
C0

(
HomQ

)
/B0 (LQ) ,Q

)
,

because the functions that are orthogonal on B0 (LQ) are exactly those which are
linear on the intersections.

As for the height functions, a system of height functions ψ on (∆, P ) de�nes
a pointed cell decomposition (δi,ψi , Pδi,ψi) of each δi ∈ ∆. Since the ψi di�er by
linear functions on the intersection of two polytopes δi and δj the pointed cell
decompositions δi,ψi and δj,ψj satisfy the decomposition condition. This means
a pair of polytopes, one from each decomposition, intersects in a common face.
Hence,

(∆ψ, Pψ) :=

(⋃

δi∈∆

δi,ψi ,
⋃

δi∈∆

Pδi,ψi

)

is a pointed cell decomposition of Q and a subdecomposition of(∆, P ).

De�nition VI.5.13. A subdecomposition of a pointed cell decomposition (∆, P )
of Q is called regular if it is given by (∆ψ, Pψ) for a system of height functions ψ
on (∆, P ).

Lemma VI.5.14. The faces of the generalised secondary polytope Σ (∆, P ) are
in one-to-one correspondence to the regular subdecompositions of (∆, P ).

Proof. Let (∆ψ, Pψ) be a regular subdecomposition of (∆, P ). Then as in Lemma
VI.5.6 the coherent pointed cell decomposition of δ ∈ ∆ corresponds to a unique
face Fδ of Σ (δ, Pδ). Hence, we get a face

F =
⊕

δ∈∆

Fδ of
⊕

δ∈∆

(Σ (δ, Pδ))

which maps to a face Fψ of Σ (∆, P ) because the ψi di�er by linear functions on
the intersections. Also, ψ attains its minimum over Σ (∆, P ) on Fψ.

On the other hand, every ψ′ ∈ Hom
(
C0

(
HomQ

)
/B0 (LQ) ,Q

)
that attains its

minimum over Σ (∆, P ) on Fψ must attain its minimum on Fδ for each Σ (δ, Pδ).
Thus, it follows that

(∆ψ′ , Pψ′) = (∆ψ, Pψ) .

93



Example VI.5.15 (continuing VI.4.2). The generalised secondary polytope of
the pointed cell decomposition

(∆, P ) = ({δ1, δ2} , {p1, p2, p3, p4, p5})

is a line segment. The interior of the segment corresponds to the pointed cell
decomposition (∆, P ) itself. One vertex corresponds to the pointed cell decom-
position (∆, {p1, p2, p3, p4}) where the non-vertex point is not contained. The
other vertex corresponds to the subdecomposition into four triangles. This is
shown in Figure VI.9.

b b

bp1

p2

p3

p4

p1

p2

p3

p4

p1

p2

p3

p4

p5 p5

Figure VI.9: The subdecompositions and their correspondence to the faces of the
generalised secondary polytope

♦

Equip C0

(
HomQ

)
/B0 (LQ) with the lattice C0 (Hom) /B0 (L) modulo torsion.

Then we set FΣ(∆,P ) to be the toric scheme given by Σ (∆, P ) with respect to this
lattice.

Lemma VI.5.16. There is a natural morphism

FΣ(∆,P ) → Tsimp

which is �nite to the image.

Proof. See [Ale02, 2.12.13].

VI.6 Correspondence to Toric Hilbert Schemes

We have seen in Remark VI.1.12 that the multigraded Hilbert function of an
algebra R[∆, t] looks like the multigraded Hilbert function of a toric ideal. From

94



this the conjecture arouses that for a suitable choice of a polytope Q each R[∆, t]
for a pointed cell decomposition of Q might be an A-graded algebra where A are
the lattice points of Q. As we will see, this does not hold for general polytopes
and it need not hold for all decompositions of a polytope Q. In this last section
we will investigate on this conjecture and give criteria on Q, as well as on the
A-graded ideals, where A are the lattice points of Q, and on the pointed cell
decompositions of Q, so that these A-graded algebras are in fact stable toric
varieties of the type R[∆, 1] and vice versa.

First of all, recall from De�nition VI.2.3 that a polytope δ is called normal if
the semigroup Cδ ∩M is generated by the elements at height 1.

De�nition VI.6.1. We call a pointed cell decomposition (∆, P ) normal if every
δ ∈ ∆ is normal and Pδ = δ ∩M ′.

Now �x a normal polytope Q ⊂M ′
Q and let Q∩M ′ = {p1, ..., pn} be its lattice

points. Denote the embedded lattice points of Q in M by A = {a1, ..., an}, i.e.
ai = (pi, 1), and by d the rank of M . Then the matrix A satis�es the condition
Ker (A) ∩Nn = 0, because the last row is (1) ∈ Zn. As in the previous chapters,
set S := k[x1, ..., xn] with deg(xi) = ai.

Let I be an A-graded ideal. Then I lies on some orbit on a component of HA.
The general ideal of this orbit contains just pure binomials and monomials.

Lemma VI.6.2. Let I be a reduced A-graded ideal which is the general point of
an orbit, i.e.

I = 〈xm1 − xn1 , ...,xml − xnl〉+ 〈xu1 , ...,xuj〉 .

Then Proj(S/I) is seminormal.

Proof. Let I =
⋂

qj be a minimal primary decomposition of I. Because I is
reduced, the qj are in fact prime. We �x one qj. As in Section III.2, qj is a
binomial prime ideal so that the irreducible component of Proj(S/I) given by
S/qj is a toric variety. We will show that it is even a normal toric variety. Let
xi1 , ..., xil be the variables not appearing in qj with respective degrees ai1 , ..., ail .
Thus, S/qj is normal exactly if N · (ai1 , ..., ail) ⊆ NA is saturated.

Assume N · (ai1 , ..., ail) is not saturated. Then there exists some lattice point
a ∈ (Q≥0 · (ai1 , ..., ail))∩M such that for all xm0 ∈ k[x] of degree a with xm0 /∈ I
we have xm0 ∈ qj and because a ∈ NA suchm0 exists. Since a ∈ Q≥0·(ai1 , ..., ail),
there exists a strictly positive N ∈ N such that N · a ∈ N · (ai1 , ..., ail). Thus, we
have some xm /∈ qj of degree N · a. Since I is reduced we also have (xm0)N /∈ I
of degree N · a. Hence, because I is A-graded and both xm and (xm0)N are not
in I we get

xm − (xm0)N ∈ I.

On the other hand, I =
⋂

qj is a primary decomposition, so that there exists
some xn /∈ qj such that xm0+n ∈ I. But by multiplying with xn we get

xn ·
(
xm − (xm0)N

)
= xm+n − xm0+n · (xm0)N−1 ∈ I,

which implies xm+n ∈ I. Thus, we also have xm+n ∈ qj which is a contradiction
to qj being prime. Hence, the desired normality follows. Then Proj(S/I) is
seminormal by [Pic98, Proposition 5.14].

95



This means if I is a reduced A-graded ideal we get that Proj (S/I) is a semi-
normal toric variety. Furthermore, one can easily see that it has �nitely many
orbits and the stabiliser of each point is connected. Thus,

PI := Proj (S/I)

is a stable projective toric variety. Because the degree of xi is ai there must be
a pointed cell decomposition (∆, P ) of Q such that PI = P[∆, 1]. To be precise,
PI is only isomorphic to P[∆, 1] by Theorem VI.2.8 where we omit the sheaf.
But the binomials in P[∆, 1] are also pure binomials by construction so that the
isomorphism is in fact the identity.

Remark VI.6.3. The proof of Lemma VI.6.2 even shows that each polytope δ in
the decomposition ∆ corresponding to I is given by one of the associated primes
qj. This means δ is the convex hull of the points pi1 , ..., pil corresponding to the
variables not in qj as in the proof for some j. Furthermore, the points pi1 , ..., pil
are exactly the lattice points of δ and δ is normal.

On the other side, consider a stable toric pair (P,Θ) with P = P[∆, 1] and
∆ a pointed cell decomposition of Q. Assume that ∆ is normal. Then for each
δ ∈ ∆ the subset δ ∩ {a1, ..., an} generates the semigroup Cδ ∩M . Hence,

R[∆, 1] = k[x1, ..., xn]/I∆

for some homogeneous ideal I∆ and deg(xi) = ai. In particular, I∆ is generated
by the binomials given by the relations on each cone Cδ and the monomials

{
xa · xb |@δ ∈ ∆ : a, b ∈ δ

}
.

By Remark VI.1.12 we get

dimk (R[∆, t]a) =

{
1 a ∈ |Cδ| ∩M
0 otherwise .

Thus, since |Cδ| ∩M = NA, it follows that I∆ is a reduced A-graded ideal.

Theorem VI.6.4. There is a one-to-one correspondence between general points
of orbits of reduced A-graded ideals and unions of all strata of stable toric pairs
with the same normal cell decomposition.

Proof. For a normal cell decomposition ∆ of Q let I∆ be the ideal in

R[∆, 1] = S/I∆.

Then, by the above, I∆ is a reduced A-graded ideal and the general ideal in some
orbit of the toric Hilbert scheme HA. Note, that since I∆ is the general point of
that orbit this general point is unique.

On the other hand, consider a reduced A-graded ideal I which is the general
point in its orbit. Then

Proj (S/I) = ProjR[∆, 1]

for some cell decomposition ∆ of Q. This decomposition is normal, because by
Remark VI.6.3 every δ ∈ ∆ is normal.
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Before we specify the correspondence even further we need a detail about
height functions and their decompositions.

Lemma VI.6.5. Let Q be a lattice polytope with lattice points {p1, ..., pn} and ψ
a height function on Q with corresponding pointed cell decomposition (∆ψ, Pψ) of
Q. Take a lattice point p in the relative interior of some Cδ with a representation
p =

∑
pi∈Pδ λi(pi, 1). Then for every representation

p =
∑

{p′i}6⊆Pδ
µi(p

′
i, 1)

it follows that ∑

{p′i} 6⊆Pδ
µiψ(p′i) >

∑

pi∈Pδ
λiψ(pi).

Proof. If comparing the last coordinate of the two representations we get that∑
µi =

∑
λi =: λ. Let p′ := 1

λ
p. By De�nition VI.5.4 the convex hull of

{(pi, ψ(pi)) | pi ∈ Pδ}

is a compact facet of Qψ. Let h be a normal vector to this facet with positive
last coordinate and mδ the value h attains on this facet. Then Qψ lies in the
half-space

{m |h ·m ≥ mδ} ⊂MQ.

Thus, for every point p′i ∈ Pmax\Pδ the lift (p′i, ψ(p′i)) does not lie in the boundary
of the half-space, because otherwise it would lie in the facet. But all of these points
lie in the interior of this half-space. Therefore, the point

∑
{p′i} 6⊆Pδ

µi
λ

(p′i, ψ(p′i))

is also not contained in the boundary. Hence, it follows that

h ·




∑

{p′i}6⊆Pδ

µi
λ

(p′i, ψ(p′i))


 >




∑

{p′i} 6⊆Pδ

µi
λ
mδ




= mδ

= h ·
(
p′,
∑

pi∈Pδ

λi
λ
ψ(pi)

)
,

which implies

h ·


p′,

∑

{p′i} 6⊆Pδ

µi
λ
ψ(p′i)


 > h ·

(
p′,
∑

pi∈Pδ

λi
λ
ψ(pi)

)
.

But the last coordinate of h was chosen positive so that
∑

{p′i} 6⊆Pδ
µiψ(p′i) >

∑

pi∈Pδ
λiψ(pi)

holds.
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Theorem VI.6.6. In the correspondence of Theorem VI.6.4 orbits of coherent
A-graded ideals correspond to strata with coherent cell decompositions.

Proof. Let ∆ be a coherent normal cell decomposition of Q and choose a Z-valued
height function ψ such that ∆ = ∆ψ and Pψ = Pmax. Then ψ is also a weight
vector ψ = ω := (w1, ..., wn) ∈ Zn. As in Theorem VI.6.4 we have the ideal I∆

such that R[∆, 1] = S/I∆ which is an A-graded ideal. On the other hand inω (IA)
is also an A-graded ideal.

Let xm − xn ∈ I∆. Then there is some δ ∈ ∆ such that pi ∈ δ for all i
with mi 6= 0 or ni 6= 0. Recall that xi corresponds to ai = (pi, 1). Thus, since
Pδ contains all lattice points of δ, the restriction of ψ to Pδ extends to a linear
function on δ. But this means for l :=

∑
mi =

∑
ni that we have

ω ·m =
∑

miψ(pi)

= l · ψ
(∑ mi

l
pi

)

= l · ψ
(∑ ni

l
pi

)

=
∑

niψ(pi) = ω · n.

Hence, we get inω (xm − xn) = xm − xn so that

xm − xn ∈ inω (IA) .

Now consider xm ∈ I∆. Because I∆ is A-graded there exists a unique xn /∈ I∆

such that deg (xn) = deg (xm). This implies xm−xn ∈ IA and that there exists
a δ ∈ ∆ such that pi ∈ δ for all i with ni 6= 0. But xm ∈ I∆ induces in particular
that there exists pj /∈ δ such that mj 6= 0. Hence, by Lemma VI.6.5 we have

ω ·m =
∑

miψ(pi) >
∑

niψ(pi) = ω · n

and therefore
inω (xm − xn) = xm.

Thus, we get I∆ ⊆ inω (IA), but because both are A-graded they must be equal.
For the other direction, let I = inω (IA) be a reduced coherent A-graded

ideal. Then ω = (w1, ..., wn) is also a height function ψ on Q with ψ(pi) = wi.
Denote by (∆, Pmax) the induced pointed cell decomposition for which we have
I∆ = inω (IA) = I. Then for every δ ∈ ∆(d) the restriction of ψ to δ ∩M ′ extends
to a linear function on δ. In fact, every a�ne dependency of lattice points in δ
corresponds to a binomial xm − xn ∈ I∆. But this means ω ·m = ω · n so that
ψ extends linearly.

Now take a point pj ∈ Pmax \ δ. Because δ is of maximal dimension, Cδ is, so
that there exists a lattice point q =

∑
mi(pi, 1) ∈ Cδ such that p′ := (pj, 1) + q

is in the relative interior of Cδ. Since δ is normal we can choose mi such that
mi = 0 for pi /∈ δ and a representation p′ =

∑
ni(pi, 1) with the same property

for the ni. Then consider the binomial

xm+1j − xn ∈ IA.
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The �rst monomial xm+1j is in I∆ = inω (IA) because there is no polytope in ∆
that contains pj and all other pi with mi 6= 0. In fact, this polytope would be dif-
ferent from δ so that the cone over it could not contain p′ which is a contradiction.
Hence, we get

ω · (m+ 1j) > ω · n.
But this means that (pj, ψ(pj)) = (pj, wj) is above the a�ne hull of

{(pi, ψ(pi)) | pi ∈ δ} .

Therefore, we get (∆, Pmax) = (∆ψ, Pψ).

Remark VI.6.7. Theorem VI.6.6 has some similarities to Theorem [Stu96, Theo-
rem 10.10]. Note that we are not considering all A-graded ideals, but instead
the orbits of the reduced ones. Furthermore, our correspondence outlines, that
coherent on the toric Hilbert scheme corresponds to coherent on Alexeev's moduli
space. This points out that the correspondence might even be component-wide.

Corollary VI.6.8. Let I be a reduced coherent A-graded ideal and (∆, Pmax) the
corresponding pointed cell decomposition of Q. Then the normal cone of state (IA)
corresponding to I and the normal cone of the secondary polytope

∑
(Q,Pmax)

corresponding to (∆, Pmax) are equal.

Proof. Just note that the proof of Theorem VI.6.6 shows that each weight vec-
tor giving I as an initial ideal of IA is a height vector giving the pointed cell
decomposition (∆, Pmax), and vice versa.

Example VI.6.9. We will use all the previous results from the running Example
VI.4.2. For the crosspolytope Q = ConvHull {p1, p2, p3, p4, p5} we thus set

A :=
{
a1 = (p1, 1) =

(
1
0
1

)
, a2 = (p2, 1) =

(
0
1
1

)
, a3 = (p3, 1) =

( −1
0
1

)
,

a4 = (p4, 1) =
(

0
−1
1

)
, a5 = (p5, 1) =

(
0
0
1

)}
.

Then the toric ideal is

IA =
〈
x1x3 − x2

5, x2x4 − x2
5

〉
⊂ S = k[x1, ..., x5]

which has three initial monomial ideals

M1 = 〈x1x3, x2x4〉 ,M2 =
〈
x1x3, x

2
5

〉
,M3 =

〈
x2x4, x

2
5

〉
.

These are the only monomial A-graded ideals and one can check that there is
only the coherent component. Thus, the state polytope of IA must be a triangle,
and in fact computation shows that

state (IA) = ConvHull {w1, w2, w3} ,

with w1 = (6, 6, 6, 6, 7) , w2 = (6, 7, 6, 7, 5) , and w3 = (7, 6, 7, 6, 5). We have
ordered the vertices so that Mi corresponds to wi for i = 1, 2, 3. If we denote
the edges of state (IA) by e1 := ConvHull {w1, w2} , e2 := ConvHull {w2, w3} , and
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e3 := ConvHull {w1, w3}, we get the correspondence to the orbits of the wall
ideals as

e1 ↔ W1 :=
{〈
x2x4 − λx2

5, x1x3

〉
|λ ∈ k∗

}
,

e2 ↔ W2 :=
{〈
x1x3 − λx2x4, x

2
5

〉
|λ ∈ k∗

}
,

e3 ↔ W3 :=
{〈
x1x3 − λx2

5, x2x4

〉
|λ ∈ k∗

}
,

and the whole polytope corresponds to the orbit of the toric ideal IA. The reduced
ideals areM1, the two orbits corresponding to e1 and e3, and the orbit of the toric
ideal. Therefore, in the correspondence of Theorem VI.6.4 these ideals correspond
to cell decompositions of Q. These decompositions are shown in Figure VI.8.
Since the monomial ideal must correspond to a decomposition into simplices
with no interior lattice points, M1 corresponds to the decomposition into four
triangles. The two one-dimensional orbits must hence give the decompositions
into two triangles, so that they contain the one binomial relation. Thus, W1

gives the division by the vertical diagonal and W3 the division by the horizontal
diagonal. Finally, the complete polytope corresponds to the trivial decomposition.
Note that all decompositions appear in the correspondence, since all of them are
normal.

For the coherency correspondence in Theorem VI.6.6 we have to be more
precise. Here we only get the pointed decompositions. Thus, we can allocate the
faces {w1, e1, e3, state(IA)} to faces of

∑
(Q,Pmax) and get

w1 ↔ v3 state(IA)↔∑
(Q,Pmax)

e1 ↔ f2 e2 ↔ f1 .

♦

Now that we have described the correspondence in the coherent case we will
generalise the results to general points on the toric Hilbert scheme and general
decompositions.

For this let I be any reduced A-graded ideal with trivial binomial coe�cients,
i.e.

I = 〈xmi − xni〉+ 〈xuj〉 .
Then I de�nes a normal pointed cell decomposition (∆, Pmax) of Q by Theorem
VI.6.4 with I = I∆. On the other hand, I lies on some (not necessarily unique)
component V of the toric Hilbert scheme HA. Assume that V is a non-coherent
component and denote by J̃M(p) the generalised universal family and by PV the
generalised state polytope of this component. Then there is a face FI of PV
corresponding to I and since it is generated by pure binomials I is in fact the
general ideal of FI . By Corollary IV.3.10 the torus orbit of I in V is thus given
by

inω

(
J̃M(p)

)
(y)=λ,(z)=µ

for a normal vector ω on FI and λ, µ ∈ (k∗)dim(FI). But because I is the general
ideal of FI we get that the torus is parametrised by the universal family

JI =
〈
ze

+
i ye

−
i xmi − ze−i ye+i xni

〉
+ 〈xui〉 (VI.2)
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for all (y), (z) ∈ (k∗)dim(FI).
The orbits in the closure of the orbit of I correspond to the faces of FI , or

equivalently to the initial ideals of the generalised universal family J̃M(p) of the
component V , that are also initial ideals of JI . Now let I1 be the general ideal of
one of the faces F1 of FI . Then, since I1 corresponds to a face of FI and thus in
particular to a face of P , we get that there exists a weight vector ω such that

I1 =
(

inω

(
J̃M(p)

))
(y)=(z)=1

.

However, because F1 is a face of F we get

I1 = (inω (JI))(y)=(z)=1 .

Proposition VI.6.10. Let I be a reduced A-graded ideal which lies on a non-
coherent component V with corresponding face FI of the polytope PV . Denote by
(∆, Pmax) the corresponding pointed cell decomposition of Q. Let I1 be the general
ideal of a face F1 of FI that is reduced. Then I1 corresponds to a pointed cell
decomposition (∆1, Pmax) which is a sub decomposition of (∆, Pmax).

Proof. By Theorem VI.6.4 the ideal I1 corresponds to a pointed cell decomposi-
tion (∆1, Pmax) and since I1 is the general ideal of F1 we have

I1 = I∆1 .

Now take δ ∈ ∆1 and denote its lattice points by {pi1 , ..., pil} = δ ∩M ′. Then
we have xi1 · ... · xil /∈ I∆1 , because the corresponding points are contained in the
common polytope δ. Furthermore, we have

I1 = (inω (JI))(y)=(z)=1 , (VI.3)

so it follows that xi1 · ... · xil /∈ I as well, because (VI.3) implies

xm ∈ I ⇒ xm ∈ I1.

Finally, this concludes that there exists δ0 ∈ ∆ such that {pi1 , ..., pil} ⊂ δ0. Thus,
∆1 is a subdecomposition of ∆.

Now we will show what the universal family (VI.2) has to do with the toric
Hilbert scheme of the lattice points of one of the polytopes in the corresponding
cell decomposition. As before, denote by (∆, Pmax) the pointed cell decomposition
given by I. Take a polytope δ ∈ ∆ and denote its lattice points by {pi1 , ..., pil}.
Then consider the ideal

JI | δ := JI (xi=0 | pi /∈δ) ⊆ k[xi1 , ..., xil ,y, z]

which we get by substituting 0 for all variables not corresponding to points in δ.

Lemma VI.6.11. The family of ideals in k[xi1 , ..., xil ] parametrised by JI |δ for

(y) , (z) ∈ (k∗)dim(FI) is the torus of the coherent component of the toric Hilbert
scheme of A′ = {(pi1 , 1) , ..., (pil , 1)}.
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Proof. Note that when substituting (y) = (z) = 1 we get

(JI | δ)(y)=(z)=1 = I(xi=0,pi /∈δ).

By construction of ∆I it follows that we get the toric ideal, i.e.

I(xi=0,pi /∈δ) = IA′ .

Moreover, for every a ∈ NA′ we have

dimk

(
S/ (JI)(y)a=λ,(z)=µ

)
= 1

for every λ, µ ∈ (k∗)dim(FI) and there exists xm ∈ k[xi1 , ..., xil ] such that xm /∈ JI .
Thus, after the restriction we get that

(JI | δ)(y)=λ,(z)=µ (VI.4)

is A′-graded for every λ, µ ∈ (k∗)dim(FI). Since they all contain no monomials
they are all isomorphic as A′-graded ideals to IA′ . Therefore, all ideals given by
VI.4 lie in the torus of the coherent component of HA′ .

On the other hand, let I1 be an A′-graded ideal in the torus of the coherent
component of HA′ . Then there are νi1 , ..., νil ∈ k∗ such that I1 is isomorphic to
IA′ via xij 7→ νijxij . Extend this to ν = (ν1, ..., νn) by setting the νj = 1 for
pj /∈ δ. Then we get that I is isomorphic as an A-graded ideal to Φν(I) which
lies on the orbit of I. Thus, there exist λ, µ ∈ (k∗)dim(FI) such that

Φν(I) = (JI)(y)=λ,(z)=µ .

But this implies for the restriction that

I1 = (Φν(I))(xi=0,pi /∈δ) = (JI |δ)(y)=λ,(z)=µ

holds, so that I1 is given by the parametrisation.

Theorem VI.6.12. Let I be a reduced A-graded ideal with corresponding face
FI of the polytope PV of a non-coherent component V and let (∆, Pmax) be the
corresponding pointed cell decomposition of Q. Furthermore, let I1 be the general
ideal of a face F1 of FI that is reduced. Then the subdecomposition (∆1, Pmax) is
a coherent cell decomposition on every δ ∈ ∆.

Proof. Fix δ ∈ ∆. Then by Proposition VI.6.10 I1 de�nes a normal cell decom-
position {δi} of δ. By Lemma VI.6.11

(JI |δ)(y)=λ,(z)=µ (VI.5)

for λ, µ ∈ (k∗)dim(FI) gives the torus of the coherent component of HA′ for the
grading A′ = {(pi1 , 1) ..., (pil , 1)}. Take a normal vector ω of FI in PV . Then we
have

I1 = (JI1)((y)=(z)=1) = (inω (JI))((y)=(z)=1)
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and restricting this to δ results in

I1 (xi=0,pi /∈δ) =
(

(inω (JI))((y)=(z)=1)

)
(xi=0,pi /∈δ)

=
(

(inω (JI))(xi=0,pi /∈δ)

)
((y)=(z)=1)

= (inω (JI | δ))((y)=(z)=1) .

Thus, it follows that I1 (xi=0,pi /∈δ) lies in the closure of the torus given by equation
(VI.5) and hence in the coherent component of HA′ . Therefore, there exists a
weight vector ω′ =

(
ω′i1 , ..., ω

′
il

)
such that

I1 (xi=0,pi /∈δ) = inω′ (IA′) ,

since its binomial generators have trivial coe�cients. Hence, the cell decompo-
sition ({δi} , Pmax) of δ is by Corollary VI.6.8 given by the height function ω′ so
that ({δi} , Pmax) is coherent.

Remark VI.6.13. Note that we have not proven, that (∆1, Pmax) is a regular
subdecomposition, just that on each δ ∈ ∆ we get a height function that gives
the decomposition ∆1 ∩ δ, i.e. a coherent decomposition of δ.

This means, if the general ideal I of a non-coherent is reduced with correspond-
ing decomposition (∆, Pmax), then the orbits of this component, that consist of
reduced A-graded ideals correspond to subdecompositions of the pointed cell de-
composition (∆, Pmax). The subdecompositions are coherent on each polytope δ
of the original decomposition (∆, Pmax) and �t on the intersections. Although,
these two properties also hold for regular subdecompositions it does not imply
that the subdecompositions given by the above orbits are in fact regular.

Moreover, the conclusion that a subdecomposition of (∆, Pmax), that is coher-
ent on every δ ∈ ∆ and �ts on the intersections, is in fact regular is false as the
next example shows.

Example VI.6.14. We consider the pointed cell complex of lattice polytopes
(∆, Pmax) = ({δ1, δ2} , {p1, ..., p13}) of two triangles in the plane with

δ1 = ConvHull {p1, p2, p3, p4, p5, p6, p7, p8, p9} ,
δ2 = ConvHull {p5, p6, p7, p8, p9, p10, p11, p12, p13}

and

p1 = ( 2
0 ) , p2 = ( 1

1 ) , p3 = ( 1
0 ) , p4 = ( 1

−1 ) , p5 = ( 0
2 ) , p6 = ( 0

1 ) , p7 = ( 0
0 ) ,

p8 = ( 0
−1 ) , p9 = ( 0

−2 ) , p10 = ( −1
1 ) , p11 = ( −1

0 ) , p12 =
( −1
−1

)
, p13 = ( −2

0 ) ,

as shown in Figure VI.10.
Now we take the subdecomposition (∆′, P ) consisting of the ten polytopes

δ′1 = ConvHull {p1, p2, p5, p6} , δ′2 = ConvHull {p1, p3, p6} ,
δ′3 = ConvHull {p1, p3, p4, p9} , δ′4 = ConvHull {p3, p6, p7, p8} ,

δ′5 = ConvHull {p3, p8, p9} , δ′6 = ConvHull {p5, p6, p11} ,
δ′7 = ConvHull {p5, p10, p11, p13} , δ′8 = ConvHull {p6, p7, p8, p11} ,
δ′9 = ConvHull {p8, p9, p12, p13} , δ′2 = ConvHull {p8, p11, p13} ,
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Figure VI.10: The pointed cell complex (∆, P )
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Figure VI.11: The subdecomposition (∆1, P )

see Figure VI.11. The subdecompositions of δ1 and δ2 are coherent on each poly-
tope by using the two height functions φ1 = (4, 3, 1, 5, 2, 1, 1, 1, 6) and respectively
φ2 = (10, 2, 2, 2, 6, 9, 2, 7, 8).

Assume that a system of height functions Φ exists that gives the subdecom-
position (∆′, P ). This system is given by heights

(w1, w2, w3, w4, w5, w6, w7, w8, w9)

on the lattice points of δ1 and heights

(w′5, w
′
6, w

′
7, w

′
8, w

′
9, w

′
10, w

′
11, w

′
12, w

′
13)

on the lattice points of δ2. The values w3, w6, w7, w8 de�ne a linear function on δ1

and the values w′6, w
′
7, w

′
8, w

′
11 de�ne a linear function on δ2 which we can subtract

from δ1 and δ2, respectively, without changing the subdecomposition. Thus, we
may assume Φ1 = Φ2 on δ1 ∩ δ2 and

w3 = w6 = w7 = w8 = w′6 = w′7 = w′8 = w′11 = 0, w5 = w′5, and w9 = w′9.

The subdivision of the quadrangle ConvHull {p1, p3, p5, p6} into δ′1 and δ′2 implies
w1 + w6 < w3 + w5 and since w3 = w6 we get w1 < w5. The same argument for
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the other four outer quadrangles results in w9 < w1, w′13 < w′9, and w′5 < w′13.
But this leads to the contradiction

w9 < w1 < w5 = w′5 < w′13 < w′9 = w9.

Hence the subdecomposition can not be regular.
On the other hand the question arises if this subdecomposition comes from

an initial ideal of the A-graded ideal corresponding to the cell complex (∆, P ).
To investigate on that take a monomial A-graded ideal that corresponds to a
subdecomposition, i.e. triangulation of (∆1, P ) and one that is also an initial
ideal of the ideal corresponding to (∆1, P ). The only triangulation of ∆1 is
shown in Figure VI.12 and when identifying (pi, 1) with xi this corresponds to
the non-coherent monomial A-graded ideal

b

b

b

b

b

b

b

b

b

b

b

b

b
p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

Figure VI.12: The triangulation of (∆1, P )

M = 〈x1x5, x1x7, x1x8, x1x9, x1x10, x1x11, x1x12, x1x13, x2x3, x2x4, x2x7,

x2x8, x2x9, x2x10, x2x11, x2x12, x2x13, x3x5, x3x10, x3x11, x3x12,

x3x13, x4x5, x4x6, x4x7, x4x8, x4x10, x4x11, x4x12, x4x13, x5x7, x5x8,

x5x9, x5x12, x5x13, x6x8, x6x9, x6x10, x6x12, x6x13, x7x9, x7x10,

x7x12, x7x13, x8x10, x9x10, x9x11, x9x13, x10x12, x11x12〉

with 50 generators, where the M -grading on S = k[x1, ..., x13] is given by

A :=
(

2 1 1 1 0 0 0 0 0 −1 −1 −1 −2
0 1 0 −1 2 1 0 −1 −2 1 0 −1 0
1 1 1 1 1 1 1 1 1 1 1 1 1

)
.

We compute the universal family JM which has 50 binomial generators and hence
50 new variables y1, .., y50 and compute the de�ning ideal with removed redundant
variables

I ′M =
〈
y1y4y

2
9y

2
26y35y

2
38y43y48y

2
50 − y43

〉

in the ring k[y1, y4, y9, y20, y26, y35, y38, y43, y48, y50] over the remaining ten vari-
ables. Then

I ′M =
〈
y1y4y

2
9y

2
26y35y

2
38y48y

2
50 − 1

〉
∩ 〈y43〉
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is a primary decomposition where the �rst ideal corresponds to the coherent
component. Thus, we consider q = 〈y43〉 since M is an initial ideal of I∆1 so
that they have to lie in the same component. Hence, we get the already reduced
non-coherent component V which is given by the universal family

J̃M(p) =
〈
x1x5 − y1x

2
2, x1x8 − y4y26x3x4, x1x9 − y4x

2
4, x2x3 − y9x1x6,

x3x5 − y1y9x2x6, x3x11 − y20x
2
7, x4x8 − y26x3x9, x5x13 − y35x

2
10,

x6x8 − y36x
2
7, x6x10 − y38x5x11, x6x13 − y35y38x10x11,

x9x11 − y48y50x8x12, x9x13 − y48x
2
12, x11x12 − y50x8x13

〉
+

〈xui〉

where the xui are the monomial generators of M not appearing in one of the
binomials. Then one can check that the point

(y1, y4, y9, y20, y26, y35, y36, y38, y48, y50) = (1, 1, 0, 0, 0, 1, 1, 0, 1, 0)

gives the ideal I∆1 corresponding to the subdecomposition ∆1 (see Figure VI.11).
On the other hand,

(y1, y4, y9, y20, y26, y35, y36, y38, y48, y50) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

corresponds to the cell decomposition ∆2 into the �ve tetragons

ConvHull {p1, p2, p3, p5, p6} , ConvHull {p1, p3, p4, p8, p9} ,
ConvHull {p3, p6, p7, p8, p11} , ConvHull {p5, p6, p10, p11, p13} , and

ConvHull {p8, p9, p11, p12, p13} ,

shown in Figure VI.13. But this means that I∆, arising from the decomposition

b

b

b

b

b

b

b

b

b

b

b

b

b

Figure VI.13: The cell decomposition corresponding to the torus of V

∆ of Q into two triangles, does not lie on the component V because ∆ is not a
subdecomposition of ∆2.

♦
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On the other hand, it is not clear if every subdecomposition of (∆, Pmax), that
is coherent on each δ ∈ ∆ arises from the general ideal of a face of FI . Moreover,
it could be that the subdecomposition arising from the general ideal of a face of
FI as above is a regular subdecomposition. The open question remains if there is
an analog to the coherent case, i.e. to Theorem VI.6.6.

Conjecture VI.6.15. The subdecomposition (∆1, Pmax) of (∆, Pmax) given by a
reduced general ideal of a face F1 of FI is in fact regular. Moreover, for every nor-
mal regular subdecomposition (∆1, Pmax) of (∆, Pmax) the ideal I∆1 is the general
ideal of a face of FI .

This would mean that the correspondence from Theorem VI.6.4 maps com-
ponents in the toric Hilbert scheme to components in the moduli space of stable
toric pairs. We have already shown that this is true for the coherent components
of both sides.
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Zusammenfassung

Diese Dissertation befasst sich mit der Analyse und Konstruktion der irreduziblen
Komponenten von torischen Hilbert Schemata.

Das torische Hilbert Schema parametrisiert alle Ideale in einem gegebenen
multigraduierten Ring, die dieselbe multigraduierte Hilbertfunktion haben wie
das torische Ideal. Dieses Schema wurde von V. Arnol′d, B. Sturmfels, I. Peeva,
M. Stillman, D. Maclagan, R. Thomas und anderen entwickelt und untersucht.
Es ist bekannt, dass das torische Ideal auf einer eindeutigen und somit ausgeze-
ichneten irreduziblen Komponente des torischen Hilbert Schemas liegt, der soge-
nannten kohärenten Komponente. Die Normalisierung der kohärenten Kompo-
nente ist die torische Varietät, die durch den Gröbner Fächer des torischen Ideals
gegeben ist.

Darüber hinaus kann ein torisches Hilbert Schema weitere irreduzible Kompo-
nenten, die sogenannten nicht-kohärenten Komponenten besitzen. Durch Ergeb-
nisse von M. Haiman und B. Sturmfels wird gezeigt, dass die zugrunde liegende
reduzierte Struktur jeder nicht-kohärenten Komponente eine projektive torische
Varietät ist. Das bedeutet, dass auch die nicht-kohärenten Komponenten, respek-
tive deren Normalisierungen durch polyedrische Fächer gegeben sind.

Der Hauptteil dieser Dissertation besteht aus der expliziten Konstruktion von
sogenannten verallgemeinerten universellen Familien, die die nicht-kohärenten
Komponenten parametrisieren. Überdies zeigen wir, dass die Normalisierung der
zugehörigen nicht-kohärenten Komponente die torische Varietät assoziiert zum
Gröbner Fächer der verallgemeinerten universellen Familie ist.

Diese Konstruktion ermöglicht die Berechnung konkreter Beispiele, die unter
anderem zeigen, dass es torische Hilbert Schemata gibt, bei denen der Schnitt
zweier Komponenten die Vereinigung von Orbits sein kann aber nicht muss.
Darüber hinaus gibt es Schemata mit eingebetteten Komponenten, sogar in der
kohärenten Komponente. Eine weitere Anwendung der Konstruktion ist die Strat-
i�zierung des torischen Hilbert Schemas anhand der möglichen Subtorus Wirkun-
gen. Wir zeigen, dass jedes Stratum durch die Vereinigung von Seiten der Poly-
tope gegeben ist, die die Komponenten beschreiben.

Abschlieÿend geben wir für ein Gitterpolytop Q die Beschreibung des Modul-
raums der stabilen torischen Paare mit punktierter Zerlegung vonQ nach V. Alex-
eev an. Dann stellen wir eine Beziehung zwischen Orbits des torischen Hilbert
Schemas, gegeben durch die Gitterpunkte von Q, und Strata im Modulraum der
stabilen torischen Paare, die der gleichen Unterteilung von Q entsprechen, her.
Insbesondere verbindet diese Beziehung genau die kohärenten Komponenten bei-
der Räume.
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