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CHAPTER 1. INTRODUCTION

Atmospheric flows are composed of motions occurring on a large range of
temporal and spatial scales. All of these motions can be captured by the com-
pressible Navier-Stokes equations, however, as sound waves do not play an im-
portant role in these processes, it is theoretically appealing and can be nu-
merically advantageous to remove the sound waves entirely from the governing
equations.

Many “soundproof” equation sets have been developed to tackle this is-
sue. The most well known of these are the Boussinesq equations (Boussi-
nesq (1903)), the anelastic equations (Ogura and Phillips (1962) and Lipps
and Helmer (1982)) and the pseudo-incompressible equations (Durran (1989)).
These equation sets are derived by introducing different approximations into
the governing equations. The Boussinesq approximation replaces the continuity
equation by an incompressibility condition, the anelastic approximation disre-
gards the time derivative of the density in the continuity equation to yield a
divergence constraint and the pseudo-incompressible approximation ignores the
effect of pressure perturbations on the density which also yields a divergence
constraint.

In this work we will be focusing on the pseudo-incompressible approxima-
tion and we aim to extend this model in two ways. The first is to numeri-
cally implement a “thermodynamically-consistent” formulation of the pseudo-
incompressible equations and the second is to extend the model to include mois-
ture, i.e. phase changes and diabatic terms. These two aspects are outlined in
more detail in the following paragraphs.

Typically, the pseudo-incompressible equations are written in “π − θ” form
i.e., with the Exner pressure π and the potential temperature θ utilised in the
momentum equation’s pressure and gravity terms and not thermodynamic pres-
sure p and the density ρ. An outline for the latter formulation is given in Klein
and Pauluis (2011) and it requires that all terms up to first order in the pressure
perturbation are retained in the momentum equation which is a condition which
is automatically fulfilled in the “π − θ” case. This complicates the numerics in
two ways: 1) it adds a pressure perturbation dependent source term to the mo-
mentum equation and 2) it alters the form of the projection step used to enforce
the divergence constraint. A method to resolve these issues was outlined by the
author in Benacchio et al. (2014) and will also be illustrated in the first part of
the present work.

For the remainder we will examine the effect of moisture on our pseudo-
incompressible model. So far only the anelastic equations have been utilised
extensively as a basis for modelling moist flows (e.g. Clark (1977), Lipps and
Helmer (1982), Grabowski and Smolarkiewicz (2002) and Pauluis (2008)). The
Boussinesq equations are unsuitable for moist atmospheric applications due to
the assumption of constant density and the pseudo-incompressible equations are
rarely used in moist form due to the complications that latent heat causes in
the divergence constraint.

In Almgren et al. (2008), a pseudo-incompressible model with source terms
and compositional changes for supernovae is developed which overcomes these
complications. Motivated by this work we have created a non-thermodynamically
consistent pseudo-incompressible model for moist atmospheric flows which is
outlined in O’Neill and Klein (2013). This entailed the derivation of a back-
ground state which varies in time as a result of the release of latent heat. The
creation of such a background state solves the problems created by the heat
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CHAPTER 1. INTRODUCTION

source in the divergence constraint and allows the pseudo-incompressible model
to incorporate diabatic terms.

This model is valid for flows with large density and potential temperature
variations and is therefore more generally applicable than the anelastic approx-
imation which is only valid for small variations (as shown in Klein (2009)). In
the analysis presented in Lipps and Helmer (1982), for example, they require the
potential temperature to be a slowly varying function of the vertical coordinate
for their moist anelastic model. If we focus on atmospheric motions then this
restricts the validity of their model to motions in the troposphere and in this
paper they state that “for severe mid-latitude convection...the present analysis
is expected to have limited validity”. However, the assumption of small density
and potential temperature variations is valid for most atmospheric processes of
interest and our model is advantageous only in specific cases.

Continuing the work of O’Neill and Klein (2013) further we will develop
the moist model to be thermodynamically consistent. This is carried out in
much the same fashion as in the dry case except the background variables in
the gravity term will now be functions of time as well as height. Moreover,
inspired by the work presented in Kurowski et al. (2013) we will examine the
effect of the pressure choice used, full value or hydrostatic, for the condensation
rate calculation.

To implement our models numerically we have incorporated it into an in-
house finite volume code for low Mach number flow based on the numerics found
in Klein (2009). The models are then verified against a number of testcases
which are used to examine various aspects of the interest, e.g. how the model
performs under buoyancy driven flow.

In summary, the thesis will have the following outline: we begin with a
derivation, starting from the compressible equations, of the dry thermodynam-
ically consistent set. This is followed by a derivation of the moist form of the
thermodynamically consistent set. The numerics used for modelling each set of
equations is then outlined and finally each model is tested and compared using
several standard dry and moist testcases.
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CHAPTER 2. THERMODYNAMICALLY CONSISTENT
PSEUDO-INCOMPRESSIBLE EQUATIONS

2.1 Background to the pseudo-incompressible
equations

Sound waves occur in a medium due to the influence of pressure fluctuations
on the density. The family of soundproof models make various approximations
to the density equation in order to remove this influence and, thus, to filter
soundwaves. In the case of the pseudo-incompressible approximation the den-
sity is assumed to be independent from perturbations in pressure but remain
dependent on temperature perturbations.

Traditionally, the pseudo-incompressible model is derived from a compress-
ible model formulated using the Exner pressure in the momentum equation. For
a dry atmosphere the Exner pressure π is defined as

π =

(
p

pref

)R/cp
(2.1)

where p is the thermodynamic pressure, pref is the reference pressure, R is the
dry gas constant and cp is the dry specific heat capacity at a constant pressure.
When the Exner pressure is utilised, as in the original pseudo-incompressible
derivation presented in Durran (1989), the momentum equation has the advan-
tage that it is independent of density when written in conservative form. This
means that any approximation made to the density will not have an effect on
the momentum equation.

In this work, however, we will build a pseudo-incompressible model whose
momentum equation is composed using the standard thermodynamic pressure
p rather than π. In this case the momentum equation is not independent of
density even when written in non-conservative form. As a result, great care
must be taken to ensure that the pseudo-incompressible approximation retains
the original form of the momentum equation to, at least, first order in pressure.
The correct way to do this for general equations of state was outlined in Klein
and Pauluis (2011) and requires the retention of the effect of pressure pertur-
bations in the buoyancy term. In the current chapter we will show how the
aforementioned general method can be applied to a specific regime.

Deriving the pseudo-incompressible equations in this way is thought to have
several advantages. For example, it is potentially easier to extend the model to
incorporate more general equations of state since the Exner formulation would
require extra terms in the momentum equation which, e.g., depend on the deriva-
tives of the species. Even for non-complex equations of state p− ρ formulation
has the advantage that the pressure term in the momentum equation is written
in conservative form. This has the numerical advantage that the pressure in the
momentum equation can be written as an exact flux and will thus improve the
conservation properties of the momentum.
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CHAPTER 2. THERMODYNAMICALLY CONSISTENT
PSEUDO-INCOMPRESSIBLE EQUATIONS

2.2 Derivation of the thermodynamically con-
sistent pseudo-incompressible equations

2.2.1 The compressible equations

We will use the two dimensional non-rotational compressible Euler equations
for a single fluid given in Klein and Pauluis (2011) as the starting point for our
derivation. For this equation set the density and momentum equation are given
as

ρt +∇ · (ρu) = 0 (2.2)

ut + ·∇u +
1

ρ
∇p = −gk (2.3)

where the t subscript signifies the partial derivative with respect to time t, ρ is
the fluid density, u is the two dimensional velocity vector, g is the gravitational
acceleration, k is the unit vertical vector and the equations operate on the
domain Ω = [xmin, xmax]× [0, zmax].

We have yet to define an “energy” equation for the system and we will
do this by using the potential temperature variable. We define the potential
temperature and ideal gas equations as

θ = T (pref/p)
(R/cp) (2.4)

p = ρRT (2.5)

where T is the temperature. The prognostic equation for potential temperature
will be given as

θt + u · ∇θ = 0. (2.6)

Using (2.4) and (2.5) we can write a new equation of state for our system in
terms of ρ, p and θ as

ρ =
1

θ

pref
R

(
p

pref

)1/γ

(2.7)

where γ = cp/cv. Equations (2.6)-(2.7) taken with equations (2.2)-(2.3) are the
governing equations for the compressible system.

2.2.2 The pseudo-incompressible approximation

As in the pseudo-incompressible derivation presented in Durran (1989) we will
start by assuming that the pressure does not vary much from its hydrostatic
background value and can be written as

p = p0(z) + p′(x, t) (2.8)

where p′/p0 << 1 and

∂p0

∂z
= −ρ0g (2.9)
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for a hydrostatically balanced density ρ0. The assumption of small varia-
tions in the pressure perturbation limits of the range of validity of the pseudo-
incompressible but the applicability is retained for most meteorological cases of
interest. For example, in Kurowski et al. (2013) they state that for their test-
cases with typical atmospheric conditions they get a variation of p′/p0 ≈ 0.0001
but in extreme cases such as a tornado the variation can reach p′/p0 ≈ 0.1.

Using (2.8) and the equation of state (2.7) we can expand the density in
terms of pressure perturbations and drop the higher order terms

ρ =
1

θ

pref
R

(
p0 + p′

pref

)1/γ

≈ 1

θ

pref
R

(
p0

pref

)1/γ (
1 +

p′

γp0

)
= ρ∗

(
1 +

p′

γp0

)
(2.10)

where ρ∗ is called the “pseudo-density” and is defined as the density calculated
at the background pressure but using the full potential temperature, i.e.

ρ∗ =
1

θ

pref
R

(
p0

pref

)1/γ

= ρ(p0, θ). (2.11)

Now, in order to filter sound waves we must suppress the effect of pres-
sure perturbations in the conservation of mass (2.2). Inserting (2.10) into (2.2)
results in the following equation for the pseudo-density

(ρ∗)t +∇ · (ρ∗u) = 0. (2.12)

However, in the momentum equation we want to keep the effects of the pressure
perturbations up to first order since we want to remove the effect of pressure
perturbations on the density only. Using a similar expansion as in (2.10) we can
re-write (2.3) as

ut + u · ∇u +
1

ρ∗

(
1− p′

γp0

)
∇ (p0 + p′) = −gk (2.13)

Keeping all terms in (2.13) up to first order in the pressure perturbation, using
the hydrostatic balance (2.9) and re-arranging we get

ut + u · ∇u +
1

ρ∗
∇ (p0 + p′) = −

(
1 +

1

ρ∗
ρ0

γp0
p′
)
gk. (2.14)

Lastly, the potential potential temperature equation remains unchanged as it
does not contain the density.

We will now re-write our governing equations in conservative form by mul-
tiplying the momentum and potential temperature equations by ρ∗ to get

(ρ∗u)t +∇(ρ∗u ◦ u) +∇p = −
(
ρ∗ +

ρ0

γp0
p′
)
gk (2.15)

(ρ∗θ)t +∇ · (ρ∗θu) = 0 (2.16)

Since ρ∗θ is a function of p0 only and p0 does not depend on t we can drop the
time derivative term from (2.16) and we can re-write the evolution equation for
θ as the following divergence constraint

∇ · (ρ∗θu) = 0. (2.17)
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This constraint imposes the pseudo-incompressible form of the density equation
given by (2.12) thereby filtering the effect of pressure perturbations on the
density and, as a result, filtering the propagation of soundwaves.

Finally, the complete pseudo-incompressible governing equations are given
by

(ρ∗)t +∇ · (ρ∗u) = 0 (2.18)

(ρ∗u)t +∇ · (ρ∗u ◦ u) +∇p = −
(
ρ∗ +

ρ0

γp0
p′
)
gk (2.19)

∇ · (Pu) = 0 (2.20)

where

P = ρ∗θ =
pref
R

(
p

pref

)1/γ

. (2.21)

Comparing (2.18)-(2.20) to an anelastic equation set, e.g. Lipps and Helmer
(1982), we see that the differences are seen in the density. In the anelastic
equations the density is set to the initial hydrostatic values whereas here the
less restrictive “pseudo-density” is used.

2.2.3 Comparing π − θ and p− ρ formulations

In this section we will show the equivalence of the traditional π − θ formula-
tion of the pseudo-incompressible equations presented in Durran (1989) and the
thermodynamic consistent p − ρ formulation. A similar derivation to the one
presented here is given in Klein et al. (2013).

To start, we will write P and π as expansions in pressure

P =
pref
R

(
p

pref

) 1
γ

=
pref
R

(
p0 + p′

pref

) 1
γ

=
pref
R

(
p0

pref

) 1
γ
(

1 +
p′

p0

) 1
γ

≈pref
R

(
p0

pref

) 1
γ
(

1 +
p′

γp0

)
+ O

(
p′2
)

= P0

(
1 +

p′

γp0

)
+ O

(
p′2
)

(2.22)

and

π =

(
p

pref

) γ−1
γ

=

(
p0 + p′

pref

) γ−1
γ

=

(
p0

pref

) γ−1
γ
(

1 +
p′

p0

) γ−1
γ

≈ p0

pref

(
p0

pref

)− 1
γ
(

1 +
γ − 1

γ

p′

p0

)
+ O

(
p′2
)

=
p0

pref

pref
P0R

(
1 +

R

cp

p′

p0

)
+ O

(
p′2
)

=
p0

RP0
+

p′

cpP0
+ O

(
p′2
)

=π0 + π′ + O
(
p′2
)

(2.23)

where

π0 =
p0

RP0
(2.24)
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and

π′ =
p′

cpP0
. (2.25)

The standard pseudo-incompressible momentum equation in π−θ form taken
from Durran (1989) is written in conservation form as

(ρ∗u)t +∇ · (ρ∗u ◦ u) + cpP0∇π = −ρ∗gk (2.26)

Using the expansion of π in (2.23) we can re-write (2.26) as

(ρ∗u)t +∇ · (ρ∗u ◦ u) =− cpP0∇π − ρ∗gk
=− cp∇ (P0π) + cpπ∇P0 − ρ∗gk

=− cp∇
(
p0

R
− p′

cp

)
+ cpπ

P0

γp0
∇p0 − ρ∗gk

=− cp
R
∇p0 −∇p′ −

(
cpp0

RP0
+
p′

P0

)
P0

γp0
∇p0 − ρ∗gk

=− cp
R
∇p0 +∇p′ +

(
cp
γR

+
p′

γp0

)
∇p0 − ρ∗gk

=−∇(p0 + p′)− ρ0g

γp0
p′k− ρ∗gk (2.27)

where in the last inequality we have used the hydrostatic balance and the fact
that

cp
R (1− 1/γ) = 1. We can re-arrange (2.27) to give us the equation utilised

for our pseudo-incompressible model in p− ρ form

(ρ∗u)t +∇ · (ρ∗u ◦ u) +∇p = −
(
ρ∗ +

ρ0

γp0
p′
)
gk (2.28)

where p = p0 + p′.
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CHAPTER 3. A MOIST PSEUDO-INCOMPRESSIBLE MODEL

3.1 Background to the moist pseudo-incompressible
equations

The use of moist soundproof models is sparse when compared with their dry
counterparts. Although EULAG users (see Smolarkiewicz and Charbonneau
(2013)) have been documenting the use of their soundproof anelastic model in
a moist setting the usage of moist pseudo-incompressible models is relatively
unheard of. The reasons for this are, perhaps, the extra difficulties that such a
formulation encounters. These difficulties stem from the fact that the divergence
constraint is derived from the energy equation and is thus affected greatly by
the heating sinks and sources encountered in moist physics. This issue is not
present in the anelastic model, however, due to the fact that the divergence
constraint is derived from the density equation which is free of source terms.

To tackle these unique obstacles we proposed a method outlined in O’Neill
and Klein (2013) which was motivated by the work on low Mach number mod-
elling of supernovae presented in Almgren et al. (2008). Unlike the dry case in
the previous chapter, the method requires the definition of a background state
which varies in both time and height and a derivation of a governing set of
equations for such a state.

The model presented in O’Neill and Klein (2013) is not thermodynamically
consistent, however, and in this section we would like to incorporate the methods
of Klein and Pauluis (2011) to create a pseudo-incompressible model which
captures moist processes and is thermodynamically consistent. Extending the
model to be thermodynamically consistent is carried out in much the same
fashion as illustrated in Chapter 2 except in the moist case the extra buoyancy
term which necessitates thermodynamic consistency will have hydrostatic terms
that are now functions of time. This extra buoyancy term is the difference
between the model presented in this chapter and the model present in O’Neill
and Klein (2013).

3.2 Derivation of the moist pseudo-incompressible
equations

3.2.1 Model assumptions

We will be making several assumptions in our model, namely, the model contains
only three phases (dry air, water vapour, cloud water), each phase will have the
same temperature and velocity field, we will be ignoring hydrometeor fallout,
ice-phase micro-physics, the Coriolis force, sub-grid-scale turbulence and we will
assume solid-wall (or periodic) horizontal boundary conditions and solid-wall
vertical boundary conditions.

3.2.2 The moist compressible equations

Making the above mentioned assumptions we arrive at the following two dimen-
sional compressible equations with bulk microphysics as presented in Bryan and

14



CHAPTER 3. A MOIST PSEUDO-INCOMPRESSIBLE MODEL

Fritsch (2002)

ρt +∇ · (ρu) = 0 (3.1)

ut + u · ∇u +
1

ρ
∇p = −gk (3.2)

(qv)t + u · ∇qv = −C (3.3)

(qc)t + u · ∇qc = C (3.4)

where the ρ is the total density, qv is the vapour mixing ratio, qc is the cloud
water mixing ratio, C is condensation rate and the equations operate on the
domain Ω = [xmin, xmax]× [0, zmax]. Note, the total density is written as

ρ = ρa(1 + qv + qc) (3.5)

where ρa is the dry air density.
As in the dry model we will use the potential temperature to define our

“energy” equation. The potential temperature and ideal gas equations of state
are given as

θ = T (pref/p)
(R/cp) (3.6)

p = ρaRT + ρvRvT =

(
1 + qv/ε

1 + q

)
ρRT (3.7)

where R and cp are equal to the dry values, Rv is the vapour gas constant,
ε = R/Rv and q = qv + qc is the total mixing ration. Note, the only difference
compared to the dry equations of state is the term in brackets on the right hand
side of (3.7).

The prognostic equation for potential temperature is given as

θt + u · ∇θ =
θLv
cpT

C (3.8)

where Lv is the latent heat of vaporization and is defined differently for each
testcase (see Appendix B). To simplify the derivation we will rewrite (3.8) using

a new variable θq defined as θq =
(

1+qv/ε
1+q

)
θ. Combining (3.3), (3.4) and (3.8)

we get the following equation for θq

(θq)t + u · ∇θq = [Lv/cpT − 1/(ε+ qv)] θqC. (3.9)

Using (3.6) and (3.7) we can write ρ in terms of p as θq as

ρ =
1

θq

pref
R

(
p

pref

)1/γ

(3.10)

Equation (3.9) taken with equations (3.1)-(3.4) are the governing equations
for the moist compressible system and are our starting point for the derivation
of the moist pseudo-incompressible equations.
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3.2.3 The moist pseudo-incompressible approximation

As in the dry pseudo-incompressible derivation presented in Chapter 2 we will
start by assuming that the pressure does not vary much from its hydrostatic
background value and can be written as

p = p0(z, t) + p′(x, t) (3.11)

where p′/p0 << 1 and

∂p0

∂z
= −ρ0g. (3.12)

Note, that unlike in the dry case we have allowed the hydrostatic values to
vary in time as in Almgren et al. (2008). This will solve the problem presented
by the latent heat term in the divergence constraint by allowing the changing
background state to compensate for the heating effect. In the idealised dry
testcase presented in Almgren (2000) the changing background state was shown
to play a vital role in ensuring that the solution converges to the compressible
solution in the limit of a small heating rate.

If we expand the pressure in equation (3.10) we get

ρ =
1

θq

pref
R

(
p0 + p′

pref

)1/γ

=
1

θq

pref
R

(
p0

pref

)1/γ (
1 +

p′

p0

)1/γ

≈ 1

θq

pref
R

(
p0

pref

)1/γ (
1 +

p′

γp0

)
= ρ∗

(
1 +

p′

γp0

)
(3.13)

where

ρ∗ =
1

θq

pref
R

(
p0

pref

)1/γ

= ρ(p0, θq). (3.14)

Now, in order to filter sound waves we drop the terms in the conservation
of mass which depend on the pressure perturbation and we get the following
equation for the pseudo-density

(ρ∗)t +∇ · (ρ∗u) = 0. (3.15)

In the momentum equation we want to keep the effect of the pressure pertur-
bation and using a similar method to the expansion in (3.13) we can re-write
(3.2) as

ut + u · ∇u +
1

ρ∗

(
1− p′

γp0

)
∇ (p0 + p′) = −gk. (3.16)

Keeping all terms in (3.16) up to first order in the pressure perturbation and
re-arranging we get

ut + u · ∇u +
1

ρ∗
∇ (p0 + p′) = −

(
1 +

1

ρ∗
ρ0

γp0
p′
)
gk. (3.17)

Lastly, θq remains unchanged as it does not contain the density.
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We will now re-write our governing equations in conservative form by multi-
plying the momentum (3.17), species (3.3)-(3.4) and potential temperature (3.9)
equations by ρ∗ to get

(ρ∗u)t +∇(ρ∗u ◦ u) +∇p = −
(
ρ∗ +

ρ0

γp0
p′
)
gk (3.18)

(ρ∗qv)t +∇ · (ρ∗qvu) = −ρ∗C (3.19)

(ρ∗qc)t +∇ · (ρ∗qcu) = ρ∗C (3.20)

(ρ∗θq)t +∇(ρ∗θqu) = S (3.21)

where S = [Lv/cpT − 1/(ε+ qv)] ρ
∗θqC.

Now, since ρ∗θq is a function of p0 only we can re-write the evolution equation
(3.21) as the following divergence constraint

∇ · (P0u) = S − (P0)t (3.22)

where

P0(z, t) = ρ∗θq =
pref
R

(
p0

pref

)1/γ

. (3.23)

As in the dry case, the constraint in (3.22) imposes the pseudo-incompressible
form of the density equation given by (3.15) thereby filtering the effect of pres-
sure perturbations on the density and, as a result, filtering the propagation
of soundwaves. However, we still must derive an evolution equation for P0 to
evaluate the time derivative on the right hand side of (3.22).

3.2.4 Evolution of the background state

Following the methods of Almgren et al. (2008) we let u = ũ + w0k, where w0

is the base-state velocity and ũ governs the remaining local dynamics such that

xmax∫
xmin

ũ.k dx = 0. (3.24)

This means that the domain-wide changes in the vertical flux due to heating
are entirely incorporated into w0. We will also assume the hydrostatic density
satisfies the continuity equation, i.e.

(ρ0)t +
∂ρ0w0

∂z
= 0. (3.25)

The implications of this assumption are discussed in Appendix A.
Using equation (3.22) and assuming solid-wall (or periodic) horizontal bound-

ary conditions we can derive the following equation for the background state by
integrating across the horizontal domain to get

(P0)t +
∂P0w0

∂z
= S (3.26)
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where · = 1
L

xmax∫
xmin

· dx. Using (3.23) we rewrite equation (3.26) as

(P0)t +
∂P0w0

∂z
=
∂P0

∂p0

Dp0

Dt
+ P0

∂w0

∂z
= P0

(
1

γp0

Dp0

Dt
+
∂w0

∂z

)
= S (3.27)

where the background material derivative D
Dt

is defined as D
Dt

= ∂
∂t + w0

∂
∂z .

Now, in order to calculate w0 we need to obtain a value for the material
derivative of the background pressure. To do this we first integrate the hydro-
static balance (3.12) from any height z ∈ [0, zmax] to the top of the domain
z = ztop to get

ptop0 (t)− p0(z, t) = −
ztop∫
z

ρ0(z′, t)g dz′ (3.28)

where ptop0 (t) = p0(ztop, t). We now take the background material derivative of
(3.28) to get

Dp0

Dt
=
∂ptop0

∂t
+
D

Dt

ztop∫
z

ρ0(z′, t)g dz′

=
∂ptop0

∂t
(3.29)

where D
Dt

ztop∫
z

ρ0(z′, t)g dz′ = 0 due to the fact that the weight of the columns

in the background state do not change according to (3.25) and due to the fact
that we are using solid-wall vertical boundary conditions.

It also possible to derive a model which utilises an open-top boundary condi-
tion which would be more common for meteorological applications. This can be
achieved following the method presented in Almgren et al. (2008) more closely

by assuming the pressure of a parcel does not change, i.e. Dp0
Dt

= 0, rather
than assuming that the weight of the columns do not change as done above.
This assumption is then used in (3.27) to derive an equation for w0. Also, a
suitable buffer layer would have to be implemented to damp spurious motions
approaching the upper boundary.

Inserting (3.29) into (3.27) and integrating from the bottom to the top of
the domain in the z direction and re-arranging we get

∂ptop0

∂t
=

zmax∫
zmin

S/P0 dz

zmax∫
zmin

1/γp0 dz

. (3.30)

Now that we have a value for
∂ptop0

∂t we can calculate w0 by integrating (3.27)
from z = zmin to z to get a value for the background velocity at height z

w0 =

z∫
zmin

(
S

P0
− 1

γp0

∂ptop0

∂t

)
dz′. (3.31)
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The background velocity w0 can then be used to determine (P0)t using the
evolution equation (3.26) and (P0)t can then be used to solve the divergence
constraint (3.22).

3.2.5 The moist pseudo-incompressible equations

Here we will present the full set of governing equations. The evolution equations
for the full values are given by

ρ∗t +∇ · (ρ∗u) = 0 (3.32)

(ρ∗u)t +∇ · (ρ∗u ◦ u)) +∇p = −
(
ρ∗ +

ρ0

γp0
p′
)
gk (3.33)

(ρ∗qv)t +∇ · (ρ∗qvu) = −ρ∗C (3.34)

(ρ∗qc)t +∇ · (ρ∗qcu) = ρ∗C. (3.35)

We also have the following equations for the background state

∂ρ0

∂t
+
∂ρ0w0

∂z
= 0 (3.36)

∂P0

∂t
+
∂P0w0

∂z
= S (3.37)

∂ptop0

∂t
=

zmax∫
zmin

S/P0 dz

zmax∫
zmin

1/γp0 dz

(3.38)

w0(z, t) =

z∫
zmin

(
S

P0
− 1

γp0

∂ptop0

∂t

)
dz′ (3.39)

and the following equation of state and divergence constraint

P0 =

(
1 + qv/ε

1 + q

)
ρ∗θ =

pref
R

(
p0

pref

)1/γ

(3.40)

∇ · (P0u) = S − (P0)t. (3.41)

Comparing equations (3.32)-(3.41) to the dry pseudo-incompressible model
of the previous chapter we can see that as well as the extra equations for the
species and the source term in the P equation we also require an equations set
which governs the evolution of the background state.

Unlike the model in Almgren et al. (2008) we have not needed to define new
horizontally averaged variable in order to calculate our divergence constraint.
However, the reason for this is that we have defined γ as constant and if a
non-constant gamma were required a similar style variable would have to be
utilised.
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CHAPTER 4. NUMERICAL DETAILS

4.1 Overview of the numerics

Equation sets (2.18)-(2.20) and (3.32)-(3.41) are solved using a predictor-corrector
finite volume code based on the numerical techniques described in Klein (2009)
which is composed of two predictor and two corrector steps. The primary vari-
ables, ρ, ρu, ρqv, ρqc, and P0 are stored at cell centers, whereas the perturbation
pressure p is stored at grid nodes. Fluxes of conserved variables arise at grid cell
interfaces which is standard for cell-centered finite volume code. A schematic
of the grid set-up is given in Figure 4.2.

In the predictor step the variables are advected forward in time to second
order but the divergence constraint is ignored and P is advected in the same
way as the other primary variables. Also, the old time level pressure is used in
the momentum equation since the pressure update is not known until after the
corrector step. These two simplifications result in a reduced order of accuracy
in the momentum equation due to advective fluxes that do not satisfy the di-
vergence constraint and also due to the usage old time level pressure. For each
model, the timestep is calculated according to the Courant–Friedrichs–Lewy
(CFL) condition (see LeVeque (2002) and section 4.4) and the pressure is ini-
tialised in a well balanced fashion (see section 4.3).

These inaccuracies are corrected in the two corrector steps. The advective
fluxes are corrected in the first step and the error in the momentum equation
due to the usage of the old time level pressure is corrected in the second step.

To calculate the microphysical source terms we use the method of saturation
adjustment outlined in Grabowski and Smolarkiewicz (1990) after the predictor
step but before the corrector steps. As in Kurowski et al. (2013) the source term
calculation comes in two varieties: one model PItc,p0

m uses p0 in the source term
calculation and the other model PItc,p

m uses p in the source term calculation.
In the dry case we will also implement a “naive” model which ignores the

extra term required by thermodynamic consistency. This model will be denoted
as PI. A summary of the model notation used is given in Figure 4.1.

Note, in the current chapter the asterisk will be dropped from the pseudo-
density in order to simplify the notation.

Pseudo-incompressible

Dry

PI PItc

Moist

Non-TC

PIp0m PIpm

TC

PItc,p0
m PItc,p

m

Figure 4.1: Tree of model notation used in the paper where “TC” stands for
thermodynamically consistent. The moist “Non-TC” branch corresponds to the
model of O’Neill and Klein (2013) and is not implemented in the present work.
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4.2 Explanation of the numerics notation

The notation used in this section is given as follows

i - Grid cell index in the horizontal direction

imin - Minimum grid cell index in the horizontal direction

imax - Maximum grid cell index in the horizontal direction

j - Grid cell index in the vertical direction

jmin - Minimum grid cell index in the vertical direction

jmax - Maximum grid cell index in the vertical direction

x - Horizontal position

z - Vertical position

∆t - Time step size

∆x - Grid cell size in x-direction

∆z - Grid cell size in x-direction

u - Horizontal velocity

w - Vertical velocity

(.)n - Denotes values at the end of previous time step

(.)n+1 - Denotes values at the end of current time step

(.)pred - Denotes values at the end of the predictor step

(.)pred - Denotes values at the end of the first projection step

α - Thermodynamically consistent switching parameter

β - Moist/Dry switching parameter

Note, any variables that have a j index and no i index do not depend on x.

i− 3/2 i− 1/2 i+ 1/2 i+ 3/2

j − 1/2

j + 1/2

j + 3/2

i, j

Figure 4.2: Schematic of the computational grid. The filled-in dots are the
cell centers, the white dots are the nodes, the diamond shapes are the the cell
interfaces, the large shaded square is a primary cell and the large line-filled cell
is a dual cell.
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4.3 Well balancing

Since our model is not written in perturbational form extra care must to taken
to ensure that the non-perturbed pressure discretely satisfies the hydrostatic
balance. After the primary variables are initialised we calculate the nodal pres-
sure from the cell-centered density by integrating (2.9) up from the bottom to
get

p0j+1/2 = p0j−1/2 − ρ0jg∆z (4.1)

where p0jmin−1/2 = pref . This ensures that if the the density is initially hydro-
static then the pressure and gravity term will cancel exactly in the momentum
equation.

It is also possible not just to initialise hydrostatically but also to implement
the predictor step in a well balanced fashion by following the methods of Botta
et al. (2004) but in the present work it is only the initialisation which will be
well balanced.

4.4 Time step calculation

In the dry testcases the timestep is calculated by taking the minimum of the
buoyancy timestep ∆tb and the advection timestep ∆tadv. These timsteps
choices are defined as

∆tb = CFL max

√
∆xθ0

g(θ − θ0)
and ∆tadv = CFL

∆x

max‖u‖
(4.2)

where 0 ≤ CFL ≤ 1 is defined for each testcase independently and the function
max returns the maximum cell value in the domain. The final timestep is given
as

∆t = min(∆tb,∆tadv). (4.3)

In the moist testcases the buoyancy timestep was found to be an insufficient
upper bound and a maximum timestep ∆tmax was defined for each testcase.
The final timestep is then calculated by taking the minimum of the maximum
timestep ∆tmax and the advection timestep ∆tadv

∆t = min(∆tmax,∆tadv). (4.4)

4.5 The predictor step

In this step the advective updates for ρ, ρu, P, ρqv and ρqc are calculated while
ignoring pressure updates, the latent heat term and the condensation source
terms. We will make a few modifications from the equations given in the previ-
ous chapters. For the numerics we will write the gravity source term in terms
of P0 and θq by using the equations of state (2.10) and (3.13) and taking note
that in the dry case θq ≡ θ. Although this seems unnecessary, using P0 and
θq was found to have much better stability for larger timesteps when compared
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with using ρ. The reason for this is that using P0 and θ shields the momentum
from the divergence errors accumulated by ρ in the first step of the predictor.

The time integration is preformed using a two step strong stability preserving
Runge-Kutta scheme from Gottlieb et al. (2001). These steps can be written in
general form as

1. Step One

φ∗i,j =φni,j +
∆t

∆x

(
(φu)ni+ 1

2 ,j
− (φu)ni− 1

2 ,j

)
+

∆t

∆z

(
(φw)ni,j+ 1

2
− (φw)ni,j− 1

2

)
−∆tQφi,j

(4.5)

2. Step Two

φ∗∗i,j =
1

2

(
φni,j + φ∗i,j

)
+

∆t

2∆x

(
(φv)∗i+ 1

2 ,j
− (φv)∗i− 1

2 ,j

)
+

∆t

2∆z

(
(φw)∗i,j+ 1

2
− (φw)∗i,j− 1

2

)
− ∆t

2
Qφ,∗i,j g

(4.6)

where φ ∈ {ρ, ρu, ρw, P} for the dry models and φ ∈ {ρ, ρu, ρw, P, ρqv, ρqc} for

the moist models. The source term Qφi,j is written as

Qφi,j =


0 (φ ∈ {ρ, P, ρqv, ρqc})

1
∆x

(
pn
i+ 1

2 ,j
− pn

i− 1
2 ,j

)
(φ ∈ {ρu})

1
∆z

(
pn
i,j+ 1

2

− pn
i,j− 1

2

)
+
(
P
θq

+ α ρ0
γp0

p′
)n
i,j

(φ ∈ {ρw})

(4.7)

where Qφ,∗i,j in (4.6) indicates that θ∗q i,j = P ∗i,j/ρ
∗
i,j is to be used in the gravity

term but the remaining terms are at time level n and α is a switching parameter
such that

α =

{
0 PI
1 PItc, PItc,p

m , PItc,p0
m

. (4.8)

The fluxes in this step are calculated as follows, the velocities on the cell
faces are determined using

u =
1

2
(uL + uR) (4.9)

w =
1

2
(wL + wR) (4.10)

where the L and R subscripts signify reconstructed values on the left and right
of the interface. These values are reconstructed using a prescribed limiter.
Then, the fluxes are calculated in an upwind fashion, for example, to calculate
(φu)n

i+ 1
2 ,j

we let

(φu)ni+ 1
2 ,j

=
(

(φu)ni+ 1
2 ,j

)+

+
(

(φu)ni+ 1
2 ,j

)−
(4.11)
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where (
(φu)ni+ 1

2 ,j

)+

=
(
φni+ 1

2 ,j

)
L
∗max(0, u) (4.12)

and (
(φu)ni+ 1

2 ,j

)−
=
(
φni+ 1

2 ,j

)
R
∗min(0, u). (4.13)

The remaining fluxes can be calculated using the same method.

4.6 Microphysics step

In this step we calculate the microphysical source terms and use them to update
ρqv, ρqc and P . Following Grabowski and Smolarkiewicz (1990) the condensa-
tion rate in a single cell over one time-step can be calculated using

Cni,j =

 (q∗∗v − q∗∗vs)(
1 + (1 + q∗∗vs/ε)

(
q∗∗vsL

n
v

cp

Lv0

RvT∗∗2

))
∆t


i,j

(4.14)

where qvs is the vapour saturation mixing ratio and

T ∗∗ =

{
θ∗∗(pn0/pref )(R/cp), PItc,p0

m

θ∗∗(pn/pref )(R/cp), PItc,p
m

(4.15)

where q∗∗v = [(ρqv)/ρ]
∗∗

and θ∗∗q =
[(

1+q
1+qv/ε

)
P/ρ

]∗∗
. The vapour saturation

mixing ratio can be calculated following Lipps and Helmer (1982) using

qvs =
εes

p0 − es
(4.16)

where the saturation vapour pressure is given by the

es = e0 exp

(
Lv0

Rv

(
1

Tref
− 1

T

))
(4.17)

with e0 = 611.0 Pa.
Using Ci,j we can now calculate the latent heat rate over one time-step as

Sni,j =

[(
Lv
cpT

)
− 1/(ε+ qv)

]n
i,j

Pni,jC
n
i,j . (4.18)

Finally, the microphysical updates are given as

(ρqv)
pred
i,j = (ρqv)

∗∗
i,j − Cni,j∆t (4.19)

(ρqc)
pred
i,j = (ρqv)

∗∗
i,j + Cni,j∆t (4.20)

P predi,j = P ∗∗i,j + Sni,j∆t (4.21)

The variables ρ∗∗, (ρu)∗∗ and (ρw)∗∗ will also be written with a “pred” super-
script since they also contain the predicted values.
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4.7 Background state update

To calculate the background state at the new time level we must first calculate
the rate of change of ptop0 over the current time-step using (3.38). This is done
as follows

(
∂ptop0

∂t

)n
=

jmax∑
j=jmin

(AV G(S)/P0)
n
j

jmax∑
j=jmin

(1/γp0)
n
j

(4.22)

where AV G is the discrete approximation of the horizontal average and is given

by AV G(·) = 1
(imax−imin)

imax∑
i=imin

(·). We then use the value calculated from (4.22)

to calculate the background velocity on the interface from (3.39) using

w0
n
j+ 1

2
=∆z

 j∑
k=jmin

(
(AV G(S)/P0)

n
k − (1/γp0)

n
k

(
∂ptop0

∂t

)n) (4.23)

The updates of ρ0 and P0 are then calculated from (3.36) and (3.37) using

(ρ0)n+1
j = (ρ0)nj +

∆t

∆z

(
(ρ0w0)nj+1/2 − (ρ0w0)nj−1/2

)
(4.24)

(P0)n+1
j = (P0)nj +

∆t

∆z

(
(P0w0)nj+1/2 − (P0w0)nj−1/2

)
+AV G(S)nj ∆t. (4.25)

Finally, we need to update the background values in the momentum equation
in the PItc,p0

m and PItc,p
m models. This is done using the following equation

(ρw)predi,j = (ρw)∗∗i,j +
∆t

2

[(
ρ0

γp0

)n+1

j

(pn − pn+1
0 )j −

(
ρ0

γp0

)n
j

(pn − pn0 )j

]
.

(4.26)

After applying (4.26) the background values in the momentum equation are
now at the correct half time level and the gravity term will now have the form(
ρ0
γp0

)n+1/2 (
pn − pn+1/2

0

)
with p remaining at time level n.

4.8 First projection

In this step the advective fluxes are corrected to satisfy the divergence con-
straints given by (2.20) and (3.41). From Klein (2009) we write a Poisson
equation which can be used to determine a cell centered pressure correction
∂pc. The gradient of this pressure correction is used to correct the fluxes in the
P equation as follows

∇ · (Pu)n+1
i,j = ∇ · (Pu)predi,j −∆t

(
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

. (4.27)
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Since the terms at n+ 1 satisfy the divergence constraint we re-write (4.27) as

β

(
Sni,j −

(
Pn+1

0 − Pn0
∆t

)
j

)
= ∇ · (Pu)predi,j −∆t

(
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

.

(4.28)

where

β =

{
0, PI, PItc

1, PItc,p0
m , PItc,p

m

(4.29)

switches between the dry and moist cases. Now using the fact that∇·(Pu)predi,j −
βSni,j = −

(
Ppred−Pn

∆t

)
i,j

due to the predictor step we get

(
P pred − Pn

∆t

)
i,j

− β
(
Pn+1

0 − Pn0
∆t

)
j

= −∆t

(
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

. (4.30)

We then solve this Poisson equation using subroutines from the HYPRE package
(see Falgout and Yang (2002)). After solving for ∂pc we write the flux update
to the P equation as

(∂(Pu) · n)i,j =

(
∆t

P pred

ρpred
(∇∂pc) · n

)
i,j

(4.31)

and then the advected variables are updated as follows

φfirstProi,j =φpredi,j +
∆t

∆x

((
∂(Pu)

φpred

P pred

)
i+ 1

2 ,j

−
(
∂(Pu)

φpred

P pred

)
i− 1

2 ,j

)

+
∆t

∆z

((
∂(Pw)

φpred

P pred

)
i,j+ 1

2

−
(
∂(Pw)

φpred

P pred

)
i,j− 1

2

)
.

(4.32)

For φ = ρ, ρu, ρw, P, ρqv, ρqc the values are now the fully corrected values since
their evolution equations do not contain pressure however, for φ = ρu, ρw the
pressure remains to be corrected and that is carried out in the second projection.

4.9 Second projection

In this final step the cell-centered momenta are corrected by an increment of the
nodal pressure in order to bring the pressure in the momentum to the correct
half time level. This pressure increment is determined again through a Poisson
equation that is derived from the divergence constraint given by (2.20) and
(3.41). Integrating the momentum equation to second order accuracy over one

28



CHAPTER 4. NUMERICAL DETAILS

time-step

(ρu)
(n+1)

= (ρu)
(n) −∆t

(
∇ · (ρu ◦ u) +∇p+ gk

(
P

θq
+ α

ρ0

γp0
(p− p0)

))(n+ 1
2 )

= (ρu)
(n) −∆t

(
∇ · (ρu ◦ u) + gk

P

θq

)(n+ 1
2 )

−∇
(
pn+1 + pn

2

)
− αgk

(
ρ0

γp0

)n+ 1
2
[

(pn+1 − pn+1
0 ) + (pn − pn0 )

2

]
= (ρu)

(n) −∆t

(
∇ · (ρu ◦ u) + gk

P

θq

)(n+ 1
2 )

−∇pn

− αgk
(
ρ0

γp0

)n+ 1
2
[

(pn − pn+1
0 ) + (pn − pn0 )

2

]
+∇

(
pn+1 − pn

2

)
− αgk

(
ρ0

γp0

)n+ 1
2 pn+1 − pn

2

= (ρu)
(n+1,firstPro) −∇

(
pn+1 − pn

2

)
− αgk

(
ρ0

γp0

)n+ 1
2 pn+1 − pn

2

= (ρu)
(n+1,firstPro) −∆t

(
∇δpN + α

(
ρ0g

γp0

)(n+ 1
2 )

δpk

)
(4.33)

where we define

δpN =
pn+1 − pn

2
. (4.34)

Multiplying (4.33) by θn+1
q

(Pu)
(n+1)

= (Pu)
(n+1,firstPro) −∆t

(
P

ρ

)n+1
(
∇δpN + α

(
ρ0g

γp0

)(n+ 1
2 )

δpNk

)
(4.35)

and then taking the divergence of (4.35) and re-arranging we get

∆t

2
∇ ·

[(
P

ρ

)n+1
(
∇∂pN + α

(
ρ0g

γp0

)(n+ 1
2 )

δpNk

)]
= ∇ · (Pu)firstPro

− β
(
Sn − P0

n+1 − P0
n

∆t

)
.

(4.36)

After solving for ∂pN on the dual cells the velocity is updated using

(ρu)n+1
i,j =(ρu)firstProi,j − ∆t

2∆x

(
(∂pNi+ 1

2 ,j+
1
2

+ ∂pNi+ 1
2 ,j−

1
2
) (4.37)

−(∂pNi− 1
2 ,j+

1
2

+ ∂pNi− 1
2 ,j−

1
2
)
)

(4.38)
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and

(ρw)n+1
i,j =(ρw)firstProi,j − ∆t

2∆z

(
(∂pNi+ 1

2 ,j+
1
2

+ ∂pNi− 1
2 ,j+

1
2
) (4.39)

−(∂pNi+ 1
2 ,j−

1
2

+ ∂pNi− 1
2 ,j−

1
2
)
)
−∆tα

(
ρ0g

p0γ

)n+ 1
2

∂p′ (4.40)

and the pressure is updated using (4.34)

pn+1 = pn + 2δp′ (4.41)

where ∂p′ =
(
∂pNi+ 1

2 ,j−
1
2

+ ∂pNi+ 1
2 ,j+

1
2

+ ∂pNi− 1
2 ,j−

1
2

+ ∂pNi− 1
2 ,j+

1
2

)
/4.

Now the pressure and the primary variables are second order accurate at the
new time level and they also satisfy the divergence constraint.
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5.1 Overview of the numerical results

In this section the performance of both the dry and moist models are examined
in a number of idealised testcases. The testcases are composed of both warm
and cold perturbations applied to a hydrostatic background state. The model
results are compared with published results of both anelastic and compressible
models. In the dry cases, the constants R and γ are equal to 287 N m kg−1 K−1

and 1.4 respectively. In the moist cases the thermodynamic constants vary and
the values for each testcase can be found in Appendix B.

5.2 Dry testcases

The aim of the dry testcases is two-fold, we wish to test the importance of the
extra buoyancy term required by thermodynamic consistency and we wish to
judge how our model compares against the reference models. To test the former
we will be running all the dry testcases with both the PI and PItc models and
to test the latter we will compare our results with the ones given in the reference
papers.

5.2.1 Dry rising bubble

The dry rising bubble testcase consists of an initially neutrally stratified at-
mosphere at rest with a warm bubble perturbation placed near the bottom of
the domain. The domain is 20km wide and 10km high with solid-wall vertical
boundary conditions and periodic horizontal boundary conditions. The hydro-
static background values are defined as in Klein (2009) and are evaluated using

θ0 = Tref

p0 = pref

(
1− γ − 1

γ

zg

RTref

) γ
γ−1

(5.1)

ρ0 =
pref
θ0R

(
1− γ − 1

γ

zg

RTref

) 1
γ−1

where Tref = 300 K, pref = 8.61× 104 Pa and g = 10 m s−2.
After initialising with the hydrostatic values a perturbation is added to the

density and potential temperature. The perturbed values are defined as in Klein
(2009) and are calculated using

θ = θ0 + dθ cos2
(π

2
r
)

ρ =
pref
θR

(
1− γ − 1

γ

zg

RTref

) 1
γ−1

 for r ≤ 1 (5.2)

where dθ = 2 K, r = 5
√

(x/L)2 + (z/L− 1/5)2 and L = 10 km. A contour plot
of the initial potential temperature can be seen in Figure 5.1.

The warm bubble is more buoyant than the surrounding air and, as expected,
it rises through the domain during the simulation. The simulation is run until
t = 1000 s and the solutions are then examined. The calculations are preformed
with CFL = 0.5 and a constant grid size in the vertical and horizontal of 125 m.
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Figure 5.1: A contour plot of the initial potential temperature perturbation at
t = 0 s for the dry rising bubble testcase where the contour interval is 0.25 K.

Figure 5.2: A contour plot of the perturbation of the potential temperature at
t = 1000 s for the dry rising bubble testcase using the PI model where the
contour interval is 0.25 K.
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Figure 5.3: A contour plot of the perturbation of the potential temperature at
t = 1000 s for the dry bubble testcase using the PItc model where the contour
interval is 0.25 K.

Figure 5.4: Horizontal cut at height 7500 m of the potential temperature in the
dry rising bubble testcase at final time t = 1000 s for the PItc model (solid)
and the PI model (dashed).
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θ′max zfront xright − xleft
REF 1.73 K ≈ 8200.0 m ≈ 6600.0 m
PItc 1.53 K 8187.34 m 6647.66 m
PI 1.54 K 8469.32 m 6278.38 m

Table 5.1: Maximum temperature perturbation θ′max, height zfront, and hori-
zontal extension xright − xleft at final time t = 1000 s for the reference model
in Klein (2009) (REF) and the PItc and PI models for the dry rising bubble
testcase.

Comparing the results at the final time t = 1000s for the PI and PItc models
in Fig. 5.2, Fig. 5.3 and Table 5.1 one can see that the PI bubble rises higher
than the PItc bubble and also its tails are closer together. These differences are
caused by a phase shift between the models and can be clearly seen in the cut
plot in Figure 5.4. Comparing the models to the reference values in Klein (2009)
in Table 5.4 we find that the TC bubble height and width at the final time is
a much better fit but our models do a worse job at conserving the potential
temperature perturbation due to, most likely, higher numerical diffusion for our
scheme.

The discrepancies in the PI model come from neglecting the effect of pres-
sure perturbations on the buoyancy. The extra buoyancy term present in the
PItc model reduces buoyancy near the top of the bubble due to an increase in
pressure near the bubble top and increases buoyancy at the two tails due to a
pressure decrease near the tails. Furthermore, the overall buoyancy of the bub-
ble decreases causing a decrease in the phase speed. Therefore the PItc bubble
is both lower and wider than the PI model and, as a result, the PItc results
resembles the reference model results more closely.

5.2.2 Density current

In the density current testcase the hydrostatic values are initialised with (5.1) as
in the rising bubble testcase except this time pref = 10×104 Pa, g = 9.81 m s−2

and this time we will apply a negative perturbation. The domain is 51.2km
wide and 6.4km high with solid-wall vertical boundary conditions and periodic
horizontal boundary conditions. We use the same perturbation defined in Straka
et al. (1993) which is given by

dT = −15(1 + cos(πr))/2 K for r ≤ 1 (5.3)

where r =
√

(x/2L)2 + ((z − zc)/L)2, L = 2 km and zc = 3 km. The potential
temperature perturbation and the density perturbation are then calculated us-
ing (2.4) and (2.5). A plot of the initial potential temperature perturbation is
presented in Figure 5.5. The calculations are preformed with CFL = 0.5 and a
constant grid size in the vertical and horizontal of 50 m. In addition, an artificial
diffusion term given by ρµ∇2u is added to the momentum equation (2.19) (and
ρµ∇2θ is added to the P equation) with µ = 75m2 s as in Straka et al. (1993).

The cold bubble is less buoyant than the surrounding air and it falls through
the domain during the simulation. Once it hits the bottom boundary the mo-
ment of the bubble caries along the bottom of the domain on both the left and
right directions.
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The progression of the PI and PItc runs at t = 300s, 600s and 900s are given
in Figure 5.7 and Figure 5.8 respectively. The plots are nearly indistinguishable
and it is only when the we examine the variable values in Table 5.2 and the
plots in Figure 5.6 that differences can be seen. In contrast to the rising bubble
case, the extra buoyancy term in the PItc model results in an overall increase in
the buoyancy of the bubble. This means that the bubble falls slower in the PItc

case and, as a result, does not travel as far as the PI bubble. Although it is not
obvious from Table 5.2 which model performs better in the work presented in
Benacchio et al. (2014) PItc was shown to perform much better than PI when
compared with a compressible model which utilises the same numerics as the
PItc model.

Figure 5.5: A contour plot of the initial potential temperature perturbation in
the density current testcase where the contour interval is 1 K.

θ′max xfront

REF -9.77 K 15537.44 m
PItc -9.98 K 15455.57 m
PI -9.80 K 15675.83 m

Table 5.2: Maximum temperature perturbation θ′max and front position xfront

at the final time T = 900 s for the density current testcase. Where xfront is the
rightmost intersection of the 1 K contour with the bottom boundary

Figure 5.6: Horizontal cut at height 1200 m of the potential temperature per-
turbation in the density current testcase at final time t = 900 s for the PItc

model (solid) and the PI model (dashed).

36



CHAPTER 5. NUMERICAL RESULTS

Figure 5.7: Contour plots of the potential temperature perturbation in the
density current testcase for the PI model at t = 300 s (upper), t = 600 s
(middle) and t = 900 s (bottom) where the contour interval is 1 K .
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Figure 5.8: Contour plots of the potential temperature perturbation in the
density current testcase for the PItc model at t = 300 s (upper), t = 600 s
(middle) and t = 900 s (bottom) where the contour interval is 1 K.

5.2.3 Inertia gravity wave

As outlined in Skamarock and Klemp (1994) the inertia gravity wave testcase
consists of a stably stratified atmosphere with a vertically varying potential
temperature and a constant horizontal velocity. The domain is 30 km wide and
10 km high with periodic horizontal boundaries and solid wall upper and lower
boundaries. The potential temperature stratification is given by

∂θ0

∂z
=
N2

g
(5.4)

where N = 0.01 s−1 is the Brunt–Väisälä frequency and g = 9.81 m s−2. Inte-
grating (5.4) in the vertical direction we get the initial condition for hydrostatic
potential temperature

θ0 = θgnd exp

(
N2

g
z

)
(5.5)
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where θgnd = 288.15 K is the value at the bottom boundary. Using (5.5) and
(2.9) the initial hydrostatic density and pressure can be defined as

p0 = pref

[
1− g

cpθ0S
(1− exp(−Sz))

] γ
γ−1

(5.6)

ρ0 =
pref
θ0R

[
1− g

cpθ0S
(1− exp(−Sz))

] 1
γ−1

(5.7)

where pref = 8.61 × 104. A perturbation outlined in Skamarock and Klemp
(1994) is applied and is given by the equation

θ = θ0 + dθ sin(πz/H) (5.8)

where dθ = 0.01/(1 + (x − xc)/a2), xc = 100 km, a = 5 km and H = 10 km.
A contour plot of the initial potential temperature perturbation can be seen
in in Figure 5.9. A constant horizontal velocity of 20 m s−1 and a zero vertical
velocity were applied and the simulations are run with CFL = 0.3 and a constant
250 m grid spacing in both the horizontal and vertical directions. During the
running of the testcase the potential temperature perturbation propagates in a
wave-like manner in both the positive and negative x-directions and the results
are examined at the final time t = 3000s.

Conversely to the previous two testcases this testcase is wave rather than
buoyancy driven and, as a result, there is less of a variation between the PItc and
PI models as seen from Figure 5.10 and Figure 5.11. However, differences can
be seen when we compare the maximum and minimum of the model variables as
shown in Table 5.3. Comparing these values to the reference results from Restelli
and Giraldo (2009) we can see that the PItc has a much better agreement.
Also, both the PItc and PI models show better conservation properties than
the reference model shown in Table 5.4 however this is most likely a result of a
difference in numerical schemes.

Figure 5.9: A contour plot of the initial potential temperature perturbation for
the inertia gravity wave testcase where the contour interval is 10−3 K.
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u′max u′min w′max w′min θ′max θ′min π′max π′min

REF 1.064E-2 -1.061E-2 2.877E-3 -2.4E-3 2.808E-3 -1.511E-3 9.11E-7 -7.13E-7
PItc 1.063E-2 -1.063E-2 2.645E-3 -2.424E-3 2.808E-3 -1.526E-3 1.180E-6 -6.557E-7
PI 1.365E-2 -1.362E-2 2.763E-3 -2.471E-3 2.930E-3 -1.709E-3 1.210E-6 -5.36E-7

Table 5.3: Table of maxima and minima of horizontal velocity perturbations,
vertical velocity, potential temperature and Exner pressure at final time t =
3000 s for models PItc, PI and the reference values from Restelli and Giraldo
(2009) (denoted with REF) for the inertia-gravity waves testcase.

Cρ Cρu CP CρE

PItc 6.77E-10 9.66E-10 \ 3.99E-09
PI 8.90E-10 8.55E-10 \ 4.21E-09

REF 1.67E-08 2.6E-07 \ 1.64E-08

Table 5.4: Table of conservation errors in the inertia gravity waves testcase for
density, horizontal momentum density, P and total energy density for the PItc

and PI models and the reference values (REF) in Restelli and Giraldo (2009).

Figure 5.10: Contour plots of the potential temperature perturbation at t =
3000 s for the inertia gravity wave testcase for the PItc model (top) and the PI
model (bottom) where the contour interval is 5× 10−4 K.
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Figure 5.11: Horizontal cut at height 1200 m of the potential temperature per-
turbation in the inertia gravity waves testcase at final time t = 900 s for the
PItc model (solid) and the PI model (dashed).

5.3 Moist testcases

In the first of the moist testcases we will examine how our the PItc,p0
m model

performs against a compressible reference model in a standard benchmark test-
case. Whereas, in the second moist testcase we will investigate the effect of the
pressure choice in the microphysics by comparing the PItc,p0

m and PItc,p
m models.

5.3.1 Moist bubble

To test the accuracy of the moist model we will utilise the moist benchmark
simulation proposed in Bryan and Fritsch (2002). This testcase was previously
implemented by the author using the PIp0m model in O’Neill and Klein (2013).
In the present work we will examine how the PItc,p0

m model preforms and observe
the possible differences between present results and the ones outlined in O’Neill
and Klein (2013).

The benchmark testcase consists of a saturated and neutrally stratified hy-
drostatic atmosphere at rest with an initially constant value for the total water
mixing ratio of 0.02 and a constant base value for the wet equivalent potential
temperature θe of 320 K where θe is defined as as

θe = T

(
pd
pref

)−R/(cp+cpcq)

exp

(
Lvqv

(cp + cpcq)T

)
(5.9)

which is taken from Emanuel (1994). The domain is 20 km wide and 10 km
high with solid-wall boundary conditions.

A perturbation of warm air is placed near the bottom of the domain and is
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given as

θ
′

= 2 cos2

(
πR

2

)
(5.10)

where

R =

√(
x

xr

)2

+

(
z − z0

zr

)2

, (5.11)

z0 = 2.0 km and xr = zr = 2.0 km. Using equations (3.12), (3.40), (4.16) and
(5.9) we can calculate the vertical profiles of ρ, p, θq, qv and qc in an iterative
fashion given our prescribed values for q and θe.

In Bryan and Fritsch (2002) four different compressible equation sets are
used. To make a comparison we will look at the one which most closely resembles
our own model assumptions which is the one labelled set A. This set uses the
same governing equations and evolution equation for potential temperature as
were used to derive our PItc,p0

m model and are given by the equations (3.6) and
(3.8).

In the original paper the plots of θe and the vertical velocity are used to
test model validity and here we will do the same. Below the plots produced
from the PItc,p0

m model can be seen in figures (5.12) and (5.13). These figures
were produced using CFL = 0.5 with an upper timestep limit of 5 s and using a
100 m grid spacing in the horizontal and vertical directions.

Figure 5.12: A contour plot of the perturbation of the wet equivalent potential
temperature at t = 1000 s for the PItc,p0

m moist bubble simulation where the
contour interval is 0.5 K, the grid spacing is 100 m and the zero contour is
omitted.
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Figure 5.13: A contour plot of the vertical velocity at t = 1000 s for the PItc,p0
m

moist bubble simulation where the contour interval is 2 m s−1 and the grid
spacing is 100 m.

These results compare well qualitatively with those in the original paper
Bryan and Fritsch (2002), but there are some differences as seen in Table 5.5.
Our bubble top rises to about 6.95 km which is slightly higher than the height
reached in the original paper of about 6.9km. Looking at the maximum and
minimum values we can see that between the wet equivalent potential tempera-
ture perturbations there is a variation of about 14% in the case of the maximum
values and a 4% variation in the case of the minimum values and between the
vertical velocities there is about a 12% variation in the maximum values and
a 10% variation in the minimum values compared to the values in the original
paper.

Comparing the the PItc,p0
m and PIp0m model results in Table 5.5 we can see

a negligible difference between the maximum and minimum values of θe and
w but, as for the dry rising bubble testcase in Section 5.2.1, the PItc,p0

m shows
improved results for the both the bubble height and bubble width.

There are many differences in our numerics which could account for the
discrepancies between our results and the ones presented in Bryan and Fritsch
(2002). For example, our equations are solved in conservation form unlike those
in the original paper, our codes use different functions to calculate the conden-
sation rate numerically and they have different advection schemes.

In Straka et al. (1993) various models were shown to have large variations
in performance when the grid resolution is changed. This illustrated that the
numerics have a large role to play in model output. In our case, when we ran the
model with a 50% higher grid spacing of in the horizontal and vertical directions
(i.e. a grid spacing of 50 m) we found that the maximum and minimum values
had much better agreement and some of the qualitative differences in the vertical
velocity plot were corrected as shown in Figures (5.14), (5.15) and Table 5.5.
In light of this, we can see that even small adjustments to the numerics can
influence the overall result and our plots and the ones contained in Bryan and
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Fritsch (2002) compare well considering their many numerical differences.

Figure 5.14: A contour plot of the perturbation of the wet equivalent potential
temperature at t = 1000 s for the PItc,p0

m moist bubble simulation where the
contour interval is 0.5 K, the grid spacing is 50 m and the zero contour is
omitted.

Figure 5.15: A contour plot of the vertical velocity at t = 1000 s for the PItc

moist bubble simulation where the contour interval is 2 m s−1 and the grid
spacing is 50 m.
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θ′max θ′min wmax wmin zfront xright − xleft
REF 2.14 K -1.4 K 11.88 m s−2 -7.23 m s−2 6.9 km ≈ 2.2 km

PItc,p0m 1.85 K -1.35 K 10.41 m s−2 -6.51 m s−2 6.95 km 2.24 km

PItc,p0m high-res 2.05 K -1.37 K 11.71 m s−2 -7.78 m s−2 7.02 km 2.26 km
PIp0m 1.84 K -1.4 K 10.96 m s−2 -6.7 m s−2 7.1 km 1.96 km

Table 5.5: Table of the maximum and minimum perturbations of potential
temperature, vertical velocity and the bubble height zfront and bubble width
xright − xleft at final time T = 1000 s for the moist bubble testcase for the
reference results in Bryan and Fritsch (2002) (REF), our PItc,p0

m results, our
results at a higher resolution (PItc,p0

m high-res) and the results in O’Neill and
Klein (2013) (PIp0m ).

5.3.2 Moist thermal in stratified environment

In the moist thermal testcase we will examine the effect of the pressure choice in
the microphysical numerics as in Kurowski et al. (2013). Unlike all the previous
simulations the results presented here are the preliminary results and, as such,
represent a work-in-progress.

The hydrostatically balanced initial profiles of potential temperature, tem-
perature and pressure are taken from Grabowski and Clark (1991) and are
written as

θ0 = θ00 exp(Sz) (5.12)

T0 = θ00 exp(Sz)

[
1− g

cpθ0S
(1− exp(−Sz))

]
(5.13)

p0 = p00

[
1− g

cpθ0S
(1− exp(−Sz))

]cp/R
(5.14)

where S = 1.3 × 10−5m−1, θ00 = 296.46 K and p00 = 850 hPa. The mixing
ratios are calculated from T and p by assuming a constant relative humidity
of 20% and the velocities are initially zero. The domain is 3.8 km wide, 4 km
high and a constant grid-box size of 10 m is used in both the vertical and
horizontal directions. Unlike the testcase presented in 5.3.1 the initial state
here is unsaturated and it is not defined in terms of the wet equivalent potential
temperature. In general, this is arguably a more realistic testcase than the one
presented in the previous section.

The initial temperature perturbation is constrained to a 300m radius which
is centered horizontally and whose center is at a height of 800m from the base
of the domain. The air within 200m of the bubble center is saturated and the
relative humidity gradually approaches the background value as we go farther
from the center. We define the perturbation as

qv = qvs, 0 ≤ r ≤ 200m
qv =

[
0.2 + (1− 0.2) cos2

(
π
2

(
r−200

100

))]
qvs, 200m ≤ r ≤ 300m

θ = θ0 + dθ, 0 ≤ r ≤ 200m
θ =

[
θ0 + dθ cos2

(
π
2

(
r−200

100

))]
qvs, 200m ≤ r ≤ 300m

(5.15)

where dθ = {0.5 K, 5 K, 50 K} and qvs is calculated using (4.16). Finally, the
density is calculated from θ, p and qv using the equation of state given by (3.23).
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A table of the timestep used for each perturbation size for CFL = 0.9 is
given in Table 5.6. For each of the three perturbation sizes our models are able
to utilize bigger timesteps than the anelastic model presented in Kurowski et al.
(2013) with the difference increasing with the increasing perturbation size. This
is as expected as the pseudo-incompressible approximation has been shown to
have greater validity than the analestic approximation for large temperature
perturbations, see Durran (1989) and Klein et al. (2010).

0.5 K 5 K 50 K

PItc,p0m , PItc,pm ∆tmax 74 s 23 s 2 s

PItc,p0m , PItc,pm ∆t 2.26 s 0.88 s 0.25 s
REF ∆t 2.0 s 0.5 s 0.02 s

Table 5.6: Timestep choices for the PItc,p0
m and PItc,p

m models and the reference
anelastic model taken from Kurowski et al. (2013) (REF). The PItc,p0

m and PItc,p
m

∆t is an average of the utilised variable timestep.

The simulation results are shown in the contour plots in Figures 5.16-5.18
and the timeseries plots in Figures 5.19-5.22. Note, the tick marks in the con-
tour plots were chosen to match those of Kurowski et al. (2013). Some observa-
tions that are immediately apparent when the plots are compared with those in
Kurowski et al. (2013) are that our qt contour plots contain much more small
scale details, much more contour levels and, also, our bubbles rise to a much
lower height. The differences between our results are thought to originate from
the many uncertainties in the initial condition set-up of the testcase, e.g. con-
stant values and pressure initialisation. A number of these uncertainties are
outlined in Appendix C. It is also important to note that the plots for the 50K
runs for the PIpm model are not shown due to the fact that the pressure becomes
unstable during the simulation. This could mean that only the PIp0m model is
applicable for a large potential temperature perturbations and it may indicate
a potential weak point in our model.

However, there are some encouraging aspects to the results. For example, al-
though the bubble height is, in general, too low, the contour plots of p and w and
the timeseries plots look qualitatively similar to the original plots. Also, we are
now able to run our model, at least for reasonable temperature perturbations,
using the full pressure in the microphysics.
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Figure 5.16: Contour plot of the total mixing ratio q for the moist thermal
testcase with a 0.5 K (top, contour interval 0.25, t = 950 s), 5 K (middle, contour
interval 0.5, t = 300 s) and 50 K (bottom, contour interval 0.12, t = 95 s) initial
perturbation for the PItc,p0

m model (left) and the PItc,p
m model (right).
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Figure 5.17: Contour plot of the pressure perturbation for the moist thermal
testcase with a 0.5 K (top, contour interval 0.5, t = 475 s), 5 K (middle, contour
interval 4, t = 150 s) and 50 K (bottom, contour interval 60, t = 47.5 s) initial
perturbation for the PItc,p0

m model (left) and the PItc,p
m model (right). Solid

lines correspond to positive values and the dashed lines correspond to negative
values.
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Figure 5.18: Contour plot of the vertical velocity for the moist thermal test-
case with a 0.5 K (top, contour interval 0.5, t = 475 s), 5 K (middle, contour
interval 1, t = 150 s) and 50 K (bottom, contour interval 5, t = 47.5 s) initial
perturbation for the PItc,p0

m model (left) and the PItc,p
m model (right). Solid

lines correspond to positive values and the dashed lines correspond to negative
values.
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Figure 5.19: Timeseries for the minimum pressure perturbation for the moist
thermal testcase with a 0.5 K (top), 5 K (middle) and 50 K (bottom) initial
perturbation for the PItc,p0

m model (dashed) and the PItc,p
m model (solid).
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Figure 5.20: Timeseries for the maximum pressure perturbation for the moist
thermal testcase with a 0.5 K (top), 5 K (middle) and 50 K (bottom) initial
perturbation for the PItc,p0

m model (dashed) and the PItc,p
m model (solid).
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Figure 5.21: Timeseries for the total mixing ration barycenter for the moist ther-
mal testcase for each initial potential temperature perturbation for the PItc,p0

m

model (dashed) and the PItc,p
m model (solid).

Figure 5.22: Timeseries for the maximum vertical velocity for the moist thermal
testcase for each initial potential temperature perturbation for the PItc,p0

m model
(dashed) and the PItc,p

m model (solid).
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CHAPTER 6. SUMMARY

In the preceding pages two extensions to the pseudo-incompressible model
are proposed. These extensions are: 1) an alternate form of the model’s mo-
mentum equation which is written in terms of p and ρ rather than π and θ while
retaining thermodynamic consistency and 2) the inclusion of phase changes and
diabatic terms.

The alternate “thermodynamically consistent” form of the equations, which
was first presented in Klein and Pauluis (2011), is implemented numerically and
examined in several testcases. In this form an extra buoyancy term which is
dependent on the pressure perturbations is required in order to ensure the mo-
mentum equation preserves all terms up to first order in p′. To examine the im-
portance of this term we compared the performance of a pseudo-incompressible
model which includes this term and one which disregards it on a number of
standard testcases by inspecting, e.g., several contour plots and indicative val-
ues such as maximum potential temperature perturbation and bubble height at
the final time. We found that by retaining the pressure perturbation depen-
dence in the gravity term in the momentum equation the model shows a much
better agreement to published compressible results for the same testcases. This
was, not surprisingly, particularly important in the buoyancy driven testcases
where when the extra term was neglected the bubbles were found to rise too
quickly and to a greater height. In the inertia gravity wave testcase the differ-
ence between the models was minimal as buoyancy was no longer the driving
factor. Further analysis of these results and a comparison with a compressible
model which utilises the same numerics is presented in Benacchio et al. (2014).

Whether or not the PItc equation set performs better than the standard
form of the pseudo-incompressible model (or the anelastic model) remains to be
examined. However, since the models agree up to first order in p′, little variation
is expected. The only apparent advantage in the dry case is that in our equation
set the pressure term in the momentum equation is written in conservative form
but this advantage could be negated as a result of our extra buoyancy term.

In deriving the PItc model we have assumed that the pressure perturba-
tions are small but unlike the anelastic equations no constraint was imposed on
the size of the potential temperature or density variations. The assumption of
small potential temperature and density variations is generally valid for moist
atmospheric processes and as a result the PItc model may be expected to be
superior to an anelastic model only in specific cases. For example, in cases of
deep convection and in the presence of baroclinic waves due to the retention of
the baroclinic vorticity production term (see page 33 in Cotton et al. (2011)).

The second main development was to derive a moist thermodynamically con-
sistent pseudo-incompressible model which includes phase changes and diabatic
terms. The addition of diabatic terms requires adjustments to the divergence
constraint not seen in the more common anelastic model. Borrowing and adapt-
ing ideas from Almgren et al. (2008), these issues were tackled by allowing the
background state to vary in time and then deriving a set of equations govern-
ing the evolution of the background variables. The foundation of this model is
presented in O’Neill and Klein (2013) and here we developed it further to also
be thermodynamically consistent by following similar methods to the dry case.

Although the derivation of the PItc model was motivated by the findings
contained in Almgren et al. (2008) there are some notable differences between
the models. In Almgren’s work an outflow top boundary is used whereas here
we have given a method which is able to impose solid-wall boundary conditions.
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Another difference is that we have kept the coefficient in the divergence con-
straint in a physically meaningful form and did not have to result writing it
as an integral. This is due to the fact that the γ in the definition of potential
temperature is constant. However, the coefficient will have to be written in a
similar integral form when a non-constant γ is required.

The moist model was shown to perform well against a compressible model
for the idealized bubble testcase presented in Bryan and Fritsch (2002). To
compare the models contour plots of the vertical velocity and wet equivalent
potential temperature are examined. The plots compare well and the extension
to thermodynamic consistency was shown to solve the issues of incorrect bubble
height and width found in O’Neill and Klein (2013). However, discrepancies in
the form of the vertical velocity plot still remain but this variation is thought
to stem more from the numerics than the choice of the model equations.

In the second moist testcase the effect of the pressure choice on the conden-
sation rate calculation is examined using moist thermal testcase presented in
Kurowski et al. (2013). Unlike the other testcases this aspect remains a work
in progress and, as of yet, there is not a good agreement between our model
results and the reference anelastic and compressible model results. We remain
unsure whether this is a model error or an error in the testcase set-up and more
investigation is required. However, these preliminary results point to both an
advantage and weak point in our model. The advantage is that we are able
to run at much higher timesteps, particulary for larger potential temperature
perturbations, than the anelastic and compressible models. The disadvantage
is that unlike the reference anelastic model the PIpm model breaks down for the
largest potential temperature perturbation and this could mean that only the
PIp0m model is applicable to perturbations of this size. Though, until issues with
the testcase are solved these preliminary results remain speculative.

In this work we have laid the foundation of the dry and moist thermodynam-
ically consistent models and it is the aim of further work to take advantage of
the unique features the models possess, namely, the usage of large timesteps in
situations with large potential temperature perturbations and to have a sound-
proof model which can be used with non-constant heat capacities. The first
advantage is already available in the dry case and will be realised in the moist
case once the issues with the moist thermal simulation have been resolved. The
second advantage will be realised once the model is extend to include more
complex equations of state with non-constant values for γ. To reach the latter
goal there are two suggested paths: 1) to follow the methods of Almgren et al.
(2008) more closely as stated above or 2) to utilise a variable other than P , i.e.
the Enthalpy, as the central point of our derivation.

In its present state, however, the model remains of great theoretical interest
and gives us further insight into the intricate and interwoven world of soundproof
models.
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Appendix A

Background density choice
in the moist model

Contrary to ρ0 in our moist model the model presented in Almgren et al. (2008)
defines ρ0 as the horizontal average of ρ such that

ρ = ρ0 + ρ′ (A.1)

where ρ′ = 0. By writing the density in this way one can derive an evolution
equation for ρ0 by simply taking the average of (3.1) to get

(ρ0)t +
∂

∂z

(
ρ0w0 + ρ′w̃

)
= 0 (A.2)

which is equivalent to Almgren et al. (2008) equation (29). This is more general
than assuming that ρ0 satisfies the conservation of mass as we did in (3.25). In
Almgren et al. (2008) they state that in cases with large rates compositional
changes failing to define ρ0 as an average can lead to “ loss of physical fidelity
over time”. However, it remains to be tested whether or not defining ρ0 as an
average in our model will yield improved results.
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Moist variable definitions

Definition of constants for the two moist testcases shown in section 5.3.

B.1 Moist rising bubble constants

A list of the constants taken from Bryan and Fritsch (2002) and used for the
testcase in section 5.3.1

g = 9.81 m s−2 - Acceleration due to gravity

pref = 1.0× 105 Pa - Reference pressure

Tref = 273.15 K - Reference temperature

R = 287 J kg−1 K−1 - Gas constant of dry air

Rv = 461 J kg−1 K−1 - Gas constant of water vapor

cp = 1004.0 J kg−1 K−1 - Specific heat of dry air at constant pressure

cpv = 1885 J kg−1 K−1 - Specific heat of water vapor at constant pressure

cpc = 4186 J kg−1 K−1 - Specific heat of cloud water at constant pressure

cv = 717 J kg−1 K−1 - Specific heat of dry air at constant volume

Lv0 = 2.5× 106 J kg−1 - Latent heat of vaporisation reference value

Lv = Lv0 − (cpc − cpv) (T − Tref ) - Latent heat of vaporisation
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B.2 Moist thermal constants

A list of the constants taken from Kurowski et al. (2013) and used for the
testcase in section 5.3.2

g = 9.80616 m s−2 - Acceleration due to gravity

pref = 1.0× 105 Pa - Reference pressure

Tref = 273.16 K - Reference temperature

R = 287.04 J kg−1 K−1 - Gas constant of dry air

Rv = 461 J kg−1 K−1 - Gas constant of water vapor

cp = 1004.0 J kg−1 K−1 - Specific heat of dry air at constant pressure

cpv = 1885 J kg−1 K−1 - Specific heat of water vapor at constant pressure

cpc = 4186 J kg−1 K−1 - Specific heat of cloud water at constant pressure

cv = 717 J kg−1 K−1 - Specific heat of dry air at constant volume

Lv = Lv0 = 2.53× 106 J kg−1 - Latent heat of vaporisation
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Moist thermal initial
condition uncertainties

At the time of writing there are several uncertainties in the exact model set-up
outlined in Grabowski and Clark (1991) and utilised in Kurowski et al. (2013).
For example, through personal communication with the author it became ap-
parent that the reference pressure and the base pressure intentionally do not
match (p00 = 850 hPa and pref = 1000 hPa). However, when initialised with
the same value for both p00 and pref a much better agreement in the initial
values for qt is achieved (these values correspond to the contours intersecting
with the vertical axes in Figure 5.16).

Also, through further personal communication it became known that there
is a difference between the temperature initialization in Grabowski and Clark
(1991) and Kurowski et al. (2013). The former uses the (5.13) for the tempera-
ture initialisation whereas the latter uses

T0 = θ00 exp(Sz)

[
1− g

cpT00S
(1− exp(−Sz))

]
(C.1)

with T00 in the brackets instead of θ00. However, when this change was imple-
mented no improvement was seen in the results.
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Zusammenfassung

Die Atmosphärenströme definieren sich durch Prozesse auf unterschiedlichsten
zeitlichen wie räumlichen Skalen. Diese Prozesse können mit den “kompress-
iblen” Navier-Stokes Gleichungen modelliert werden. Es ist anzunehmen, dass
eine Nichtberücksichtigung von Schallwellen zu numerischen Vereinfachungen
führt. Dies ist auch von theoretischem Interesse. Speziell unter schallfreien
Bedingungen wurde eine Reihe von Gleichungen entwickelt, sog. “schallfreie
Gleichungen”, welche das Problem der Schallwellefilterung lösen.

Ein Lösungsweg beschreibt die “pseudo-inkompressiblen Gleichungen”, welche
der Fokus dieser Arbeit darstellt. Die pseudo-inkompressible Annäherung definiert
die Dichte als eine Funktion von hydrostatischem Druck und Temperatur. Diese
Annäherung resultiert in einer Divergenz-Gleichung, die, im Gegensatz zur
Evolutions-Gleichung, Schalleffekte im Modell vernachlässigbar macht.

Die Studie entwickelt die pseudo-inkompressible Annäherung in zwei Rich-
tungen weiter: 1) Implementierung einer “thermodynamisch konsistenten” Form
in die pseudo-inkompressiblen Gleichungen und 2) die Expandierung des Mod-
ellraums, um diabetische Terme und Phasenübergange modellieren zu können.

Die numerische Implementierung der “thermodynamisch konsistenten” Form
und der Modellexpandierung stellt eine “in-house” Entwicklung von pseudo-
inkompressiblen Finite-Volumen-Routinen dar. Nach der Implementierung wer-
den standardisierte Teststudien durchgeführt und die Ergebnisse mit anderen
Modellen verglichen.
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