
Architecture-Independent Distributed Query Processing

Hannes Fabian Mühleisen

Dissertation submitted to the

Department of Mathematics and Computer Science

Freie Universität Berlin

MMXII

Advisor: Prof. Dr.-Ing. Robert Tolksdorf

Second Advisor: Prof. Dr. Wolfgang Nejdl

Defended: December 7th, 2012

Contents

1 Introduction 7

2 Distributed Storage – Architectures and Interfaces 15

2.1 Goals and Dimensions . 16

2.1.1 Scalability . 20

2.1.2 Consistency . 21

2.1.3 Availability . 21

2.1.4 Performance / Cost Ratio . 22

2.2 System Architectures . 23

2.2.1 Centralized Architectures . 24

2.2.2 Structured P2P Architectures . 26

2.2.3 Unstructured P2P Architectures . 29

2.2.4 Architecture Comparison . 31

2.3 Data Models and Access Methods . 32

2.3.1 File Systems . 32

2.3.2 Relational Databases . 33

2.3.3 Key/Value Stores . 34

2.3.4 RDF Storage Systems . 36

2.4 Distributed Query Processing – State of the Art . 37

2.4.1 Structured P2P Query Processing . 39

2.4.2 Unstructured P2P Query Processing . 42

2.5 Summary and Conclusions . 43

3 Architecture, Data and Query Models 47

3.1 Network Model . 48

3.2 Coordination Model – Probabilistic Routing . 49

3.2.1 Generic Retrieval Process . 50

3

Contents

3.2.2 Retrieval Guarantees and Accuracy . 53

3.2.3 Stochastic Analysis . 55

3.3 Data Model . 58

3.3.1 Local Storage Interface on Nodes . 60

3.4 Data Distribution Scheme . 60

3.5 Query Model . 64

3.5.1 Selection . 66

3.5.2 Projection . 67

3.5.3 Equi-Join . 67

3.6 Summary . 68

4 Distributed Query Processing with Mutable Moving Query Plans 69

4.1 Assumptions and Preconditions . 71

4.2 Procedural Overview . 72

4.3 Cost Model – Future Costs and Required Investment 75

4.3.1 Shipping Cost . 76

4.3.2 Size and Distance Heuristics . 77

4.3.3 Future Size and Required Investment . 77

4.3.4 Cost Estimation Example . 79

4.4 Algorithmic Descriptions . 80

4.4.1 Plan Enumeration . 84

4.5 Failure Recovery . 86

4.5.1 Misrouted Operations . 87

4.5.2 Node or Network Failure . 88

4.6 Abstraction and Efficiency Analysis . 90

4.6.1 Stochastic Analysis . 91

4.7 Summary and Conclusions . 93

5 Verification Methodology and Experiments 95

5.1 Verification Methodology . 96

5.2 Test Environment . 97

5.2.1 Routing Heuristic . 98

5.2.2 Distance and Size Heuristic . 98

5.2.3 Data Set and Test Queries . 99

5.3 Single-Element Retrieval . 100

4

Contents

5.4 Complex Query Processing with MMQP . 105

5.4.1 Query Evaluation Effectiveness . 106

5.4.2 Component Effectiveness . 107

5.4.3 Network Size Impact . 110

5.4.4 Evaluation Efficiency . 113

5.4.5 MMQP Environment and Parameter Impact 116

5.5 Summary and Conclusions . 118

6 Conclusion 119

A Appendix 123

A.1 TPC-H Schema, Queries and Translation . 123

A.1.1 Query 3: Shipping Priority . 124

A.1.2 Query 5: Local Supplier Volume . 126

A.1.3 Query 10: Returned Item Reporting . 129

A.2 Experimental Environment and Results . 130

A.2.1 Single-Element Retrieval Experiment . 131

A.2.2 Query Evaluation Effectiveness Experiment 132

A.2.3 Component Effectiveness Experiment . 133

A.2.4 Parameter Impact Experiment . 134

A.2.5 Evaluation Efficiency Experiment . 136

References 138

Bibliography . 138

List of Figures . 150

5

Contents

6

1 Introduction

In recent years, the volume of data that is stored and processed has outgrown even wild

expectations. To handle these amounts of data, immense computing and storage capacities

are required. The long and successful history of supercomputers that can provide this level of

performance has shown that such systems can indeed be built and maintained. However, the

actual installations of these systems have been scarce due to the high costs connected with

their operation. In the meantime, scale effects, technological advances and fierce competition

have driven down these costs for smaller, “Desktop”-class computers. For a fraction of the

cost of a supercomputer one can instead operate a large amount of these smaller computers,

which – in sum – provide the same computing and storage capacities.

But therein lies a problem: A supercomputer uses sophisticated, fast and reliable tech-

nologies to internally distribute computation and storage, whereas large amounts of smaller

systems operate fully independently, and are only equipped with slow, unreliable commu-

nication media. To beat the supercomputer, a plethora of mechanisms to co-ordinate tasks

between them have been proposed and successfully implemented. Distributed systems based

on cost-effective hardware were successful in driving down costs for large-scale computing

needs. For example, they are a crucial precondition for maintaining a search index of the

entire web solely financed by advertisement.

Being able to store ever-increasing amounts of data is a crucial precondition for many

scientific and industrial applications. Building distributed storage systems out of smaller

machines using coordination mechanisms was therefore a obvious development. However, it

is impossible to create one single coordination mechanism for all challenges in distributed

storage. Of course, we expect a system to excel in a multitude of dimensions at the same time.

In the case of distributed storage systems main goals include the possibility to be expanded

7

1 Introduction

without much hassle, to be reliable in operation, to provide high performance in data access,

and the ability to adapt to new situations. Unfortunately, it has been conclusively shown that

these goals compete among themselves, and any specific approach can only represent a trade-

off between them. Starting from the requirements of individual organization, a large number

of distinct mechanisms have appeared. These mechanisms range from being managed on a

central location to “democratic” or fully distributed models, where each participating node

takes part in the creation of a coordination mechanism.

Being able to store data in a storage system is not useful without a way of accessing the

stored data. As applications became more complex, so did the access methods to their data.

Retrieving data from such a system by – for example – a file name was acceptable in the

past. Today, this concept grew more and more out of proportion with expectations, especially

as system designers tried to incorporate more and more concepts from the database world,

with its deeply structured data model and complex query models. However, while viable

solutions to provide these concepts exist for single machines, distributing them has proved to

be difficult to say the least. Therefore, the support for complex queries has deliberately been

omitted, especially in fully distributed storage systems.

Motivation and Research Problems

Support for fine-grained access to data held in distributed storage through complex queries

is not a nice-to-have feature, but a necessity. Therefore, further research on the nature

of distributed storage and on the possibilities for complex queries is required. However,

previous and ongoing research is often tied to specific coordination methods. But therein lies

a problem, as an infinite number of coordination models is conceivable, and no year passes

without a new approach being proposed. Unfortunately, due to the close ties of previous

proposals for complex query support with their coordination mechanism, they cannot be

readily applied to the new model. Predicting their feasibility and efficiency of support for

complex queries is difficult or even impossible for new models.

The main goal of this thesis is to separate query processing from the coordination model.

We are trying to find a solution that intentionally ignores all the particularities of the specific

8

coordination model. This way, we can research distributed query processing from an abstract

viewpoint, enabling us also to make observations and develop methods that are applicable

to many models and systems. However, achieving effectiveness is not the only goal. In a

connected network, all data can be found by flooding a request to every node. Unfortunately,

the number of messages required here increases at least linear to the network size. In

the literature, a logarithmic relationship between required messages and network size is

considered to be desirable. Therefore, we will also investigate what the minimal requirements

for this behavior are in our problem space.

The first research problem for this thesis is therefore to abstract from a specific mechanism

and instead define a high-level model and coordination mechanism for distributed storage

systems. This model is aimed to encompass the main classes of coordination mechanisms

previously proposed. The research question here is if we are able to provide an abstract

model that contains a good compromise between simplicity and complexity and whether this

model exhibits sufficient performance to support higher-level algorithms.

Based on this model, the second research problem then is to develop a baseline method to

provide a fine-grained access through complex queries to the stored data. The main questions

here are whether it is possible at all to provide complex query processing on all data in an

abstract distributed system. If so, the question of whether this method is efficient enough to

be applicable is raised immediately. A major goal here is therefore to describe a notion of

efficiency not in an absolute way, but dependent on the properties of the environment, which

our underlying network model abstracts.

Contributions of the Thesis

Aiming at finding solutions for our research problems, we contribute an abstract network and

coordination model for distributed systems in general. This model is based on probabilistic

behavior. We show how this model can be implemented by representatives of the main

classes of distributed systems architectures, thereby confirming its flexibility. We also

develop a structured data and query model that does not rely on central schema knowledge,

thereby being perfectly suited for distributed environments. Based on these models, our

9

1 Introduction

main contribution is a method for distributed complex query processing as well as a set of

abstract requirements for efficiency in fully distributed query processing. By being based

on our abstractions, this concept is potentially applicable to all environments that can be

described by our models. Using this method, we are then able to also contribute experimental

results that show the impact of environmental properties to the efficiency of distributed query

processing. Also, we show how logarithmic efficiency with regards to our cost model and the

number of nodes in a system can be achieved by using only our limited set of preconditions,

namely probabilistic routing and a data placement strategy showing key locality.

Scope and Methodology

Since distributed query processing on an abstract probabilistic coordination model has not

been studied in great detail yet, we focus on the most immediate questions in this thesis.

Our main areas of work are the correct evaluation of complex queries, without any central

governing authority. In this context we describe the basic algorithm for query evaluation.

Furthermore, to improve efficiency, we also discuss cost-based query optimization within

our environment.

The methods we use to work on our research problems are spread out wide: We start by

performing a literature analysis of previous work in distributed systems, distributed storage,

and distributed complex queries. Based on the results of this analysis, we use modeling

techniques to describe our abstract network model. To predict the average-case performance

of the algorithms presented in this work, we use stochastic analysis. Finally, we perform a

number of controlled experiments in a simulation environment to verify our predictions.

Literature Connections

The network model and routing method presented in this thesis is based on previous research

on a distributed storage system for RDF data based on swarm intelligence. The relevant

publications are:

10

• H. Mühleisen, T. Walther, and R. Tolksdorf. A survey on self-organized semantic

storage. International Journal of Web Information Systems, 7(3):205–222, 2011a

• H. Mühleisen, A. Augustin, T. Walther, M. Harasic, K. Teymourian, and R. Tolksdorf.

A self-organized semantic storage service. In Proceedings of the 12th International

Conference on Information Integration and Web-based Applications and Services

(iiWAS2010), 2010

• H. Mühleisen, T. Walther, and R. Tolksdorf. Multi-level indexing in a distributed

self-organized storage system. In IEEE Congress on Evolutionary Computation, pages

989–994. IEEE, 2011b. ISBN 978-1-4244-7834-7

• H. Mühleisen, T. Walther, and R. Tolksdorf. Data location optimization for a self-

organized distributed storage system. In Proceedings of the Third World Congress

on Nature and Biologically Inspired Computing, NaBIC ’11, pages 176–182. IEEE,

2011c. ISBN 978-1-4577-1122-0

• H. Mühleisen and K. Dentler. Large-scale storage and reasoning for semantic data

using swarms. Computational Intelligence Magazine, IEEE, 7(2):32 –44, may 2012.

ISSN 1556-603X

The query processing method presented in this thesis is based on these publications:

• D. Kossmann. The state of the art in distributed query processing. ACM Computing

Surveys, 32(4):422–469, 2000 (Generic Query Processing Architecture)

• V. Papadimos and D. Maier. Mutant query plans. Information and Software Technology,

44(4):197–206, 2002 (Mutant Query Plans)

• R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. In

Proceedings of the 2000 ACM SIGMOD international conference on management

of data, SIGMOD ’00, pages 261–272, New York, NY, USA, 2000. ACM. ISBN

1-58113-217-4 (Moving Query Plans)

11

1 Introduction

• H. Mühleisen. Query processing in a self-organized storage system. In Proceedings

of the VLDB PhD Workshop, co-located with 37th Intl. Conference on Very Large

Databases (VLDB2011), 2011

Organization of this Thesis

In this thesis, we start with previous work on distributed storage in Chapter 2. This non-

original chapter gives an overview over the competing goals and the different classes of

coordination mechanisms that represent specific balances between those trade-offs. From

a literature review, we identify scalability, consistency and availability as the main com-

peting goals for distributed storage, and also show how previous architectures make their

compromises between them. Furthermore, we present the different data models and access

methods from file systems to relational databases. We show that fully distributed systems

with granular data access comparable to relational databases are highly desirable. Also, we

describe the state of the art in distributed query processing.

Using the lessons learned form our literature review, Chapter 3 describes the models we

develop in an effort to remove the effect of specific architectures or coordination models.

We present a model for network structure based on the general concept of random networks,

and also our main concept of probabilistic routing, which does not require the coordination

model to produce exact results. Furthermore, we present an abstract algorithm for single data

items. Starting from the relational data model, we also introduce a schema-less data model.

Furthermore, we discuss the issue of data placement inside a distributed storage system, and

show how locality in data placement is a central precondition for retrieval efficiency. Finally,

we present our model for complex queries, which is also based on the relational model, in

particular the both concise and complex class of Selection-Projection-Join queries.

Having laid the foundation for distributed complex queries, Chapter 4 presents our ap-

proach for distributed complex query processing, named “Mutable Moving Query Plans”.

Here, the query evaluation process is continuously re-optimized while being on a journey

through the distributed system. This allows the exploitation of local information as it be-

comes available, and eliminates the need for centralized knowledge. We present an abstract

12

algorithmic description and a cost model based on the notion of shipping cost regarding the

total number of transmitted tuples. We also discuss methods to recover from failures, and

present an abstraction and stochastic analysis of the average efficiency that can be expected

from our proposed method.

In Chapter 5, we outline our rationale towards the use of controlled experiments to verify

our predictions from the previous chapters. We also describe our simulation test environment,

where we have fully implemented our proposed algorithms, while maintaining independence

of specific network architectures. Using the industry-standard TPC-H benchmark, we then

test the impact of environment parameters such as the size of the network to the cost of query

processing.

Finally, Chapter 6 concludes this thesis, synthesizes the conclusions of the previous

chapters, and lists the areas that merit future work.

13

1 Introduction

14

2 Distributed Storage – Architectures

and Interfaces

The process of organizing the storage and retrieval of data on more than one computer is

a hard problem, and as with many computer science problems a single ideal solution is

not at hand. This comes to no surprise, since the use cases for specific solutions are very

diverse, ranging from reliable data archival to locating the newest Rolling Stones album

on file sharing networks. Thus, as requirements for solutions diverge, so do the criteria to

measure their performance. However, the design of a single solution always represents a

conscious trade-off between different competing goals.

In this chapter, we first define our central concept of a distributed storage system and

identify the generic goals scalability, consistency and availability for DSS from the literature.

Then, we describe the three main classes of distributed architectures ranging from central-

ized systems to structured and unstructured Peer-to-Peer models. For each architecture,

we describe its conceptual ability to meet the generic goals and give an example of an

implementing DSS. We then continue to introduce the main data and access models for DSS,

namely file systems, relational databases, Key/Value stores and RDF storage systems. By

doing so, we are trying to show two main aspects: First, no architecture is able to reach all

goals simultaneously; its selection is dependent on the compromises the system’s users are

willing to make. Second, selective access models such as relational database queries are an

important precondition for efficiency, and supporting such access models over the whole

range of system architectures is desirable. We then continue to show the state of the art in

distributed query processing.

15

2 Distributed Storage – Architectures and Interfaces

A Distributed Storage System (DSS) is a special case of a distributed system with the

sole purpose of managing data, which has been defined by Tanenbaum as “A distributed

system is a collection of independent computers that appears to its users as a single coherent

system" [Tanenbaum and van Steen, 2002]. This view is twofold, it both describes the

systems exterior view as a single coherent system as well as describing what the system

consists of, namely a collection of independently operating computers. This is known as

the “single system image”, and a major design goal for this class of systems. The definition

also holds for distributed storage systems, they offer storage services to applications that

are ignorant of the complexities inherent in distributed storage. A DSS is also made of a

collection of independent computers, commonly called “nodes”. It should be noted that

“independent” does not imply organizational independence, but only independent logical

computers. Hence, nodes follow the “Shared-Nothing” paradigm [Stonebraker, 1986; Özsu

and Valduriez, 1991]. We therefore define a DSS as being a distributed system designed for

the purpose of storing and retrieving data.

Other definitions in the literature are compatible with this view, for example defining a

distributed system as “A collection of computers that do not share common memory or a

common physical clock, that communicate by a messages passing over a communication

network, and where each computer has its own memory and runs its own operating system.

Typically the computers are semi-autonomous and are loosely coupled while they cooperate

to address a problem collectively” [Singhal and Shivaratri, 1994]. This definition implies

that a communication infrastructure is present between the nodes; otherwise the coherent

external view would be impossible. Furthermore, a mechanism coordinating the nodes is in

place. It is precisely the mechanism to achieve this coherent external view on a collection of

nodes that will define the characteristics of a specific solution.

2.1 Goals and Dimensions

The motivations for deploying distributed systems are diverse, but by abstracting from

specific requirements, researchers have identified sets of general design goals. In this section,

we describe these abstract goals and motivations.

16

2.1 Goals and Dimensions

For distributed systems in general, Tanenbaum lists Accessibility, Distribution Trans-

parency, Openness and Scalability as main goals [Tanenbaum and van Steen, 2002]. Ac-

cessibility refers to the sharing of resources between the involved parties; Distribution

Transparency is the transparency of the physical location of resources, Openness to the

interoperability of the system over implementation boundaries, and Scalability, which refers

to the capability of the system to grow.

Distribution Transparency is subdivided into specific types of transparency. Access Trans-

parency hides the physical access and representation of resources. Location Transparency

hides the physical location (computer) of a resource in the system. Migration and Relocation

Transparency allows resources to be moved to another location in the system, even while

they might be in use. Replication Transparency allows several copies of a resource to be

present in the system outside the knowledge of the system’s users.

A similar set of motivations for distributed systems is constructed by Coulouris, Hetero-

geneity, Openness, Security, Scalability, Failure Handling, Concurrency and Transparency

are listed [Coulouris et al., 2002]. Here, Heterogeneity is defined as the construction of a

distributed dystem from different networks, operating systems, hardware components and

programming languages. Openness is the abstraction between component interfaces and

implementations. Security protects sensitive information when transmitted over the network.

Scalability requires constant abstract cost in additional resources for supporting an additional

user of the system. Failure Handling refers to the various possibilities for failure in the

distributed system’s components and the methods to deal with them. Concurrency allows

concurrent access to the resources inside the system. Transparency hides the complexities of

the system from application programmers.

Again, Transparency is divided into subtypes. In addition to the types of transparency

presented by Tanenbaum, Concurrency Transparency allows several processes to operate

concurrently on resources without interference, while Failure Transparency conceals faults

in the system from applications. Performance Transparency allows the system to be reconfig-

ured according to the current usage and load patterns, and Scaling Transparency enables the

systems to expand without change to the system structure and applications.

17

2 Distributed Storage – Architectures and Interfaces

Another set of goals is presented by Kshemkalyani, here Distributed Computation, Re-

source Sharing, Remote Access, Reliability, Performance/Cost Ratio, Scalability and Mod-

ularity are listed as main goals for distributed systems [Kshemkalyani and Singhal, 2008].

Distributed Computation refers to the need for a consensus between geographically dis-

tributed systems, Resource Sharing and Remote Access acknowledge the high costs to make

all resources available at all sites as well as potential bottleneck issues at single sites. Relia-

bility describes the inherent potential of increased reliability through resource replication and

geographical distribution. Availability, Integrity and Fault-Tolerance are listed as sub-goals

for reliability. The Performance/Cost ratio of a distributed system compared to specialized

parallel machines is also listed as a possible motivation. Scalability is defined as avoiding

bottlenecks as additional hardware is added through the system. Modularity extends this

notion of Scalability, with hardware additions not hindering performance.

In the more specific case of DSS, these goals remain of course valid. However, the

data-centric approach here leads to a shift in the emphasis put on these goals. For early

distributed databases, Transparency, Reliability, Performance/Cost Ratio and Scalability

were key goals [Özsu and Valduriez, 1991]. Transparency (with regard to Distribution and

Replication) provided the single-system image mentioned above. Reliability was achieved

through transaction protocols adhering to the Atomicity, Consistency, Isolation and Durability

(ACID) principle [Haerder and Reuter, 1983]. Goals such as Accessibility and Concurrency

are implicitly present, but less emphasis was put on Openness, Heterogeneity, Distributed

Computation and Modularity.

However, even these reduced goals were shown to be incompatible. The Consistency-

Availability-Partition Tolerance (CAP) theorem describes this dilemma for any DSS [Brewer,

2000; Gilbert and Lynch, 2002]. Here, Consistency refers to the consistent external view

on the stored data according to the ACID principle, Availability defines the system’s ability

to generate an answer to each request, and Partition Tolerance allows the system to operate

despite internal failures. It should be noted that Transparency is assumed here, and that

Partition Tolerance is comparable to Reliability. The CAP theorem states that at most two of

these goals can be achieved for any shared-data system. Fig. 2.1 shows the space created

by these dimensions. The system S3 exhibiting Consistency and Availability is unable to

18

2.1 Goals and Dimensions

Con
sis

ten
cy

Availability

Partition
Tolerance

S2

S3

S1

Figure 2.1: CAP Theorem – Dimensions [Brewer, 2000]

provide Partition Tolerance, as it is forced to reject requests in the event of a communication

failure between the nodes. A well-known example for this class is a distributed database

using for example the two-phase commit (2PC) protocol.

An even more concise description of the competing goals for DSS can be found in [Vogels,

2008]. Here, Consistency and Availability are presented to be the main competing goals.

Furthermore, a specific trade-off between the goals is introduces with the notion of Eventual

Consistency, which relaxes the consistency requirements in favor of availability.

In order to assess specific solutions for DSS, we now select a unified and small set of goals

from the presented literature. These three competing goals are then used to assess specific

solutions in the remainder of this work. The following sections discuss these goals and

justify their selection. Accessibility, Transparency and Concurrency are implicitly assumed

to be present, since this was also the case in the literature on the abstract goals for DSS. By

the same token, we omit Openness, Heterogeneity, Distributed Computation and Modularity

and Security.

19

2 Distributed Storage – Architectures and Interfaces

2.1.1 Scalability

Arguably the most-often quoted reason for research on DSSs is Scalability. This broad term

needs clarification. [Hill, 1990] discusses the term Scalability for multiprocessor computing,

ultimately discouraging its use due to the lack of a rigorous definition. Merriam-Webster

defines scalable as “capable of being easily expanded or upgraded on demand”. In order to

“upgrade” a DSS, several components could theoretically be upgraded, e.g. the number of

nodes, their individual storage or processing capacity or the capacity of the communication

method between the nodes. However, in the context of distributed systems, the term is

generally applied only to the number of nodes.

Concerning the notion of “demand”, in a DSS the demand to upgrade the system can come

from two sides. Nodes in the DSS have a limited storage capacity, the amount of data that can

be stored in the system is typically limited, and cannot be extended and managed infinitely.

If more data is to be stored, more nodes have to be added to accommodate this. This notion

is supported by the presented literature in a more specific form, as Scalability for DSS was

defined as the ability to support additional data or users without non-linear increases in

costs [Coulouris et al., 2002]. Furthermore, assuming that all nodes have a limited processing

capacity, and every request for a stored data item requires some processing, the amount of

requests the DSS is able to handle is also limited. If more requests are to be served in a given

time frame, more nodes have to be also added to the system.

One of the competing goals for DSSs is thus the ability to handle increases in overall

storage load and requests per time unit through the addition of more nodes to the system

“easily”. One important factor here is that even if the addition of more nodes itself is

unproblematic, the concepts employed in the system may still impose limits on its scalability.

For example, if all nodes have to register themselves at one central location in order to

become a part of the DSS, the capabilities of this central location will limit the overall

system’s ability to scale. Thus, any central location or central data structure will pose a

potential threat to scalability. This viewpoint is also supported by the presented literature,

which required the absence of bottlenecks in the network for Scalability [Kshemkalyani and

Singhal, 2008].

20

2.1 Goals and Dimensions

2.1.2 Consistency

The notion of a consistent view on the data stored in a DSS was introduced from the more

general goals of transparency. In the presented literature, transparency to the physical location

of data inside the DSS, transparency to replication of data, transparency to concurrent

access and transparency to failures in the system were not only listed as goals, but as

requirements. The main reason behind these various types of transparency is added simplicity

for applications using the DSS [Özsu and Valduriez, 1991], these transparencies provide

the single-system external image mentioned above. If these transparencies are present, the

system provides a consistent view on the stored data. We can therefore regard a DSS to be

consistent if it provides transparency in the four mentioned dimensions.

However, the absolute consistency required by the ACID principles was shown to be a

major hindrance for the evolution of DSS [Gilbert and Lynch, 2002]. Therefore, its absolute

definition has been relaxed into several consistency classes [Vogels, 2008]. These classes are

defined from the application or client viewpoint using several independent processes, which

write and read data to and from a DSS. How and when the processes see updates made to

data objects inside the system illustrates the different consistency classes. In all cases, we

assume a process having performed an update to one specific data object. Strong consistency

guarantees all subsequent access to the DSS by all processes to return the updated value.

Transactional systems typically provide this level of consistency after transactions have

been committed. Contrary, weak consistency does not give any guarantees that subsequent

accesses by any process will return the updated values. Eventual consistency represents a

trade-off between the two extremes. The DSS guarantees that if no new updates are made to

the data object, eventually all processes will see the last updated values consistently. The time

period between the update and the consistency is referred to as the inconsistency window.

2.1.3 Availability

Availability was defined as a system’s ability to generate an answer to each request [Brewer,

2000]. It therefore also subsumes the other goals reliability and robustness. Availability in

a DSS can be seen from two viewpoints: First, the reliability of the entire system, whether

21

2 Distributed Storage – Architectures and Interfaces

the system is able to reliably provide its intended services in spite of adverse real-world

influences such as hardware failures. Second, the availability of access to the stored data,

also present in spite of adverse influences. It is clear, that the second point is only relevant if

the first point holds, if the system is dysfunctional all together, access individual data items

stored is also impossible.

The availability on the system level is influenced on the availability of its nodes, but –

more importantly – on their logical failure dependencies. To continue the previous example,

if a central location encounters a failure, the entire system is no longer able to perform its

indented service. Hence, this systems reliability is directly dependent on the availability of

the central component.

If global availability is not the issue, availability of access to individual data items becomes

an issue. As it is typically the case [Özsu and Valduriez, 1991], if the entire set of data is

not stored on all nodes, the reliability of access is directly dependent on the consistency and

availability of the single node or the set of replicated nodes for this particular data item. The

method to achieve this consistency between nodes storing copies thus greatly influences

availability of access to individual items.

2.1.4 Performance / Cost Ratio

The deployment of a DSS can also have a non-technical goals. The cost of creating a dis-

tributed single-image system out of a number of commodity off-the-shelf hardware (COTS)

components instead of custom-building hardware with similar performance characteristics

is often highly in favor of the distributed system. For example, the advertisement-financed

web index run by Google is arguably only made possible through their use of commod-

ity hardware [Barroso et al., 2003]. Another example is the creation of a supercomputer

through the combination of over 1,500 game consoles at a fraction of the cost of a “real”

supercomputer [Wood, 2011].

From an economic perspective, the differences in price between a large number of com-

modity components and larger single systems with comparable performance can be explained

through the economy of scale. According to economics research, this difference could be

explained through quick amortization of so-called set-up costs. As soon as the production

22

2.2 System Architectures

has been configured for the first “copy" of the product, the cost of producing the following

products will asymptotically be determined only by direct costs such as labor or materi-

als [Silvestre, 1987].

Hence, high-volume commodity hardware will in sum provide more power for the money

than low-volume specialized hardware. Distributed systems can make use of this correlation

in providing a higher performance/cost ratio, provided they are able to keep the synchro-

nization costs for creating the aforementioned single-system image within strict limits, for

example logarithmic to the number of nodes employed or even constant.

2.2 System Architectures

In the previous section, we have discussed the abstract goals for DSS. However, the means

by which the performance along each dimension is to be achieved were not mentioned. In

this section, we switch from this external view to an internal view, and review three distinct

system architectures common in the construction of DSS: Centralized as well as structured

and unstructured Peer-to-Peer (P2P) architectures. This taxonomy of distributed system

architectures was also taken from the literature [Tanenbaum and van Steen, 2002].

Previously in this chapter we have identified the single system image as one of the main

implicit goals of a distributed system, which is also present in the case of a DSS. Applications

using the storage system are generally not interested in the specific location of a data item.

Rather, they are keen on using the DSS the same way as a local storage medium. To achieve

this level of consistency, a mechanism to coordinate the nodes is required. This mechanism

has a high influence of the systems performance, determining its operational boundaries and

its effectiveness in a particular environment [Placek and Buyya, 2006].

For the goals outlined above, each of the architectures represents a unique trade-off

between them. In the following, we will point out where exactly the particular trade-off is

taken, and how this impacts the performance for each dimension. We also give examples

for systems implementing the coordination mechanisms or architectures. Since they are

instances of the abstract architectures, restrictions identified for the architectures also apply

to the implementations

23

2 Distributed Storage – Architectures and Interfaces

2.2.1 Centralized Architectures

Centralized or clustered systems are the first intuitive approach in creating a single system

image for a distributed system. One of the nodes is designated to be a “master” or “control”

node. This node serves as a front-end to client applications and controls the flow of data

within the distributed system. For example, the master node in a centralized distributed file

system could keep a look-up table mapping file names to node addresses. All requests are

sent to this master node, which can find out the actual node storing the file, and reroute the

request accordingly.

S1 S2 S3

S4 S5 S6

C1

Figure 2.2: Network Structure for Centralized Storage

An abstract network structure for a centralized distributed system is depicted in Fig. 2.2:

The control node C1 is accessed from outside, and maintains a single connection to the

storage nodes S1 through S6. No connections have to be present between the storage nodes.

In this setup, storage nodes do not have to be able to execute complex algorithms, they are

little more than remote hard disks.

The centralized approach has several advantages: The amount of nodes in this system is

only limited by the ability of the master node to organize them. Typically, organization of

request processing is less expensive than the actual processing itself. Hence, a centralized

system is able to scale to some degree, limited by the capabilities of the master node.

Consistency is also high, since the master node sees every request, and does not need to

communicate with other nodes to reach a consistent state in the system. However, the main

disadvantage is availability: If the master node should fail or become overloaded, the entire

24

2.2 System Architectures

Consistency

Scalability

Availability

Centralized

Figure 2.3: Centralized Architecture - Trade-Off

system is no longer able to function correctly, even if all the other nodes continue to function

normally. Also, techniques such as sampling the requests to make the system adaptive are

inexpensive when performed on the master node, as all requests are at least redirected there.

The master node is then able to re-organize its storage nodes according to the current request

patterns. This trade-off situation is depicted in Fig. 2.3

A well-known example for a centralized DSS is the Google File System (GFS) [Ghemawat

et al., 2003]. The authors specifically cite economic reasons for the creation of GFS, as

mentioned before in Section 2.1.4. A GFS installation consists of a single master server and

multiple data nodes, here called “chunk servers”. Files are divided into chunks of a fixed

size and stored on the chunk servers. Each chunk is assigned an identifier, and the master

node contains a mapping from file names to chunk identifiers, and from chunk identifiers to

machine identifiers. Client operations on the chunks are performed directly on the chunk

servers for performance reasons.

From the viewpoint of scalability, a GFS cluster can easily be extended with new chunk

servers, but scalability limited by the amount of operations that the master server is able to

handle per time unit. The authors report some performance figures on this in their paper.

They claim the master server is able to handle “thousands of operations” per second. In

their evaluation they also report some performance figures on GFS. For example, in a cluster

having about 500 MB/s traffic, the master node had to handle about 500 Operations per

second. This represents a serious bottleneck close to the design limit for a imaginable 10-fold

25

2 Distributed Storage – Architectures and Interfaces

increase in load. Due to this issue, GFS has recently been retired and replaced with a new

multi-layered system “Colossus”, where the file metadata previously stored on the master

server was moved to its own DSS [Fikes, 2010].

For availability, the designers went to great lengths to secure GFS both against overall

failure as well as against failure of access to single files. Using an arbitrary placement strategy,

the master server stores each chunk on three different chunk servers for reliability. To protect

against global failures, the state of the master server is also replicated, only committing

to a change if all replicas have written the change to their persistent storage media. This

enables starting a new master server, should the old one fail. Since the master server controls

the replication, consistency can be ensured without communication overhead. Furthermore,

if the master server has to be relocated to another machine, they rely on DNS changes to

redirect client operations. While clearly being a center of attention for the designers, from a

conceptual point of view the master server still threatens the systems reliability.

However, as a global viewpoint is available in the master server, it is able to adapt the DSS

to current needs by re-balancing chunks between the chunk servers. For example, the disk

space and load on the chunk servers are monitored and chunks are moved to a less-heavily

used server if a chunk server starts to become overloaded. We can therefore observe a high

adaptivity in GFS.

2.2.2 Structured P2P Architectures

Eager to remove single points of failure, researchers have devised the concept of a distributed

system based on the P2P method. Here, all nodes have the same rights and responsibilities.

They use their communication method to create the single-system image purely from bilateral

interactions. In a structured network, all nodes adhere to a common global law, which

governs their interactions. This law – in the case of implementing a DSS – defines the

network structure created between nodes and which data items are being stored on which

node. By honoring this global law, structured P2P systems generally achieve a high degree

of efficiency.

The majority of Structured P2P systems use a variant of a so-called Distributed Hash Table

(DHT). One of the originally proposed DHT concepts was CHORD [Stoica et al., 2001].

26

2.2 System Architectures

Here, the nodes create a ring-shaped network structure, and use a hash function to assign

storage identifiers to node addresses. Furthermore, by creating shortcuts in the ring structure,

they are able to find data for a specific identifier in a logarithmic complexity with regard to

the number of nodes in the system.

S1

S2
S3

S6
S5

S4

1-2

0-1

2-3

3-4

4-5
5-6

Figure 2.4: Structured P2P – DHT

Fig. 2.4 shows an example for a ring-shaped DHT: The nodes S1 to S6 create a ring-shaped

network structure between them, and each node is assigned a range from the result range

of a hash function, e.g. node S2 being responsible for all hash values in the range of [1, 2[.

All data stored in the network is stored along with an identifier. This identifier is then

hashed, which determines the node actually responsible for storing the data. An arbitrary

replication strategy can secure data against node failures. Requests have also have to include

that identifier, and regardless of which node receives a requests, it is able to route the request

to the responsible node according to the global law.

A structured P2P network is able to deliver high performance combined with a high

availability due to its equal rights approach combined with the efficient look-up procedure

as defined by the global law. One node’s failure does not affect the other nodes in their

capability of performing their intended service. Scalability depends on the effort required to

27

2 Distributed Storage – Architectures and Interfaces

add new nodes to the system, and can only be discussed for specific approaches. However,

as we have seen, the absence of bottlenecks is also required for scalability. In structured

P2P networks, load imbalances are an issue. Through distribution, they are also difficult to

detect as compared to a centralized system and even more difficult to mend, as the global law

cannot be changed by the system itself. Furthermore, it has been shown that the complexity

of placing data in a structured P2P system such that request load is balanced is equivalent to

NP [Gribble et al., 2001].

Consistency

Scalability

Availability

Structured

Figure 2.5: Structured P2P Architecture - Trade-Off

Consistency is generally also an issue, as every node shares the responsibility for the

system. Since the node receiving a request and the node storing the data are seldom identical,

ensuring consistency requires extensive communication in the network. Furthermore, repli-

cation schemes require updates at several locations in the network. Therefore, consistency

requirements are often relaxed, as described in Section 2.1.2. The particular trade-off for

structured P2P architectures is shown in Fig. 2.5.

An representative example for a DSS using a structured P2P as its coordination mechanism

is “Dynamo” developed at Amazon [DeCandia et al., 2007]. It is a almost textbook example

of the DHT approach introduced here. Its global law also defines a ring network structure

and uses consistent hashing [Karger et al., 1997]. Consistent hashing has a crucial advantage

for the systems scalability: With a conventional hash function such as SHA1, each nodes

responsibilities for a specific data identifier range would have to be re-calculated for the

entire network, resulting in the movement of a considerable portion of the data. By using

28

2.2 System Architectures

consistent hashing, this is not necessary, and the magnitude of the amount of identifiers to be

remapped averages to the number of identifiers for one node.

By using the consistent hashing scheme, Dynamo is able to scale fairly well, as the addition

of new nodes does not require effort on a high portion of the other nodes. A new node

is assigned a random identifier range from the hash ring, and connects itself to the nodes

adjacent to this range, which can be found in logarithmic complexity. As soon as the node

is connected, the nodes previously responsible for these ranges transfer the data. However,

in the hash ring scenario it is impossible to add nodes without affecting data placement, for

example to reduce load. This can have a negative impact on scalability. Also, the authors

themselves have identified the unfair data and request load distribution as an issue, with

around 10% of nodes deviating over 15% from the average request load.

2.2.3 Unstructured P2P Architectures

A third approach is to retain the equal rights and responsibilities of the nodes in a distributed

system, but to remove the global laws from the equation. Then, a heuristic of varying

complexity can be used to forward requests to other nodes. An early example for such a

system was the “Gnutella” system, where each node keeps a limited list of known nodes.

Retrieval requests for data were flooded to all known nodes, and limited by a Time-to-Live

(TTL) [Ripeanu et al., 2002]. The general concept assumes all data being stored on the

nodes independent of the retrieval protocol, thus no single-system image is provided for the

addition of new data.

Nodes can join the network by merely connecting to any nodes that are already part of the

network. They will receive retrieval requests from them, which makes the data they store

available to others, and are able to send their own retrieval requests into the network, making

this kind of network particularly suited for highly fluctuating environments [Chawathe et al.,

2003]. As long as the maximum path length inside the network can be traversed inside

the TTL, data that is available will also be found. Thus, the addition of nodes and thus

the concept’s scalability is high. The immediate downside is the general low performance

of operations. Since every forwarding operation requires some time, this class of systems

generally exhibits low retrieval performance. Furthermore, the flooding of requests leads

29

2 Distributed Storage – Architectures and Interfaces

Consistency

Scalability

Availability

Unstructured

Figure 2.6: Unstructured P2P Architecture - Trade-Off

to a high amount of protocol overhead, sometimes exceeding 50% of overall traffic [Ilie

et al., 2004]. Within the dimensions we have identified, the trade-off for unstructured P2P

architectures is shown in Fig. 2.6.

Availability of the Gnutella-style systems is very high. If nodes fail to function, the entire

system is not affected at all. In order to protect individual data items against failures, they

could be replicated to other nodes. In contrast, the unfair load distribution identified for

structured P2P systems is also present, as no synchronization or feedback mechanism is

provided between nodes to react to overloaded nodes or network connections.

While the original Gnutella concept contained a routing heuristic that only flooded every

request to every known nodes, further research has provided more complex and likely more

efficient heuristics, aimed at increasing the performance as well as the adaptivity of the

Gnutella concept [Lv et al., 2002]. The “Gia” concept for example proposed a search protocol

based on biased random walk, that would only forward requests to non-overloaded neighbor

nodes [Chawathe et al., 2003]. Combined with a topology adaption (also proposed by [He

et al., 2008]) and flow control protocol they were able to increase the retrieval performance.

While the Gia approach is agnostic of the content that is requested in the network, our

previous work on “S4” created a routing heuristic based on an ant-inspired positive feedback

mechanism on the used identifiers [Mühleisen et al., 2010]. Here, successful operations were

used to intensify virtual pheromone paths, which would influence future requests for the

same or similar data identifier into the direction the previous request was successful. Also, a

30

2.2 System Architectures

write operation is offered on every node, making S4 a fully featured DSS based on heuristic

routing. To keep the routing data structures on the nodes small, new data items are clustered

together with similar data items. While being scalable, reliable and adaptive, S4 is unable to

provide any guarantees as to whether a retrieval operation will find a data items, representing

a unique trade-off.

2.2.4 Architecture Comparison

From our description of the different system architectures and the corresponding coordination

models, we can now attempt a relative comparison of these approaches according to the

goals we have identified. This comparison is pictured in Fig. 2.7.

Consistency

Scalability

Availability

Structured
Centralized

Unstructured

Figure 2.7: System Architectures and Goals

For centralized systems, scalability with regard to adding more nodes to the system is no

issue, as they are registered at one central location. However, the ability of the system to

handle more data or more requests is limited by the capabilities of the central node, which

also represents a serious bottleneck. Hence, scalability is limited for centralized architectures.

Consistency on the other hand is high through the central node. It has all the knowledge

required to provide the different transparencies. Availability is difficult again, since the

availability of the system is bound to the availability of the central node.

For structured P2P architectures, scalability to the number of nodes is high, albeit some

reorganization of the network structure may be required. More data and more requests

31

2 Distributed Storage – Architectures and Interfaces

can be handled through adding more nodes, but bottlenecks may arise through the global

law controlling the distribution of data and requests. Hence, scalability is higher than in

centralized architectures. Consistency is more difficult than in centralized systems, since

costly communication between nodes is required. Contrary, availability is higher compared

to centralized systems, as the damage through failures can be repaired, and replication can

ensure the availability of data, even if the node responsible fails.

Unstructured P2P architectures exhibit the highest scalability when compared to the other

architectures, since adding nodes does not require network organization. Bottlenecks and

hot points can be repaired through local actions and are not bound to adhering the global

law. Contrary, ensuring consistency is considerably lower than in the other two architectures,

as no guarantees can be given of finding data inside the network. Availability of the entire

system is higher than in the other two approaches, as failing nodes never affect the entire

network.

2.3 Data Models and Access Methods

As much as DSS differ in the method they use to provide a single-system image to appli-

cations, as much they differ in the models they use to represent their data and the methods

they offer to access the stored data. In this section, we present representative examples for

common data models and access methods currently found in DSS implementations ranging

from file system interfaces, key/value models to fully-fledged databases, both for relational

and graph data. For each model, we give examples for each of the system architectures

presented above.

2.3.1 File Systems

Historically, one of the first approach for DSS implementations was to provide a regular

file system. The methods that have to be provided by a file system were most prominently

defined as part of the Portable Operating System Interface (POSIX) standard. The data

model defined by POSIX is an hierarchical directory tree. Files are assigned to a directory

and described with some meta data such as size, access rights and ownership. File contents

32

2.3 Data Models and Access Methods

are unspecified, and are read in byte-by-byte. POSIX consequently defines a set of system

calls to manipulate the directory tree, file meta data, and to read and write file contents.

From a distributed perspective at file systems, development was at first focused on making

a file system on a single server available to several client computers. The Network Filesystem

(NFS) was the first of several methods to make this possible [Sandberg et al., 1988]. It

implements the POSIX interfaces, and can thus directly be integrated into client computers

file systems with a suitable driver, which allows applications to make use of NFS without

their knowledge.

One step further in distributed file systems towards a DSS are centralized approaches such

as XtreemFS, where a single master server holds the directory structure and file meta data,

but where file contents are served from a number of storage nodes [Hupfeld et al., 2008].

XtreemFS fully supports the POSIX file system standards. The Google File System (as

described in Section 2.2.1) follows a very similar approach, but only provides a subset of

the POSIX operations due to performance concerns [Ghemawat et al., 2003]. This requires

applications using GFS to also use a specialized GFS client program, removing file system

transparency.

A fully distributed file system is “Ivy”, where the file contents, directory structure and

meta data are stored in the structured P2P system DHash [Muthitacharoen et al., 2002].

However, Ivy is also unable to provide conventional file system semantics due to concurrency

issues. An evaluation has found Ivy’s performance to be two to three times slower than NFS,

which is still impressive considering its lack of central control.

While distributed file systems have clear advantages for simple applications such as

logging or providing storage for a higher-level access method, their flat file data model

prohibits access to very particular parts of the stored data.

2.3.2 Relational Databases

Relational databases are storage systems for structured data, which is logically available in

the relational model. Using the standardized Structured Query Language (SQL) [Melton and

Simon, 1993], applications are able to retrieve very precise subsets of the stored data from

the relational model, thereby reducing communication costs and application complexity.

33

2 Distributed Storage – Architectures and Interfaces

The relational model is based on first-order predicate logic, and defines the relation-

ships between tuples and relations [Codd, 1970]. A tuple t describes a single data en-

try (e.g. a single person) and is defined as a partial functions from a set of attributes

to atomic values. A tuple’s function can be given as a set mapping, for example t :=

(′firstname′,′ John′), (′lastname′,′Doe′). The domain of a tuple (the set of attribute

values) is called its header H , in this case H(a) = ′firstname′,′ lastname′. A sin-

gle relation R is now formed from a single header HR and a set of tuples B, such that

t ∈ B → H(t) = HR holds. Furthermore, the relation is assigned an identifier i, formally

R = (B,HR, i). A relational database typically contains a large number of relations. The

union of all headers inside a database is referred to as the database schema, which is used to

determine data partitioning and to verify query validity.

While relational databases are a very successful concept, databases quickly grew out of the

capabilities of single computers. The distribution of data and the request load was identified

as a viable solution [DeWitt and Gray, 1992]. Distributed databases typically use one or few

processing nodes that have access to the database schema and are in charge of processing

queries and handling updates to the database [Teradata, 1983]. While processing queries,

processing nodes access data on a larger set of storage nodes. The processing nodes also

determine the distribution of relations (either vertically by relation or horizontally by tuples)

between the storage nodes. From a DSS perspective, this represents a centralized approach

as described in Section 2.2.1. The distributed evaluation of complex queries is discussed in

the following Section 2.4.

2.3.3 Key/Value Stores

While relational databases provided and still provide the back-end for a large range of

applications, a need for a new class of storage systems was identified. The so-called “NoSQL”

systems traded away complex queries and transactional guarantees against potentially higher

scalability [Brewer, 2000]. While the class of NoSQL systems also includes other data

models, the Key/Value Store (KVS) is among its more prominent examples [DeCandia et al.,

2007]. The data model used by KVS can be compared to a set of tuples similar to those used

in a relational database. However, contrary to relational model, every tuple in the system can

34

2.3 Data Models and Access Methods

have a different header. Hence, no relations and schemata can be defined. It is precisely this

lack of global structure that KVS draw their advantages in scalability from. Furthermore, no

complex query language is defined, thereby moving the complexity of complex data retrieval

processes into applications.

One of the first representatives of distributed KVS was “BigTable” from Google [Chang

et al., 2006], which is built using GFS (see Section 2.2.1). Hence, BigTable is also a

centralized DSS, but in contrast to GFS it provides storage for structured data. A BigTable is

a multidimensional and sorted map. A row key and a column key index the map. A table may

have an unbounded number of columns, but they are organized into “column families” to

group columns for storage optimizations. BigTable has no declarative query model, instead,

data is explicitly requested from the virtual map either using explicit row identifiers or a

column specification.

As mentioned, KVS lack schema information and complex query models, and are thus

inherently more suited for distribution. The KVS “Cassandra” developed at Facebook [Lak-

shman and Malik, 2010] provides a data model identical to BigTable, but – similar to the

Dynamo system mentioned in Section 2.2.2 – provides a fully distributed implementation by

also using a structured P2P network for coordination. As guaranteeing replication in a P2P

system is no easy task, Cassandra allows applications to specify their desired consistency

level on every insertion operation.

Even though KVS do not provide complex query facilities, some effort has been invested

in making their interfaces more compatible with users familiar with relational databases and

the SQL query language. For example, the “Google AppEngine datastore” interface provides

a SQL-like interface to the background map [Chu-Carroll, 2011]:

SELECT ∗ FROM Pe r s on

WHERE l a s t _ n a m e = ’ Wowereit ’

AND b i r t h _ y e a r >= ’ 1953 ’

ORDER BY l a s t _ n a m e

LIMIT 5

35

2 Distributed Storage – Architectures and Interfaces

In this example, Person describes an BigTable map and the filtering properties last_

name and birth_year are column names. Using an automatically created index on the

column names, the KVS is able to retrieve all row names matching the selection criteria and

then applies the ORDER and LIMIT operations afterwards. While certainly being a helpful

shortcut for developers, the lack of cross-table operators such as the join operator makes the

system come nowhere close to a relational database.

2.3.4 RDF Storage Systems

With the advent of the Web, researchers have sought to interconnect the data available there.

Relational databases are difficult to connect over different schemata and over system and

organizational boundaries. To overcome this issue, the Resource Description Format (RDF)

data model has been created. An RDF graph is a directed graph, where the nodes are either

URIs, literal values such as strings and integers, or graph-internal identifiers known as

blank nodes. Directed and labeled arcs connect these nodes, URIs are also used for these

labels. RDF provides a highly generic and flexible data model able to express many other

more specific data structures, such as relational or object-oriented data. Furthermore, each

participating organization is able to create their own schemata within the flexible graph

model and also refer to resources on other systems using URLs. This makes large-scale data

integration and also their consumption possible.

More formally, let U be a set of URIs, L a set of literals and B a set of graph-internal

identifiers (“blank nodes”). Any element of the union of these sets T = U ∪ L ∪ B is called

a RDF term. A RDF triple is a triple (s, p, o), where s ∈ U ∪ B, p ∈ U and o ∈ U ∪ B ∪ L.

An RDF graph is defined as a set of triples [Hayes, 2004]. This strict formal definition also

allows making general assertions about resources and their relationships and binds them

to a vocabulary. A “reasoning" computer program is then able to calculate the data only

implicitly stated in the data.

The query language SPARQL has been developed to express complex queries on RDF

graphs. For convenient access to the data stored in such a graph, one may use a so-called triple

pattern, which may contain variables instead of values. Variables are members of the set V ,

which is disjoint from T . A triple pattern is a member of the set (T ∪V)×(U ∪V)×(T ∪V).

36

2.4 Distributed Query Processing – State of the Art

The declarative complex query language SPARQL is based on combining triple patterns

and provides many additional features such as ordering and filtering [Prud’Hommeaux and

Seaborne, 2008].

According to our recent survey [Mühleisen et al., 2011a], storing RDF graphs in a dis-

tributed way creates a number of format-specific challenges. These challenges make it diffi-

cult to design a storage scheme that can be shown to be efficient for all possible cases [Battré

et al., 2006]. The usage of vocabularies along with practicability reasons typically creates a

very small frequency of values for the predicate entries. The even smaller set of standardized

properties for example for resource type definition further exacerbates this problem. Experi-

ments have shown that over 90% of queries use one of these properties, inevitably creating

hot points within the data set [Harris et al., 2009].

2.4 Distributed Query Processing – State of the Art

In the previous chapter, we have seen how the architecture and the coordination mechanism

used in a DSS is one of the main factors determining the systems’ performance in various

dimensions. We have also seen how precision data access for example provided by the

relational access model using declarative query languages is crucial for efficiency. In this

section, we therefore review the state of the art in distributed query processing for centralized

and structured as well as unstructured architectures. Our goal here is to show the tight

integration of previous approaches with the respective architecture.

Distributed Query Processing (DQP) is the process of retrieving and aggregating data from

multiple sources according to a declarative result description. Typically, processing starts

with a abstract and declarative complex query, which is then translated and optimized into an

precise executable description. The general goal of this optimization is to minimize cost in

various dimensions; oftentimes the time to result is used. While research on DQP dates back

several decades, only in recent years both the need and the infrastructure has arisen for its

realization. For some time now, all major commercial database systems have supported DQP

in some way. [Kossmann, 2000] presented a reference architecture for DQP in relational

37

2 Distributed Storage – Architectures and Interfaces

databases. He claims that to present an approach on DQP that is suitable to implement DQP

on any kind of distributed system.

parse rewrite

Catalog

optimize execute

Base Data

Planning Phase Execution Phase

Figure 2.8: Query Processing – Generic Process

This reference architecture is shown in Fig. 2.8: In a first step, a query is parsed from a

textual representation into an abstract internal representation [Pirahesh et al., 1992], very

similar to the query model presented later in Section 3.5. Then, the rewrite component

transforms the query tree by applying transformation rules, that are independent of the data

stored. The query is then optimized, which makes use of the global schema information

and statistics stored in the Catalog. To find the optimal way of executing the query (the

plan, the optimizer enumerates alternatives and ranks them according to a cost model, which

encompasses the optimization goals. This plan is then executed on the data stored in the

DSS.

From the DSS point of view, the most critical component here is the catalog, which, as

we will show in our discussion on the data model in Section 3.3, represents a global state

which is a threat to scalability and consistency [Tanenbaum and van Steen, 2002]. Most

previous approaches on DQP are based on the assumption of a centralized coordination

method. Since we are focused on performing DQP on various types of DSS, we will present

a number of approaches on distributed DQP on non-centralized coordination mechanisms in

the following.

38

2.4 Distributed Query Processing – State of the Art

2.4.1 Structured P2P Query Processing

[Harren et al., 2002] present an approach on performing DQP inside a DSS using the

structured P2P coordination approach. Interestingly, they also disregard the idea of a global

schema; they rather focus on “natural attributes” in the data, very similar to the Key/Value

approach. The main idea for query processing is to use the distributed hash table to store and

route tuples to their destination. They have extended the DHT interface with a notification

hook, which enables their query processing layer to react on tuples being added to the

current node’s storage. Join operations are now evaluated by taking all tuples from the

joined relations and inserting these tuples into the DHT with the join attribute as key. As the

tuples arrive at the node responsible for storing that key, their query processing component

is notified and the result tuple can be created and passed on to the parent operator in the

plan. However, as mentioned before, the authors observed a grave load distribution problem

with this approach, which is only exaggerated by uneven data popularity or skewed key

distributions.

[Triantafillou and Pitoura, 2003] attempt to create an unifying framework on DQP in

networks also using a DHT. Tuples are inserted into the DHT using an order-preserving hash

function. Additionally, each tuple is inserted multiple times, each time using a different

Key/Value pair as the insertion key. Hence, they are able to support range queries, as all

values in the range specification are stored on subsequent hash values. Furthermore, join

processing is very straightforward: Tuples with identical values for a join attribute are will

have replicas stored on the same node. While they support the relational data model, they do

not present a method for schema distribution and also mention this issue a one of the major

obstacles for the scalability of their approach.

[Brunkhorst et al., 2003] propose query processing in a two-layer P2P network: Each

node periodically advertises the relational schema of the stored data at a limited number

of “Super-Peers”, which are assumed to have higher availability and performance than the

storage nodes. The schema information is then replicated between the Super-Peers. Queries

to be evaluated are sent to the Super-Peer, with the possibility of carrying executable code

for operator evaluation. On the one hand, this greatly extends the expressivity of the queries,

39

2 Distributed Storage – Architectures and Interfaces

as each user can provide its own operator implementations, on the other hand this creates an

issue, as the costs for executing unknown operators are also unknown. More importantly,

they show how static optimization is not possible in their environment and execute queries.

The rather centralized query execution is performed by finding the nodes storing data relevant

to the query from the aggregated schema information and generates partial queries for each

node, with the results being collected at the node that started the query. Each operator in the

query tree is annotated with the address of the node responsible for evaluating the operator.

The cost model prefers queries with the smallest number of subqueries. However, since

query optimization assigns each each operator a node, the location of data has to be known,

which is impossible with heuristics-based coordination models. A very similar approach has

also been proposed in [Kokkinidis and Christophides, 2004].

[Avnur and Hellerstein, 2000] recognize the need for continuously adaptive query pro-

cessing in the DSS environment. They have proposed the “Eddy” concept, which is an

abstract routing unit routing tuples to operators during query execution. Furthermore, an

eddy is able to reorder operators on-the-fly, considerable reducing complexity from the initial

optimization. They have identified “moments of symmetry” during query processing, where

it is possible to change the order of execution for the operators to be evaluated. Furthermore,

they acknowledge the lack of complete information, and introduce a notion of varying esti-

mates of cost for operator costs, operator selectivity, and tuple flow rate from their sources.

An Eddy is executed on a single node, which builds a fixed data flow graph (“River”) for

tuples from remote sites into eddy. Favoring adaptivity over best-case performance, their

join algorithm allows changes to the query execution plan. Also, operator selectivity, which

is crucial for accurately estimating costs, is “learned” during query processing with a lottery

scheduling algorithm [Waldspurger and Weihl, 1995]. Thus, future queries enjoy more

accurate optimization.

[Rösch et al., 2005] describe best-effort query processing on a DSS using the multi-

dimensional Content-Addressable Network (CAN) [Ratnasamy et al., 2001]. Through the

use of a clever hash function, where both relation id and the tuple identifier are hashed and

the result bit-wise concatenated. The resulting bit string is split into coordinates, tuples are

sored along a Z-Curve in the CAN content overlay. This concept is pictured in Fig. 2.9.

40

2.4 Distributed Query Processing – State of the Art

Similar to [Triantafillou and Pitoura, 2003], they also store every Key/Value pair from every

tuple in their overlay, enabling retrieval by attribute values. To save space, these additional

entries do not contain the entire tuple, but rather a pointer to the tuple identifier. However,

this requires an additional look-up process. To retrieve data from their Z-Curve data structure,

they introduce a retrieval operation aimed at a specific part of the curve. Join processing is

performed consistent to [Harren et al., 2002], where the tuples to be joined are added to a

temporary relation in the DHT.

Figure 1. Content-Addressable Networks

der to support range and nearest neighbor queries effi-
ciently, tuples of the same relation should be stored at
neighboring peers.

We have evaluated different strategies and found the re-
verse bit interleaving approach very promising. The main
idea is to use two hash functions hR and hK for the re-
lation ID R as well as the key value tK of the tuple t.
Now the hash values are bit-wise concatenated: h(R, tK) =
hR(R)�hK(tK). Finally, the resulting bit string is split into
d coordinates by using Bit 0, d, 2d, ... for the first coordi-
nate, Bit 1, d+1, 2d+1, ... for the second and so forth. Thus,
tuples are stored along a Z curve in the CAN (Figure 2). Ob-
viously, the hash functions have to be order-preserving in
order to identify peers for a given domain by using the Z
value, i.e., subsequent tuples (e.g., 0,1,2; “tea”,“tee”) have
to be managed by the same peer or an immediate neighbor
in the key space. Furthermore, this scheme contains sev-
eral adjustable parameters. For example, by introducing a
“spread factor” the length of the Z curve interval and in this
way the number of peers storing one relation can be ad-
justed. [16] presents an outright description of reverse bit
interleaving.

relation r

minimal hash key

maximal hash key

region for multicast

Figure 2. Z curve in CAN

Figure 2 sketches such a Z curve in a CAN. The curve
covers the zones containing fragments of the domain of the
primary key values. Suppose a node issues a range query.
Now the Z curve enables the peers to ask only the nodes
(shaded in grey in the figure) which could have parts of the
query result. In detail, the query issuer transforms the range
expression to a minimal and a maximal hash key on the Z
curve, and uses a multicast to send subqueries to all nodes
between the minimal and maximal hash keys.
Note, that this storing scheme can be used not only for

the tuples but also for indexing. In this case, only a pointer
(relation ID, key value) is stored together with the key at
the peer. This pointer can be used to retrieve the actual item
from another location.

4. Query Operators

Using a data fragmentation scheme as described in Sec-
tion 3, query operators can work in parallel, i.e. intra-
operator or partitioned parallelism can be achieved. In [16]
we have presented how classical plan operators such as se-
lection, join and grouping can be implemented in this way.
The main idea is to exploit the DHT for routing purposes.
Therefore, at the base level we have added two primitives to
the DHT API:

• send message(z,m) sends a message m (e.g. a
query plan) to the peer responsible for the zone con-
taining point z on the Z curve,

• send multicast(zmin,zmax,m) sends the message
m to all peers maintaining zones in the Z curve inter-
val hzmin, zmaxi.

Based on these primitives we have implemented the follow-
ing query operators:

• exact match selection on the key attribute (simply a
hash table lookup),

• range selections on the key attribute (send a multicast
message to peers of the Z curve interval determined by
hashing the selection ranges),

• other selections (full table scans, implemented using
multicast),

• symmetric hash join (re-inserting tuples of both input
relations in a temporary join relation),

• “ship where needed” join (where tuples of one relation
are sent to the peers storing possible join candidates
and which are identified by applying the hash function
to the join attributes).

All these operators are exact operators. In the following we
will focus on best effort approaches for further operators.Figure 2.9: Z-Curve Addressing in CAN [Rösch et al., 2005]

For query processing, the Eddy concept from [Avnur and Hellerstein, 2000] is used. The

node that received the query creates the Eddy processing node and the corresponding “River”.

The query tree is sent to all nodes potentially storing data relevant to the query as determined

from the Z-Curve. Each node processes the plan and executes all local operators. If an

operator cannot be processed locally due to missing data, the remaining plan and intermediate

results are sent to the peer responsible for the next operation. If the root of the query has

been marked as evaluated, the result of the query is sent back to the node where the query

originated.

The authors identify an important question while performing DQP: From a given query

tree, the most important decision is which operator is to be evaluated next. Hence, every

query plan is extended with a “ToDo” list of the order in which the operators are to be

evaluated. The strategies they present to populate this list are a random strategy, a priority

strategy, and a strategy preferring the join operations first for which the distance to the home

41

2 Distributed Storage – Architectures and Interfaces

peer is minimal. Their evaluation shows how the distributed Eddy outperforms a centralized

approach, but also shows that the central Eddy collecting all results can become a bottleneck.

2.4.2 Unstructured P2P Query Processing

The method for DQP presented by [Karnstedt et al., 2004] was first to not require a structured

P2P coordination mechanism in the DSS. Rather, their approach is based on the concept

of a routing index [Crespo and Garcia-Molina, 2002]. From their XML data model and

complex query language, each node stores the amount of elements it can retrieve from each

neighbor node for a subquery (XPath expression). This information is disseminated through

the network graph, but with a limited distance. Each node aggregates the routing index data

received from the neighbor. Through this aggregation, the routing index stays scalable, as

the amount of data inside the index is limited. At the same time, through multiple hops in

the network, the data remains accessible. However, this also leads to the degradation of their

routing index to become an error-prone heuristic. Nodes cannot determine the location of

data for data stored too many hops away through the network. Hence, their coordination

model closely resembles the “biased random walk” presented in Section 2.2.3.

For query processing, they recognize this limitation of their routing index and thus keep

query plans adaptable. As they are routed through the network, they can be adapted with the

data found in the routing indices of the nodes on the way. Their evaluation compared the

routing methods flooding, a complete routing index with global knowledge, and their “limited

horizon” index. They compared these methods according to the number of messages between

the nodes and concluded on the need for query shipping in this environment. However, by

using a content-based routing index, they have not considered network-centric heuristics

such as the one presented by [He et al., 2008].

[Dedzoe et al., 2010] present an approach to evaluate Top-K queries on unstructured

distributed systems. In Top-K queries, only the K “best” results are returned according

to a relevance score [Ilyas et al., 2008]. They argue that since in an unstructured P2P

network, total performance of complex query processing would otherwise be limited by the

performance of the slowest node. By allowing a variable notion of response quality, they are

able to remove slow nodes from the evaluation process. However, their method of finding

42

2.5 Summary and Conclusions

nodes inside the network is flooding, thus making their approach less scalable as discussed

in Section 2.2.3.

[Treijtel, 2003] describe their AmbientDB relational query processing approach for un-

structured and ad-hoc networks of nodes storing data. They explicitly do not require a

structured system architecture. Also, they describe a parallel query execution algorithm

based on a minimal spanning tree that is constructed at the beginning of the query evaluation

process from the node that received the query from an external source. However, they do as-

sume the presence of a global schema and do not detail the construction of this spanning tree.

Subsequent publications on this approach introduced a structured P2P system architecture to

the model, contradicting the design goals noted earlier [Fontijn and Boncz, 2004].

[Kantere et al., 2004] present an approach of evaluating SQL-like queries in an unstructured

P2P system without the assumption of a global schema being present. Since every node may

use a different schema, they use rewriting techniques to adapt the query to a node’s schema

on every hop in the network. Since these rewriting techniques are error-prone, they introduce

a configuration parameter controlling the strictness of the rewriting process. By introducing

an automatic feedback on this parameter with the query evaluation success, they claim to

enable the system to train itself not unlike a neural network. Furthermore, they tackle the

efficiency issue inherent in unstructured P2P systems twofold: First, they use “informed”

routing based on schema similarity between the nodes, and present a scheme to create new

connections between nodes with similar schemata in the network to increase efficiency. Their

experiments show significant efficiency improvements over flooding-based request routing,

an important precondition for scalability.

2.5 Summary and Conclusions

In this non-original chapter, we have defined our concept of a distributed storage system and

identified the competing goals of distributed storage, namely scalability, consistency and

availability. DSS deployment was shown to be motivated by a higher performance / cost

ratio. We have then described the system architecture and coordination method between the

nodes as the main factor influencing a system’s properties. Centralized, structured P2P and

43

2 Distributed Storage – Architectures and Interfaces

unstructured P2P architectures routing were introduced as the main contenders. We have

described popular data models and their respective access methods in distributed storage,

namely file systems, relational databases, Key/Value stores and RDF databases. We have also

reviewed the literature on the state of the art in distributed query processing for centralized

as well as structured and unstructured P2P architectures.

We could see how scalability is the main recurring theme in DSS, and how economic

arguments support the construction of a DSS. From our analysis of the goals for distributed

systems in general listed in the both general and DSS-specific literature, we were able to

select and synthesize three main goals for DSS: Scalability, which in this case refers to both

being able to handle more requests for data per time unit as well as being able to store more

data. Also, consistency and availability were revealed to represent the main dilemma in

the design and construction of a DSS. Consistency was differentiated into several classes

of consistency, and selecting one of these classes hugely depends on the systems users.

Availability was described to encompass the detection and handling of errors within the

system, both for the entire system as well as of individual data items. Each specific DSS

carefully selects its own trade-off between availability and consistency, while striving for

scalability.

Regarding the architectures, it became clear that no approach is the “silver bullet” for

coordination in a DSS. Centralized nodes bear the risk of taking the entire system down

with them if they should fail; structured P2P has scalability issues due to complicated node

insertion and the rather inevitable formation of hot points. Finally the unstructured P2P

approaches are unable to give any performance guarantees, and can also only be considered

scalable if request routing does not resort to flooding.

From reviewing the different data models and access methods, structured data in any form

clearly have the advantage of allowing applications to retrieve data with surgical precision,

reducing application complexity as well as data traffic between the application and the DSS.

However, only relational and graph databases provide complex declarative query languages

able to accomplish this, and both have their issues in scalability as well as in robustness.

The Key/Value stores on the other hand, designed to be able to scale with readily available

44

2.5 Summary and Conclusions

P2P technology, are currently unwilling to provide complex query support in fear of serious

performance penalties.

Regarding query processing, we could see how the methods used for distributed query

processing differ greatly with the underlying architecture: Centralized approaches can make

use of central knowledge and thus perform effective and efficient one-time optimization. In

fully distributed architectures, the presence of a global schema was seen to be problematic.

Also, an one-time query optimization was shown to be no longer feasible and was replaced

with continuous optimization. While the presented reference architecture is still valid in its

and data structures, the flow of data and control has to be adapted for fully distributed query

processing.

Furthermore, all presented methods were closely integrated with the specific underlying

system architecture. However, as we have seen in the previous chapter, the network archi-

tecture defines the characteristics of the DSS. Hence, choosing different architectures, data

placement schemes or routing laws might be required. However, these small changes will

also inhibit the presented approaches from performing their task. Hence, each change in the

environment requires changes to the query processing component. In the following chapter,

we therefore define a basic and abstract environment for fully distributed query processing.

45

2 Distributed Storage – Architectures and Interfaces

46

3 Architecture, Data and Query Models

In the previous chapters, we have discussed specific network architectures and coordination

models for DSS, and shown how their properties define the performance of the system, and

how its selection depends on the compromises regarding the abstract goals the system’s

designers are willing to make. Our survey on the state of the art on distributed query

processing showed close ties to the respective network architecture. Unfortunately, this limits

the broad applicability of these approaches. In this chapter, we therefore define an abstract

network model for DSS based on random network graphs, which is aimed at abstract a wide

range of network structures for DSS. In addition, we present the concept of a probabilistic

request routing method, which is also an abstraction of the routing method that is present

in a DSS to route requests to nodes where matching data is stored. The main goal for this

model is the ability to describe multiple architectures and multiple levels of accuracy in the

routing method. Furthermore, we discuss the issue of data placement with regards to efficient

retrieval.

Also, we have seen how selective and fine-grained access models are important precondi-

tions for retrieval efficiency, and how support for these queries is important over the whole

range of DSS network architectures. Therefore, we also define a structured data and query

model to be used in the remainder of this work. We use a “relaxed relational” data model,

which does not require a global schema to be present. We also present a query model based

on the relational algebra, and describe the both concise and expressive class of conjunctive

Selection-Projection-Join (SPJ) queries on our data model.

47

3 Architecture, Data and Query Models

3.1 Network Model

We have already assumed that the nodes in a DSS are connected using a communication

medium. In theory, this enables every node to directly communicate with every other

node. However, the total amount of connections increases with quadratic complexity as the

number of nodes increases, which will overwhelm the network and the nodes’ connectivity

component quickly, as in a fully connected network the total number of connections c is

proportional to the number of nodes n as such:

c =
n(n− 1)

2

Hence, coordination mechanisms limit the amount of nodes a single node is connected to

and exchanges data with. For example, in a centralized system, storage nodes typically only

communicate with the master node, and in P2P networks the total amount of connections has

a fixed limit.

We therefore model the network that forms the basis of coordination in a DSS as an

undirected graph G = (N,L), with N being a set of nodes, and L being a set of bidirectional

links (na, nb) between nodes [He et al., 2008] . From this model G, we can define a

neighbourhood H for each node n, which is a set of nodes that are connected with the

current node with a network link:

neighbourhood(n,L) = {nc|(n, nc) ∈ L ∨ (nc, n) ∈ L}

Nodes are only allowed to exchange messages with nodes from their neighborhood. This

model is applicable to all presented coordination mechanisms. For example, in a central-

ized system with a master node c1 and storage nodes s1, s2 and s3, L would be Lc =

{(c1, s1), (c1, s2), (c1, s3)}. The neighbourhood of s1 is then neighbourhood(s1, Lc) =

{(c1)}. Note how network connections have uniform weights assigned to them, which

inhibits modeling different connection capacities and varying load status in this network

model. However, this can be incorporated in the routing process as described in the following

section.

It is important to note that no assumptions are taken regarding the network structure in this

model, in particular, no small-world or scale-free properties are assumed. Rather, we only

48

3.2 Coordination Model – Probabilistic Routing

assume a random network structure following to the Erdős–Rényi-model [Erdos and Rényi,

1960]. In this model, a network graph is constructed from a set of nodes. Each possible

edge is then included with an independent probability. In order for requests to be routed

to any node in the network it is necessary for the network to be fully connected, meaning

all nodes can be reached from any node over a series of hops. The main reason behind

this is that random networks represent the most general case for network structures, and by

only requiring random network properties we do not restrict architectures and coordination

models.

In DSS with a P2P architecture, such a network is bootstrapped using a distributed network

bootstrap approach, which have been shown to be very robust and yet scalable [Gau-

thierDickey and Grothoff, 2008]. For example, nodes could be passed the address of a

“bootstrap node” already part of the network. The new node can now retrieve a list of

neighbor nodes from the bootstrap node and request its addition to this neighbor list. This

request is granted if the bootstrap node has not yet reached its neighbor upper limit as per its

configuration. This process is then recursively repeated on the newly known nodes until the

number of neighbors on the new node has reached the neighbor lower limit, also defined in

the node configuration. If the number of bootstrap nodes is limited, this algorithm exhibits

preferential attachment to create a scale-free network structure [Barabasi and Albert, 1999;

Mühleisen and Dentler, 2012].

3.2 Coordination Model – Probabilistic Routing

For the remainder of this work, the specific approach in achieving coordination between

the nodes of a DSS is not decisive. We will assume that coordination is achieved using

one of the presented coordination techniques in their respective architectures. As we have

seen, all techniques were based on efficiently finding an answer for the so-called location

problem: Where should a new data item be stored, and where should the system search

for data items, given a request for the corresponding identifier. As we have also seen, the

different approaches enjoy greatly differing performance characteristics: While centralized

systems command global knowledge and can thus find this answer in constant time with

49

3 Architecture, Data and Query Models

regards to the number of nodes, structured P2P systems can give a logarithmic guarantee

at least. Finally, heuristic-based systems have issues giving any guarantees on the matter.

However, we are able to abstract all these methods with another heuristic:

P ← nextHop(nc, k,H)

The result P is a set of pairs that assigns all nodes from the neighbourhood H of the current

node nc a probability value.

P = (n1, p1), (n2, p2), . . . , (pn, pn)

The values p∗ describe the probability that data matching the data identifier k being either

available on the respective neighbor node or that matching data can be found through the

respective neighbor node. The sum of all probabilities has to evaluate to 1 for each node nc.

Formally,
∀(ni,pi)∈P∑

pi = 1|ni ∈ H
Furthermore, to model the uncertainty inherent in some heuristics, a global factor pf

defines the probability of the contents of P being inaccurate. A value of 1.0 for pf for

example is therefore equivalent to a random walk through the network.

3.2.1 Generic Retrieval Process

While in centralized systems the node to be visited next is always the destination node,

structured P2P and heuristic-based approaches typically require multiple hops for an request

to reach their destination [Stoica et al., 2001]. Keeping this in mind, we can define a solution

to the location problem based on the nextHop function that is agnostic to the coordination

mechanism employed.

This generic retrieval process is depicted in Fig. 3.1. A request for data matching the

identifier #B is started on node S2. Assuming an error-prone routing heuristic, the picture

gives the results of the nextHop function for this identifier on all nodes. Probabilities of

less than 6% are not pictured, but all values are given in Table 3.1.

In this table, the probabilities are given for the connection between the node in the column

leading to the node in the row. Node S3 has no outgoing values in this table, since the

50

3.2 Coordination Model – Probabilistic Routing

S1

S2

S3

S6

S5

S4

#B

70%

25%

95%

50%

50%

95%
10%

85%

#B?

Figure 3.1: Probabilistic Routing in DSS – Example

S1 S2 S4 S5 S6

S1 - 70% - - -

S2 5% - - 10% 50%

S3 95% - 95% - -

S4 - - - 85% -

S5 - 25% 5% - 50%

S6 - 5% - 5% -

Table 3.1: Routing Probabilities for Example

data item being searched for is located on this node and the retrieval process stops there.

Excluding loops, the following paths are possible in this example, with their probability

being the product of each probability on the path:

• S2, S1, S3 – 67%

• S2, S5, S4, S3 – 20%

• S2, S6, S5, S4, S3 – 2%

51

3 Architecture, Data and Query Models

Algorithm 1 Generic retrieval process based on nextHop
Require: Start node ns, network connections L, data identifier k, hop count limit l

1: nc← ns

2: while l > 0 do

3: result← searchLocal(nc, k)

4: if sufficient(result) then

5: deliverResult(ns, result)

6: return ’success’

7: H ← neighbourhood(nc, L)

8: p← nextHop(cn, k,H)

9: r← randomV alue(0, 1)

10: s← 0

11: for all H as h do

12: s← s+ p(h)

13: if s >= r then

14: nc← h

15: l← (l − 1)

16: return ’failure’

Algorithm 1 describes our generic retrieval process for DSS with probabilistic routing:

Requests for data include the data identifier k and are started at any node that is part of the

DSS. First, the node checks whether it is able to serve the request itself with the locally

stored data. If sufficient data is found, the results are delivered to the node where the request

had originated from, as the client application is presumably waiting for results there (Line

3ff). Results can then be delivered by tracing back the path the operation has taken through

the network, with the possibility of eliminating loops beforehand.

If that is not the case, the node uses the nextHop function to determine the probability for

each neighbour that it is either able to handle the request or is at least better suited to forward

the request to its destination. From these values, a weighted random decision is taken (Line

8ff). Since infinite loops are possible in probabilistic routing, a limitation of the number of

52

3.2 Coordination Model – Probabilistic Routing

hops the process is allowed to make is also included in the generic algorithm. If the process

should hit this step count limit, the process was unable to find matching data and finishes

with a failure. In addition, there is a possibility that a retrieval process is started with a data

identifier for which there is no data stored within the DSS at all. However, for the sake of

simplicity in the network and coordination model, we have not provided for this case. The

non-availability of data for a particular key is therefore defined as the retrieval process being

terminated by the step count limit.

3.2.2 Retrieval Guarantees and Accuracy

To show the versatility of our abstraction, we now present examples on how a specific

network architecture and coordination mechanism may implement the abstract model.

For DSS with a centralized or structured P2P coordination method, the nextHop function

enjoys certainty regarding which node to visit next. In this case, the probability distribution

p evaluates to 1.0 for the correct next hop and 0.0 for the other neighbor nodes. In this

case, the weighted random decision taken by the generic retrieval process degenerates

to a fixed decision towards this node. For example, if the DHT decides the next hop

to be S1 from a neighbourhood of H = {S1, S2, S3}, the result of nextHop would be

p = {(S1, 1), (S2, 0), (S3, 0)}. In this case, regardless of the employed randomness, the

algorithm selects S1 as next node to be visited deterministically. In these architectures, we

are then also able to provide the guarantee that data present in the DSS will also be found by

our algorithm, if the path length through the network is smaller than the step limit.

In a centralized architecture, all operations are coordinated by a master node as described

in Section 2.2.1. This master node also holds sufficient information to determine where in the

network a data item is being stored. To reflect these properties, our model can be configured

as follows: The network consists of a central node C1 and a number storage nodes S∗,

N = {C1, S1, . . . , Sn}. Connections between the nodes exists such that the C1 is connected

to all storage nodes, and no further connections exist, L = {(C1, S1), . . . , (C1, Sn)}. This

way, the neighbourhood of C1 would be the set of storage nodes {S1, . . . , Sn} and the

neighbourhood of each storage node would only be {C1}. Furthermore, the central node

holds a local data structure G, where a mapping (k, n) between a routing key k and a storage

53

3 Architecture, Data and Query Models

node n determines where data with this key are stored. The probability distribution p of the

routing function on all nodes can now be given as follows:

p(n ∈ H) =

1 n = C1

1 (k, n) ∈ G
0 otherwise

Contrary, a structured P2P network does not possess a central node. Here, the set of

nodes is therefore N = {S1, . . . , Sn}. However, the global law such as a ring-shaped DHT

dictates the network structure as described in Section 2.2.2. Here, the set of connections

L is constructed such that it correlates with the hash value k at the beginning of the value

range the node is responsible for. During network construction, all neighbour nodes in H are

queried for that value, and each node keeps a local data structure G with these values such

that G = {(n, kn)∀n ∈ H}. Using these values, the routing function can now determine the

node closest to the hash value for which data is currently being searched. Data retrieval for

a key k is now a matter of finding the node closest to that value from G. The probability

distribution p for our model is therefore:

p(n ∈ H) =

 1 (n, k) ∈ G ∧min(k − kn)∀(n, kn) ∈ G
0 otherwise

The more interesting case is where a heuristic is used to improve a random walk through an

unstructured network as described in Section 2.2.3. Here, the heuristics influences the routing

decision towards the neighbor node it sees best suited to continue with the request. While it

is impossible to describe all possible heuristics here, we will assume for the following that

this has a “beneficial” tendency. A heuristic is regarded to be beneficial, if on average the

probability distribution created by nextHop leads to the best candidate from the neighbor

list being selected. Formally, a routing heuristic is beneficial if its error probability pf is in

the range [0, 0.5[. Through repetition, a beneficial heuristic will lead to a high probability of

the request reaching its destination. It should be noted that in unstructured architectures, this

method cannot lead to deterministic behaviour and the success of retrieval operations cannot

be guaranteed any more. However, though its configuration with the pf parameter, it can be

configured to appropriately model the performance of the specific heuristic used.

54

3.2 Coordination Model – Probabilistic Routing

Therefore, our model is appropriate to abstract from at least the three presented network

architectures, and possibly many more. In the remainder of this work, we use only this

network model. If an algorithm is able to perform its task on this abstract model, it is also

able to do so on the abstracted architectures. Thereby, we avoid the common pitfall we

noted in Section 2.4, which consisted of tying an algorithm closely to a specific network

architecture. While this approach can give some performance improvements and allows

exploitation of the inner workings of the coordination model, it also makes the transfer of an

approach to another architecture hard, which is precisely what we are trying to avoid here.

3.2.3 Stochastic Analysis

To determine the theoretical performance of routing heuristics, we will now perform a

stochastic analysis of the retrieval process. To this matter, we will describe the average case

performance of the algorithm. Consistent with distributed systems research, the unit of cost

for this analysis will be hops, that is the amount of transitions of the operation between

nodes [Peleg and Pincas, 2001; Tang et al., 2008].

Since a request can be started at every node and results can be on any node in the network,

the cost for any retrieval operation is at least the length of the shortest path between the

nodes in the network. In the average case, this distance is the average path length in the

network. Disregarding the possibility of the network graph having small-world or scale-free

properties, we assume the average path length in random networks as our average distance

from start to target node. The average path length in a random network lER(and also the

average distance between nodes) is calculated as follows [Fronczak et al., 2004]:

lER(N, 〈k〉) =
lnN − γ

ln 〈k〉 +
1
2

with N being the number of nodes, γ being the Euler-Mascheroni constant (≈ 0.5772) and

〈k〉 being the average connectivity in the network (equivalent to the average number of

neighbor nodes).

For this analysis, a heuristics-based DSS with a beneficial routing heuristic as defined in

the previous section is assumed with pf in the range [0, 0.5[. For every step on the way from

the origin to the destination node, three outcomes of the heuristic-supported routing process

55

3 Architecture, Data and Query Models

are possible: Positive, where the operation got one step closer to its destination, Neutral,

where the amount of steps remaining is unchanged, and Negative, where the operation now

is one step further away from the destination. Since network connections are defined to

be bidirectional, a step in the wrong direction can add at most one additional step to the

remaining path length.

From observing the routing heuristic, we assume to have determined its pf value, but

now we have to discern between the positive and the neutral/negative case. However, this

distribution between neutral and negative outcome is unknown, we therefore introduce a

second parameter, pn. The probabilities for each case are thus as follows:

• p(positive) = 1− pf

• p(neutral) = pf ∗ (1− pn)

• p(negative) = pf ∗ pn

For a single step in the network, the total impact i on the remaining path length is calculated

as i = −(1− pf) + (pf ∗ pn). If the assumption of pf being at most 0.5 holds, we can see

that pn has to be 1 in order for the improvement i to evaluate to 0. However, it is unlikely

that every mistake adds another step to the operation’s path, and hence we can safely assume

pn being smaller than 1. If this assumption holds, the improvement i is always negative.

Consequently, every routing operation will – on average – bring the retrieval process closer

to its destination.

The expected value for the average hop count to retrieve an arbitrary element from the

network is then the fraction of the average path length by the absolute value of the expected

reduction of the remaining path length per hop.

hops(N, 〈k〉, pf , pn) = d lER(N, 〈k〉)
| − (1− pf) + (pf ∗ pn)| e

Table 3.2 lists the result of this calculation a network size of 10,000 nodes and an average

connectivity of 10. The average path length for a random network with this characteristics

is 6 hops according to our formula. In the table, we have calculated the expected number

of hops with probabilistic routing for various pf and pn settings. We can see how only the

56

3.2 Coordination Model – Probabilistic Routing

pf value has a considerable influence on the hop count and overhead between average path

length and hop count created through the use of probabilistic routing. The decision whether

the incurred overhead is acceptable can now be weighted. Through the analysis of a specific

coordination method, a DSS implementation can now choose whether the trade-off between

coordination effort and routing errors is acceptable. We present two experiments aimed at

validating our analysis in Section 5.3.

pf pn i hops overhead

0.1 0.25 -0.88 7 1

0.1 0.5 -0.85 8 2

0.1 0.75 -0.83 8 2

0.2 0.25 -0.75 8 2

0.2 0.5 -0.7 9 3

0.2 0.75 -0.65 10 4

0.3 0.25 -0.63 10 4

0.3 0.5 -0.55 11 5

0.3 0.75 -0.48 13 7

0.4 0.25 -0.5 12 6

0.4 0.5 -0.4 15 9

0.4 0.75 -0.3 20 14

0.5 0.25 -0.38 16 10

0.5 0.5 -0.25 24 18

0.5 0.75 -0.13 48 42

Table 3.2: Probabilistic routing – Average hop count expectation

To come back to our stochastic analysis of the average amount of hops required to route a

request from the node it was created on to the node storing matching data, we have described

the average amount of hops required to perform this task in the presence of an potentially

unreliable routing heuristic. When we review the formula to calculate the average amount of

hops required to retrieve a single data item, we can see that a logarithmic complexity with

57

3 Architecture, Data and Query Models

regard to the number of nodes is present. This is consistent with previous research on fully

distributed coordination models [Loguinov et al., 2003; Giakkoupis and Hadzilacos, 2007].

We therefore regard our abstraction of the coordination subsystem to be both simplistic yet

potentially efficient and can now continue to introduce our data and query model.

3.3 Data Model

As we have seen in Section 2.3.2 and Section 2.3.3, the relational data model provides the

highest amount of consistency for the stored data. Through its global schema, data is highly

structured and can be efficiently distributed through horizontal and vertical distribution with

centralized coordination. Also, queries over data in this model can be validated through

comparison of the request with the schema. However, we have also seen that one of the

motivations for research on Key/Value DSS was the complexity inherent in distributing the

relational model. If the coordination model is no longer centralized, the DSS would also need

to distribute the schema information. The methods available for this distribution (replication,

partitioning etc.) cannot guarantee the schema being up-to-date on every node, which would

be a requirement for data consistency. Hence, agreeing with the NoSQL approach, we will

not require a schema to be present in our data model.

Rather, we remove the concept of a relation, a set of tuples with matching headers. The

bulk of the data is now only a set of tuples, with potentially each tuple having its own header.

This data model is directly equivalent to the Key/Value model, with its main advantage of

being able to be distributed efficiently. Formally, a tuple is a function t : K → {V ∪ ⊥},
that maps a subset of keys k ∈ K to a value v ∈ V . In the case where t does not contain a

mapping for a key, ⊥ is returned.

For the sake of modeling simplicity, we express all tuple values V as string literals. Should

different data types be desired, these could be added as a third entry to each Key/Value

mapping. Both the relational as well as the RDF data can be expressed within this model, as

we will show below. Furthermore, this model is equivalent to the data model used in the Pig

data analysis system. Here, complex queries in a procedural language are translated into a

set of (distributed) Map/Reduce operations [Olston et al., 2008].

58

3.3 Data Model

Manufacturer

Name City

BMW Munich

Daimler Stuttgart

City

Name Inhabitants

Stuttgart 607000

Munich 1330000

Table 3.3: Relational Data – Example

To express relational data in the Key/Value model, we add the name of the relation to each

tuple as such: For every relation in the database R = (B,HR, i) with B being the set of

tuples, HR being its common header, and i being the identifier of the relation, we extend

each tuple t from B with a new mapping to the relation identifier such that t(′isA′) = i. The

union of all tuple sets B from all relations is then the result of the transformation. Should

same-value attributes names occur in multiple relations, the relation name is prefixed to the

attribute name to remove ambiguity.

For example, if we transform the relational data from Table 3.3 into our data model, the

result would be the following set of tuples:

{

{(’isA’,’Manufacturer’),(’Name’,’BMW’),(’City’,’Munich’)},

{(’isA’,’Manufacturer’),(’Name’,’Daimler’),(’City’,’Stuttgart’)},

{(’isA’,’City’),(’Name’,’Stuttgart’),(’Inhabitants’,’607000’)},

{(’isA’,’City’),(’Name’,’Munich’),(’City’,’1330000’)}

}

59

3 Architecture, Data and Query Models

A very similar method can be used to express RDF graphs in the Key/Value data model:

For every triple (s, p, o) in the graph’s serialization, we create a tuple t such as t(′s′) = s,

t(′p′) = p and t(′o′) = o.

3.3.1 Local Storage Interface on Nodes

To write data in this model to nodes and also read it again, we also define a deliberately

primitive storage interface to be present on each node. At the same time, we do not make

further assumptions about the algorithms, data structures, and storage devices used to

physically store this data. As we have seen, our data model is based on sets of schema-less

tuples. Therefore, the largest coherent units of data in this model are tuples themselves. The

signatures of the two methods of the local storage interface are:

• put(t)

• T ← read(k, v)

To store tuples on a node, the put(t) is used. t refers to an arbitrary tuple with its set of

key/value bindings. The put operation does not give a return value. To read data from a

node, the read(k, v) operation is used. k refers to a key of any tuple previously stored, and

v refers to a value. read returns a set of tuples T , which may be empty if no matching tuples

are found. Formally, if we assume D to be the set of all tuples stored on a particular node,

read(k, v) = {d ∈ D|d(k) = v}. Furthermore, v can be replaced with a wild card marker

∗, in which case all tuples that contain the key k are returned.

3.4 Data Distribution Scheme

An important aspect for our model is how tuples are placed inside the storage network. Since

no schema connects tuples any more, placement can be decided for each tuple separately.

Since the only mode of access to tuples is by a single-valued routing key, we adopt the

distribution scheme proposed in [Cai et al., 2004]. There, each tuple is stored several times,

each time with a different tuple entry key as routing key. This enables retrieval operations for

60

3.4 Data Distribution Scheme

tuples by each entry key, a precondition for selective access. Of course, this creates a storage

overhead linear to the number of entries in the tuple. However, since this overhead is limited

by the tuple length, which can be safely assumed to be far lower than the total amount of

tuples, the multiple copies created by this method only contribute a linear complexity to the

effort required to store all tuples.

While we are in theory now able to retrieve the stored tuple by any of their entry keys, the

main question remains. On which node should the tuples be stored? In a storage network

using a centralized coordination mechanism, the central node can answer this question. This

makes a balanced distribution of tuples according to storage and query load possible. In

contrast, in a coordination mechanism lacking a central node such as distributed hash tables

or heuristic-based approaches, the decision where to store is also distributed. For example, in

a DHT the global law dictates a mathematical relationship between routing key and network

node that is responsible for storing the data item. In DSS using a heuristic-based coordination

mechanism, a number of methods to determine the placement of tuples according to its

routing key are conceivable.

To avoid restricting our model to a specific coordination mechanism, we will assume the

presence of a data distribution scheme, but make no further assumption about it. In the

most general case, single tuples are randomly placed inside the storage network, a notion

that also supports our stochastic analysis of the single-item retrieval mechanism described

in Section 3.2.3. Also, since the data placement problem in a DSS has been shown to be

NP-complete [Gribble et al., 2001], achieving a perfect data distribution with regards to

efficient retrieval is unrealistic from the outset. Several heuristics have been proposed to

create a near-optimal data placement in a DSS [McClean et al., 1991]. However, these

methods rely on central control for optimization heuristics such as random improvement or

simulated annealing, and are thus not applicable in our environment. Therefore, we assume

a random data placement scheme as the most general case for the remainder of this work.

A closely related and more serious issue arises when multiple data items are to be stored

with the same routing key. This is very likely, for example, in our data model given in

Section 3.3, the tuple key isA is occurring in each tuple. According to the data placement

scheme outlined above, each tuple would be stored once with this value as routing key.

61

3 Architecture, Data and Query Models

S1

S2

S350%

#B?

#B #B

50%

Figure 3.2: Data Placement with Equivalent Routing Keys – Example

At the same time, retrieval operations for this key would expect all matching tuples to be

returned. With a random placement strategy, this retrieval operation would degrade to a

scan of the entire DSS, which is not efficient. This situation is depicted in Fig. 3.2. Here,

a retrieval request for the routing key #B is started on node S2, which matching data both

being available at S1 and S3. The perfect routing heuristic nextHop on S2 now yields

p(S1) = p(S3) = 0.5. To retrieve matching tuples from both nodes, the retrieval operation

would have to make 3 hops, which is equal to the number of nodes in the network and not

desirable at all.

An alternative solution is to extend the placement scheme to store tuples with equivalent

routing keys on the same node. This placement scheme is for example the default mode of

operation in a DSS using a DHT as coordination mechanism. However, this represents a

threat to the scalability of a system implementing our model as well. If all or a significant

fraction of the entire set of tuples to be stored in the DSS contain a single tuple entry key, the

local storage of the node storing tuples for this key would soon be overloaded [Battré et al.,

2006].

It is therefore necessary to provide a method which both enables efficient retrieval as well

as allowing overflowing nodes to gracefully offload excess data to other nodes. Again, in

the case of a centralized system this can be achieved using central load monitoring and the

partitioning of data stored using high-frequency keys between several storage nodes. In

ring-based DHTs, this data is often moved to the successor nodes [Wang et al., 2006]. In

heuristics-based system as well as in our coordination abstraction, a different method has

62

3.4 Data Distribution Scheme

to be used. To achieve efficient retrieval, one possibility is to create key locality by storing

tuples with equivalent routing keys in a very limited subset of the network. In our abstraction,

a possible algorithm to create this locality would be first to locate the node already storing

data with the routing key of the tuples to be stored, typically by creating a read operation.

If such a node is found, the first choice would also be to store the new data there. As this

node comes close to exhausting its storage capacity, new data with this key is then moved

to the neighbor nodes, with the original node keeping track of which neighbor nodes the

excess data was moved to. Incoming retrieval operations can then either be forwarded by

modifying the result of the nextHop function, or by being given a list of neighbor nodes

where additional matching data is located.

As stated before, the retrieval operation is allowed to exhibit a certain probability of error.

If too many errors occur, the node storing data for a single key might not be found, even

though tuples with matching routing key are present in the network. In this case, the new

data item would be placed on an arbitrary node. This creates the aforementioned problem of

the new data being either not accessible at all or requiring an extraordinary amount of hops

to locate. To mend this issue, we have presented an algorithm inspired by the brood sorting

used by some species of ants in our previous work [Mühleisen et al., 2011c]. In a nutshell,

each node periodically sends out probes with a histogram (routing key / number of stored

tuples) of the locally stored data. Other nodes receive this data, and compare this histogram

to the locally stored data and either move the data from the node the probe originated from

into their local storage or move the locally stored data to the probing node.

For the remainder of this work, we can therefore safely assume a random data placement

scheme for each routing key, with tuples being stored by the same routing key on the same

node. We have presented a conceptual method to mend the problem of overflowing nodes,

but will not consider the issue further for the sake of simplicity.

63

3 Architecture, Data and Query Models

3.5 Query Model

As we have now described how structured data is expressed in our generic data model, we

can continue with the description of the fine-grained access to data stored in this model

through complex queries. Before we can go into the details of complex query processing, we

must first define what we regard to be a complex query. While the literature does not contain

a usable definition, there seems to be consensus on what kind of operations can be part of a

complex query.

Even though we have removed a crucial part from the relational data model – the concept

of a relation – we are using the complex query operators supported by relational databases as

the basis for our query model, as they provide a time-proven starting point. The relational

algebra first proposed by [Codd, 1970] used set theory to describe their operations, namely

selection, projection, cross product, set union and set difference. Together with the rename

operation shown to be necessary in [Hall et al., 1975], these operations form a fundamental

nucleus of operators and also provide the entire expressiveness of the relational algebra.

Furthermore, the relational query algebra can also provide a basis to support additional

data models and query languages. For example, queries in the RDF graph query language

SPARQL can be and typically are translated into SQL queries [Elliott et al., 2009]

Even though the common query language SQL does not fully implement the relational

model, its SELECT statement does include further operators to be considered [Melton and

Simon, 1993]: In addition to the operations already presented, SQL defines the following

operations: Multiple relations may be joined together by a number of different join methods.

In a join, values from multiple relations are recombined into a new relation, often combining

the result tuples by a join criterion. We will consider the equijoin as a popular example for

join operations further. Furthermore, SQL supports the modification of the result set with

the group by and order by operators. However, these operators can always be applied on

the final result set and are thus not considered further. Furthermore, these operators have

been shown to only possess subtle differences to join processing [Bratbergsengen, 1984].

Consistent with previous literature on complex query processing, we therefore focus on the

class of conjunctive SPJ-Queries, which represent a more tractable set of operators, which

64

3.5 Query Model

nonetheless also exhibit the complexity inherent in full-blown SQL query processing [Tudor,

2007; Chekuri and Rajaraman, 2000]. SPJ queries contain the selection operator, which

reduces a set of tuples based on a selection criterion, a projection operator, which removes

mappings from individual tuples, and a join operator, which combines tuples by common

attribute values.

We will adapt the operators selection, projection and join for our query model and discuss

each of these operators considering our non-relational data model as defined in the previous

section. To be able to perform query processing, we need to define the correct result for each

operator, and their general input/output structure.

π
′
′Name′

on′
′Manufacturer_Name′=′City_Name′

σ
′
′isA′=′Manufacturer′

I/O

σ
′
′isA′=′City′,′City_Inhabitants′<′1000000′

I/O

Figure 3.3: Example Query – Tree Representation.

To give an example of a complex query expressed in the model we have defined in this

section, we will formulate a query retrieving car manufacturers from cities with less than

one million inhabitants from the data converted from the relational format in Section 3.3.

The query to retrieve this information is given in Fig. 3.3 in a tree representation. Data flows

through this tree from bottom to top, as soon as the I/O processes finish, they deliver their

results to their parent nodes. In this example, the left selection will deliver the two tuples

describing the manufacturers to the join, and the right selection one tuple describing the city

with less than 1M inhabitants. As soon as both selections are finished, the join can evaluate,

and finally the projection to the company name, which will yield a tuple set with a single

tuple with one attribute mapping, in this example {{(′Name′,′Daimler′)}}. We will omit

the quotation marks on attribute names and values for the remainder of this work.

65

3 Architecture, Data and Query Models

As a data structure, queries are represented as hierarchical trees of operators. Each

operator holds a reference to a single parent operator, and a list of references to child

operators. Furthermore, operators contain a Boolean flag that marks their evaluation state as

well as a set of tuples as the result of their application. Formally, an operator o is defined as

a 5-tuple o = (p, c, f, r, e), with p being the parent operator, c = (c1, c2, . . . , cn) being an

ordered list of child operators, f being the flag that marks an operator to be fully evaluated,

and r as the set of tuples as the result of this operator. In order to refer to an entire query q,

it is sufficient to give a reference to its root node or, since all operators that are part of the

query tree can be reached by recursively traversing the c list.

e is the operators evaluation function. The result of the evaluation function is available

as soon as the child operators finish. The specific parent operation (selection, join, etc.)

can then calculate the result of its evaluation function e, as soon as all child nodes have

been marked as evaluated and their results being present. As soon as the root node has been

evaluated, the query is fully evaluated. On the other end of the tree, leaf operations in the

query tree have the capability of accessing the stored data, e.g. by reading from persistent

storage.

In the following, we will now express the operations identified to be representative for

complex query evaluation within our operator model. Here, it will be sufficient to describe

the evaluation function e for all operators.

3.5.1 Selection

Relational selection is defined on a relation R as σaθp(R), with a being an attribute name,

θ being an comparison operator, and p being either another attribute name or a constant

value. The result of the selection are the tuples with a mapping for a, for which the

comparison with p evaluates to true. For example, to select all cities with more than a

million inhabitants from the relation “City” given in Table 3.3, one could use the following

selection: σ′Inhabitants′>1M (′City′). In our data model, we replace the relation R from the

above definition by an unstructured set of tuples T . However, in this case we can no longer

be certain that all tuples in T contain a mapping for the selection attribute a. Hence, we

redefine the selection as σ
′
a1θ1p1,a2θ2p2,...anθnpn

(T), allowing multiple selection criteria to be

66

3.5 Query Model

set for a single selection operation. Furthermore, we also redefine the selection result, such

that tuples that lack a mapping for either a or p (if p is an attribute name) are not included in

the result set. The e function for the selection operation thus takes the result from the first

and only child operator, applies the selection criteria, and then passes the result on to its

parent. Formally, the result set r of our selection is defined as

t ∈ c1.r ∧ (θ1(t(a1), p1) ∧ . . . ∧ θn(t(an), pn))⇔ t ∈ r

3.5.2 Projection

The relational projection removes attributes from all the tuples in a relation, formally

πa1,a2,...,an(R). The tuples in the resulting relation then only contain the projection at-

tributes P = {a1, a2, . . . , an}. Similar to the selection, we replace R by the unstructured set

of tuples T and redefine the projection as π
′
a1,a2,...,an

(T). As with the selection, tuples in the

input set that do not contain a mapping for one of the projection attributes will be omitted

from the result set. The e function for the projection operation thus takes the result from

the first and only child operation and applies the projection attributes to create its result set.

Formally, the result set r of this projection is defined as

t ∈ c1.r ∧ ∀a ∈ P |t(a)! =⊥⇔

tr ∈ r ∧ ∀a ∈ P |tr(a) = t(a) ∧ ∀m /∈ P |tr(m) =⊥

3.5.3 Equi-Join

As mentioned, we use the relational equi-join (an θ-join with only equality operators) as an

example as to how more complex relational operations may be evaluated within our reduced

data model. The relational equi-join compares the values of the given attributes in the input

relations. We define our equi-join operation as follows: T1 on′
a1=a2

T2, with T1 and T2 being

sets of tuples and a1 and a2 being attribute names. a1 denotes the join attribute from the first

input set T1, a2 is an attribute from T2. The main issue here is again how tuples in the input

sets that have no mapping for the join attribute should be handled. Consistent to the selection

operator, these tuples are ignored. The e function for the equi-join thus takes the result sets

67

3 Architecture, Data and Query Models

from the first and second child operation and returns joined tuples with equal values for the

join attributes. Formally:

∀t1 ∈ c1.r∀t2 ∈ c2.r(t1(a1) = t2(a2) ∧ t1(a1)! =⊥)⇔

tr ∈ r ∧ ∀k1 ∈ keys(t1)(tr(k1) = t1(k1)) ∧ ∀k2 ∈ keys(t2)\a2(tr(k2) = t2(k2))

3.6 Summary

In this chapter, we have laid the foundations for architecture-agnostic distributed query

processing: We have presented a model for a network structure based on the very general

concept of random networks as well as a fully distributed network construction algorithm.

Based on this model, we have described our probabilistic request routing approach, which

does no longer require the routing function to deliver exact results. This has the main

advantage of removing the need for complete knowledge of the location of data inside the

network or inflexible global laws. Furthermore, we have presented an abstract algorithm

to retrieve any data item from any node that is part of the storage network. The issue of

data placement has also been discussed, and we concluded on the need for key locality, if

traversing the entire storage network in search for data is not an option. Through an average-

case stochastic analysis, we were able to predict the relationship between the error rate of

the routing function and the additional costs. Furthermore, we have defined a structured

data model, which does not require a global schema. We have continued to discuss the

distribution of data expressed in this model in a DSS, and concluded on a need for locality

in data placement for efficient and complete retrieval results. We have also presented a

query closely following the relational query model that supports selection of subsets of

data, projection of tuples to reduce their size, and equi-joins of two sets of tuples based on

common attributes. In the following chapter, we will use the models defined in this chapter

to describe architecture-agnostic distributed query processing.

68

4 Distributed Query Processing with

Mutable Moving Query Plans

In the previous chapters, we have seen how support for complex queries in a DSS is highly

desirable, since they allow us to answer questions on the entire stored dataset without having

to retrieve several potentially large intermediate results. In order to gain independence of

specific network architectures and coordination methods, we have described an abstract

network architecture that represents a lowest common denominator of several popular

network architectures. We have also presented a query and data model, which do not rely

on any central knowledge, as this central knowledge represents a potential threat to the

system’s distributed nature. Furthermore, our review of the state of the art in fully distributed

query processing has shown that distributed query optimization is best performed through

continuous improvements. In this chapter, we now investigate the question whether it is

possible to efficiently evaluate these complex queries within our abstract network model.

The presented method is not intended to be directly implemented, since it is only based

on an abstraction. However, it is valuable in providing a baseline algorithm to determine

lower complexity bounds and can also serve as the basis for an implementation for a specific

network architecture. Furthermore, we can test our assumption whether probabilistic routing

and key locality in data distribution are sufficient for logarithmic complexity in distributed

query processing.

We structure this investigation according to the generic DQP architecture and process

presented in Section 2.4. However, to reflect the lack of a schema and the continuous

optimization process, we have adapted the generic architecture shown in Fig. 4.1. Here,

the query received by the system is first parsed into a internal tree-like structure and then

69

4 Distributed Query Processing with Mutable Moving Query Plans

Mutable Moving Query Plans

parse✓ rewrite✓

↺

Catalog
✗

optimize
↺

execute
↺

Figure 4.1: Distributed Query Evaluation with Continuous Optimization

rewritten to an internal operator structure. The process of optimizing and executing this

operator structure is no longer a single step, but constantly repeated to adapt the process to

new information as it becomes available. Furthermore, the Catalog component has been

removed for the mentioned reasons. As we can see, parsing and rewriting a query into the

internal query model is unchanged, allowing us to re-use previous work and not consider

these steps further.

The main focus here is therefore optimization and execution. To achieve these tasks, we

have devised the concept of Mutable Moving Query Plans (MMQP), which perform query

processing as part of a journey through the network, permanently seeking to optimize the

query at hand through re-formulation as well as operator reordering. At the same time,

operators in the query tree are evaluated, as soon all data required by them has been located.

This concept is loosely based on two previous ideas and combines them: [Papadimos and

Maier, 2002] have described the idea of mutant query plans for distributed XML databases,

while [Avnur and Hellerstein, 2000] have proposed movable query plans, that are passed

from node to node, accumulating partial results until the query is fully evaluated.

In this chapter, we list the assumptions we have taken in the design of MMQP, present a

procedural overview of our method, and describe the cost model used to assign costs to alter-

native query execution plans. We discuss evaluation efficiency and result set completeness

along with methods to recover from failures. We end this chapter with a discussion of the

efficiency of the approach presented here and give an average-case stochastic analysis aimed

at predicting the evaluation costs that are to be expected.

70

4.1 Assumptions and Preconditions

4.1 Assumptions and Preconditions

Before we go into the details of our MMQP approach, we first list the assumptions we

have taken in its design. As mentioned, we try to achieve distributed query processing. We

assume the network model described in Section 3.1. As part of this model we also assume

the presence of a usable routing heuristic. In particular, the routing heuristic is required

to have a failure probability of less than 50%, as we are otherwise unable to reach stored

data in a reasonable number of steps, as discussed in Section 3.2.3. Apart from these, no

further assumptions are taken for the network architecture, in particular allowing the addition

and departure of nodes at any point, even during query processing. We also assume data

according to the data model presented in Section 3.3 being present in the network and – more

importantly – that the data placement scheme inside the network exhibits key locality as

outlined in Section 3.4. Also, replication is assumed to be present to protect against node

failure and load issues, but that the replicated data is transparent to the network architecture

and local storage operations. Finally, data may be added, removed or moved at any time,

including during the process of evaluating a single query. As mentioned, we also assume

queries being present in the tree model as described in Section 3.5, only containing the three

operators Selection, Projection and Join.

More importantly, we assume an ability to execute program code on the nodes in the

DSS. More specifically, we assume nodes to be able to react on messages transmitted to

them from one of their neighbor nodes by executing a custom program as defined below

in Section 4.4. This execution context allows us to send the query through the network

without tracking or controlling this process from a single location. Otherwise, we would

have no choice but to assemble all data relevant to the query prior to execution, which is also

known as "data shipping”. However, one of the goals of complex queries in our model is

to significantly reduce the amount of transmitted data through the use of selections or join

operations with other intermediate data. Therefore, the described local execution context is

required. This assumption also implies that the nodes in the DSS are under the control of a

single organization, since non-related organizations would be highly unlikely to allow the

execution of code on their machines. Therefore, our approach is for example not suitable to

71

4 Distributed Query Processing with Mutable Moving Query Plans

public P2P infrastructures. On the other hand, this ownership model also allows us to not

consider security implications or malicious nodes, and makes our assumption of a usable

data distribution scheme being present more realistic.

Two important aspects to complex query processing from a traditional database perspective

are the correctness and completeness of query results [Ramamritham and Chrysanthis, 1996].

These aspects can be compared to the consistency introduced as one of the competing goals

in Section 2.2. In our environment, correctness of query results can be guaranteed, since a

deterministic process using defined operators is used to produce them. This distinguishes

our approach from Information Retrieval in general.

Continuing our argumentation on consistency, and how compromises on consistency are

required to achieve the other goals, we believe it is also necessary to make compromises

regarding query result completeness. Fortunately, our network model together with the

data distribution scheme enables us to adjust our model to completeness requirements. If

completeness of query results is required, adopting for example a data distribution scheme

(see Section 3.4) of same-key data being stored on a single node along with a error-free

routing method for example being present in centralized networks, we are able to guarantee

that – given a hop count limit sufficient to traverse the entire network – the query results will

be complete. However, we will not require these two preconditions, since they would severely

limit the range of network architectures our approach would be applicable to. In situations

where the two preconditions do not hold, we are unable to provide any completeness

guarantees, and only stochastic guarantees can be given for even partial query evaluations.

We discuss the stochastic properties of our approach in Section 4.6.

4.2 Procedural Overview

Our concept of query evaluation is performed as follows: Within the DSS, any node receives

a complex query for the data stored in the entire network by an application or user. The

node will then parse the query into an internal tree representation as described in Section 3.5.

Without initial optimization, the query is handed over to the execution component, which

first searches the local data for tuples matching the basic I/O operators in the query plan. If

72

4.2 Procedural Overview

tuples are found, they are fed into the operators, which can then trigger their parent operators

to also evaluate as described.

As described in Section 3.3.1, local I/O operations in our model are modeled as retrieval

operators by a single key and (optional) value from local persistent storage, yielding a set

of tuples. To continue our example from Section 3.5, the query tree with the local retrieval

operator read(k, v) is given in Fig. 4.2.

π
′
Name

on′
Manufacturer_Name=City_Name

σ
′
isA=Manufacturer

readisA,Manufacturer

σ
′
isA=City,City_Inhabitants<1000000

readisA,City readCity_Inhabitants,∗

Figure 4.2: Example Query – Tree Representation.

Then, the set of result-equivalent execution alternatives is computed, each with a specific

order of basic read operator execution (Similar to the operator “ToDo” list described by

[Rösch et al., 2005]), a more formal definition follows in Section 4.4. These alternatives

are then ranked according to a cost model based on the routing heuristic, and a selectivity

and distance estimation as will introduce in Section 4.3. Based on this ranking, the best

query plan based according to the local knowledge is selected for further processing. The

next operator to be evaluated is then selected from the operator list, and the entire query

along with the partial results inside the operators is forwarded to the node which has the

highest probability of delivering results similar to our single-objective retrieval algorithm

(Algorithm 1).

A data flow diagram of this process is pictured in Fig. 4.3: A complex query is started on

the leftmost node, which creates the abstract query tree representation as well as the operator

ordering (denoted by the numbers in circles). At this point, the leftmost read operation is to

73

4 Distributed Query Processing with Mutable Moving Query Plans

10

↺

⋈

σ
r r r

σ
③① ②

↺

⋈

σ
r r r

σ
③ ①②

↺

⋈

σ
r r③ ②

Figure 4.3: Mutable Moving Query Plans – Conceptual View

be executed first. Since this node does not contain any data matching the read operations,

the query execution is forwarded to next node. According to data retrieved from the routing

heuristic, this node then decides to switch the operator execution order between the leftmost

read operation and the rightmost read operation. Since this node also does not store relevant

data, the query is forwarded again to the top right node. Here, data matching the read

operation with the highest priority is found, replacing the read operator. Since its parent

operator – a selection – has no other non-evaluated child nodes, it can also be evaluated.

However, its parent join operation cannot be evaluated yet, as it has to wait for the results of

the other selection. In this form, the query is now forwarded further, until the root node has

been evaluated as well.

The reasons for the changed operator order in our example is given in Fig. 4.4. Here, query

processing is again started on the leftmost node. In this example, only two read operations

are included in the query tree, one for data with the key # and one for data with the key

*. At this point, the node calculates the routing probabilities for both keys, and finds the

probability to find data for # on its only neighbor node is far higher than finding data for *.

74

4.3 Cost Model – Future Costs and Required Investment

↺

r(#)①
② r(*)

r(*)①
② r(#)

↺

p(#)= 2%
p(*)=78%

p(#)= 2%
p(*)=10%

p(#)=53%
p(*)= 3%

Figure 4.4: Mutable Moving Query Plan – Example

The query is then forwarded to the center node, where also no data is found. However, the

routing probabilities for the two keys have now changed. The probability of finding data for

* is now not only higher for all neighbor nodes, it also has the highest overall probability of

78%. Hence, the operator order is changed to read data for key * first and the query is routed

to the node with the highest result probability for this key.

4.3 Cost Model – Future Costs and Required Investment

Before we are able to discuss efficiency of the query execution process, we first have define

how we define costs in our environment. In distributed databases, efficiency of queries is

rated using a cost model, which estimates the resources to be spent when evaluating a single

query [Kossmann, 2000]. The cost model therefore defines the goal for query optimization,

namely to find the execution plan with the least cost.

As described in [Gounaris et al., 2002], DQP methods typically aim either at minimizing

the total response time for a single query or maximizing the overall throughput of the system.

In our case, we will focus on single query evaluation, since in order to maximize the overall

75

4 Distributed Query Processing with Mutable Moving Query Plans

throughput, nodes are typically sampled for their current load, which is not feasible in our

abstract and generic network model. To minimize the total response time from a distributed

system, it is necessary to minimize the total amount of messages sent through the network

infrastructure, often also called hop count. The reason for this simplification is that network

transmissions are costly, typically being orders of magnitude slower than local computation

and data access. In comparison, the processing time requirements on the individual nodes

are negligible. Hence, the cost model should be focused on minimizing the amount of steps

through the network.

However, the size of the messages has also to be taken into account. Since the capacity of

network connections is usually limited, the size of the messages sent has a direct impact on

the speed at which a message is transmitted. This is especially relevant in our case, where

the partial results of the query have to be carried along with the query through the network.

4.3.1 Shipping Cost

The size of the partially evaluated plan is unfortunately constantly changing. As new data is

fed into the query tree through the read operations, the size of the current plan is increased at

first. As higher-order operators are evaluated, its size may be reduced again. Hence, our cost

model is based on a notion of shipping cost. Shipping costs are only valid for a unchanged

state of the query plan, and are incurred on every transition of the query processing operation

to another node. Shipping costs are calculated on a per-tuple basis, as the sum of the

cardinality of all intermediate results inside the query. This is of course a simplification, as

transmitting the query tree also incurs cost, and tuples can greatly vary in the number of

key/value mappings they contain. However, the query tree itself is of constant size, and while

source tuples may vary in size, they do so equally for all possible plans.

The overall goal of applying the cost model is then to minimize the sum of the shipping

costs for all hops taken for the processing of a single query. We use a greedy method to

minimize the overall sum of the shipping costs. We express the shipping cost as the sum of all

transmissions of a single tuple while processing a single query, and refer to this metric with

the term transmitted tuples. This metric is a simplification of the total network traffic incurred

by each processed query, it can also be compared to the communication complexity [Kushile-

76

4.3 Cost Model – Future Costs and Required Investment

vitz and Nisan, 1997]. Our problem of finding the minimal path through the network can

be compared to the Travelling Salesman Problem, for which greedy algorithms have been

shown to produce near-optimal results in many cases [Kruskal, J. B., 1956]. Also, the greedy

algorithm has the advantage of straightforward execution in a distributed environment.

4.3.2 Size and Distance Heuristics

Our cost model reflects this greedy approach: For all equivalent permutations of the query

and operator ordering, we calculate the current size of the query plan. We define an abstract

heuristic size similar to [Avnur and Hellerstein, 2000; Tian and DeWitt, 2003]. For any

routing key k, the size(k) heuristic will calculate an estimation of the amount of tuples stored

inside the DSS for the routing key k. Similar to the routing heuristic presented in Section 3.2,

we also model it to be imperfect. The value ps describes the maximum percentage by which

the estimated values may differ from the reality.

Since moving the current query state to the node where this hypothetical future intermediate

result may be found also includes some cost, we use a second heuristic distance to determine

the distance from the current node to another node in hops for a particular routing key. Similar

to size, the distance(nc, k) heuristic calculates the distance in hops from the current position

of the query evaluation process nc to the node where data for a specific routing key k is

stored. Consistent with size, the value pd models the maximum percentage by which the

resulting values might differ from reality. This again enables us to configure our approach to

specific coordination methods.

4.3.3 Future Size and Required Investment

Using the size heuristic, we can temporarily set the cardinality of the basic read operator to

be evaluated next to this estimated value. This way, we are able to determine which parent op-

erators in the query tree also would be able to evaluate in this hypothetical situation. However,

estimating the result set size of these parent operators is difficult. In a traditional database

scenario, sampling techniques are used to estimate the size of intermediate results [Harangsri,

1998]. Unfortunately, sampling unread data is not feasible in our scenario, since this would

77

4 Distributed Query Processing with Mutable Moving Query Plans

require locating the data to be sampled first. Hence, only non-sampling techniques are

applicable here, for exampling using statistical information such as histograms. However,

creating these histograms and making them available to all nodes is also difficult in our

distributed system model. For the remainder of this work, we therefore do not estimate costs

for parent operators. Using this method, we are nonetheless able to create an indication of

the estimated future size of the query tree and perform relative comparisons. The algorithm

to calculate this metric is given in Algorithm 2.

A possible optimization of this situation would be to maintain a local history of the

cardinality of intermediate results for operator subtrees from previous query evaluations and

then to use this information for more accurate size estimations. However, since centralized

maintenance of these statistics is out of the question in our network model, this collection

and maintenance of statistics has to be performed on a per-node basis. A node would analyze

partially evaluated queries, in particular already evaluated operators. For these subtrees,

local statistics for can be created. A least-recently-used (LRU) cache can be used to limit

the memory requirements of these statistics and also minimize cache misses, depending of

course on the workload of the DSS. However, we would then face the problem of possible

discrepancies between the static cost model based on the heuristics and the locally available

statistics. This is also an issue in single-node and centralized databases, here, a feedback

loop can be established to allow these discrepancies to be reduced [Markl et al., 2004]. This

method is also applicable in our environment.

Using the two heuristics, we can calculate the total costs incurred for reaching the node

where a basic read operator could be evaluated. We describe this as the required investment in

order to obtain the estimated future size. By creating a weighted sum between the estimated

future size and the required investment to create it, we are able to rank all permutations of

the current query plan. The query optimizer is then able to choose the plan with the smallest

cost and switch processing to the new plan. Since the values calculated by the heuristic are

allowed to express fluctuations in their results to allow their scalable implementation, we

also define a threshold for this switching process, the so-called minimal improvement. Only

when a new plan is better than the current plan by at least this factor, execution is switched

to the new plan.

78

4.3 Cost Model – Future Costs and Required Investment

4.3.4 Cost Estimation Example

To show the impact the cost estimation has on the shipping cost, we present an example,

where the selection of the wrong execution plan has a huge effect on the processing efficiency.

This example scenario is pictured in Fig. 4.5. Here, a query consisting of two basic read

operations for keys a and b as well as a join operator is started on node S1. Node S4 stores

tuples containing key a with a cardinality of 10 tuples. Node S3 stores tuples containing key

b, but with a cardinality of 1,000 tuples. We assume, that each tuple from a only has one

join partner from b, resulting in a result set size of 10 tuples. At the start on node S1, the

intermediate size of the query plan is 0 tuples, and according to our cost model, no shipping

costs are incurred when this plan without any intermediate results is moved. Two minimal

execution plans are possible: The alternatives are either first using a as a routing key towards

node S4 and then using b towards node S3 or the inverse. While producing equivalent results,

the shipping costs of these two alternatives vary by two orders of magnitude.

S1

S2 S3

⋈

r (b,*)r (a,*)a

n=10

...
b

n=1000

...

S4

Figure 4.5: Cost Model – Example

The development of the shipping cost is shown in Table 4.1. The left column contains the

shipping cost for each transmission of the query evaluation process for the alternative plan,

where tuples for a is read first, visiting the nodes in the order (S1, S2, S4, S2, S3, S1). This al-

ternative incurs shipping cost of 30 transmitted tuples according to our cost model. In contrast,

79

4 Distributed Query Processing with Mutable Moving Query Plans

a,b b,a

S1 → S2 = 0 S1 → S3 = 0

S2 → S4 = 0 S3 → S2 = 1, 000

S4 → S2 = 10 S2 → S4 = 1, 000

S2 → S3 = 10 S4 → S2 = 10

S3 → S1 = 10 S2 → S1 = 10∑
= 30

∑
= 2, 020

Table 4.1: Cost Model – Example Shipping Cost

the plan where tuples for b are read first visits the node in the order (S1, S3, S2, S4, S2, S1).

Here, shipping cost of 2,020 transmitted tuples are incurred. We can see how the selection of

the first alternative is crucial in this case. Assuming accurate size and distance heuristics,

we would have selected the first alternative due to its far lower future cost as determined with

a requirement investment of 0 (no intermediate results present) and the greedy strategy that

would favor the smaller intermediate result.

4.4 Algorithmic Descriptions

In this section, we describe the specific algorithms used to evaluate complex queries in our

MMQP concept. We start by introducing the algorithm that uses the cost model presented

in Section 4.3 to estimate the future costs likely to be incurred by a specific query plan.

From a set of generated result-equivalent query plans, this algorithm is then used in the

plan selection process, which selects the plan with the lowest cost. From there, we can

then describe the generic query processing algorithm and the generation of equivalent plans.

Combined, all these algorithms represent implementations of the optimization and execution

phase previously outlined in this chapter.

Formally, a query plan is defined as the combination of a query q, which is a reference

to the root node of the operator tree as described in Section 3.5, and an ordered list lr =

(r1, r2, . . . , rn) of read operations to be evaluated next. A query execution plan can then be

80

4.4 Algorithmic Descriptions

given as the 2-tuple qp = (or, lr). The routing key the query operation uses to determine the

next node to be visited next is the routing key of the first routing operation in lr. The size

heuristic size is defined as a function from a routing key k to a positive integer, such that

s← size(k), s ∈ N. While this heuristic has to be calculated locally, the current location

of the query execution is not relevant, as the estimated result set size for a particular data

identifier is a value constant for the entire DSS. The distance heuristic distance is also a

function from a routing key to a positive integer d ← distance(nc, k), d ∈ N. This time,

the current location of the query evaluation process is relevant (nc), and thus included in the

function signature.

Algorithm 2 Future Cost Calculation Algorithm for MMQP
Require: size heuristic

1: procedure FUTUREQUERYSIZE(qp = (or, lr))

2: on← head(lr)

3: k← key(on)

4: setCardinality(on, size(k))

5: setEvaluated(on)

6: return treeSize(or)

7: procedure TREESIZE(o = (p, c, f, r, e))

8: s← |r|
9: for all co ∈ c do

10: s← s+ treeSize(co)

11: return s

Using these definitions, we can now describe the recursive algorithm to assign any query

plan qp with a numeric cost value. The definition of this calculation is given as pseudo

code in Algorithm 2. The procedure futureQuerySize retrieves the read operator to be

evaluated next (on) from the operator evaluation list. For the data identifier k assigned to

this operator, the estimated result set size is calculated. For this estimated size, the delivery

into the operator is simulated, by marking the read operation as evaluated and setting its

81

4 Distributed Query Processing with Mutable Moving Query Plans

cardinality to the estimated size (Line 5). Finally, the estimated future (shipping) cost of this

query plan is calculated recursively from the root operator or and returned (Line 6).

Algorithm 3 Query Plan Selection in MMQP
Require: distance heuristic, sum weight parameter weight ∈ [0, 1], minimum improve-

ment improvement ∈ [0, 1]

1: procedure NEXTPLAN(currentP lan = (or, lr))

2: bestP lan← currentP lan

3: QP ← generateQueryP lans(or)

4: currentSize← queryEvaluationSize(or)

5: lowestCost← currentSize ∗ (1− improvement)
6: for all qp = (or, lr) ∈ QP do

7: futureSize← futureQuerySize(copy(qp))

8: investment← currentSize ∗ distance(head(lr))
9: totalCost← (investment ∗ (1− weight)) + (futureSize ∗ weight)

10: if totalCost < lowestCost then

11: bestP lan← qp

12: lowestCost← totalCost

13: return bestP lan

This cost model can now be used to determine the best query evaluation plan from the

current node’s viewpoint. This process is defined in Algorithm 3: For a given query, the set

of equivalent query plans is calculated as described in Section 4.4.1. For each alternative, the

expected future size of the plan after the evaluation of the next read operator is estimated

using the futureQuerySize method (Line 7. The required investment to reach this future

size is then calculated using the distance heuristic (Line 8). The total expected cost is then

calculated by creating a weighted sum of the two previous values (Line 9). The process is

influenced by the parameters weight and improvement. The weight parameter determines

the influence of the required investment and the future size to total cost, a value of 0.5

describes equal influence and should be the starting point. The improvement parameter

describes by how much of a fraction the new plan must be better than the old plan before a

82

4.4 Algorithmic Descriptions

switch between plans in the evaluation process is made. For example, a value of 0.1 requires

the new plan to provide at least a 10% improvement over the current plan. If none of the

generated alternatives achieve this improvement, the current plan is returned as the best

option.

Algorithm 4 Query Evaluation Process for MMQP
Require: Step count limitation maxSteps, query plan qp = (or, lr), start node startNode

1: currentNode← startNode

2: steps←maxSteps

3: while steps > 0 do

4: (or, lr)← nextP lan(or)

5: op = (p, c, f, r, e)← head(lr)

6: T ← read(key(nextReadOp), value(nextReadOp))

7: if |T | > 0 then

8: r← T

9: f ← true

10: e()

11: lr ← lr − op
12: if evaluated(or) then

13: return ’success’

14: continue()

15: currentNode← nextHop(currentNode, k, neighbors(currentNode))

16: steps← steps− 1

17: return ’failure’

Now all basic parts are available to fully describe the algorithm for evaluating MMQP

queries. This description is given in Algorithm 4: From a query plan qp including the operator

tree or and the ordered list of basic read operations to be evaluated lr, query evaluation

starts on the node startNode, where the query has been received from the application. To

ensure termination, the amount of steps inside the network is limited to maxSteps. While

there are still steps left, the nextP lan function described in Algorithm 3 is executed, which

83

4 Distributed Query Processing with Mutable Moving Query Plans

will generate the best query execution plan by using the three heuristics (Line 4). Then,

the local storage (described in Section 3.3.1) is scanned for data matching the basic read

operator r with the highest priority (Line 6). If tuples are found, they are added to the read

operators result set r, the operator its evaluation flag f is set to true as the operator is now

fully evaluated, and its evaluation function e is called, which will escalate the results up to

its parent operations such as join or selection operators (Line 10). If this evaluation cascade

leads to the query being fully evaluated, this can be determined by checking if the root node

or is fully evaluated. If so, query processing is terminated and the results are sent back to the

node the query originated form (Line 12). Furthermore, the basic I/O operation is removed

from the list of operators to be evaluated. Finally, the next node to be visited is selected from

the neighbor list according to the data identifier of the next basic I/O read operation to be

evaluated.

4.4.1 Plan Enumeration

Since the very early database “System R” [Selinger et al., 1979], query optimization has

been based on two steps: First, enumerate a number of result-equivalent query execution

plans, and second, assign costs to them. We have already introduced our cost model in

Section 4.3, and will now describe our approach on plan enumeration. In relational database

systems, dynamic programming [Bellman, 1957] is typically used to implement a bottom-up

enumeration approach: More complex plans are built from simpler sub-plans, starting with

the basic I/O operations on the physical tables as smallest unit, and continuing with n-ary

join operations. During this time, sub-optimal plans are pruned away constantly. Dynamic

programming for query enumeration has been shown to produce the best possible plans if

the cost model is accurate [Kossmann, 2000]. However, our error-prone heuristics for cost

calculation are not stable enough to allow us to prune plans early.

We have adopted a simple approach based on the widely used concept of rule-based query

optimization [Freytag, 1987]. In a nutshell, a set of equivalency rules is defined, which

are then applied to an operator tree in order to generate the desired set of permutations.

Since the permutations are performed on every node the query evaluation is visiting, special

consideration had to be put on query rewritability. Rewriteability restricts the operators

84

4.4 Algorithmic Descriptions

that can be subject of permutation for various permutation rules. In our case, operators

already evaluated may not be reordered at all. Algorithm 5 defines our approach to query and

operator evaluation order permutation. Quite simply, the set of permutation rules is applied

until no rule is applicable any more.

Algorithm 5 Query Plan Permutation
Require: query plan qp = (or, lr), set of permutation rules R

1: P ← {qp}
2: rf ← true

3: while rf do

4: for all r ∈ R do

5: rf ← false

6: for all o ∈ listOperators(or) do

7: qpn← apply(r, o)

8: if qpn /∈ P then

9: rf ← true

10: P ← P + qpn

11: return P

While being not particularly efficient, the amount of CPU usage on each node is not our

main focus in this work. The improvement of the efficiency of the enumeration approach

presented here is therefore deferred to further work. To give an example for a transformation

rule, let us consider join swapping: If a join operation has a child operation that is also

a join operation, the parent join operation may be replaced with the child operation, with

the children of both operators being correctly reattached. An application of this rule is

pictured in Fig. 4.6, where the join operations on′
a and on′

b change their places. Whether this

reorganization is beneficial depends entirely on the size distribution between those operators,

which again is estimated by the cost model.

Due to the close relatedness of our query model, we were able to re-use the equivalency

rules from relational databases, e.g. from [Codd, 1990]. Table 4.2 lists the equivalency rules

that we have also found to be compatible with our model.

85

4 Distributed Query Processing with Mutable Moving Query Plans

op

on′
a

on′
b

o1 o2

o3

op

on′
b

o1 on′
a

o2 o3

Figure 4.6: Permutation Rule – Join Swapping

σ
′
a1θ1p1,a2θ2p2

(T) ≡ σ
′
a1θ1p1

(σ
′
a2θ2p2

(T)) Conjunctive Selections

σ
′
a1θ1p1

(σ
′
a2θ2p2

(T)) ≡ σ
′
a2θ2p2

(σ
′
a1θ1p1

(T)) Commutative Selections

π
′
a1,a2,...,an

(π
′
b1,b2,...,bm

(T)) ≡ π
′
a1,a2,...,an

(T) Superfluous Projections

T1 on′
T2 ≡ T2 on′

T1 Commutative Joins

T1 on′
(T2 on′

T3) ≡ (T1 on′
T2) on′

T3 Associative Natural Joins

Table 4.2: Plan Enumeration – Operator Equivalency Rules

A very important transformation rule is changing the order in which the basic read

operators are to be executed. While their evaluation order does not change the operator

structure further up in the query tree, their order of evaluation does have a profound impact

on the incurred costs, as we have showed above.

4.5 Failure Recovery

When determining the list of assumptions and preconditions for MMQP in Section 4.1,

we have specifically allowed routing errors consistent with our overall network model.

Furthermore, we considered the possibility of nodes or network connections failing during

query processing. Also, the location of data was not fixed in the network at any time. An

additional situation not previously discussed is the node the client application connected

to and started a query on. Since the client application also expects results being delivered

86

4.5 Failure Recovery

to them from this very node, the failure of this so-called “entry node” has even higher

implications for MMQP. In this section, we discuss the possible errors as well as means of

their detection and methods to make them transparent to outside applications.

4.5.1 Misrouted Operations

For our very general network model presented in Section 3.1, we have already shown

that allowing routing errors decreases the coherence in the network, but allows additional

scalability. The case of single retrieval operations alone being not forwarded correctly is

therefore not the exception, but the norm. While we have shown in Section 3.2.3 that single

read operations are very likely to eventually encounter the searched data items, there is still a

rather extensive margin for error. Of course, since MMQP also uses this routing process to

find data matching the leaf operators in the query tree, it is also prone to being misrouted.

r(#)①

↺
p(#)=0%

p(#)=0%

Figure 4.7: Mutable Moving Query Plans – Routing Failure Recovery

Consider the situation depicted in Fig. 4.7. Here, the query evaluation process is on a node

trying to find data for a key, e.g. #. However, from evaluating the routing function, we have

found no indications where to go next in search of data matching #. It is therefore likely that

either no data is available for #, or that the query evaluation process has been routed to an

area of the network where on the one hand no data is available for the key, and on the other

hand no routing information for this key is available. Bear in mind, that this situation is also

87

4 Distributed Query Processing with Mutable Moving Query Plans

possible in a network with a routing function enjoying a very low error probability as per our

network model, since this probability describes the routing performance of all nodes.

In this case, we introduce the following process: The MMQP process carries a list of node

identifiers it has visited on its path through the network in search of evaluating the current

query. Whenever the routing information is below a certain threshold, the process starts

tracking back its path through the network, in search of the node where the “wrong turn”

was taken. This point can be identified again by the routing probabilities. If we find a node

where two or more neighbors have non-zero routing probabilities for the key the process is

currently searching data for, we select the neighbor node not previously on our stored path.

This will allow to escaping these local minima, without having to track back to the node

the query evaluation process originated on. Of course, these backtracking steps count in the

current processes step count, which will terminate the process once it has reached its step

count limit. Therefore, the backtracking will not lead to unbounded activity.

As mentioned in Section 3.2.1, the basic retrieval operation that operates on our abstract

network is unable to determine that data for a specific key does not exist within the storage

network without trying to locate the data and then being terminated by the step count limit.

Since the query processing operation is in essence a sequence of several basic retrieval

operations, it exhibits the same behaviour. Therefore, queries that contain a key for which

there is no data will commence backtracking soon. However, in this case backtracking will

be fruitless, as there is no place where the routing probabilities for the non-existing key

will be higher than the potential noise generated through the routing error probability. The

process will hit its step count limit and be terminated. Therefore, there is no conceptual

difference between queries that are mis-routed and queries that are looking for non-existing

data.

4.5.2 Node or Network Failure

As the DSS increases in size, the probability of any node being unable to perform its function

or its network connections to fail increases steadily. These failures can occur at any time,

but are particularly troublesome when this happens during the process of evaluating a single

query. We only consider these inter-query failures here, since they directly impact our

88

4.5 Failure Recovery

query processing method. Due to the lack of central control, only the node the query is

currently processed on is aware of its current location. Therefore, if this node fails, the query

processing will silently fail, too. Equally, if a query is being forwarded to a neighboring node,

a network failure on this connection will stop the query evaluation process. We therefore

have to differentiate those two cases:

First, if a partially evaluated query plan is forwarded to a neighbor node, this transmission

may fail. This condition is easily detected in many cases, for example if a network protocol

that acknowledges received packets is used. In this case, the sending node can select another

neighbor node as the recipient of the query plan currently being processed.

Second, a node may fail after receiving the query from a neighbor node, and before it

is able to forward it again. Other nodes could detect this condition. There are a number

of solutions that have been proposed to detect failure, from central heartbeat systems over

gossiping approaches to de-centralized probabilistic methods [Aguilera et al., 1997; Gupta

et al., 2001]. Unfortunately, even if neighboring nodes are able to detect the failure of a node,

they would still be unable to salvage the query that was currently running on this node. In

order to achieve this, the entire process would have to be duplicated, which is not desirable

due to its performance penalties.

However, the node where the client application has connected to (“entry node”) and where

the query evaluation process was started is an ideal candidate for tracking the query, since the

client application is also expecting results from there. The entry node is also able to keep the

query sent by the application until results arrive, and is thus can restart a query, if no results

arrive. Unfortunately, the only means for the entry node to determine whether the query has

been lost is through introducing a time limit for query processing. For each query started on

this node, a timer is started. When the timer reaches the time limit, the query can be restarted.

Since queries may be started on any node, this does not introduce a central point of failure

and also allows us to detect failures of the mentioned nature. However, the entry node may

also fail. In this case, the connection to the waiting client application will also be terminated,

a contingency it has to be prepared for. Therefore, we are able to provide run-time level fault

tolerance in general, where these failures are transparent to the application. However, if the

entry node fails or is disconnected, only application-level fault tolerance is feasible.

89

4 Distributed Query Processing with Mutable Moving Query Plans

4.6 Abstraction and Efficiency Analysis

While the previous part of this section has been focused on distributed query processing, we

now describe the an abstraction of our approach on distributed query processing. This serves

two purposes: First, by abstracting from DQP, we can identify other application fields for

our approach. Second, this abstraction simplifies a stochastic efficiency discussion similar

to Section 3.2.3. In presenting MMQP, we have already described how query evaluation

can be compared to a journey through the DSS under constraints, which was also proposed

in [Bharath-Kumar and Jaffe, 1983]. We have already argued for our greedy approach to

perform this journey with near-optimal costs.

The notion of the required investment and estimated future size or gain was used to

prioritize the evaluation basic read operators, that define where the query plan needs to

be routed next. Abstracting from the query plan, we now consider the abstract form of

Multi-Objective Processes (MOP) within a DSS. While not necessarily focused on retrieval,

all that is required from these processes in order to be optimized by our approach is the

exhibition of an ordered list of data identifiers or routing keys to be visited. We also assume

that the process has to be routed to all operators in this list in order to finish its task.

Reconsider the algorithms previously presented both to select the best query plan and

to execute said plan: All that is required to adapt this process from DQP to generic multi-

objective processes are redefinitions of the way the plan permutations are created, how

costs are calculated, how results are returned, and how success is determined. We can

therefore adapt said algorithms in a generic way. We define a MOP as a 4-tuple MOP =

(lr, d(T), f, s(k, n)). As before, lr is a set of basic read operators, each looking for data

matching a single data identifier. d(T) is the delivery function, called as soon as data looked

for by one of the read operators is found. f is the finish flag, which is changed by the process

as soon as it considers itself completed. Through the use of the heuristics nextHop, size

and distance, we can perform our greedy algorithm and select the next read operator to be

evaluated from lr. To execute our Investment/Gain approach, the MOP also includes the

simulation function s(k, n). This function estimates the impact on the size of the process,

90

4.6 Abstraction and Efficiency Analysis

if n tuples matching the identifier k are found. This is sufficient to calculate investment

(through the distance heuristic and the current size of the process.

4.6.1 Stochastic Analysis

While the multi-objective process abstraction from the previous section extends the applica-

bility of our approach, we now turn to the stochastic analysis. Similarly to the analysis we

have already performed for our coordination method in Section 3.2.3, we now investigate the

theoretical performance of our approach with regards to the size of the network. The method

by which we perform this analysis is a thought experiment. Since there are many variables

that influence the shipping cost, we have to restrict our considerations to only show the

influence of the network size. We assume a fixed dataset and a fixed query, that is evaluated

over a random network. Also, we only discuss the average case, which allows us to re-use

the results from the single-element retrieval analysis.

Given a network G = (N,L) and a MOP = (lr, d(T), f, s(k, n)), we can assume that

data matching the read operators in lr is distributed over various nodes from N . We assume

the size heuristic to be perfectly accurate, thereby yielding the exact cardinality for each

routing key. We denote this artificial heuristic by sizea(k). The intermediate size of the

MOP is changing every time data is added on one of the nodes with matching data. For

a path through the network p = (n1, n2, . . . , nm), we model the intermediate size as a

function is(n) → N in transmitted tuples. Since we assume the network connections to

be unweighted, the total shipping cost of evaluating the process is
∑m

j=1 is(j) transmitted

tuples. As we do not know the future intermediate size in advance, it is estimated analogous

to our cost model using the size and distance heuristic as described in Section 4.3.

However, given a static data set and an unchanged read operator evaluation order lr, the

absolute values of the is function are static, since the cardinality of the delivered base data

as well as the internal processing (such as a query plan) also remain static. Therefore, the

total cost only depends on the distance this intermediate result has to be shipped through

the network. In our analysis of the basic retrieval operation in 3.2.3, we have determined

the average amount of hops to be expected when moving from one node to another node in

the network in the presence of error-prone routing. This relationship between network size

91

4 Distributed Query Processing with Mutable Moving Query Plans

and average path length was shown to be logarithmic. Visiting multiple locations therefore

also has this logarithmic complexity, and increasing the network size will – on average –

also have a logarithmic effect in the shipping cost, which is a crucial precondition to the

scalability of our approach. We test this prediction in an experiment in Section 5.4.4.

Furthermore, as stated above, we are using a greedy algorithm, that tries to minimize the

cost for the immediately following step that is taken. Therefore, we are also interested in the

performance penalties of a greedy algorithm. The class of algorithms that our approach can

best be compared to are those that aim to solve the Travelling Salesman Problem (TSP). A

fitting greedy-style heuristic for TSP is the Nearest-Neighbor (NN) algorithm. This approach

is the only one of several greedy methods that computes the solution in one pass starting

from a random node, which makes it comparable to our approach. NN mimics a traveler

whose rule of thumb is always to go to closest un-visited location. It constructs a path π

through the network, which orders the visited nodes nπ(1), nπ(2), . . . , nπ(N). In general, the

next node nπ(i+1) is chosen such that the distance d(cπ(i), nπ(i+1)) is minimal [Johnson and

McGeoch, 1997].

|N | = 102 102.5 103 103.5 104 104.5

NN 1.3 1.8 2.4 3 3.6 4.1

Table 4.3: TSP – Nearest Neighbor Overhead [Johnson and McGeoch, 1997]

In experiments running NN on random networks with random distances, NN was found to

have a considerable overhead in terms of path length over the optimal round-trip according

to [Held and Karp, 1970]. These overheads are reproduced in Table 4.3. For example, for a

network of 1,000 nodes, NN required 2.4 times more hops than the theoretical lower bound.

While our Investment/Gain approach uses a slightly more complex metric to determine costs,

an overhead similar to that of the NN approach has to be expected. We will again compare

these predictions with our experimental results in the following chapter.

92

4.7 Summary and Conclusions

4.7 Summary and Conclusions

In this chapter, we presented our approach at distributed complex query processing, the

Mutable Moving Query Plans. Here, the execution plan of the query is continuously opti-

mized while being sent on a journey through the DSS and while collecting partial results.

For this approach, we have presented an abstract description, an architecture for evaluation,

a cost model based on a notion of investment and gain, and specific algorithms for query

optimization, query execution and routing failure handling.

Also, we have abstracted our approach away from query processing and showed a generic

model of Multi-Objective Processes inside a DSS, which potentially enables our approach to

be applied to many other challenges besides query processing. Furthermore, we have based

our theoretical stochastic analysis on this model, thereby not only showing the scalability of

our generic concept, but also of our approach to query processing.

Using the taxonomy on adaptive query processing presented by [Gounaris et al., 2002],

we are now able to classify the query processing approach presented here as follows: Both

reformulation as well as operator reordering of the remainder of the query plan are used.

The focus of the methods is adapt the point in time for data arrival at the node that started

the request, they are thus aimed at minimizing the total response time. Responsibility for

optimizations is local, where each node can decide whether an adaption is required. Finally,

the environment in which the adaption happens is a highly distributed storage system.

We have presented a method to perform complex query processing on structured data

within a DSS using our abstract network model here. While we have predicted a logarithmic

behaviour with regards to the size of the DSS from our stochastic discussion, these predictions

will be put to the test in the following chapter. Since we were able to describe a method

for distributed query processing solely based on the building blocks defined in the previous

chapter, we can also regard these building blocks to be theoretically sufficient for both

effective and efficient query processing.

93

4 Distributed Query Processing with Mutable Moving Query Plans

94

5 Verification Methodology and

Experiments

In the previous chapters, we have presented a method for complex query processing on

an abstract network model. We have made several predictions on the performance of both

our model, its basic read operation, and our MMQP method. However, while we have

presented theoretical and stochastic discussions of these components, we have to confirm

our predictions through experiments. In this chapter, we perform these experiments: First,

whether the distributed query processing approach presented is effective in processing

queries. In this context, effectiveness is the ability to produce correct results at all. Second,

we investigate the efficiency of the proposed approach with regards to our cost model, which

is based on shipping cost. We are particularly interested on the impact of the properties of

the network model on these costs.

We start this chapter by describing our experimental methodology, which is based on

controlled experiments on a simulated DSS. We then shortly introduce our test environment,

in particular the synthetic heuristics used in this environment. Also, our test data set and test

queries based on the TPC-H benchmark are described [TPC, 2011].

Our road map for our experiments builds aims at collecting evidence supporting our

hypotheses and predictions in a cumulative fashion: We start by verifying the behavior of

our simulation testbed network structure, since all subsequent processes use this model and

are dependent on its designed characteristics. In particular, the average hops required for

single-element retrieval in various network sizes are tested.

Subsequently, we test complex query processing by first testing the effectiveness of query

processing, specifically that our query evaluation approach produces the correct results for

95

5 Verification Methodology and Experiments

the test queries. Then, we test whether the two main components – continuous optimization

and movement – are effective in reducing the total cost of query evaluation. Once the

effectiveness of our components and overall process has been tested, we continue with

the impact of environment influences such as the size of the network and the routing error

probability as well as the impact of internal parameters to the total query evaluation costs.

5.1 Verification Methodology

As we have seen in the previous chapters, a distributed storage system with support for

complex query processing is an environment of high complexity and a plethora of different

variables, which all potentially contribute to its behavior. On the network level, the size and

structure of the network are arbitrary and the heuristics we use to route request and predict

distance and size are designed with probabilistic behavior. Furthermore, the structured data

to be stored is unknown a-priori, as well as the distribution and degree of locality of the

data in the network. Also, the queries being asked on the stored data are also unknown,

even if they are composed of a small set of operators, their tree structure introduces another

degree of complexity. Also, multiple configuration parameters are present in our query

processing approach, most notably the hop count limit in basic retrieval and the weighting

factors in query plan selection. Due to its randomized nature, verifying effective and efficient

functionality in this system cannot be performed using analytical methods. For example,

process calculi such as CCS and π-calculus are based on deterministic behavior of the

analyzed processes [Philippou and Michael, 2006], which we are unable to guarantee. On

the other hand, techniques such as probabilistic automata are essentially Markov Decision

Processes, for which also only stochastic properties can be checked [Segala, 2001].

While this non-provability represents a drawback of our approach, we maintain that its

adaptability to many specific and provable situations outweighs this issue. The methodol-

ogy of choice to gather support for our assumptions is therefore the method of controlled

experiments. In controlled experiments, we are able to control all variables but one, the

independent variable. By repeating the experiments several times with different settings for

the independent variable, we are able to give an indication of its effect to the overall process.

96

5.2 Test Environment

However, a second difficulty arises: Since the used heuristics are designed with probabilistic

behavior, a single controlled experiment is not suitable to show the effect of the controlled

variable. For the subsequent experiments, two main requirements therefore arise: We have to

ensure experimental validity, and also statistical significance of results where the effects of

heuristics are prevalent.

Experimental validity is divided into internal validity and external validity [Shadish et al.,

2002]. Internal validity refers to whether the independent variable has a measurable effect

on the experimental results. Main threats to internal validity include changing states in the

experiment subjects. However, in our case, where the entire experiment is a simulation, we

can create “clean” preconditions for every test, thereby avoiding these threats. However,

we will still have to test for internal validity, in our case for example by using statistical

methods. External validity is the process of generalizing from the experimental results to

circumstances not covered by the experiment. While repeating the experiment in all possible

circumstances with the same observations would be a strong indicator for external validity,

the complexity of the observed system inhibits that. Rather, as proposed by [Tichy, 1998],

we have chosen to use a set of benchmark scenarios, in which the experiments are performed.

The results from the experiments in the benchmark scenario can then be used to indicate

external validity, provided the benchmark captures a relevant subset of all possible scenarios.

However, results from empirical research by way of experiments do not prove that our

proposed methods will exhibit an observed and predicted behavior in every case. This is

particularly true in the light of the huge parameter space, of which any experiments can

only capture a small fraction. If observations from experiments should concur with our

predictions, in theory this only proves that we were unable to contradict our assumptions

with those experiments, and does not allow us to assume their validity [Popper, 1959].

5.2 Test Environment

To perform controlled experiments, we have implemented a simulation environment to test

the behavior of our models and algorithms and to collect measurements that support or refute

or predictions. In this environment, an arbitrary number of virtual network nodes can be

97

5 Verification Methodology and Experiments

created. Each virtual node maintains a list of virtual network connections to other nodes,

consistent with our network model introduced in Section 3.1 Also, each node maintains

locally stored data, and provides the local storage operations to read and write tuples locally

as described in Section 3.3.1.

5.2.1 Routing Heuristic

Since our network model was intended to be abstract, the issue was now how to maintain

this abstraction in our simulation environment. In particular, the abstract routing method we

have presented was based on assigning scores to connections to neighbor nodes according

to the probability of finding data for a specific routing key by following the respective

connection. Furthermore, the routing method was deliberately allowed to produce wrong

answers according to a error probability pf . We have solved this issue by keeping track of

the location of all data and corresponding routing keys in the network at a central location.

Calculating the routing probabilities for any key on any node was now performed by first

reading the actual location of the data for the current routing key from this central data

structure. Then, we determined the shortest path R through the network from the current

node to the node where the data is located on using Dijkstra’s algorithm. The neighbor

node on this path is now obviously the best choice to find data matching the routing key. To

model the error probability pf , we allowed this value to be set in the simulation configuration

and used it to add noise to the previously generated result. Formally, for all nodes n in the

neighborhood H of the current node, these probabilities were calculated as follows:

p(n ∈ H) =

 1− pf n ∈ R
pf

|H|−1 otherwise

5.2.2 Distance and Size Heuristic

The distance and size statistics from our cost model described in Section 4.3 are created

similarly. First, the correct value is determined from the simulated network, and then some

noise is being added to the result. Contrary to the routing heuristic, the distance and size

heuristics do not provide a distribution, but a single value for each input. Therefore, we

98

5.2 Test Environment

overlay a configurable percentage of random noise over the correct result determined from

the simulated network.

To obtain the value of the distance(nc, k) heuristic, we again determine the node nd

where data for key k is stored. Then, we measure the length of the shortest path between the

current node nc. This result is then modified with noise pd such that the result distance d

varies randomly in the range [bd− d ∗ pd, c, dd+ d ∗ pde].
For the size(k) heuristic, we also determine the node where data matching k is stored,

and then count the number of tuples stored on that node that match k. This result is

also modified with noise ps such that the result size s also varies randomly in the range

[bs− s ∗ ps, c, ds+ s ∗ pse].
In the interest of experiment repeatability we have not considered collecting node-local

statistics to potentially improve the accuracy of these heuristics in the following.

5.2.3 Data Set and Test Queries

We have selected queries and data from the TPC Benchmark H (TPC-H) (Version 2.14.31),

which is aimed at testing decision support systems that examine large volumes of data

with queries having a high degree of complexity. This fits to our approach of a large-scale

distributed storage system, which may not be able to provide real-time transaction processing

due to a relaxed coordination model and thus lack of routing efficiency, but could still be used

in a data warehouse scenario, where queries are ad-hoc, but have less rigid timing constraints.

TPC-H consists of a data generator for relational data according to a manufacturing use

case as well as a set of complex queries. The relational schema contains information about

orders. Each order contains a list of items that are part of the order. Each item is supplied

by a particular part from a particular supplier. Each order is also assigned to a specific

customer. Suppliers and customers are in a particular nation, which in turn is part of a region.

The scenario is particularly suited to show the advantages of selective data access, since a

relatively small schema here contains relations with huge amounts of tuples, which would

otherwise have to be retrieved in full. Appendix A.1 reproduces the full relational schema.

1http://www.tpc.org/tpch/spec/tpch2.14.3.pdf, accessible as of 2012-07-29

99

http://www.tpc.org/tpch/spec/tpch2.14.3.pdf

5 Verification Methodology and Experiments

Using the the TPC-H data generator dbgen with a data size scaling factor of 0.01, we

have generated a set of 86,805 tuples to be used in all experiments. The generated tuples were

translated into our schema-less data model according to the translation method in Section 3.3,

where the relation name is added to each tuple and the other tuple entry keys are prefixed

with the relation name in the case of collisions. For each test run in the experiments, this

data set was loaded into our simulation environment of varying size according to the data

distribution scheme described in Section 3.4.

Not all of the 22 queries defined in the benchmark could be used for our experiments

due to unsupported operators. Queries Q3, Q5 and Q10 were however found suitable, since

they only contained conjunctive selections, and no secondary selections. Also, grouping

and sorting of the results only occurred at the outermost level for these queries, e.g. the

query tree root. We have made made these queries compatible with the SPJ model presented

in Section 3.5 by implementing order (O) and group (G) operators.

In short, Q3 determines orders with high shipping priority, by selecting orders that have

not been shipped yet, but have high potential revenue. Q5 determines the total revenue for

orders where both supplier and customers are in the same nation, by nation. Q10 finds the

top 20 customers, where the lost revenue was greatest due to the customer returning parts.

These queries were transformed from their original SQL representation into our query model.

The SQL representations and their transformation into our modified SPJ model are given

in Appendix A.1.

5.3 Single-Element Retrieval

We have described our coordination model based on probabilistic routing in Section 3.2.

Here, we validate our stochastic predictions for the relationship between the number of

nodes, the amount of neighbors each node has, and the failure probability for the routing

function. The accuracy of our predictions is a crucial precondition for the later experiments

on our query processing approach, since MMQP in essence combines multiple single-element

retrieval operations.

100

5.3 Single-Element Retrieval

Inside the simulated storage network, we placed a single data item on a random node, and

then started the retrieval algorithm searching for this data item from another random node.

Using our synthetic routing heuristic described above, we have then executed Algorithm 1,

our generic retrieval algorithm on the simulated network structure. Starting from any node in

the network, this process calculates the routing probabilities for a given key at the current

position, chooses the best suited neighbor node, and continues there. This process repeats

itself until data for the carried key is found.

In our stochastic analysis presented in Section 3.1, we have predicted that the network

size, the average degree between nodes, and the routing failure probability pf contribute to

the number of hops that have to be performed between nodes in order to reach a specific

node or retrieve a particular data item. The hypothesis tested in this experiment is that we

are able to correctly predict the average number of hops required to retrieve a data item for

heuristics-based request routing. We have measured the amount of hops the retrieval process

required by our retrieval algorithm to find the data item. To ensure statistical soundness, the

retrieval process was repeated 100 times for each network configuration and the amount of

hops averaged. To test the influence of the three parameters, we have repeated this experiment

with all permutations of the following settings:

• Network Size: 100, 250, 500, 750, 1000

• Neighbor Limit: 5, 10, 50, 100

• pf Settings: 0.7, 0.5, 0.25, 0.1, 0.01

In total, 11,000 single retrieval operations were performed in this test. For sake of

simplicity, we start by showing the results of our experiment for a neighbor limit of 10 in

Fig. 5.1: Here, the averaged amount of hops required is plotted against the different network

sizes. For each pf setting, a different line is plotted. We can see how the pf parameter

directly influences the retrieval performance. The experiment with a routing error probability

of 70% (� symbol) displayed the worst performance, requiring on average 20 hops to retrieve

the data item in the network with 1,000 nodes. pf settings below 50% (• symbols) scored

much better, confirming our predictions from Section 3.2.3.

101

5 Verification Methodology and Experiments

200 400 600 800 1000

0
5

10
15

20

Network Size

A
ve

ra
ge

 H
op

s

●
●

●
● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

pf

0.01
0.1
0.25
0.5
0.7

Figure 5.1: Probabilistic Routing – Experimental Results – 10 Neighbors

We have also calculated and recorded the average path length in our generated networks.

As we have seen in Section 3.2.3, the average path length in the most general case of random

networks is dependent only on the amount of nodes and their average connectivity. Since

the expectation for the amount of hops is also directly dependent on the average path length,

this enables us to compare all results without having to consider the network structure. The

results of this comparison are given in Fig. 5.2: The average amount of hops required to

retrieve a data item is plotted against the average path length of the network this retrieval

process was performed in. Each pf setting again is shown on its own line to show the

influence of this parameter. Again, this parameter had great influence on the performance

of the retrieval process: Settings below 50% (three bottom lines) performed much better

than the higher settings of 50% and 70%, again confirming our previous expectations. From

the two experiments, where both the network size as well as the dependent average path

length were the independent variable, we can assume that our simulation network exhibits

the predicted behavior and is thus suited for the subsequent experiments.

102

5.3 Single-Element Retrieval

2.0 2.5 3.0 3.5 4.0

0
5

10
15

20
25

30

Average Path Length

A
ve

ra
ge

 H
op

s

pf

0.01
0.1
0.25
0.5
0.7

Figure 5.2: Probabilistic Routing – Experimental Results – Average Path Length

To test the relationship between the number of hops predicted by our stochastic model

based on the average path length and the pf setting, we compare those predictions and the

experimental results in Fig. 5.3: For each pf setting, a separate graph is plotted. Each graph

contains three sets of data points for hop count according to average path length. The dotted

line represents the linear prediction calculated using our stochastic model. The solid line

shows the average hops required to retrieve a data item as already shown before. The dashed

line shows the maximum number of steps that required for retrieval in our experiment. We

can see how prediction and experimental average correlate closely for all pf settings, which

validates our synthetic configurable routing heuristic presented above. Furthermore, we can

observe considerably higher worst-case performance, as the failure probability increases.

While the graphical results already show a correspondence between predictions and

measurements, we have also calculated two statistical measures between the predicted and

the measured average number of steps: Table 5.1 shows both the Pearson product-moment

103

5 Verification Methodology and Experiments

2.0 2.5 3.0 3.5 4.0

0
1

2
3

4
5

6

0.01

Average Path Length

H
op

s

2.0 2.5 3.0 3.5 4.0

0
2

4
6

8
10

0.1

Average Path Length

H
op

s

2.0 2.5 3.0 3.5 4.0

0
5

10
15

0.25

Average Path Length

H
op

s

2.0 2.5 3.0 3.5 4.0

0
20

40
60

0.5

Average Path Length

H
op

s

2.0 2.5 3.0 3.5 4.0

0
50

10
0

20
0

0.7

Average Path Length

H
op

s

Hops

Prediction: Average
Experiment: Average
Experiment: Maximum

Figure 5.3: Probabilistic Routing – Predictions and Results

correlation coefficient as well as the result of the Lack-of-Fit (LOF) test [Neter et al., 1985]

for the different routing failure probability configurations.

The Pearson correlation coefficient describes the covariance of two variables divided by the

product of their standard deviations. The coefficient is common to show the linear dependence

between two variables, in this case the predicted and measured hop count. However, since

this test does only test correlation and not similar values, we additionally performed the LOF

test, which in essence adds the quadratic distance between two corresponding data points,

and then maps it to a F distribution.

The closeness of the correlation results to the maximum value of one indicates a strong

correlation between the predicted and measured results. Furthermore, if the values for the

LOF test are interpreted as F-Test results, we can see a less than 10% probability of the

prediction not correctly modeling the observed values.

104

5.4 Complex Query Processing with MMQP

pf Correlation Lack-of-Fit

0.01 0.98 4%

0.1 0.97 6%

0.25 0.97 7%

0.5 0.98 4%

0.7 0.97 5%

Table 5.1: Probabilistic Routing – Prediction and Experimental Results

From these results, we can make three observations: First, the amount of hops to retrieve

a data item is indeed linear to the average path length inside the network. Second, as this

metric is fixed in a static network, the most influential parameter for our retrieval algorithm

is the routing failure probability pf . Third, our synthetic routing heuristic closely follows the

stochastic prediction for the average number of hops required, making it fit for use in the

subsequent experiments.

5.4 Complex Query Processing with MMQP

While we were able to control most relevant variables in the previous experiment, this is no

longer possible for complex queries. Network environment, configuration variables, data and

queries all potentially contribute to experimental results. As already mentioned, we have

therefore used a benchmark for our distributed query processing approach [Tichy, 1998].

Since we are using simulations, we are able to closely observe the query evaluation process

and analyze these observations. However, the effects of randomness inherent in our heuristics

will also be visible here. Therefore, repetition and statistical aggregation will be used to

remove these effects. We will first test query evaluation effectiveness and then determine

whether our predictions regarding evaluation efficiency are accurate.

105

5 Verification Methodology and Experiments

5.4.1 Query Evaluation Effectiveness

Before we are able to experiment on the efficiency of our query processing approach, we

must first ascertain whether it is effective, in particular whether it produces correct results.

Since we have designed our query model, operators and execution algorithm according to

industry standards, our hypothesis and prediction is that our implementation produces the

correct results.

The purpose of this experiment was to ensure the effectiveness and correctness of our

distributed query processing approach with the TPC-H test data and test queries. To measure

this, we have loaded the test data set both into our network simulator as well as the off-the-

shelf relational database HSQLDB2. Then, we have run the complex test queries on both

HSQLDB and our MMQP simulator and then compared the results. We have recorded the

result sets for each query on the two systems. We can assume effectiveness of our approach

if the results are equivalent. Table 5.2 shows a comparison between the result set sizes for

the queries and the two systems.

Query HSQLDB MMQP

Q3 138 138

Q5 5 5

Q10 399 399

Table 5.2: Query Evaluation Effectiveness – HSQLDB and MMQP

We can observe that both systems produced result sets of equivalent size. However, result

set size is not sufficient to ascertain equivalent results. Therefore, we have also compared

the result sets. Table 5.3 shows an example results for Query 5. To reiterate, Q5 determines

the total revenue for orders where both supplier and customers are in the same nation. We

can see how the result sets are equivalent, which was also the case for all three queries. We

therefore assume that our simulation of MMQP is effective in evaluating the test queries,

since the results were equivalent with those created by a commercial database.

2http://www.hsqldb.org, accessible as of 2012-07-29

106

http://www.hsqldb.org

5.4 Complex Query Processing with MMQP

(a) HSQLDB

n_name revenue

VIETNAM 1000926.7

CHINA 740210.76

JAPAN 660651.24

INDONESIA 566379.53

INDIA 422874.68

(b) MMQP

n_name revenue

VIETNAM 1000926.7

CHINA 740210.76

JAPAN 660651.24

INDONESIA 566379.53

INDIA 422874.68

Table 5.3: Execution Effectiveness – Example Results for Query 5

5.4.2 Component Effectiveness

Our distributed query evaluation approach presented in Section 4.4 relied on two main

concepts: First, we assumed that moving the evaluation process through the network as well

as constantly reordering the query evaluation plan would increase overall efficiency with

regards to the shipping cost.

To verify this assumption, this experiment compares the hop count and the shipping cost of

the evaluation process, which we have chosen as the basis for our cost model in Section 4.3.

To test the influence of the “Movement” and “Reordering” components of our concept, we

have extended our implementation to allow them to be enabled and disabled on demand. If

movement is disabled, the query evaluation process returns to the node it originated from

after each single-key retrieval operation. If reordering is disabled, the query is evaluated

“as-is”, and no optimization at all takes place. Furthermore, this experiment is aimed to

show a relative difference, the various parameters were fixed to common sense values. Our

prediction for the results is that both movement and reordering improve the overall efficiency

of query processing.

As a testbed, we have created a simulated network containing 1,000 nodes with a config-

ured neighbor limit of 5. This created networks with an average path length of ca. 4. The

large network size and the low number of neighbors were chosen to produce a rather large

average path length, which reduces the chance of matching data being stored directly on a

neighbor node, thereby potentially making the results clearer. Within this network, we have

107

5 Verification Methodology and Experiments

distributed our test data set according to our random data placement scheme as described

above. The routing heuristic was set to a 10% failure probability, and the query evaluation

parameters weight and improvement were set to 1.0 and 0.5, respectively. It should be

noted that these settings were chosen primarily to reduce the number of independent variables.

Later, we will also perform an experiment to determine the influence of these parameters.

Within this testbed, we have then run our three test queries 100 times each for the four

component configurations, representing all combinations for the movement and reorder-

ing components enabled or disabled. These test queries for all configurations resulted in

1,200 data points:

●

●

●

Q10 Q3 Q5

0
10

20
30

40
50

60
70

m=true,r=true

H
op

s

●

●●

●

●

●

●

●

●

●

●

●

●

●

Q10 Q3 Q5

0
10

20
30

40
50

60
70

m=true,r=false

●

●

●

●

●

●

●

Q10 Q3 Q5

0
10

20
30

40
50

60
70

m=false,r=true

●

●

●

●

Q10 Q3 Q5

0
10

20
30

40
50

60
70

m=false,r=false

Figure 5.4: Component Effectiveness – Hop Count

The impact of en- and disabling components on the hop count is depicted in Fig. 5.4, each

configuration has its own panel, and for each query a box plot over the hop count required

to evaluate the query is given. All box plots in this chapter display the box over the lower

and upper quartiles of the observed data, with the whiskers extending to the observations

1.5 times the inter-quartil range from the box border at most. More extreme values are

108

5.4 Complex Query Processing with MMQP

displayed as outliers. The bold horizontal line represents the median observation. Box plots

provide a graphical representation for two important statistical measures, the expected value,

which is approximated by the median, and the variance, which is shown by the size of the

box.

●
●●

●

●●

Q10 Q3 Q5

0
10

00
00

20
00

00
30

00
00

40
00

00

m=true,r=true

S
hi

pp
in

g
C

os
t (

Tr
an

sm
itt

ed
 T

up
le

s)

●

●

●

●

●

●

●

●

●

Q10 Q3 Q5

0
10

00
00

20
00

00
30

00
00

40
00

00
m=true,r=false

●

●

●

●●

Q10 Q3 Q5

0
10

00
00

20
00

00
30

00
00

40
00

00

m=false,r=true

●

●

●

●

●

●

●

Q10 Q3 Q5

0
10

00
00

20
00

00
30

00
00

40
00

00

m=false,r=false

Figure 5.5: Component Effectiveness – Shipping Cost

We can observe how the different configurations have little effect on both the median

value as well as the variance of the hop count results. This is due to the fact that the query

evaluation process needs to visit all nodes where data matching its operators is stored. Also,

due to the random data placement the return trip to the originating node and the outbound

trip to the next node does not appear to be longer than the direct connection used when the

evaluation process is moving.

However, an entirely different result can be seen in Fig. 5.5. Using the same layout as the

previous plot, the total shipping cost (transmitted tuples) for the different configurations and

queries are plotted here: We can observe that the runs with both the movement as well as the

reordering component had the best result. Second, but close came the configuration where

109

5 Verification Methodology and Experiments

the movement was disabled, and the reordering component enabled. The configurations with

disabled reordering showed the highest median costs as well as the greatest variance, both

not desirable from an efficiency standpoint.

These results are averaged over all queries run in Table 5.4. We can see the average

median shipping cost differing by around a factor of 10 between the experiment with both

components enabled and both components disabled.

(m=true,r=true) (m=false,r=true) (m=true,r=false) (m=false,r=false)

min 19,756 20,412 79,636 90,589

mean 31,231 52,466 164,393 254,514

median 28,162 49,060 169,620 266,488

max 95,032 111,456 427,604 437,152

Table 5.4: Component Effectiveness – Shipping Cost Measures

From these relative observations, we can conclude that the two main components of our

approach, the movement of the query evaluation process through our network as well as the

constant re-optimization both contribute to lower shipping costs. For the remainder of this

chapter, both components will therefore remain enabled.

5.4.3 Network Size Impact

One of the goals for this work was the creation of a fully distributed query processing

approach. One of the reasons for this approach being fully distributed was the potential gain

in scalability. In this experiment, we analyze the relationship between the network size and

the shipping costs. From our stochastic analysis in Section 4.6.1, we have determined that

the expected costs are linear to the average path length inside the network, or logarithmic to

the number of nodes for a certain connectivity. We predict this hypothesis to be true.

In this experiment, we have run our benchmark on seven network sizes between 100 and

5,000 nodes. Since we have predicted a logarithmic relationship, we assume that this range

is sufficient to show this behavior. To also remove the effect of random starting nodes, data

110

5.4 Complex Query Processing with MMQP

placement and network structure, we have recreated the network setup 100 times for each

network size and re-run the benchmark. For each query run, we have measured its total

shipping cost. Overall«, 2,100 data points were collected for this experiment.

0 1000 2000 3000 4000 5000

15
00

0
25

00
0

35
00

0
45

00
0

Nodes

A
ve

ra
ge

 S
hi

pp
in

g
C

os
t (

Tr
an

sm
itt

ed
 T

up
le

s)

●

●

●

●

●

●

●

●

Queries

Q3
Q5
Q10

Figure 5.6: Environment Impact – Network Size – Query Averages

Fig. 5.6 shows these results. For each query, we have averaged the total shipping cost to

remove random effects. We can observe the development of shipping costs and network size

being consistent between queries. The logarithmic shape of the shipping cost development

with regard to the network size gives a first indication that our expectation of a logarithmic

relationship is accurate. A statistical analysis of this relationship is given later in this section.

Apart from the average, we are also interested in the statistical distribution of the shipping

cost over the 100 repeated experiments for all three queries at once. Box plots for each

network size are given in Fig. 5.7. From these plots, we can observe consistent results.

The median values are increasing monotonic with the network size, and the small boxes

containing 50% of all observations indicate little variance. Therefore, using the average

values for further study is considered appropriate.

111

5 Verification Methodology and Experiments

●

●

●

●

●

●

●●

●

●●

●

●
●
●●

●

●

●●

●

●

●●

●●●●

●●

●
●

●
●●

●●

●●

●●●

●●

●

●

●

●

●●●●●●●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●

●

100 250 500 750 1000 2500 5000

0
20

00
0

60
00

0
10

00
00

Nodes

S
hi

pp
in

g
C

os
t (

Tr
an

sm
itt

ed
 T

up
le

s)

Figure 5.7: Environment Impact – Network Size – Overall Distribution

Query Distribution Fitted Function Correlation Lack-of-Fit

Q3 Logarithmic 12012.91 ∗ log(nodes) 0.99 4%

Q5 Logarithmic 8892.14 ∗ log(nodes) 0.98 1%

Q10 Logarithmic 7457.44 ∗ log(nodes) 1 2%

Q3 Linear 4.31 ∗ nodes+ 27997.82 0.91 16%

Q5 Linear 2.95 ∗ nodes+ 21124.39 0.90 19%

Q10 Linear 2.43 ∗ nodes+ 17770.34 0.87 24%

All Logarithmic 9454.16 ∗ log(nodes) 0.99 4%

All Linear 3.23 ∗ nodes+ 22297.51 0.89 20%

Table 5.5: Distribution Test – Network Size

To determine whether the shipping costs were dependent on the network size in a logarith-

mic way, we have performed a two-hypothesis statistical tests on the results. Table 5.5 shows

the results of these tests. We have tested two hypotheses, first, that the relationship between

network size and shipping cost is linear, and second, that this relationship is logarithmic. To

112

5.4 Complex Query Processing with MMQP

test this, we have fitted both a linear and a logarithmic function to the average shipping cost

for each network size using the nonlinear-least-squares method [Bates and Watts, 1988]. We

have then calculated the Pearson correlation and the lack-of-fit test [Neter et al., 1985], to

test the quality of the fitted curve. We have performed this for both the average data from the

individual queries as well as for all queries together.

From the results shown in the table, we can see that we can accept the logarithmic

relationship and reject the linear relationship between network size and shipping cost with

at least a 10% confidence level. We can therefore confirm our hypothesis of a logarithmic

relationship being present between network size and shipping cost for this experiment.

5.4.4 Evaluation Efficiency

In the single-element retrieval experiment in Section 5.3, we have observed a profound

impact of the number of hops required to retrieve a single element by the routing failure

probability pf . Since processing a query requires visiting each location with potentially

matching data, we hypothesize that processing the queries from our benchmark would show

similar susceptibility to this parameter.

From our stochastic analysis in Section 4.6.1, we have predicted a strong relationship

between the routing failure probability and the average shipping cost. In this experiment,

we test this prediction by running our benchmark on a single network with 1,000 nodes.

We have performed 100 repetitions of our benchmark with the routing failure probability

parameter set to 0, 0.1, 0.2, 0.3 and 0.4. For each run, we have collected the total shipping

cost. In total, 1,200 data points were recorded.

As an example, we present the development of the shipping cost for Q10 in Fig. 5.8 for

a single query evaluation run. To reiterate, Q10 finds the top 20 customers, where the lost

revenue was greatest due to the customer returning parts. The horizontal axis represents the

subsequent steps the query evaluation took through the network. On each step, we print the

current shipping cost of the query and its intermediate results on the left vertical axis. Also,

the cumulative shipping cost for the entire query evaluation is shown on the right vertical

axis. We can observe new data arriving at step 4, 9, 14 and 17. Our query optimization has

correctly scheduled the retrieval of large sets of tuples late in the process.

113

5 Verification Methodology and Experiments

0 5 10 15

0
50

0
10

00
15

00
20

00

Step

C
ur

re
nt

 S
iz

e
(T

up
le

s)

0
20

00
60

00
10

00
0

14
00

0

To
ta

l S
hi

pp
in

g
C

os
t (

Tr
an

sm
itt

ed
 T

up
le

s)Current Size (Tuples)
Total Shipping Cost (Transmitted Tuples)

Figure 5.8: Query Shipping Cost Development – Query Q10

To compare our results, we have also calculated the shipping cost for the optimal plan by

enumerating and evaluating all permutations of the query plans and evaluation orders for the

three queries. This was performed in the same simulated network as the subsequent queries,

thus making a comparison with the results of our approach possible. The optimal shipping

cost for each query are printed in Table 5.6.

Query Optimal Shipping Cost

Q3 25,459

Q5 18,263

Q10 12,755

Table 5.6: Efficiency Test – Optimal Shipping Cost

The comparison between the average shipping cost and the pre-determined theoretical

optimum is shown in Table 5.7. For the different settings of the routing failure probability

parameter pf , we see the average shipping cost over all query evaluation processes for this

114

5.4 Complex Query Processing with MMQP

configuration. Through a division of this value by the optimal shipping cost from Table 5.6,

we are able to determine the average overhead created through variations in the query

evaluation process, which are mainly influenced by the pf parameter. It is this table that

quantifies the trade-off between routing accuracy and the efficiency of MMQP with regards

to the shipping cost.

pf Query Average Overhead Factor

0 Q3 41,732 1.6

0 Q5 24,895 1.4

0 Q10 14,873 1.2

0.1 Q3 40,476 1.6

0.1 Q5 28,110 1.5

0.1 Q10 18,456 1.4

0.2 Q3 52,980 2.1

0.2 Q5 35,259 1.9

0.2 Q10 23,523 1.8

0.3 Q3 61,997 2.4

0.3 Q5 44,580 2.4

0.3 Q10 30,429 2.4

0.4 Q3 97,039 3.8

0.4 Q5 64,690 3.5

0.4 Q10 48,117 3.8

Table 5.7: Efficiency Test – Overhead Shipping Cost

From these results, we can observe a strong influence of the pf parameter to the average

overhead. For example, a routing failure probability of 0.4 created on average a overhead

between 3.5 and 3.8. Whether these values are acceptable again depends on the trade-off taken

in the construction of the DSS, similar to what has been observed in Section 5.3. For networks

with a lower failure probability such as for example 0.1 or 10%, the observed average

115

5 Verification Methodology and Experiments

overhead only ranged within 1.4 and 1.6, which – given the fully distributed optimization of

the query plans – is well below the threshold for general nearest neighbor TSP optimizations

discussed in Section 4.6.1. Here, the advantage of our predictive and task-aware optimization

approach becomes visible.

5.4.5 MMQP Environment and Parameter Impact

Apart from the routing failure probability pf , our query processing approach is influenced by

a number of other parameters. All these parameters control input values for our cost model

presented in Section 4.3. The hypothesis for this experiment was that these parameters also

have an influence on the total shipping cost, as bad decisions by the cost model will reflect

in sub-optimal paths through the network and thus higher shipping costs. In particular, the

following parameters were tested:

• Distance heuristic error pd, tested values between 0.01 and 0.9

• Selectivity heuristic error ps, tested values between 0.01 and 0.9

• Minimum improvement, tested values between 0.1 and 0.9

• Estimated future cost weight, tested values between 0 and 1000.

These experiments were carried out very similar to the previous two experiments. All

configuration values except one were set to common-sense values, and the parameter to

be tested was varied. For each configuration, our benchmark test was repeated 100 times.

Furthermore, the network size was static at 1,000 nodes and the routing error probability

was configured to 0.1. It should be noted that the tested parameter setting of 0 for the future

weight cost is also a test of whether the future cost estimation has any effect on the shipping

cost.

The experiments for distance and selectivity error as well for minimum improvement

showed no influence at all for these parameters. An inspection of the optimized queries

revealed their basic read operator selectivity to be very distinct, differing by orders of

magnitude. Table 5.8 shows the cardinality for each read operator for our test data set for

116

5.4 Complex Query Processing with MMQP

Query Cardinalities

Q3 1,500 – 15,000 – 60,175

Q5 5 – 25 – 100 – 1,500 – 15,000 – 60,175

Q10 25 – 1,500 – 15,000 – 60,175

Table 5.8: Parameter Test – Query Read Cardinality

each query tested. We assume this being the reason for the absence of an observable influence

of the first three parameters tested. However. extending our benchmark with queries that

provoke them could test their influence.

Q3 Q5 Q10

0 179,004 288,093 48,440

1 38,990 25,523 22,162

10 37,961 27,638 22,848

100 38,564 26,669 23,608

1000 38,553 27,418 22,427

Table 5.9: Parameter Test – Weight

The results for the test with varying future cost weight parameters are shown in Table 5.9.

For each query and parameter setting, the rounded average shipping cost over the 100

repetitions are shown. To reiterate, the future cost parameter controls the impact of the

estimated future shipping cost after simulating the evaluation of an operator to the query

selection process. From the results, we can again observe no significant impact for the

parameter settings between 1 and 1,000. The result for the setting of 0 however, which leads

to MMQP completely ignoring the future cost, showed considerable higher shipping costs.

From this, we can assume a beneficial effect of the future cost calculation and recommend a

non-zero weight setting.

117

5 Verification Methodology and Experiments

5.5 Summary and Conclusions

We have started this chapter with a rationale for the use of controlled experiments for both our

models as well as our algorithms. We described the test environment we have implemented to

provide fully controlled environment, the synthetic heuristics and the TPC-H test data set and

associated queries. We have then shown experiments aimed at confirming the behavior of our

simulated network structure with the predictions regarding the costs of single-key retrieval

operations. As we were able to confirm our predictions regarding logarithmic efficiency, we

continued with testing the effectiveness of our query processing approach. Since we were

able to create results equivalent to a commercial database for our benchmark queries, we

concluded that our approach is indeed effective in evaluating complex queries in a distributed

environment. For the subsequent experiments, we used the total shipping cost also the

basis of our cost model as a metric for query evaluation efficiency. In order not to include

components which have no effect on this efficiency, we have tested the basic concepts of

continuous reordering and evaluation movement, and found both to have a beneficial relative

impact on the shipping cost. We showed how the shipping cost has a logarithmic relationship

with the network size, which is an important precondition to its scalability to arbitrary

network sizes. Furthermore, we have shown how the routing failure probability inherent in

the coordination method used in the network has a profound impact on the shipping cost.

Finally, our experiments with other parameters showed how our investment/gain approach

with its future size estimation further reduces shipping costs.

From these results, we can confirm that it is possible to perform complex query processing

on unreliable and error-prone network architectures with surprisingly low additional costs in

terms of network traffic. Our results give an indication on what level of efficiency can be

expected from a specific network architecture with associated routing error probability. The

simulation environment, test data and raw and intermediate results for all experiments are

available for download. Access information and documentation is given in Appendix A.2.

118

6 Conclusion

Over the previous chapters, we have covered complex query processing in fully distributed

storage systems from various angles. We have started with discussing abstract goals for

distributed storage in general based on previous literature. We could see how scalability

is the most frequently cited goal for deploying distributed storage, but how economical

considerations also clearly play a role. From the literature, we have then synthesized

abstract goals for distributed storage, namely scalability, consistency and availability. These

competing goals created a large solution space, where every single architecture leads to a

specific set of compromises between between them. From reviewing representatives for

different distributed storage architectures with their particular trade-offs, it was apparent that

these compromises prohibit the creation of a “one-size-fits-all” distributed storage system,

and therefore the choice of an architecture depends on the intended system environment and

application requirements. Focusing on a single solution was therefore impossible, and the

creation of an abstracting architecture was necessary.

We have then continued to review several popular data and access models for distributed

storage systems. From our comparison, it became clear how storing structured data has

considerable advantages, and how fine-grained access to the stored data through complex

queries is clearly desirable. We have then presented the state of the art in distributed

complex query processing on structured data. From this literature review, we were able to

observe how closely tied previous approaches are to the underlying network architecture

and coordination model. We argued that this is a major hindrance for development in this

area, as these approaches cannot readily be adapted to new network or coordination models,

and how a comparison between them is very difficult. Indeed, several proposed distributed

storage architectures do not provide support for complex queries at all, mainly due to fear

119

6 Conclusion

of possible repercussions on overall efficiency. If a method to predict the behavior and

efficiency of complex query processing on the specific architecture would exist, these entry

barriers would presumably be much lower. We have also seen how not only the process of

query execution, but also the process of query optimization has to be distributed in a fully

distributed environment.

This lead to our first research problem, the creation of an abstract network and coordination

model as a basis for our further work on distributed storage. We have used the model of

a fully connected but random network of connections between fully independent storage

nodes. Between these nodes, we assumed the presence of a routing heuristic, which is able

to forward requests for data containing a certain key to one of the nodes the current node is

connected to. To allow for non-exact coordination methods, this routing method contained

a certain error probability, which is an environment parameter expressing how likely the

routing method is to take an incorrect decision. We have demonstrated the flexibility of this

model by applying it to representative architectures from the three main classes of centralized,

structured and unstructured approaches.

We have found that our model was able to express all of them and deem it being suitable

for the abstract expression of distributed processes that can then be adapted to a specific

architecture choice. We have also presented a query and data model based on the relational

model, but without the need for a central schema and therefore with tuples as a smallest

coherent unit. From discussing the question of where individual data items should be

stored in a distributed system, we have seen how locality in same-key data placement

is a requirement for efficient and complete retrieval results. Through an average-case

stochastic analysis, we have seen how retrieval of any data item within this network model

has logarithmic complexity with regard to the number of hops, at least if the employed

coordination mechanism is more likely to correctly route operations than not to do so.

Therefore, we were able to assume sufficient performance for retrieval operations in our

network model and continued to discuss a higher algorithm.

We have then introduced Mutable Moving Query Plans, which receive a complex query

on any node that is part of the network, and them embarks on a journey through the network

while constantly re-optimizing the query plan itself as well as already collecting intermediate

120

results. Finished results are returned to the node where the process originated, and results

can then be delivered to waiting applications. However, every optimization needs a metric to

determine costs with, we have therefore also developed such a cost model, which is based on

the number of transmitted tuples or network traffic. We have presented this query processing

approach with algorithmic definitions on top of our network model. We have again analyzed

the average-case complexity with regards to our cost model, and found that a logarithmic

relationship with the network size can also be expected, which is sufficient for the scalability

of our approach.

However, we were not content with analytical considerations. Therefore, we have also

performed a set of controlled experiments. For our experiments, we have implemented

a simulation environment based on our proposed network model as well as our MMQP

proposal. Using the TPC-H test data and query benchmark, we were able to confirm both

effectiveness of our query processing concept as well as the predicted logarithmic relationship

between the network size and query execution efficiency to our traffic-based cost model. We

have also determined the impact of the routing error probability to the execution efficiency.

From these results, we were able to confirm that it is possible to perform complex query

processing in our abstract-yet-versatile network model with surprisingly low additional costs

in terms of network traffic. Also, our experimental results confirm that our network model

and data placement scheme can form a minimal nucleus of properties a DSS has to exhibit in

order to make complex query processing possible. Our results can also give an indication on

what degree efficiency can be expected from a specific network architecture with associated

routing error probability.

Future Work

Our promising results from discussing the main issues of distributed complex query process-

ing warrant future work in many directions. There, contributions would also add support

to our main goal of promoting complex query support in distributed storage. For example,

we have not considered the transactional paradigm at all. The very likely case of data being

changed while a query is processed does contain a huge number of additional challenges,

121

6 Conclusion

and it is unclear whether guaranteeing for example the ACID properties in our model is

possible at all. An immediate precondition of discussing these consistency issues would be

to develop a notion of completeness of query responses. While we do not believe the full

information retrieval abstraction of precision and recall is necessary or even suited to this

case, completeness would have to be discussed further, particularly with respect to different

data placement schemes.

Another area of work are the data placement schemes that govern the distribution of data

stored using an equivalent key. We have already shown how some degree of locality is

required for retrieval efficiency, but have assumed an key-node identity for the main parts of

this work. However, this is of course a simplified view, and a discussion on what different

data placement schemes are conceivable, and what impact they would have on both efficiency

and completeness would be highly interesting. In this context, methods that would change

the network structure of the storage network would be also possible. For example, we

have proposed that misplaced data in the network should be moved to the correct location.

However, creating a new network connection might be more efficient.

In query optimization, we have seen how estimating the result set cardinality of operators

not yet evaluated is impossible in general, and how methods to estimate them are based on

statistics of previous query executions. In the interest of experimental independence, we had

not considered these approaches further, also, in our network model, these statistics would

be scattered over all nodes and were not assumed to be very accurate. However, future work

in this area could further shorten the distance between our fully distributed and continuously

optimizing MMQP proposal and previous conventional centralized approaches.

122

A Appendix

A.1 TPC-H Schema, Queries and Translation

As mentioned in Section 5.2, we have used TPC-H data and queries to test MMQP. Here, we

give some details about the TPC-H schema and the test queries used. We also describe the

translation of the queries into the query model we have presented in Section 3.5. The TPC-H

data set is built on a classical trade scenario. A company sells items, which they procure

from suppliers. Customers send orders, which can contain many items. A relational database

schema for this is given in Fig. A.1. For each relation, a table of the columns is given.

The arrows denote foreign keys. Data for this schema can be generated using the dbgen

data generator. The data generator uses a so-called scaling factor to determine how many

instances of each schema should be created. The amount of instances for a scaling factor

is given under the relation name printed in bold, for example, the supplier table contains

10,000 times the scaling factor instances. For our experiments, we have used a scaling factor

of 0.01. The generated instances were translated into our data model using the translation

scheme described in Section 3.3.

123

A Appendix

TPC Benchmark
TM

 H Standard Specification Revision 2.14.3 Page 12

1.2 Database Entities, Relationships, and Characteristics

The components of the TPC-H database are defined to consist of eight separate and individual tables (the Base

Tables). The relationships between columns of these tables are illustrated in Figure 2: The TPC-H Schema.

Figure 2: The TPC-H Schema

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-

PRIORITY

SHIP-

PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)

SF*200,000

PARTSUPP (PS_)

SF*800,000

LINEITEM (L_)

SF*6,000,000

ORDERS (O_)

SF*1,500,000

CUSTOMER (C_)

SF*150,000

SUPPLIER (S_)

SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)

25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)

5

Legend:

 The parentheses following each table name contain the prefix of the column names for that table;

 The arrows point in the direction of the one-to-many relationships between tables;

 The number/formula below each table name represents the cardinality (number of rows) of the table. Some

are factored by SF, the Scale Factor, to obtain the chosen database size. The cardinality for the LINEITEM

table is approximate (see Clause 4.2.5).

Figure A.1: TCP-H – Schema [TPC, 2011]

A.1.1 Query 3: Shipping Priority

The Shipping Priority Query retrieves the shipping priority and potential revenue,

defined as the sum of l_extendedprice * (1 - l_discount), of the

orders having the largest revenue among those that had not been shipped as

of a given date. Orders are listed in decreasing order of revenue. If more

124

A.1 TPC-H Schema, Queries and Translation

than 10 unshipped orders exist, only the 10 orders with the largest revenue are

listed. [TPC, 2011]

Listing A.1 contains the SQL representation of this query. The operator tree is shown in

Fig. A.2. Three selections with six basic read operations and two joins are required to collect

all the input data, which are then aggregated in the root.

Listing A.1: TCP-H Query 3 – SQL

SELECT l_orderkey, SUM(l_extendedprice*(1-l_discount)) AS revenue,

o_orderdate, o_shippriority

FROM customer, orders, lineitem

WHERE c_mktsegment = ’BUILDING’ AND c_custkey = o_custkey AND

l_orderkey = o_orderkey AND o_orderdate < ’1995-03-15’ AND l_shipdate

> ’1995-03-15’

GROUP BY l_orderkey, o_orderdate, o_shippriority

ORDER BY revenue DESC, o_orderdate

125

A Appendix

O

revenue DESC

G

l_orderkey,o_orderdate,o_shippriority

sum(l_extendedprice*(1-l_discount))→ revenue

on

c_custkey=o_custkey

σ

isA=customer

c_mktsegment=BUILDING

on

l_orderkey=o_orderkey

σ

isA=lineitem

l_shipdate>1995-03-15

σ

isA=orders

o_orderdate=<1995-03-15

Figure A.2: TCP-H Query 3 – Tree Representation

A.1.2 Query 5: Local Supplier Volume

The Local Supplier Volume Query lists for each nation in a region the revenue

volume that resulted from lineitem transactions in which the customer ordering

parts and the supplier filling them were both within that nation. The query

is run in order to determine whether to institute local distribution centers in

a given region. The query considers only parts ordered in a given year. The

query displays the nations and revenue volume in descending order by revenue.

Revenue volume for all qualifying lineitems in a particular nation is defined as

sum(l_extendedprice * (1 - l_discount)). [TPC, 2011]

126

A.1 TPC-H Schema, Queries and Translation

Listing A.2 contains the SQL representation of this query. The operator tree is shown in

Fig. A.3. Six selections with nine basic read operations and five joins are required to collect

all the input data, which are then aggregated in the root.

Listing A.2: TCP-H Query 5 – SQL

SELECT n_name, SUM(l_extendedprice*(1-l_discount)) AS revenue

FROM customer, orders, lineitem, supplier, nation, region

WHERE l_orderkey = o_orderkey AND c_custkey = o_custkey AND l_suppkey =

s_suppkey AND c_nationkey = s_nationkey AND s_nationkey = n_nationkey

AND n_regionkey = r_regionkey AND r_name = ’ASIA’ AND o_orderdate >=

’1994-01-01’ AND o_orderdate < ’1995-01-01’

GROUP BY n_name

ORDER BY revenue DESC

127

A Appendix

O

revenue DESC

G

n_name

sum(l_extendedprice*(1-l_discount))→ revenue

on

l_suppkey=s_suppkey

o_custkey=c_custkey

on

l_orderkey=o_orderkey

σ

isA=lineitem

σ

isA=orders

o_orderdate<. . .

o_orderdate>=. . .

on

c_nationkey=s_nationkey

σ

isA=customer

on

s_nationkey=n_nationkey

σ

isA=supplier

on

n_regionkey=r_regionkey

σ

isA=nation

σ

isA=region

r_name=ASIA

Figure A.3: TCP-H Query 5 – Tree Representation

128

A.1 TPC-H Schema, Queries and Translation

A.1.3 Query 10: Returned Item Reporting

The Returned Item Reporting Query finds the top 20 customers, in terms of their

effect on lost revenue for a given quarter, who have returned parts. The query

considers only parts that were ordered in the specified quarter. The query lists

the customer’s name, address, nation, phone number, account balance, comment

information and revenue lost. The customers are listed in descending order of

lost revenue. Revenue lost is defined as sum(l_extendedprice * (1

- l_discount)) for all qualifying lineitems. [TPC, 2011]

Listing A.3 contains the SQL representation of this query. The operator tree is shown in

Fig. A.4. Four selections with seven basic read operations and three joins are required to

collect all the input data, which are then aggregated again in the root.

Listing A.3: TCP-H Query 10 – SQL

SELECT c_custkey, c_name, SUM(l_extendedprice*(1-l_discount)) AS

revenue, c_acctbal, n_name, c_address, c_phone, c_comment

FROM customer, orders, lineitem, nation

WHERE c_custkey = o_custkey AND l_orderkey = o_orderkey AND o_orderdate

>= ’1993-10-01’ AND o_orderdate < ’1994-01-01’ AND l_returnflag = ’R’

AND c_nationkey = n_nationkey

GROUP BY c_custkey, c_name, c_acctbal, c_phone, n_name, c_address,

c_comment

ORDER BY revenue DESC

129

A Appendix

O

revenue DESC

G

c_custkey,c_name,c_acctbal,c_phone,n_name,c_address,c_comment

sum(l_extendedprice*(1-l_discount))→ revenue

on

c_custkey=o_custkey

on

c_nationkey=n_nationkey

σ

isA=customer

σ

isA=nation

on

l_orderkey=o_orderkey

σ

isA=lineitem

l_returnflag=R

σ

isA=orders

o_orderdate<1994-01-01

o_orderdate>=1993-10-01

Figure A.4: TCP-H Query 10 – Tree Representation

A.2 Experimental Environment and Results

As mentioned, we have implemented our abstract network model and our MMQP approach

as in order to perform our controlled experiments in a simulation program. In this section,

we describe all components required to repeat or adapt our experiments. The general work

flow consists of executing a Java program, which writes its results into a Comma-Separated

Values (CSV) file. This CSV file is then used by scripts in the statistics environment R1

to produce aggregated tables and graphs. The simulation program is implemented in the

Java programming language. The language specification version the program conforms to is

1http://www.r-project.org/, accessible as of 2012-07-29

130

http://www.r-project.org/

A.2 Experimental Environment and Results

version 1.6.0, which was the most recent version at the time of implementation. Dependencies

are handled using the Maven build tool, version 2.2.12. The source code is available on

the author’s web page3. This package already contains a executable Java JAR file in the

target/ directory. To recompile, extract the package, use a terminal to change into the

extracted directory, and run the console command mvn install. This command should

create the executable JAR file target/MMQP-*.jar. This process is also required after

changing the simulation parameters for the experiments. Both raw and processed results

used in this thesis are also contained in the archive.

A.2.1 Single-Element Retrieval Experiment

The Single-Element retrieval experiment (described in Section 5.3) tests how many hops

are required to retrieve a single element from all nodes in the network. This experiment is

implemented in the Java class org.fuberlin.nbi.mmqp.experiments.Routing.

The following parameters can be set inside the Java source:

• networkSizes – Set of network sizes the experiment should be run in

• minNeighbors – Minimum amount of neighbors, controls the network bootstrap

algorithm termination criterion.

• testProbabilities – Set of routing failure probabilities to test.

• repetitions – Amount of repetitions for each permutation of the three previous

parameters.

After recompilation, the experiment can be run by executing the following shell command

in the MMQP directory:

java -cp target/*.jar org.fuberlin.nbi.mmqp.experiments.Routing .

The process creates a results CSV file routing.csv. This file contains the following

data fields:
2http://maven.apache.org/, accessible as of 2012-07-29
3 http://hannes.muehleisen.org/mmqp/MMQP.zip, accessible as of 2012-07-29

131

http://maven.apache.org/
http://hannes.muehleisen.org/mmqp/MMQP.zip

A Appendix

1. neighbors – Amount of neighbors per node

2. diameter – Network diameter (greatest distance between nodes)

3. degree – Average number of connections per node

4. avgPathLength – Average path length

5. nodes – Amount of nodes in the network

6. errorProb – Routing failure probability pf

7. steps – Amount of steps taken to retrieve item

8. run – Run number

9. success – Whether the item was found

This file can be analyzed with the R script experiments/routing/routing.R.

This script produces graphs of the network size against the hop count for ten neighbors and

also for the aggregated value of average path length. In addition, the script outputs the results

of the statistical comparison of our prediction and the experimental results.

A.2.2 Query Evaluation Effectiveness Experiment

The query evaluation effectiveness experiment (described in Section 5.4.1) tests whether

MMQP produces correct results when compared with the off-the-shelf relational database

HSQLDB4. This experiment is implemented in the Java class org.fuberlin.nbi.-

mmqp.experiments.Effectiveness. This experiment has no parameters. However,

if additional queries should be run, these can be set in the Java class org.fuberlin.-

nbi.mmqp.TPC. After recompilation, the experiment can be run by executing the following

shell command in the MMQP directory:

java -cp target/MMQP-*.jar org.fuberlin.nbi.mmqp.experiments.

Effectiveness .

4http://www.hsqldb.org, accessible as of 2012-07-29

132

http://www.hsqldb.org

A.2 Experimental Environment and Results

This process creates a set of CSV files: effectiveness.csv contains a list of the used

query identifiers along with the result set sizes for both MMQP and HSQLDB. In addition,

the result sets for each query and system are also written to CSV files, e.g. Q5-hsql.csv

for the query Q5 on the HSQLDB system. Further analysis was performed by manually

comparing the result sets and their size figures.

A.2.3 Component Effectiveness Experiment

The component effectiveness experiment (described in Section 5.4.2) tests whether en-

abling movement and constant re-optimization for MMQP is visible in the total shipping

cost. This experiment is implemented in the Java class org.fuberlin.nbi.mmqp.-

experiments.Components. The following parameters can be set inside the Java

source:

• nodes – Set of network sizes the experiment should be run in

• neighbors – Minimum amount of neighbors, controls the network bootstrap algo-

rithm termination criterion.

• testProbabilities – Set of routing failure probabilities to test.

• repetitions – Amount of repetitions for each permutation of the three previous

parameters.

• probability – Error probability for routing, distance and size heuristics.

• improvement – Minimum improvement configuration parameter for MMQP, con-

trols by how much an alternative plan has to be better than the current plan to be

selected.

After recompilation, the experiment can be run by executing the following shell command

in the MMQP directory:

java -cp target/*.jar org.fuberlin.nbi.mmqp.experiments.Components .

133

A Appendix

The process creates a results CSV file components.csv. This file contains the follow-

ing fields:

1. traffic – Total shipping cost incurred

2. queryName – Query

3. movement – Whether movement was enabled

4. reordering – Whether reordering was enabled

5. steps – Amount of steps taken to process query

6. run – Run number

7. success – Whether the query evaluation was successful

The CSV file can be analyzed with the R script experiments/components/com-

ponents.R. This script produces box plots of the different configurations for each query,

both for total hop count as well as shipping cost according to our cost model.

A.2.4 Parameter Impact Experiment

The parameter experiment (described in Section 5.4.3 and Section 5.4.5) tests the impact of

various parameters to the total shipping cost. Parameters tested are network size, routing

error probability, distance and size heuristic error, MMQP minimum improvement and future

cost weight. This experiment is implemented in the Java class org.fuberlin.nbi.-

mmqp.experiments.Parameters. The following parameters can be set inside the

Java source:

• defaultNodes – Network size for the experiments where this parameter is not

tested.

• defaultNeighbors – Minimum amount of neighbors, controls the network boot-

strap algorithm termination criterion.

134

A.2 Experimental Environment and Results

• defaultProb – Error probability of routing, size and distance heuristics when the

respective parameter is not tested.

• defaultWeight – Future size weight factor for MMQP for experiments where this

parameter is not tested.

• defaultImprovement – Minimum improvement configuration parameter for

MMQP, controls by how much an alternative plan has to be better than the current

plan to be selected.

• testProbabilities – Set of failure probabilities to test.

• testImprovements – Set of MMQP improvement factors to be tested.

• testNetworkSizes – Set of network sizes to be tested.

• testWeights – Set of MMQP future cost weighing factors to be tested.

• repetitions – Amount of repetitions for each permutation of the three previous

parameters.

After recompilation, the experiment can be run by executing the following shell command

in the MMQP directory:

java -cp target/*.jar org.fuberlin.nbi.mmqp.experiments.Parameters .

The process creates a results CSV file parameters.csv. This file contains the follow-

ing fields:

1. routingError – Routing heuristic error rate setting

2. weight – Future cost weight setting

3. test – Parameter being tested

4. queryName – Query

5. avgPathLength – Average path length in network

135

A Appendix

6. neighborLimit – Maximum number of neighbors per node

7. steps – Amount of steps taken to process query

8. run – Run number

9. traffic – Total shipping cost created

10. selectivityError – Selectivity heuristic error rate setting

11. distanceError – Distance heuristic error rate setting

12. nodes – Number of nodes

13. improvement – Minimum improvement parameter setting

14. success – Whether the query evaluation was successful

The file can be analyzed with the R script experiments/parameters/parame-

ters.R. For each parameter tested, this script generates three files: a box plot of the single

experiment results grouped by parameter setting, a distribution plot showing minimum, mean

and maximum results, and a plot showing results for each query run.

A.2.5 Evaluation Efficiency Experiment

The evaluation efficiency experiment (described in Section 5.4.4) tests the efficiency of

MMQP against a perfect scenario for different error probabilities.This experiment is imple-

mented in the Java class org.fuberlin.nbi.mmqp.experiments.Efficiency.

The following parameters can be set inside the Java source:

• nodes – Network size for the experiments.

• neighborLimit – Minimum amount of neighbors, controls the network bootstrap

algorithm termination criterion.

• weight – Future size weight factor for MMQP.

136

A.2 Experimental Environment and Results

• improvement – Minimum improvement configuration parameter for MMQP, con-

trols by how much an alternative plan has to be better than the current plan to be

selected.

• repetitions – Amount of repetitions for each permutation of the three previous

parameters.

• testProbabilities – Set of heuristics failure probabilities to test.

After recompilation, the experiment can be run by executing the following shell command

in the MMQP directory:

java -cp target/*.jar org.fuberlin.nbi.mmqp.experiments.Efficiency .

The process creates a results CSV file efficiency.csv. This file contains the follow-

ing fields:

1. queryName – Query run

2. errorProb – Error probability for all heuristics

3. minTraffic – Minimum shipping cost

4. perfectTraffic – Optimal shipping cost

5. averageTraffic – Average shipping cost

6. maxTraffic – Maximum shipping cost

This file can be analyzed with the R script experiments/efficiency/efficien-

cy.R. This script generates plots showing the best possible shipping cost, and the minimum,

mean and maximum shipping cost achieved by MMQP for the different error probability

settings.

137

A Appendix

138

Bibliography

TPC benchmark H standard specifications, Nov 2011. Revision 2.14.3.

M. K. Aguilera, W. Chen, and S. Toueg. Heartbeat: A timeout-free failure detector for

quiescent reliable communication. In Proceedings of the 11th International Workshop on

Distributed Algorithms, WDAG ’97, pages 126–140, London, UK, UK, 1997. Springer-

Verlag. ISBN 3-540-63575-0.

R. Avnur and J. M. Hellerstein. Eddies: continuously adaptive query processing. In

Proceedings of the 2000 ACM SIGMOD international conference on management of data,

SIGMOD ’00, pages 261–272, New York, NY, USA, 2000. ACM. ISBN 1-58113-217-4.

A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. Science, 286

(5439):509–512, 1999.

L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet: The Google cluster

architecture. IEEE Micro, 23(2):22–28, 2003.

D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and Its Applications. Wiley,

New York, 1988.

D. Battré, F. Heine, A. Höing, and O. Kao. On triple dissemination, forward-chaining, and

load balancing in DHT based RDF stores. In G. Moro, S. Bergamaschi, S. Joseph, J.-H.

Morin, and A. M. Ouksel, editors, Databases, Information Systems, and Peer-to-Peer

Computing, volume 4125 of Lecture Notes in Computer Science, pages 343–354. Springer,

2006. ISBN 978-3-540-71660-0.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

139

Bibliography

K. Bharath-Kumar and J. M. Jaffe. Routing to multiple destinations in computer networks.

IEEE Transactions on Communications, COM-31:343–351, 1983.

K. Bratbergsengen. Hashing methods and relational algebra operations. In Proceedings of

the 10th Conference on Very Large Databases, VLDB ’84. Morgan Kaufman, Aug. 1984.

E. A. Brewer. Towards robust distributed systems. In Proceedings of the 19th Annual ACM

Symposium on Principles of Distributed Computing (PODC-00), pages 7–10, NY, July

16–19 2000. ACM Press.

I. Brunkhorst, H. Dhraief, A. Kemper, W. Nejdl, and C. Wiesner. Distributed queries and

query optimization in schema-based P2P-systems. In K. Aberer, V. Kalogeraki, and

M. Koubarakis, editors, Databases, Information Systems, and Peer-to-Peer Computing,

volume 2944 of Lecture Notes in Computer Science, pages 184–199. Springer, 2003. ISBN

3-540-20968-9.

M. Cai, M. R. Frank, J. Chen, and P. A. Szekely. MAAN: A multi-attribute addressable

network for grid information services. Journal of Grid Computing, 2(1):3–14, 2004.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra,

A. Fikes, and R. Gruber. Bigtable: A distributed storage system for structured data. In

Operating Systems Design and Implementation, OSDI ’06, pages 205–218. USENIX

Association, 2006.

Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making gnutella-like

P2P systems scalable. In A. Feldmann, M. Zitterbart, J. Crowcroft, and D. Wetherall,

editors, Proceedings of the 2003 conference on applications, technologies,architectures,

and protocols for computer communications, SIGCOMM ’03, pages 407–418. ACM,

2003. ISBN 1-58113-735-4.

C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. Theoretical

Computer Science, 239(2):211 – 229, 2000. ISSN 0304-3975.

M. C. Chu-Carroll. Code in the Cloud: Programming Google AppEngine. Pragmatic

Bookshelf (O’Reilly), Sebastopol, CA 95472, 2011. ISBN 9781934356630.

140

Bibliography

E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Communications of

the ACM, 13(6):377–387, June 1970.

E. F. Codd. The relational model for database management: version 2. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1990. ISBN 0-201-14192-2.

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems - concepts and designs

(3. ed.). International computer science series. Addison-Wesley-Longman, 2002. ISBN

978-0-201-61918-8.

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In 22th In-

ternational Conference on Distributed Computing Systems (22th ICDCS’02), pages 23–,

Vienna, Austria, July 2002. IEEE.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-

subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value

store. In Proceedings of the 21st ACM Symposium on Operating Systems Principles (21st

SOSP’07), pages 205–220, Stevenson, Washington, USA, Oct. 2007. ACM SIGOPS.

W. K. Dedzoe, P. Lamarre, R. Akbarinia, and P. Valduriez. Asap top-k query processing in

unstructured p2p systems. In Peer-to-Peer Computing, pages 1–10. IEEE, 2010. ISBN

978-1-4244-7141-6.

D. DeWitt and J. Gray. Parallel database systems: The future of high-performance database

systems. Communications of the ACM, 35(6):85–98, 1992.

B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. M. Özsoyoglu. A complete translation

from SPARQL into efficient SQL. In B. C. Desai, D. Saccà, and S. Greco, editors, 2009

International Database Engineering and Applications Symposium, ACM International

Conference Proceeding Series, pages 31–42. ACM, 2009. ISBN 978-1-60558-402-7.

P. Erdos and A. Rényi. On the evolution of random graphs. Publications of the Mathematics

Institute of the Hungarian Academy of Science, 5:17–61, 1960.

141

Bibliography

A. Fikes. Storage architecture and challenges. Online, http://static.

googleusercontent.com/external_content/untrusted_

dlcp/research.google.com/en//university/relations/

facultysummit2010/storage_architecture_and_challenges.pdf,

July 2010.

W. Fontijn and P. A. Boncz. AmbientDB: P2P data management middleware for ambient

intelligence. In IEEE International Conference on Pervasive Computing and Communi-

cations – Workshops, PerCom ’04 Workshops, pages 203–207. IEEE Computer Society,

2004.

J. C. Freytag. A rule-based view of query optimization. In Proceedings of the 1987 ACM

SIGMOD international conference on Management of data, SIGMOD ’87, page 173, San

Francisco, CA, May 1987.

A. Fronczak, P. Fronczak, and J. A. Hołyst. Average path length in random networks.

Physical Review E, 70:056110 (Article Number), Nov 2004.

C. GauthierDickey and C. Grothoff. Bootstrapping of peer-to-peer networks. In 2008

Symposium on Applications and the Internet, SAINT ’08, pages 205–208. IEEE Computer

Society, 2008. ISBN 978-0-7695-3297-4.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In 2003 Symposium on

Operating Systems Principles, SOSP ’03, pages 29–43, 2003.

G. Giakkoupis and V. Hadzilacos. On the complexity of greedy routing in ring-based peer-to-

peer networks. In Proceedings of the twenty-sixth annual ACM symposium on Principles

of distributed computing, PODC ’07, pages 99–108, New York, NY, USA, 2007. ACM.

ISBN 978-1-59593-616-5.

S. Gilbert and N. A. Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

A. Gounaris, N. W. Paton, A. A. A. Fernandes, and R. Sakellariou. Adaptive query processing:

A survey. In B. Eaglestone, S. North, and A. Poulovassilis, editors, 2002 British National

142

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//university/relations/facultysummit2010/storage_architecture_and_challenges.pdf

Bibliography

Conference on Databases, volume 2405 of Lecture Notes in Computer Science, pages

11–25. Springer, 2002. ISBN 3-540-43905-6.

S. D. Gribble, A. Y. Halevy, Z. G. Ives, M. Rodrig, and D. Suciu. What can databases do for

peer-to-peer? In International Workshop on the Web and Databases, WebDB ’01, pages

31–36, 2001.

I. Gupta, T. D. Chandra, and G. S. Goldszmidt. On scalable and efficient distributed failure

detectors. In Proceedings of the twentieth annual ACM symposium on Principles of

distributed computing, PODC ’01, pages 170–179, New York, NY, USA, 2001. ACM.

ISBN 1-58113-383-9.

T. Haerder and A. Reuter. Principles of transaction-oriented database recovery. ACM

Computing Surveys, 15(4):287–317, Dec. 1983. ISSN 0360-0300.

P. Hall, P. Hitchcock, and S. Todd. An algebra of relations for machine computation. In

Conference Record of the 2nd ACM Symposium on Principles of Programming Languages,

pages 225–232, Jan. 1975.

B. Harangsri. Query Result Size Estimation Techniques in Database Systems. PhD thesis,

School of Computer Science and Engineering, The University of New South Wales.

Harren, Hellerstein, Huebsch, Loo, Shenker, and Stoica. Complex queries in DHT-based

peer-to-peer networks. In International Workshop on Peer-to-Peer Systems (IPTPS), LNCS,

volume 1, 2002.

S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and implementation of a clustered

RDF store. In A. Fokoue, Y. Guo, and T. Liebig, editors, The 5th International Workshop

on Scalable Semantic Web Knowledge Base Systems (SSWS2009), pages 94–109, 10 2009.

P. Hayes. RDF semantics. World Wide Web Consortium, Recommendation REC-rdf-mt-

20040210, Feb. 2004.

143

Bibliography

Y. He, H. Ren, Y. Liu, and B. Yang. On the reliability of large-scale distributed systems–

A topological view. In Proceedings of the 2008 International Conference on Parallel

Processing, ICPP ’08, pages 165–172, Portland, OR, Sept. 2008. IEEE Computer Society.

M. Held and R. M. Karp. The travelling salesman problem and minimum spanning trees.

Operations Research, 18:1138–1162, 1970.

M. D. Hill. What is scalability? Computer Architecture News, 18(4):18–21, Dec. 1990.

F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo, J. Martí, and

E. Cesario. The xtreemFS architecture - a case for object-based file systems in grids.

Concurrency and Computation: Practice and Experience, 20(17):2049–2060, 2008.

D. Ilie, D. Erman, A. Popescu, and A. Nilsson. Measurement and analysis of gnutella

signaling traffic. Technical report, School of Engineering - Dept. of Telecommunication

Systems / Blekinge Institute of Technology.

I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques

in relational database systems. ACM Computing Surveys, 40(4):11:1–11:58, Oct. 2008.

ISSN 0360-0300.

D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study. In

E. H. L. Aarts and J. K. Lenstra, editors, Local Search in Combinatorial Optimization,

pages 215–310. Wiley, Chichester, 1997.

V. Kantere, D. Tsoumakos, and N. Roussopoulos. Querying structured data in an unstructured

P2P system. In A. H. F. Laender, D. Lee, and M. Ronthaler, editors, Proceedings of the 6th

annual ACM international workshop on Web information and data management, WIDM

’04, pages 64–71. ACM, 2004. ISBN 1-58113-978-0.

Karger, Lehman, Leighton, Levine, Lewin, and Panigrahy. Consistent hashing and random

trees: Distributed caching protocols for relieving hot spots on the world wide web. In

STOC: ACM Symposium on Theory of Computing (STOC), 1997.

144

Bibliography

M. Karnstedt, K. Hose, and K.-U. Sattler. Distributed query processing in P2P systems

with incomplete schema information. In Z. Bellahsene and P. McBrien, editors, Third

International Workshop on Data Integration over the Web, DIWeb ’04, pages 34–45, 2004.

G. Kokkinidis and V. Christophides. Semantic query routing and processing in P2P database

systems: The ICS-FORTH SQPeer middleware. In W. Lindner, M. Mesiti, C. Türker,

Y. Tzitzikas, and A. Vakali, editors, Proceedings of the 2004 international conference

on Current Trends in Database Technology, volume 3268 of Lecture Notes in Computer

Science, pages 486–495. Springer, 2004. ISBN 3-540-23305-9.

D. Kossmann. The state of the art in distributed query processing. ACM Computing Surveys,

32(4):422–469, 2000.

Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman problem.

Proceedings of the American Mathematical Society, 2:48–50, 1956.

A. D. Kshemkalyani and M. Singhal. Distributed Computing - Principles, Algorithms, and

Systems. Cambridge University Press, 2008.

E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University Press, 1997.

ISBN 978-0-521-56067-2.

A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. Operating

Systems Review, 44(2):35–40, 2010.

D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis of structured peer-to-

peer systems: routing distances and fault resilience. In Proceedings of the 2003 conference

on applications, technologies, architectures, and protocols for computer communications,

SIGCOMM ’03, pages 395–406, New York, NY, USA, 2003. ACM. ISBN 1-58113-735-4.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured peer-

to-peer networks. In Proceedings of the 16th International Conference on Supercomputing

(ICS-02), pages 84–95, New York, June 22–26 2002. ACM Press.

145

Bibliography

V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query

processing through progressive optimization. In Proceedings of the 2004 ACM SIGMOD

international conference on Management of data, SIGMOD ’04, pages 659–670, New

York, NY, USA, 2004. ACM. ISBN 1-58113-859-8.

S. I. McClean, D. A. Bell, and F. J. McErlean. Heuristic methods for the data placement

problem. The Journal of the Operational Research Society, 42(9):pp. 767–774, 1991.

ISSN 01605682.

J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan

Kaufmann Publishers, Inc., San Mateo, CA, 1993.

H. Mühleisen. Query processing in a self-organized storage system. In Proceedings of the

VLDB PhD Workshop, co-located with 37th Intl. Conference on Very Large Databases

(VLDB2011), 2011.

H. Mühleisen and K. Dentler. Large-scale storage and reasoning for semantic data using

swarms. Computational Intelligence Magazine, IEEE, 7(2):32 –44, may 2012. ISSN

1556-603X.

H. Mühleisen, A. Augustin, T. Walther, M. Harasic, K. Teymourian, and R. Tolksdorf. A self-

organized semantic storage service. In Proceedings of the 12th International Conference

on Information Integration and Web-based Applications and Services (iiWAS2010), 2010.

H. Mühleisen, T. Walther, and R. Tolksdorf. A survey on self-organized semantic storage.

International Journal of Web Information Systems, 7(3):205–222, 2011a.

H. Mühleisen, T. Walther, and R. Tolksdorf. Multi-level indexing in a distributed self-

organized storage system. In IEEE Congress on Evolutionary Computation, pages 989–

994. IEEE, 2011b. ISBN 978-1-4244-7834-7.

H. Mühleisen, T. Walther, and R. Tolksdorf. Data location optimization for a self-organized

distributed storage system. In Proceedings of the Third World Congress on Nature and

Biologically Inspired Computing, NaBIC ’11, pages 176–182. IEEE, 2011c. ISBN 978-1-

4577-1122-0.

146

Bibliography

A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen. Ivy: A read/write peer-to-peer file

system. In Operating Systems Design and Implementation, OSDI ’02, 2002.

J. Neter, W. Wasserman, and M. H. Kutner. Applied Linear Statistical Models. Irwin,

Homewood, Illinois, 1985.

C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-foreign

language for data processing. In J. T.-L. Wang, editor, Proceedings of the 2008 ACM

SIGMOD international conference on Management of data, SIGMOD ’08, pages 1099–

1110. ACM, 2008. ISBN 978-1-60558-102-6.

M. T. Özsu and P. Valduriez. Distributed database systems: Where are we now. IEEE

Computer, 24:68–78, 1991.

M. T. Özsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-Hall,

Englewood Cliffs, NJ, 1991.

V. Papadimos and D. Maier. Mutant query plans. Information and Software Technology, 44

(4):197–206, 2002.

Peleg and Pincas. The average hop count measure for virtual path layouts. In DISC:

International Symposium on Distributed Computing. LNCS, 2001.

A. Philippou and G. Michael. Verification techniques for distributed algorithms. In

M. Shvartsman, editor, Principles of Distributed Systems, volume 4305 of Lecture Notes

in Computer Science, pages 172–186. Springer Berlin / Heidelberg, 2006. ISBN 978-3-

540-49990-9.

H. Pirahesh, J. M. Hellerstein, and W. Hasan. Extensible rule-based query rewrite optimiza-

tion in starburst. In Proceedings of the 1992 ACM SIGMOD international conference on

Management of data, SIGMOD ’92, page 39, San Diego, CA, June 1992.

M. Placek and R. Buyya. A taxonomy of distributed storage systems. Technical Report

GRIDS-TR-2006-11, Grid Computing and Distributed Systems Laboratory, The University

of Melbourne, Australia.

147

Bibliography

K. R. Popper. The Logic of Scientific Discovery. Basic Books, New York, 1959.

E. Prud’Hommeaux and A. Seaborne. SPARQL query language for RDF. World Wide Web

Consortium, Recommendation REC-rdf-sparql-query-20080115, Jan. 2008.

K. Ramamritham and P. K. Chrysanthis. A taxonomy of correctness criteria in database

applications. The VLDB Journal, 5:85–97, 1996.

S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A scalable content-

addressable network. In Proceedings of the 2001 conference on applications, technologies,

architectures, and protocols for computer communications, SIGCOMM ’01, pages 161–

172, 2001.

M. Ripeanu, A. Iamnitchi, and I. Foster. Mapping the gnutella network. IEEE Internet

Computing, 6:50–57, 2002. ISSN 1089-7801.

P. Rösch, K.-U. Sattler, C. von der Weth, and E. Buchmann. Best effort query processing in

DHT-based P2P systems. In Proceedings of the 21st International Conference on Data

Engineering Workshops, ICDEW ’05, page 1186, 2005.

R. Sandberg, D. Golgberg, S. Kleiman, D. Walsh, and B. Lyon. Innovations in Internetwork-

ing, chapter Design and implementation of the Sun network filesystem, pages 379–390.

Artech House, Inc., Norwood, MA, USA, 1988. ISBN 0-89006-337-0.

R. Segala. Verification of randomized distributed algorithms. In E. Brinksma, H. Hermanns,

and J.-P. Katoen, editors, Lectures on Formal Methods and Performance Analysis, volume

2090 of Lecture Notes in Computer Science, pages 232–260. Springer, 2001. ISBN

978-3-540-42479-6.

G. P. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path

selection in a relational database management system. In Proceedings of the 1979 ACM

SIGMOD international conference on Management of data, SIGMOD ’79, pages 23–34,

New York, NY, USA, 1979. ACM. ISBN 0-89791-001-X.

148

Bibliography

W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and Quasi-Experimental

Designs for Generalized Causal Inference. Houghton Mifflin, 2002.

J. Silvestre. Economies and diseconomies of scale. In J. Eatwell, M. Milgate, and P. Newman,

editors, The New Palgrave: A Dictionary of Economics. Palgrave Macmillan, 1987.

M. Singhal and N. G. Shivaratri. Advanced Concepts in Operating Systems. McGraw-Hill,

Inc., New York, NY, USA, 1994. ISBN 007057572X.

I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. In Proceedings of the 2001 conference

on applications, technologies, architectures, and protocols for computer communications,

SIGCOMM ’01, pages 149–160, 2001.

M. Stonebraker. The case for shared-nothing. IEEE Data Engineering Bulletin, 9(1):4–9,

Mar. 1986.

A. S. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms. Prentice

Hall, 2002. ISBN 0-13-088893-1.

S. Tang, H. Wang, and P. V. Mieghem. The effect of peer selection with hopcount or delay

constraint on peer-to-peer networking. In A. Das, H. K. Pung, F. B.-S. Lee, and L. W.-C.

Wong, editors, Networking, volume 4982 of Lecture Notes in Computer Science, pages

358–365. Springer, 2008. ISBN 978-3-540-79548-3.

Teradata. DBC/1012 Data Base Computer, Concepts and Facilities. Teradata Corporation,

Los Angeles, CA, 1983.

F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In Proceedings of

the 19th Conference on Very Large Databases, VLDB ’03, pages 333–344, 2003.

W. F. Tichy. Should computer scientists experiment more? IEEE Computer, 31(5):32–40,

1998.

C. Treijtel. AmbientDB: Complex query processing for P2P networks. In M. H. Scholl

and T. Grust, editors, Proceedings of the VLDB PhD Workshop, co-located with 29th

149

Bibliography

Intl. Conference on Very Large Databases (VLDB2003), volume 76 of CEUR Workshop

Proceedings. CEUR-WS.org, 2003.

P. Triantafillou and T. Pitoura. Towards a unifying framework for complex query pro-

cessing over structured peer-to-peer data networks. In K. Aberer, V. Kalogeraki, and

M. Koubarakis, editors, Databases, Information Systems, and Peer-to-Peer Computing,

volume 2944 of Lecture Notes in Computer Science, pages 169–183. Springer, 2003. ISBN

3-540-20968-9.

N. L. Tudor. Optimization of queries with conjunction of predicates. International Journal

of Computers, Communications and Control, 2(3):288–298, July 2007.

W. Vogels. Eventually consistent. ACM Queue, 6(6):14–19, 2008.

C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share resource

management. In First Symposium on Operating Systems Design and Implementation

(OSDI), pages 1–11. USENIX Association, 1995.

C. Wang, B. A. Alqaralleh, B. B. Zhou, F. Brites, and A. Y. Zomaya. Self-organizing

content distribution in a data indexed DHT network. In A. Montresor, A. Wierzbicki, and

N. Shahmehri, editors, Peer-to-Peer Computing, pages 241–248. IEEE Computer Society,

2006. ISBN 0-7695-2679-9.

C. Wood. Playstation 3 clusters providing low-cost supercomputing to universities. Govern-

ment Technology, 2011.

150

List of Figures

2.1 CAP Theorem – Dimensions [Brewer, 2000] 19

2.2 Network Structure for Centralized Storage 24

2.3 Centralized Architecture - Trade-Off . 25

2.4 Structured P2P – DHT . 27

2.5 Structured P2P Architecture - Trade-Off 28

2.6 Unstructured P2P Architecture - Trade-Off 30

2.7 System Architectures and Goals . 31

2.8 Query Processing – Generic Process . 38

2.9 Z-Curve Addressing in CAN [Rösch et al., 2005] 41

3.1 Probabilistic Routing in DSS – Example 51

3.2 Data Placement with Equivalent Routing Keys – Example 62

3.3 Example Query – Tree Representation. 65

4.1 Distributed Query Evaluation with Continuous Optimization 70

4.2 Example Query – Tree Representation. 73

4.3 Mutable Moving Query Plans – Conceptual View 74

4.4 Mutable Moving Query Plan – Example 75

4.5 Cost Model – Example . 79

4.6 Permutation Rule – Join Swapping . 86

4.7 Mutable Moving Query Plans – Routing Failure Recovery 87

5.1 Probabilistic Routing – Experimental Results – 10 Neighbors 102

5.2 Probabilistic Routing – Experimental Results – Average Path Length 103

151

List of Figures

5.3 Probabilistic Routing – Predictions and Results 104

5.4 Component Effectiveness – Hop Count . 108

5.5 Component Effectiveness – Shipping Cost 109

5.6 Environment Impact – Network Size – Query Averages 111

5.7 Environment Impact – Network Size – Overall Distribution 112

5.8 Query Shipping Cost Development – Query Q10 114

A.1 TCP-H – Schema [TPC, 2011] . 124

A.2 TCP-H Query 3 – Tree Representation . 126

A.3 TCP-H Query 5 – Tree Representation . 128

A.4 TCP-H Query 10 – Tree Representation 130

152

Thanks

Writing this thesis would have been impossible without encouragement and invaluable

support from my advisors, colleagues, students and friends. I am indebted to all of you,

and hope to have justified the use of your time. Therefore, the following list can only be

incomplete. Nevertheless, I would explicitly like to thank the following people:

• Advisors Prof. Dr.-Ing. Robert Tolksdorf and Prof. Dr. Wolfgang Nejdl for their time

and effort towards the completion of this thesis

• Prof. Johann-Christoph Freytag, Ph.D. and Dipl.-Inf. Ralf Heese for database-related

advice and comments

• Dipl.-Inform. Tilman Liero for getting me out of several brain-freezes when dealing

with operator tree reordering

• My parents, Conny and Rolf Mühleisen, for their unconditional support in so many

ways – I would never have gotten to this point without you!

“I will never forget the time when a disgusting gesture of history coincided with

some desperate mechanism inside myself, and in six weeks months gave me the

book that altered my life this thesis.” – adapted from John le Carré

“Things are only impossible until they’re not!” – Jean-Luc Picard

Deutschsprachige Zusammenfassung

Verteilte Speichersysteme stellen stets einen Kompromiss zwischen den Dimensionen Skalier-

barkeit, Konsistenz und Verfügbarkeit dar. Insbesondere der Koodinationsmechanismus, mit

dem Konsistenz zwischen den beteiligten Systemen hergestellt wird, ist für diesen Kompro-

miss maßgeblich. Neben dem Abruf einzelner Datenelemente wird auch die Bearbeitung

komplexer Anfragen zur Unterstützung von Applikationen und Analysen zu einem zentralen

Element dieser Systeme. Leider sind die Methoden zur verteilten Anfragebearbeitung bisher

an einen konkreten Koodinationsmechanismus gebunden und lassen sich daher kaum an

neue Systeme anpassen.

Aufgrund dieser Situation besteht die Herausforderung für diese Arbeit darin, die Bear-

beitung komplexer Anfragen in verteilten Speichersystemen unabhängig von Netzwerkar-

chitektur und Koordinationsmechanismus zu untersuchen. Hierfür wurden daher möglichst

umfassende Abstraktionen erstellt. Um zu zeigen, dass innerhalb der abstrahierten Umge-

bung die Ausführung komplexer deklarativer Anfragen effizient möglich ist, wurde eine

ebensolche Methode erarbeitet. Hier bewegt sich der Prozess der Anfragebearbeitung durch

das Netzwerk, während die Anfrage kontinuierlich optimiert wird. Eine theoretische Betra-

chtung dieses Prozesses ergab, dass ein logarithmisches Verhalten der Übertragungskosten

im Bezug auf die Größe des verteilten Speichersystems möglich ist.

Um diese theoretischen Ergebnisse zu überprüfen, wurde zudem eine Reihe von kontrol-

lierten Experimenten mit Hilfe von Simulationen durchgeführt. Um realistische Daten und

komplexe Anfragen zu erhalten, wurde der Datenbank-Test TPC-H verwendet. Der Zusam-

menhang zwischen Parametern des abstrakten Koodinationsmechanismus und der Effizienz

der Anfragebearbeitung wurde überprüft, wobei das vorhergesagte logarithmische Verhal-

ten bestätigt wurde. Damit konnte gezeigt werden, dass bereits das vorgestellte minimale

Netzwerkmodell bei Verwendung von nachbarschaftlicher Platzierung zusammenhängender

Daten effiziente Anfragebearbeitung ermöglicht. Damit ist der Weg für die Implementierung

komplexer Anfragen in einer Vielzahl verteilter Speichersysteme frei.

Kurzlebenslauf Hannes Mühleisen

(Lebenslauf aus datenschutzrechtlichen Gründen entfernt)

	Introduction
	Distributed Storage -- Architectures and Interfaces
	Goals and Dimensions
	Scalability
	Consistency
	Availability
	Performance / Cost Ratio

	System Architectures
	Centralized Architectures
	Structured P2P Architectures
	Unstructured P2P Architectures
	Architecture Comparison

	Data Models and Access Methods
	File Systems
	Relational Databases
	Key/Value Stores
	RDF Storage Systems

	Distributed Query Processing -- State of the Art
	Structured P2P Query Processing
	Unstructured P2P Query Processing

	Summary and Conclusions

	Architecture, Data and Query Models
	Network Model
	Coordination Model -- Probabilistic Routing
	Generic Retrieval Process
	Retrieval Guarantees and Accuracy
	Stochastic Analysis

	Data Model
	Local Storage Interface on Nodes

	Data Distribution Scheme
	Query Model
	Selection
	Projection
	Equi-Join

	Summary

	Distributed Query Processing with Mutable Moving Query Plans
	Assumptions and Preconditions
	Procedural Overview
	Cost Model -- Future Costs and Required Investment
	Shipping Cost
	Size and Distance Heuristics
	Future Size and Required Investment
	Cost Estimation Example

	Algorithmic Descriptions
	Plan Enumeration

	Failure Recovery
	Misrouted Operations
	Node or Network Failure

	Abstraction and Efficiency Analysis
	Stochastic Analysis

	Summary and Conclusions

	Verification Methodology and Experiments
	Verification Methodology
	Test Environment
	Routing Heuristic
	Distance and Size Heuristic
	Data Set and Test Queries

	Single-Element Retrieval
	Complex Query Processing with MMQP
	Query Evaluation Effectiveness
	Component Effectiveness
	Network Size Impact
	Evaluation Efficiency
	MMQP Environment and Parameter Impact

	Summary and Conclusions

	Conclusion
	Appendix
	TPC-H Schema, Queries and Translation
	Query 3: Shipping Priority
	Query 5: Local Supplier Volume
	Query 10: Returned Item Reporting

	Experimental Environment and Results
	Single-Element Retrieval Experiment
	Query Evaluation Effectiveness Experiment
	Component Effectiveness Experiment
	Parameter Impact Experiment
	Evaluation Efficiency Experiment

	References
	Bibliography
	List of Figures

